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AREAS OF TRIANGLES AND OTHER POLYGONS WITH

VERTICES FROM VARIOUS SEQUENCES.

VIRGINIA JOHNSON AND CHARLES K. COOK

Abstract. Motivated by Elementary Problem B-1172 [7], formulas for the
areas of triangles and other polygons having vertices with coordinates taken

from various sequences of integers are obtained.

1. Introduction

The verification of formulas for the area of triangles having coordinates (Fn, Fn+k),
(Fn+2k, Fn+3k), and (Fn+4k, Fn+5k) for both even and odd values of k was offered
as a problem in The Fibonacci Quarterly [7]. In addition solvers were asked to
find similar formulas for the Lucas vertices cases. An earlier related problem in
The Fibonacci Quarterly [12] invited solvers to find the area of a polygon with
consecutive Fibonacci numbers as vertex coordinates beginning with (F1, F2) and
running through (F2n−1, F2n). In this paper formulas will be obtained for trian-
gles and m-sided polygons with various sequential elements as vertices with the
form (pn, pn+k), (pn+2k, pn+3k), . . . , (pn+(2m−2)k, pn+(2m−1)k). Similar, but differ-
ent, approaches to the topics presented here have been considered in [4] and [5].

2. Triangles with Fibonacci Type Coordinates

The area formulas for a triangle with vertices given by Fibonacci numbers
(Fn, Fn+k), (Fn+2k, Fn+3k), and (Fn+4k, Fn+5k) for both even and odd values of
k were indicated in the statement of a problem given in [7]. The Problem Poser
invited the solvers to show that the area is

5F 4
k
Lk

2
if k is even and

F 2
k
L3
k

2
if k is odd.

A proof should appear in a further issue of The Fibonacci Quarterly, but for the
purposes of completeness, proof will be provided here and treated as a theorem.

Theorem 2.1. The area formulas for triangles with Fibonacci vertices (Fn, Fn+k),
(Fn+2k, Fn+3k), and (Fn+4k, Fn+5k) are

5F 4
k
Lk

2
if k is even and

F 2
k
L3
k

2
if k is odd.

The signed area of this triangle can be calculated using the determinant formula
from vector calculus:[1]

A =
1

2

∣

∣

∣

∣

Fn+2k − Fn Fn+3k − Fn+k

Fn+4k − Fn Fn+5k − Fn+k

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

Fn+2k − Fn Fn+3k − Fn+k

Fn+4k − Fn+2k Fn+5k − Fn+3k

∣

∣

∣

∣

. (1)

1
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It will be useful to find this determinant for the general case first. Let a, b, r be
real numbers with r 6= 0. Define a real valued function on the integers by

f(n) = arn + b
(−1)n+1

rn
. (2)

This is the general solution to the recursion

f(n) = pf(n− 1) + f(n− 2)

where p and r are related by p = r − 1
r
.

Lemma 2.2. The area, A, of triangles with vertices (f(n), f(n+ k)),
(f(n+ 2k), f(n+ 3k)), and (f(n+ 4k), f(n+ 5k) is

A =
ab(−1)n

2

(

rk − 1

rk

)3(

rk +
1

rk

)(

rk +
(−1)k+1

rk

)

. (3)

Proof. For the general case, the signed area can be determined using:

A =
1

2

∣

∣

∣

∣

f(n+ 2k)− f(n) f(n+ 3k)− f(n+ k)
f(n+ 4k)− f(n+ 2k) f(n+ 5k)− f(n+ 3k)

∣

∣

∣

∣

.

Note that all entries in the determinant are of the form f(m + 2k) − f(m) so
applying (2) it follows that

f(m+ 2k)− f(m) = (r2k − 1)

(

ar2m+2k + (−1)mb

rm+2k

)

.

Thus

A =
(r2k − 1)2

2

∣

∣

∣

∣

∣

∣

∣

∣

ar2n+2k + (−1)nb

rn+2k

ar2n+4k + (−1)n+kb

rn+3k

ar2n+6k + (−1)nb

rn+4k

ar2n+8k + (−1)n+kb

rn+5k

∣

∣

∣

∣

∣

∣

∣

∣

=
(r2k − 1)2

2rn+3krn+5k

∣

∣

∣

∣

ar2n+3k + (−1)nbrk ar2n+4k + (−1)n+kb

ar2n+7k + (−1)nbrk ar2n+8k + (−1)n+kb

∣

∣

∣

∣

which upon expanding and applying some judicious factoring and grouping yields

A =
ab(−1)n

2

(

rk − 1

rk

)3(

rk +
1

rk

)(

rk +
(−1)k+1

rk

)

. (4)

Note that this is the signed area so the (−1)n factor can be ignored when com-
puting the value for A. �

If a = b = 1
√

5
, and r = 1+

√

5
2 , then f(n) = Fn, and if a = 1, b = −1, and

r = 1+
√

5
2 then f(n) = Ln.

k is even =⇒























a

(

rk − 1

rk

)

= a

(

rk +
(−1)k+1

rk

)

= Fk

(

rk +
1

rk

)

=

(

rk +
(−1)(−1)k+1

rk

)

= Lk

(5)
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and

k is odd =⇒



























a

(

rk +
1

rk

)

= a

(

rk +
−1( − 1)k+1

rk

)

= Fk,

(

rk − 1

rk

)

=

(

rk +
−1(−1)k+1

rk

)

= Lk

(6)

We can now prove Theorem 2.1.

Proof. If k is even, using (4) and (5), the area of the triangle will be:

A =
ab

2

(

rk − 1

rk

)4 (

rk +
1

rk

)

=
a4

2a2

(

rk − 1

rk

)4(

rk +
1

rk

)

=
5F 4

k
Lk

2
.

For k odd, using (4) and (6) the area of the triangle will be

A =
a2

2

(

rk − 1

rk

)3(

rk +
1

rk

)2

=
F 2
k
L3
k

2
.

�

Theorem 2.3. The area formulas for triangles with Lucas vertices (Ln, Ln+k),
(Ln+2k, Ln+3k), and (Ln+4k, Ln+5k) are

25

2
F 4
k
Lk if k is even and

5F 2
k
L3
k

2
if k is odd.

Proof. If k is even, using (4) and (5)

A =
ab

2

(

rk − 1

rk

)4(

rk +
1

rk

)

=
−a4

2a4

(

rk +
(−1)k+1

rk

)4(

rk +
1

rk

)

.

The absolute value gives the area as
25

2
F 4
k
Lk.

If k is odd, using (4) and (6)

A =
ab

2

(

rk − 1

rk

)3 (

rk +
1

rk

)2

=
−a2

2a2

(

rk +
1

rk

)2(

rk − 1

rk

)3

.

The absolute value gives the area as
5F 2

k
L3
k

2
. �

We turn our attention to generalized Fibonacci numbers. Consider the sequence
[Gn] where G0 = t − s, G1 = s, G2 = t, and Gn+1 = Gn + Gn−1. Using (2) and

solving the linear system, f(0) = (t−s) and f(1) = s, we find that if a =
s+ (t−s)

r√
5

,

b =
s+ (s− t)r√

5
, and r = 1+

√

5
2 , then f(n) = Gn.

Note that ab =
s2 + st− t2

5
.
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Theorem 2.4. The area formulas for triangles with Generalized Fibonacci Numbers
with vertices (Gn, Gn+k), (Gn+2k, Gn+3k), and (Gn+4k, Gn+5k) are

5(s2 + st− t2)

2
F 4
k
Lk if k is even and

(

s2 + st− t2

2

)

F 2
k
L3
k
if k is odd.

Proof. If k is even, using (4) and (5).

A =
ab

2

(

rk − 1

rk

)4(

rk +
1

rk

)

=
5(s2 + st− t2)

2
F 4
kLk.

If k is odd, using (4) and (6)

A =
ab

2

(

rk − 1

rk

)3(

rk +
1

rk

)2

=
(s2 + s− t2)

2
√
5
2

(

rk +
(−1)k+1

rk

)2(

rk +
−1(−1)k+1

rk

)3

.

Hence A =

(

s2 + st− t2

2

)

F 2
k
L3
k
. �

The Pell and Pell-Lucas numbers have Binet forms:

Pn =
(1 +

√
2)n − (1−

√
2)n

2
√
2

=
αn − βn

α− β

and

Qn = (1 +
√

(2))n + (1−
√
2)n = αn + βn.

[[2][9][11]]

Returning to the general function (2), f(n) = arn + b
(−1)n+1

rn
; if r = 1 +

√
2

and a = b =
1

2
√
2
, then f(n) = Pn.

If r = 1 +
√
2, a = 1, and b = −1, then f(n) = Qn.

k is even =⇒























a

(

rk − 1

rk

)

= a

(

rk +
(−1)k+1

rk

)

= Pk

(

rk +
1

rk

)

=

(

rk +
(−1)(−1)k+1

rk

)

= Qk

(7)

and

k is odd =⇒



























a

(

rk +
1

rk

)

= a

(

rk +
−1( − 1)k+1

rk

)

= Pk,

(

rk − 1

rk

)

=

(

rk +
−1(−1)k+1

rk

)

= Qk

(8)
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Theorem 2.5. The area formulas for triangles with Pell vertices (Pn, Pn+k), (Pn+2k, Pn+3k),
and Pn+4k, Pn+5k) are

4P 4
kQk if k is even and

P 2
k
Q3

k

2
if k is odd.

Proof. Using (4) and (7), if k is even:

A =
ab

2

(

rk − 1

rk

)4(

rk +
1

rk

)

=
(2
√
2)2

2(2
√
2)4

(

rk − 1

rk

)4(

rk +
1

rk

)

= 4P 4
kQk.

If k is odd, using (4) and (8),

A =
ab

2

(

rk − 1

rk

)3(

rk +
1

rk

)2

=
1

2(2
√
2)2

(

rk − 1

rk

)3(

rk +
1

rk

)2

=
P 2
k
Q3

k

2
.

�

Theorem 2.6. The area formulas for triangles with Lucas-Pell vertices (Qn, Qn+k),
(Qn+2k, Qn+3k), and Qn+4k, Qn+5k) are

32P 4
kQk if k is even and 8P 2

kQ
3
k if k is odd.

Proof. If k is even:

A =
ab

2

(

rk − 1

rk

)4(

rk +
1

rk

)

=
(2
√
2)4

2(2
√
2)4

(

rk − 1

rk

)4(

rk +
1

rk

)

= 32P 4
kQk.

If k is odd:

A =
ab

2

(

rk − 1

rk

)3(

rk +
1

rk

)2

=
(2
√
2)2

2(2
√
2)2

(

rk − 1

rk

)3(

rk +
1

rk

)2

= 8P 2
kQ

3
k.

�

For triangles with Jacobsthal and Jacobsthal-Lucas [10] sequences as vertices,
the eigenvalues do not lend themselves to the structure using (2). So using the
Jacobsthal vertices (Jn, Jn+k), (Jn+2k, Jn+3k), and (Jn+4k, Jn+5k), the Jacobsthal-
Lucas vertices (jn, jn+k), (jn+2k, jn+3k), and (jn+4k, jn+5k) and the Binet forms for
the Jacobsthal and Jacobsthal-Lucas numbers [8] :

Jn =
1

3
(2n − (−1)n)

and

jn = 2n + (−1)n

it is seen that the following holds:

Theorem 2.7. The points with Jacobsthal coordinates

(Jn, Jn+k), (Jn+2k, Jn+3k), (Jn+4k, Jn+5k), . . . , (Jn+2mk, Jn+(2m+1)k),

are colinear as are the points with Jacobsthal-Lucas coordinates
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(jn, jn+k), (jn+2k, jn+3k), (jn+4k, jn+5k), · · · , (jn+2mk, jn+(2m+1)k).

Proof. The equation of the line through the first two points with Jacobsthal coor-
dinates is

y =
Jn+3k − Jn+k

Jn+2k − Jn
(x− Jn) + Jn+k.

For x = Jn+2mk with m ≥ 4 we have y =
Jn+3k − Jn+k

Jn+2k − Jn
(Jn+2mk − Jn) + Jn+k.

Using the Binet form, this can be written as

y =

(

2n+3k − 2n+k

2n+2k − 2n

)(

2n+2mk − 2n

3

)

+

(

2n+k − (−1)n+k

3

)

which simplifies to y =
2n+(2m+1)k − (−1)n+k

3
. Since n+ k and n+ (2m+ 1)k are

congruent mod 2, y = Jn+(2m+1)k. Thus all the points in the set are colinear. The
proof for the set of points with Jacobsthal-Lucas coordinates is similar. �

Therefore, there are no polygons with vertices using Jacobsthal coordinates or
Jacobsthal-Lucas coordinates of this form.

3. Area of m-sided polygons with Fibonacci type vertices

Note: This approach was motivated by problem B-1167 in The Fibonacci Quarterly.
[12]

Problem Restated:
What is the area of an m-sided polygons whose vertices have coordinates

(Fn, Fn+k), (Fn+2k, Fn+3k), (Fn+4k, Fn+5k); . . . , (Fn+(m−2)k, Fn+(m−1)k)?

Using the surveyor’s formula [3] for the area of polygons with vertex coordinates
P1(x1, y1), P2(x2, y2), . . . , Pn(xn, yn) :

1

2

∣

∣

∣

∣

∣

n−1
∑

i=1

xiyi+1 + xny1 −
n−1
∑

i=1

xi+1yi − x1yn

∣

∣

∣

∣

∣

(9)

we will start with a very general case as before. Let a, b, r be real numbers with
r 6= 0. Define a real valued function on the integers as before (2):

f(n) = arn + b
(−1)n+1

rn
.

Using equation (9), the area of an m-sided polygon can be expressed as

A =
1

2

(

f(n)f(n+ 3k) + f(n+ 2k)f(n+ 5k) + . . .

+ f(n+ (2m− 4)k)f(n+ (2m− 1)k)

+ f(n+ (2m− 2)k))fn(n+ k)

− f(n+ 2k)f(n+ k)− f(n+ 4k)f(n+ 3k)− . . .

− f(n+ (2m− 2)k)f(n+ (2m− 3)k)− f(n)f(n+ (m− 1)k)
)

.
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Reordering the terms, we have

A =
1

2

(

([f(n)f(n+ 3k)− f(n+ 2k)f(n+ k)]

+ [f(n+ 2k)f(n+ 5k)− f(n+ 4k)f(n+ 3k)] . . .

+ [f(n+ (2m− 4)k)f(n+ (2m− 1)k − f(n+ (2m− 2)k)f(n+ (2m− 3)k)]

+ [f(n+ (2p− 2)k))f(n+ k)− f(n)f(n+ (2p− 1)k)]
)

.

Note that the first (m− 1) pairs have the form:
f(t)f(t+ 3k)− f(t+ k)f(t+ 2k). Applying equation (2),

f(t)f(t+ 3k)− f(t+ k)f(t+ 2k)

=

(

art +
b(−1)t+1

rt

)(

art+3k +
b(−1)t+k+1

rt+3k

)

−
(

art+k +
b(−1)t+k+1

rt+k

)(

art+2k +
b(−1)t+1

rt+ 2k

)

= ab(−1)t+1

[

(−1)k

r3k
+ r3k − 1

rk
− (−1)k

]

.

If k odd, this factors as

ab(−1)t+1

(

rk +
1

rk

)(

r2k − 1

r2k

)

.

For even k, it factors as

ab(−1)t+1

(

rk − 1

rk

)(

r2k − 1

r2k

)

.

There will be m− 1 of these terms.
The last pair in the formula is as follows:

f(n+ (2m− 2)k))f(n+ k)− f(n+ (2m− 1)k)f(n)

=

(

arn+(2m−2)k +
b(−1)n+1

rn+(2m−2)k

)(

arn+k +
b(−1)n+k+1

rn+k

)

−
(

arn+(2m−1)k +
b(−1)n+k+1

rn+(2m−1)k

)(

arn
b(−1)n+1

rn

)

= ab(−1)n
[

(−1)k+1r(2m−3)k − (1

r(2m−3)k
+ r(2m−1)k − (−1)k+1

r(2m−1)k

]

.

For k odd this factors to

(rk +
1

rk
)(r(2m−2)k − 1

r(2m−2)k
).

For k even we have

(rk − 1

rk
)(r(2m−2)k − 1

r(2m−2)k
).

Therefore, the formula for the area of a polygon with m sides and vertices
(f(n), f(n+k)), (f(n+2k), f(n+3k)+ · · ·+(f(n+(2m−2)k), f(n+(2m−1)k)

with k even will be:
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∣

∣

∣

∣

1

2
ab

[

(m− 1)

(

rk − 1

rk

)(

r2k − 1

r2k

)

−
(

rk − 1

rk

)(

r(2m−2)k − 1

r(2m−2)k

)]
∣

∣

∣

∣

(10)
and for k odd:
∣

∣

∣

∣

1

2
ab

[

(m− 1)

(

rk +
1

rk

)(

r2k − 1

r2k

)

−
(

rk +
1

rk

)(

r(2m−2)k − 1

r(2m−2)k

)]
∣

∣

∣

∣

.

(11)

Theorem 3.1. The area for any m-sided polygon with Fibonacci coordinates as
described will be:

1

2

∣

∣(m− 1)FkF2k − FkF(2m−2)k

∣

∣ .

The area for any m-sided polygon with Lucas coordinates as described will be:

5

2

∣

∣(m− 1)FkF2k − FkF(2m−2)k

∣

∣ .

The proof follows directly from equations (5), (6), (10) and (11).

Theorem 3.2. The area for any m-sided polygon with Pell coordinates as described
will be:

1

2

∣

∣(m− 1)PkP2k − PkP(2m−2)k

∣

∣ .

The area for any m-sided polygon with Pell-Lucas coordinates as described will
be:

4
∣

∣(m− 1)PkP2k − PkP(2m−2)k

∣

∣ .

The proof follows directly from equations (7), (8), (10) and (11).

Theorem 3.3. The area for any m-sided polygon with Generalized Fibonacci co-
ordinates as described in Section 3 will be:

s2 + st− t2

2

∣

∣(m− 1)FkF2k − FkF(2m−2)k

∣

∣ .

The proof follows directly from equations (5), (6), (10) and (11).

4. Triangles with Polygonal Number Co-ordinates

The general polygonal numbers are defined by the formula

P (r)
n =

n(n(r − 2)− (r − 4))

2
, for r ≥ 3.

[6]

Theorem 4.1. For any triangle with polygonal number vertices (Pn, Pn+k), (Pn+2k, Pn+3k),
and (Pn+4k, Pn+5k), the area is

A = 4(r − 2)2k4. (12)
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Proof. Analogous to the proof of the Fibonacci case, the area is the absolute value
of the determinant

A =
1

2

∣

∣

∣

∣

Pn+2k − Pn Pn+3k − Pn+k

Pn+4k − Pn Pn+5k − Pn+k

∣

∣

∣

∣

which upon expansion yields the following

A =
1

2
((Pn+2k − Pn)(Pn+5k − Pn+k)− (Pn+4k − Pn)(Pn+3k − Pn+k))

=
1

2
[(k[(r − 2)(2n+ 2k)− (r − 4)])(2k[(r − 2)(2n+ 6k)− (r − 4)])

−(k[(r − 2)(2n+ 4k)− (r − 4)])(2k[(r − 2)(2n+ 4k)− (r − 4)])]

=
1

2
[(2k2[(r − 2)2(4n2 + 16nk + 12k2) + (r − 4)2 − (r − 4)(r − 2)(4n+ 8k)])

−(2k2[(r−2)2(4n2+16nk+16k2)+(r−4)2−(r−4)(r−2)(4n+8k)])] = −8k4(r − 2)2

2
The absolute value yields A = 4(r − 2)2k4. �

So, it follows that
Triangles with Triangular Number Co-ordinates have area A = 4k4.
Triangles with Square Number Co-ordinates have area A = 16k4.
Triangles with Pentagonal Number Co-ordinates have area A = 36k4.
Triangles with Hexagonal Number Co-ordinates have area A = 64k4.
Triangles with Heptagonal Number Co-ordinates have area A = 100k4.

5. Area of m-sided polygons with Polygonal Number Co-ordinates

The following table summarizes results for the area of triangles, quadrilaterals,
pentagons, hexagons, and heptagons using polygonal vertices in the given pattern.

m Triangular Square Pentagonal Hexagonal Heptagonal
3 4k4 16k4 36k4 64k4 100k4

4 16k4 64k4 144k4 256k4 400k4

5 40k4 160k4 360k4 640k4 1000k4

6 80k4 320k4 720k4 1280k4 2000k4

7 140k4 560k4 1260k4 2240k4 3500k4

Note that the coefficients of the m-sided polygon is 4 times the sequence

{1, 4, 10, 20, 35, ...} which can be written as
m(m− 1)(m− 2)

6
and is the general

term for the tetrahedral (or triangle pyramid) number sequence having OEIS num-
ber A000292. Thus it is reasonable to conjecture the following:

Theorem 5.1. The area of any m-sided polygon (m ≥ 3)with polygonal number
vertices

(Pn, Pn+k), (Pn+2k, Pn+3k), . . . (Pn+(2m−2)k, Pn+(2m−1)k)

is
4m(m− 1)(m− 2)(r − 2)2k4

6
.
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Proof. For the general case, it is convenient to re-write (9) as

1

2

∣

∣

∣

∣

∣

m−1
∑

i=1

xiyi+1 + xmy1 −
m−1
∑

i=1

xi+1yi − x1ym

∣

∣

∣

∣

∣

. (13)

The proof is by induction on m. The statement has been shown to be true for

m = 3. Assume that the area of a polygon with m = t is
4t(t− 1)(t− 2)(r − 2)2k4

6
.

Note that the area of the t+1 sided polygons will be the area of the t sided polygon
plus the area of the triangle with coordinates (Pn, Pn+k), (Pn+(2t−2)k, Pn+(2t−1)k),
and(P2t, Pn+(2t+1)k) which is

A =
1

2

∣

∣

∣

∣

Pn+(2t−2)k − Pn Pn+(2t−1)k − Pn+k

Pn+(2t)k − Pn Pn+(2t+1)k − Pn+k

∣

∣

∣

∣

.

On expansion, this yields

A =
1

2

(

(Pn+(2t−2)k − Pn)(Pn+(2t+1)k − Pn+k)− (Pn+(2t−1)k − Pn+k)(Pn+(2t−1)k − Pn+k)
)

=
1

2
[(t− 1)k[2(r − 2)((t− 1)k + n)− (r − 4)]kt[2(r − 2)((t+ 1)k + n)− ((r − 4)]

−k(t− 1)[2(r − 2)(tk + n)− (r − 4)]kt[2(r − 2)(tk + n)− (r − 4)]]

=
1

2
k2t(t− 1)[[2(r − 2)((t− 1)k + n)− (r − 4)][2(r − 2)((t+ 1)k + n)− ((r − 4)]

−[2(r − 2)(tk + n)− (r − 4)][2(r − 2)(tk + n)− (r − 4)]]

=
1

2
k2t(t− 1)(−4(r − 2)2k2 =

−4(r − 2)2k4(t− 1)(3t)

6
.

The absolute value yields

4(r − 2)2k4(t− 1)(3t)

6
.

Adding this area to the t-sided polygon gives the area of the t+1-sided polygon as

4(t+ 1)(t)(t− 1)(r − 2)2k4

6

as required.
�

6. Concluding Comments

Whereas the second order sequences seem to lend themselves to obtainable for-
mulas for polygonal areas, the third order sequences do not appear to be as obliging.
For example, three popular third order sequences yield the following areas of tri-
angle with the indicated sequential coordinates: Area of triangles with n = 1 and
the indicated value for k:
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k Tribonacci Perrin Padovan

1 3
9

2
0

2 64
47

2
1

3 849 = 3(283)
31

9
15 = 3 · 5

4 23360 = 5 · 64 · 73 298

2
= 149 44 = 4 · 11

5 509729 = 11 · 149 · 311 1629

2
=

9 · 181
2

95 = 5 · 19

6 10049160 = 3 · 5 · 8 · 11 · 23 · 331 9640

2
=

5 · 8 · 241
2

= 4820 810 = 2 · 5 · 81

Comparing the Perrin numbers with the Padovan numbers yields no patterns.
Nor does a comparison of the Tribonacci numbers with themselves. We leave the
investigation of the quadrilateral cases to the interested reader.
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