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The Value of the Kac Polynomial at One
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Abstract

We establish a formula for the value of the Kac polynomial at one in terms of Kac polynomials,
evaluated at one, of the universal (abelian) covering quiver by applying torus localization methods
to quiver varieties introduced by Hausel–Letellier–Rodriguez-Villegas.

1 Introduction

Given a quiver Γ and a dimension vector α, Kac defines in [9] the function aΓ,α(q) that counts the
number of isomorphism classes of absolutely indecomposable representations of Γ of dimension vector
α over the finite field with q elements. He shows that, regarded as a function in q, this defines a
polynomial with integer coefficients—it is called the Kac polynomial. In fact the coefficients of the
Kac polynomial are non-negative as shown by Hausel–Letellier–Rodriguez-Villegas in [6]—confirming
a conjecture of Kac.

The main objective of this paper is to study the value of the Kac polynomial at one. We give
a description of the number aΓ,α(1) in terms of the values a

Γ̂,β
(1) where Γ̂ is the universal abelian

covering quiver of Γ. More precisely, the main result of the paper states:

Theorem 1.1. The value of the Kac polynomial at one of Γ attached to a dimension vector α is the
sum

aΓ,α(1) =
∑

β

aΓ̂,β(1)

which ranges over a complete system of representatives of equivalence classes of dimension vectors β
of Γ̂ that are compatible with α.

Theorem 1.1 can be proved for an indivisible dimension vector α by applying torus localization
to the moduli space Mλ(Γ, α) of representations of the deformed preprojective algebra Πλ(Γ) (see
[20, Section 3.2.2]). When λ is generic the Poincaré polynomial of Mλ(Γ, α) is shown to be equal to
aΓ,α(q) by Crawley-Boevey–Van den Bergh [4] whence its Euler characteristic equals aΓ,α(1). The

fixed points under a suitable torus action can be identified with moduli Mλ(Γ̂, β). The localization
principle then proves the theorem in the indivisible case.
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2 Terminology

The proof of the general case uses the varieties Mσ(Γ, α) introduced in the proof of the Kac
conjecture in [6]. Their cohomology carries a natural action of the Weyl group W of a maximal torus
of GLα. The generating series of the anti-invariant part of the cohomology equals the Kac polynomial.
We find a similar torus action on Mσ(Γ, α) which commutes with the W -action on cohomology.
Again we describe the components of the fixed point locus (see Theorem 5.1) in terms of Mσ(Γ̂, β)
and prove that the cohomology of the fixed point locus identifies—as a W -representation—with a
sum of induced representations from the Weyl groups of the coverings (see Theorem 5.2). Arguing
that the localization isomorphism is compatible with the Weyl group action in our setup (this is a
bit of an awkward business as W does not act on the quiver variety but only on its cohomology;
see Proposition 6.1), we conclude that Theorem 1.1 holds for arbitrary dimension vectors. Applying
Theorem 1.1 iteratively we obtain the following corollary

Corollary 1.2. The value of the Kac polynomial at one of Γ attached to a dimension vector α is the
sum

aΓ,α(1) =
∑

β

aΓ̃,β(1)

which ranges over a complete system of representatives of equivalence classes of dimension vectors β
of the universal covering quiver Γ̃ of Γ that are compatible with α.

The value aΓ,α(1) is closely related to the number of indecomposable tree modules. A consequence
of Theorem 1.1 is Corollary 8.2 stating that the number of indecomposable tree modules of dimension α
equals aΓ,α(1), provided that all compatible roots β of the universal covering quiver are exceptional.
As every finite connected subquiver of the universal covering naturally defines an indecomposable
tree module which is exceptional as a representation of Γ̃, the number of such subquivers of a fixed
dimension type gives a lower bound for the Kac polynomial at one. This is a consequence of the fact
that the Kac polynomial is simply 1 for exceptional roots. Indecomposable tree modules of this kind
are also called cover-thin. We apply this considerations to the generalized Kronecker quiver K(m).
Statements about the growth behavior of the number of cover-thin tree modules of K(m) then yield
that aK(m),n(d,e)(1) grows at least exponentially in n if (d, e) is a root.

Kinser and Derksen sketch a proof of the above theorem in an unpublished note using entirely
different methods. The coprime case was also treated in the habilitation thesis [20] of the second
author.
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2 Terminology

Let Γ be a quiver. Let Γ0 be its set of vertices and Γ1 be the set of arrows; both assumed to be
finite. A representation M of Γ over the field k consists of a tuple of finite-dimensional k-vector spaces
(Mi)i∈Γ0

and k-linear maps Ma : Mi → Mj for every arrow a : i → j. With the obvious notion of a
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2 Terminology

morphism of representations of Γ, we obtain an abelian category. A representation M over k is called
indecomposable if it cannot be decomposed as the direct sum of two proper subrepresentations. We
call M absolutely indecomposable if M ⊗k K is an indecomposable representation for every finite
extension K | k.

If k = Fq then the number aΓ,α(q) of absolutely indecomposable representations of Γ over Fq of
dimension vector α—the dimension vector of a representation M is the tuple (dimkMi)i∈Γ0

—is a
finite number. Kac shows in [9, §1.15] that aΓ,α(q) is a polynomial in q with integer coefficients. It is
called the Kac polynomial of (Γ, α).

Given α ∈ ZΓ0

≥0, we define the vector space

R(Γ, α) =
⊕

a:i→j

Homk(k
αi , kαj ).

On R(Γ, α), the group GLα =
∏

iGLαi
acts by change of basis. The set of GLα-orbits on R(Γ, α) is

in natural bijection with the set of isomorphism classes of representations of Γ of dimension α over k.
The double quiver Γ of Γ is obtained as follows: the set Γ0 is just Γ0 but Γ1 is obtained from Γ1

by adding a new arrow a∗ : j → i for every arrow a : i→ j in Γ. Then

R(Γ, α) =
⊕

(a:i→j)∈Γ1

(
Hom(kαi , kαj )⊕Hom(kαj , kαi)

)
.

An element ϕ ∈ R(Γ, α) consists of linear maps ϕa : kαi → kαj and ϕa∗ : kαj → kαi . Let glα be
the Lie algebra of GLα and let gl0α be the Lie subalgebra consisting of elements X whose total trace
tr(X) =

∑
i tr(Xi) is zero. The moment map µ : R(Γ, α)→ gl0α is defined by

µ(ϕ) =
∑

a∈Γ1

[ϕa, ϕa∗ ].

Let λ ∈ ZΓ0 with λ · α =
∑

i λiαi = 0 which we regard as a central element of gl0α. Elements of
the fiber µ−1(λ) are representations of Πλ(Γ) = kΓ/(

∑
a∈Γ1

[a, a∗]−
∑

i λiei), the so-called deformed
preprojective algebra of Γ. As µ is GLα-equivariant and λ is central the fiber µ−1(λ) carries an action
of GLα. The GLα-orbits on µ−1(λ) are in bijection with isomorphism classes of representations of
Πλ(Γ) of dimension vector α.

Given a quiver Γ we define the (infinite) quiver Γ̂ by

Γ̂0 = Γ0 × ZΓ1 Γ̂1 = Γ1 × ZΓ1

where for an arrow a : i → j in Γ and χ ∈ ZΓ1 the arrow (a, χ) ∈ Γ1 has source (i, χ) and target
(j, χ+ ea) (the element ea is the respective unit vector in ZΓ1), i.e. pictorially

(a, χ) : (i, χ)→ (j, χ+ ea).

The quiver Γ̂ is called the universal abelian covering quiver of Γ (see [19, Section 3.1]).
We also recall the notion of the universal covering quiver. We denote by WΓ the free group

generated by Γ1. The universal covering quiver Γ̃ of Γ is given by the vertex set

Γ̃0 = Γ0 ×WΓ Γ̃1 = Γ1 ×WΓ

3



3 The Coprime Case

where (a,w) : (i, w)→ (j, wa) for a : i→ j.
Finally, we consider iterated covering quivers and define the kth universal abelian covering quiver

Γ̂k by

Γ̂k
0 = Γ̂k−1

0 × ZΓ̂k−1

1 Γ̂k
1 = Γ̂k−1

1 × ZΓ̂k−1

1 .

As explained in [19, Section 3.4] there exist natural surjective morphisms ck : Γ̃→ Γ̂k which become
injective on finite subquivers of Γ̃ for k ≫ 0, see [19, Proposition 3.13].

There is a natural morphism of quivers c : Γ̂ → Γ which projects along ZΓ1 . Let Λ = ZΓ0 and

let Λ̂ be the sublattice of ZΓ̂0 of those vectors β = (βi,χ) with finite support. We extend the map c

linearly to a map c : Λ̂→ Λ, concretely

c(β)i =
∑

χ

βi,χ.

A dimension vector of Γ̂ is defined to be an element of Λ̂ whose entries are non-negative. We say that
a dimension vector β of Γ̂ is compatible with a dimension vector α of Γ if c(β) = α. We define an
action of the group ZΓ1 on Λ̂ by letting ξ ∈ ZΓ1 act on β ∈ Λ̂ by (ξ.β)i,χ = βi,χ+ξ. Dimension vectors
which lie in the same ZΓ1-orbit are called equivalent. The map c is ZΓ1-invariant and it is clear that
up to equivalence only finitely many dimension vectors of Γ̂ with connected support are compatible
with a given dimension vector α of Γ. There is also a natural morphism c : Γ̃ → Γ with the same
properties.

3 The Coprime Case

If α is coprime then the proof of Theorem 1.1 is easier. It suffices to consider moduli spaces of complex
representations of the deformed preprojetive algebra. Let k = C from now on. Consider the moment
map µ : R(Γ, α)→ gl0α. As α is coprime, we find λ ∈ ZΓ0 with λ ·α = 0 such that λ ·α′ 6= 0 for every
0 ≤ α′ ≤ α unless α′ equals 0 or α. Such a λ is called generic for α. Let Mλ(Γ, α) = µ−1(λ)//GLα.
By combining Formula (2.7) and Corollary 2.3.2 of [4] , we have

aΓ,α(q) =
d∑

i=0

dimH2d+2i
c (Mλ(Γ, α);C)q

i,

where we consider singular cohomology with compact supports and where d is the complex dimension
of Mλ(Γ, α). Since Mλ(Γ, α) is cohomologically pure, the existence of a polynomial with integer
coefficients which counts the rational points yields that the odd cohomology vanishes, see [4, Appendix
A]. In particular, we obtain aΓ,α(1) = χc(Mλ(Γ, α)). By a well-known result, we have χc(X) = χc(X

T )
for any complex variety with a torus action, see for instance [3, Section 2.5] or [5, Appendix B]. Here
XT denotes the fixed point set. It is straightforward to transfer the results of [19] to the case of the
moduli spaces Mλ(Γ, α). Note that representations of Πλ(Γ) are simple if λ is generic. This enables us
to understand the corresponding fixed point components as moduli spaces attached to the universal
abelian covering of Γ. More precisely, let T := (C×)Γ1 act on R(Γ, α) by

(ta)a ∗ (Ma,Ma∗)a∈Γ1
= (taMa, t

−1
a Ma∗).
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4 Construction of the Moduli Space in the General Case

This descends to an action on µ−1(λ) which commutes with the usual base change action of GLα.
Now the same proofs as those of [19, Section 3] apply to show the following:

Theorem 3.1. The set of torus fixed points Mλ(Γ, α)
T is isomorphic to the disjoint union of moduli

spaces ⊔

β

Mλ(Γ̂, β)

where β ranges over all equivalence classes of dimension vectors of Γ̂ compatible with α.

Note that λ, which we regard as an element of ZΓ̂0 by setting λi,χ = λi, is generic for every β that
is compatible with α. This shows that Theorem 1.1 holds for α coprime. Note further that every β
for which Mλ(Γ̂, β) is non-empty must have connected support by genericity of λ. Finally, Corollary
1.2 follows by Remark 5.3.

4 Construction of the Moduli Space in the General Case

We recall the construction of Hausel–Letellier–Rodriguez-Villegas. Consider again µ : R(Γ̂, α)→ gl0α
over the complex numbers. Let Tα be the maximal torus of GLα of tuples of invertible diagonal
matrices. Let tα be the Lie algebra of Tα. A semi-simple element of glα is called regular if its
centralizer is a maximal torus. Therefore the centralizer of a regular element of tα is Tα. An element
σ ∈ tα is called generic if tr(σ) = 0 and if tr(σ|V ) 6= 0 for all non-trivial Γ0-graded subspaces V ⊆ Cα

which are stable under σ. Let t
gen
α be the (non-empty) open subset of regular generic elements of tα.

The variety

M = M (Γ, α) = {(ϕ, hTα, σ) ∈ R(Γ, α)×GLα /Tα × tgenα | µ(ϕ) = hσh−1}//GLα

is the quotient by the GLα-action defined by g(ϕ, hTα, σ) = (g ·ϕ, ghTα, σ). Note that the diagonally
embedded C× acts trivially and the induced action of GLα /C

× is free. The map π : M → t
gen
α arising

by projecting onto the third factor is surjective.

Theorem 4.1 ([6, Theorem 2.1]). The fibers Mσ are smooth and their cohomology vanishes in odd
degrees.

The Weyl group W =Wα = NGLα(Tα)/Tα
∼=

∏
i Sαi

acts on M via

w.(ϕ, hTα, σ) = (ϕ, hẇ−1Tα, ẇσẇ
−1)

where ẇ is the permutation matrix defined by w (or any other representative of w in NGLα(Tα)). We
will drop the dot in the notation for convenience. This gives isomorphisms w : Mσ →Mwσw−1 .

Theorem 4.2 ([6, Theorem 2.3]). For any σ ∈ t
gen
α the cohomology group H i

c(Mσ;C) becomes in a
natural way a representation of W which is up to isomorphism independent of σ ∈ t

gen
α .

In [6] this result is stated for the cases that the ground field has large positive characteristic or is
the complex numbers and with coefficients in Qℓ. For our purposes, it will be sufficient to consider
the complex case and C-coefficients. The above theorem follows from a result of Maffei [12, Lemma
48] which shows that Riπ!Z, and hence also Riπ!C, is constant.

As it is useful for our purposes we will explain how the W -representation arises.
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5 Torus Action

Remark 4.3. Let f : Y → X be a continuous map of locally compact topological spaces. Let W be a
finite group which acts on both X and Y such that f is W -equivariant. Let F be a sheaf of complex
vector spaces on Y with a W -linearization ϕ : act∗F

∼=
−→pr∗2 F (where act : W × Y → Y is the action

map and pr2 : W × Y → Y is the projection); see [14, §1.3] for the definition of a linearization. We
obtain isomorphisms ϕw : w∗F → F with ϕw1w2

= ϕw2
◦ w∗

2ϕw1
.

Consider the higher direct images Rif!F with compact supports. The definitions and results
on cohomology of sheaves can, for instance, be found in [10, Chapters II, III]. Suppose that Rif!F
is constant. As thus for every x ∈ X, the natural map Γ(X;Rif!F ) → (Rif!F )x = H i

c(Yx;F )
is an isomorphism we get an isomorphism ix,x′ : H i

c(Yx;F ) → H i
c(Yx′ ;F ) for every two points

x, x′ ∈ X. The linearization gives isomorphisms ϕw : H i
c(Ywx;F ) = H i

c(Yx;w
∗F ) → H i

c(Yx;F ).
It is easy to verify from the cocyle conditions and the compatibility of the isomorphisms ix,x′ that
ρi : W → GL(H i

c(Yx;F )) defined by

ρi(w) : H i
c(Yx;F )

ϕ
w−1

−−−→ H i
c(Ywx;F )

iwx,x
−−−→ H i

c(Yx;F )

is a representation of W . If F is constructible, the assumption Rif∗F be constant induces a repre-
sentation W → GL(H i(Yx;F )) in the same way.

The central result of [6] is the description of the Kac polynomial as the generating series of the
alternating part of the graded W -representation H∗

c (Mσ;C). More precisely, they show:

Theorem 4.4 (see [6, Theorem 1.4]). The Kac polynomial aΓ,α(q) coincides with

d∑

i=0

dim
(
H2i+2d

c (Mσ ;C)sign
)
qi,

where d is the complex dimension of Mσ and the subscript “sign” denotes the alternating component
of the cohomology regarded as a W -representation.

5 Torus Action

Let T = (C×)Γ1 act on R(Γ, α) via

(t.ϕ)a = taϕa (t.ϕ)a∗ = t−1
a ϕa∗

for any t = (ta)a∈Γ1
∈ T and ϕ ∈ R(Γ, α). This T -action commutes with the action of GLα which

implies that we get an action of T on M by

t.(ϕ, hTα, σ) = (t.ϕ, hTα, σ).

The T -action on M commutes with the W -action whence W acts on the fixed point locus M T .
We analyze the fixed point locus and the W -action on it. Let (ϕ, hTα, σ) ∈M T . This means for

all t ∈ T there exists g ∈ GLα with

(t.ϕ, hTα, σ) = (g · ϕ, ghTα, σ)

6



5 Torus Action

or, in other words, taϕa = gjϕag
−1
i for all a : i → j and h−1

i gihi ∈ Tαi
for all i. As GLα /C

× acts
freely on the total space of the quotient M , the element g is uniquely determined by t up to a scalar.
Using the arguments from [19] we deduce that there exists a homomorphism ψ : T → GLα, unique up
to the diagonally embedded C×, with t.(ϕ, hTα) = ψ(t) · (ϕ, hTα). The ith component ψi : T → GLαi

of ψ induces a T -action on Cαi and therefore a weight space decomposition

Cαi =
⊕

χ∈X(T )

Vi,χ.

The character group X(T ) of T is precisely ZΓ1 . For a weight vector vχ ∈ Vi,χ and an arrow a : i→ j
we get

taϕa(vχ) = (t.ϕ)a(vχ)

= ψj(t)ϕaψi(t)
−1(vχ)

= χ(t)−1ψj(t)ϕa(vχ)

or, in other words, ϕa(vχ) ∈ Vj,χ+ea. It is shown analogously that ϕa∗(Vj,χ) ⊆ Vi,χ−ea. These
considerations show that ϕ can be regarded as a representation of the double of the covering quiver
Γ̂ of dimension vector β with βi,χ = dimVi,χ.

Let χ1, . . . , χN be those characters for which there exists an i such that the weight space Vi,χk is
non-zero. Embed Cβ

i,χk as the subspace of Cαi spanned by the unit vectors

ei,(β
i,χ1+...+β

i,χk−1+1), . . . , ei,(β
i,χ1+...+β

i,χk )

and consider GLβ =
∏

i,χGLβi,χ
as a subgroup of GLα via this direct sum decomposition. As there

exists g ∈ GLα with g(Vi,χk) = Cβ
i,χk which is unique up to a (unique) element of GLβ , we may, by

passing from (ϕ, hTα, σ) to (g · ϕ, ghTα, σ), assume without loss of generality that Vi,χk = Cβ
i,χk .

For a number r ∈ {1, . . . , αi}, let k be the unique index with ei,r ∈ Vi,χk . Write hi(ei,r) as
∑

χ wχ

with wχ ∈ Vi,χ. As h−1
i ψi(t)hi lies in Tαi

, the vector

(h−1
i ψi(t)hi)(ei,r) = h−1

i (
∑

χ

χ(t)wχ)

lies in the span of ei,r. Precisely one summand wχ is non-zero. To see this, assume otherwise. Take a
character ξ for which wξ 6= 0 and observe that hi(ei,r) would by assumption not be a multiple of wξ.
Choose a one-parameter subgroup λ of T which vanishes on ξ and is positive on all other χ which
occur in the summation

∑
χwχ. Then

(h−1
i ψi(λ(z))hi)(ei,r) = h−1

i (
∑

χ

z〈λ,χ〉wχ) −−−→
z→0

h−1
i (wξ)

which does not lie in the span of ei,r. A contradiction.
We deduce that for every r as above there exists an l such that hi(ei,r) ∈ Vi,χl . This implies the

existence of a w ∈ W such that hẇ−1 ∈ GLβ (and this Weyl group element w is unique up to an

7



5 Torus Action

element of Wβ = NGLβ
(Tα)/Tα). These considerations show that the fixed point locus M T is the

disjoint union ⊔

β

⊔

w∈W/Wβ

Mβ,w (1)

over a full system of representatives of dimension vectors β which are compatible with α, where

Mβ,w = {(ϕ, hTα, σ) ∈ R(Γ̂, β)×GLα /Tα × tgenα | hẇ−1 ∈ GLβ , µ(ϕ) = hσh−1}//GLβ

and where ẇ ∈ NGLα(Tα) is a representative of w ∈ W/Wβ
∼= NGLα(Tα)/NGLβ

(Tα). An element
w′ ∈ W applied to (ϕ, hTα, σ) ∈ Mβ,w yields (ϕ, hw′−1Tα, w

′σw′−1) which lies in M
β,ww′−1. This

shows that the the disjoint union
⊔

w∈W/Wβ
Mβ,w agrees—as a W -variety—with the associated fiber

bundle M (Γ̂, β)×Wβ W (cf. [17, Section 3.3] or [18, Section 2.1]). We have proved

Theorem 5.1. The fixed point locus M (Γ, α)T is, as a W -variety, isomorphic to the disjoint union
⊔

β

M (Γ̂, β)×Wβ W

over all dimension vectors β up to equivalence which are compatible with α. This isomorphism com-
mutes with the natural maps to t

gen
α .

Denote by πβ,w the natural map Mβ,w → t
gen
α . Formula (1) implies that the higher direct image

Ri(π|M T )!C of the constant sheaf C on M T is the direct sum
⊕

β

⊕

w∈W/Wβ

Ri(πβ,w)!C

and is therefore constant (using the proof of [6, Theorem 2.3]). The identification of
⊔

w Mβ,w with

M (Γ̂, β)×Wβ W yields that Ri(π|M T )!C is isomorphic to
⊕

β

IndWWβ
Ri(πβ)!C

where πβ : M (Γ̂, β)→ t
gen
α . We conclude

Theorem 5.2. The W -module H i
c(Mσ(Γ, α)

T ;C) is isomorphic to the direct sum
⊕

β

IndWWβ
H i

c(Mσ(Γ̂, β);C)

over all dimension vectors β up to equivalence which are compatible with α.

Remark 5.3. When applying iterated localization, in a first step, we can replace Γ̂ by Γ̂k in Theorem
5.2. In a second step, we can replace Γ̂k by Γ̃. Indeed, every root β of Γ̂k which is compatible with
α defines a finite connected subquiver of Γ̂k. As recalled in Section 2, every finite subquiver of the
universal covering quiver embeds into Γ̂k for k ≫ 0. As the maps ck defined there are also surjective,
this means that we can choose k in such a way that the supports of all compatible roots β are finite
subquivers of Γ̃. We refer also to [19, Section 3.4] for more details.
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6 Localization Isomorphisms

6 Localization Isomorphisms

Consider a smooth morphism f : Y → X of smooth complex varieties which is assumed to be
equivariant with respect to a finite group W that acts on both X and Y . Now suppose that a
complex torus T = (C×)n acts on Y in a way that f is T -invariant and such that the T - and the
W -action on Y commute. We assume further that f arises by base change from a (topologically)
locally trivial fibration Y ′ → X ′ whose basis X ′ is contractible (this holds in our concrete situation,
see the proof of [6, Theorem 2.3] or [12, Lemma 48]). In particular f is also a locally trivial fibration.
Consider the constant sheaf C on Y . Then the higher direct images Rif!C and Rif∗C are constant
by contractibility of X ′. Remark 4.3 ensures that H i

c(Yx;C) and H i(Yx;C) have a natural structure
of a W -representation. Moreover every connected component of the fixed point set Y T is smooth.
Suppose further that the induced map fT : Y T → X satisfies the same properties as f (this is true
in our setup, see Theorem 5.1). We show:

Proposition 6.1. The classes [H∗
c (Yx;C)] and [H∗

c (Y
T
x ;C)] agree in the Grothendieck group K0(CW )

of finitely generated (complex) W -representations.

We have to show that the localization isomorphism in [3, Section 2.5] is compatible with the
W -action. But as the W -action on cohomology of the fiber does not arise from a W -action on the
fiber but from monodromy, we have to adjust the proof given in [3] relative to the basis X.

Proof. Let ET be a contractible space on which T acts freely and let BT = ET/T . Consider the
cartesian diagrams

Y ×T ET Y × ET Y

X ×BT X × ET X.

fT

π p

π p
f

By base change we see that π∗RifT,∗C ∼= p∗Rif∗C and as π is faithfully flat we obtain RifT,∗C ∼=
pr∗Rif∗C where pr : X ×BT → X is the projection. The composition

Y ×T ET
fT−→ X ×BT

pr
−→ X

yields a spectral sequence Ep,q
2 = (Rp pr∗)(R

qfT,∗)C⇒ Rp+q(pr ◦fT )∗C. By the above considerations
we conclude that

Ep,q
2
∼= (Rp pr∗) pr

∗(Rqf∗)C ∼= Hp(BT ;C)⊗Rqf∗C.

This is a spectral sequence in the category of W -equivariant sheaves on X. Note that as fT is a
locally trivial bundle, the composition pr ◦fT is, too, and as BT is contractible all Ri(pr ◦fT )∗C are
constant. Then the stalk H i(Yx×

T BT ;C) = H i
T (Yx;C) inherits the structure of a W -representation

(cf. Remark 4.3). Applying the stalk functor to the spectral sequence E from above yields the spectral
sequence

Hp
T (pt)⊗H

q(Yx)⇒ Hp+q
T (Yx)

(all cohomology groups are taken with complex coefficients). This is the spectral sequence associated
with the fibration ET ×T Yx → BT , but by this detour, we have shown that the differentials of this

9



7 Finishing the Proof of the Main Result

spectral sequence are W -linear. This shows that [H∗
T ⊗ H∗(Yx)] = [H∗

T (Yx)] in the Grothendieck
group K0((H

∗
T )W ) of finitely generated (H∗

T )W -modules.
On the other hand the inclusion Y T → Y of the fixed point locus induces a natural morphism

Ri(fT ◦ pr)∗C→ Ri((fT × idBT ) ◦ pr)∗C

which, after taking fibers, is the pull-back H i
T (Yx)→ H i

T (Y
T
x ) in equivariant cohomology. This shows

that this map is alsoW -equivariant. The H∗
T -linear mapH∗

T (Yx)→ H∗
T (Y

T
x ) becomes an isomorphism

after localizing finitely many non-trivial characters. This isomorphism doesn’t preserve the grading
but only the parity. Let S ⊆ H∗

T be the multiplicative subset arising from the aforementioned charac-
ters. Then [S−1H∗

T ⊗H∗

T
H∗

T (Yx)] = [S−1H∗
T ⊗H

∗(Y T
x )] in the Grothendieck group K0((S

−1H∗
T )W )

and thus
[S−1H∗

T ⊗H
∗(Yx)] = [S−1H∗

T ⊗H
∗(Y T

x )]

in the same group. But this implies that [H∗(Yx)] = [H∗(Y T
x )] already in K0(CW ).

Finally we apply Poincaré duality. As Yx and all connected components of Y T
x are smooth

varieties, the classes [H∗(Yx)] and [H∗(Y T
x )] agree with [H∗

c (Yx)] and [H∗
c (Y

T
x )], respectively, in

the Grothendieck group K0(C). But Poincaré duality in this case comes from Verdier duality
RHom(Rf!C, ωX) ∼= Rf∗RHom(C, ωY ) which is W -equivariant (by interpreting it as an identity
in the bounded derived category of W -equivariant sheaves on X which is the same as Db

W (X) the W -
equivariant bounded derived category in the sense of Bernstein–Lunts [2] as W is finite). Therefore,
the identity [H∗

c (Yx)] = [H∗(Yx)] holds also in the Grothendieck group K0(CW ). The same argument
applies for the equality [H∗

c (Y
T
x )] = [H∗(Y T

x )].

7 Finishing the Proof of the Main Result

Applying Proposition 6.1 and the fact that Mσ has no odd cohomology, we observe that H∗
c (M

T
σ ;C) ∼=

H∗
c (Mσ ;C) as ungraded W -representations. The W -representation H∗

c (M
T
σ ;C) decomposes by The-

orem 5.2 as the direct sum
⊕

β Ind
W
Wβ

H∗
c Mσ(Γ̂, β);C). The sign-isotypical component of the induced

W -representation IndWWβ
H i

c(Mσ(Γ̂, β);C) is thus the sign-isotypical component of H i
c(Mσ(Γ̂, β);C)

(with respect to the Wβ-action). We know by [6, Theorem 1.4] that

aΓ,α(1) = dimH∗
c (Mσ(Γ, α);C)sign a

Γ̂,β
(1) = dimH∗

c (Mσ(Γ̂, β);C)sign

and using that taking isotypical components and taking classes in the Grothendieck group commute,
we have proved aΓ,α(1) =

∑
β aΓ̂,β(1), as asserted in Theorem 1.1. Now Corollary 1.2 is an immediate

consequence of Theorem 1.1 when taking Remark 5.3 into account.

8 First Consequences of the Main Theorem

The main result of this paper has plenty of interesting consequences which were also mentioned in [20]
for coprime dimension vectors. For instance the number of indecomposable tree modules, as defined
in [16], can be related to the Kac polynomial at one. Recall that a tree module of Γ is already a
representation of the universal covering quiver Γ̃ of Γ. We call an indecomposable tree module of

10



8 First Consequences of the Main Theorem

Γ cover-thin if its dimension vector α is of type one as a representation of Γ̃, i.e. if αi ∈ {0, 1} for
all i ∈ Γ̃0. Equivalently the coefficient quiver of a cover-thin tree module is a spanning tree of the
support of its dimension vector (as representation of Γ̂). We denote the number of indecomposable
tree modules of dimension α by tα and the number of cover-thin tree modules by ctα. Let σi be the
BGP-reflection at i introduced in [1].

Lemma 8.1. Every indecomposable tree module M which is cover-thin is exceptional as a represen-
tation of the universal covering quiver. In particular, we have that σiM is also an indecomposable
tree module for any sink (resp. source) i ∈ Γ0.

Proof. The first part follows because every exceptional representation M is Schurian and, moreover,
because 〈dimM, dimM〉 = dimk Hom(M,M) − dimk Ext(M,M) = 1. In particular, σiM is also
exceptional as a representation of the universal covering quiver and thus a tree module by the main
result of [16].

Corollary 8.2. Let α be a dimension vector such that all equivalence classes of compatible dimension
vectors with connected support consist of exceptional roots. Then the number of indecomposable tree
modules of dimension vector α is equal to the Kac polynomial at one.

Proof. For the Kac polynomial of a real root α̃, we have aΓ̃,α̃(q) = aΓ̃,α̃(1) = 1. Thus it suffices to
show that the number of indecomposable tree modules is equal to the number of compatible roots.

By the main result of [16], every exceptional representation is an indecomposable tree module and
thus a representation of the universal covering quiver, say of dimension α̃. Thus every compatible
dimension vector gives rise to an indecomposable tree module. Conversely every indecomposable tree
module T yields a root α̃ of Γ̃ which is compatible with α. Since α̃ is exceptional by assumption, T
is up to isomorphism the only representation of dimension α̃.

Using iterated localization we also re-obtain the following result:

Corollary 8.3 ([13, Corollary 4.4]). If α is a dimension vector of Γ such that αi = 1 for all i ∈ Γ0,
the Kac polynomial at one is equal to the number of spanning trees of Γ.

Let K(m) be the generalized Kronecker quiver with two vertices i, j and m arrows al : i → j.
In this case, the main result together with the following proposition enables us to investigate the
asymptotic behaviour of the Kac polynomial at one.

Proposition 8.4 ([20, Proposition 3.2.6]). Let n := m−1. The number of indecomposable cover-thin
tree modules ct(d,e) of K(m) which are of dimension (d, e) is

1

d

m∑

i=1

(
m

i

)(
ne

d− 1

)(
n(d− 1)

e− i

)
i

e
.

Example 8.5. If m = 3 and (d, e) = (d, d+ 1), it is straightforward to check that we have

ct(d,d+1) =
3

(d+ 2)(d + 3)

(
2d

d

)(
2(d+ 1)

d+ 1

)
.

The respective sequence of natural numbers appears as sequence A186266 in [15]. It seems that there
was no combinatorial interpretation of this sequence before.

11



9 Concrete Examples

Applying Lemma 8.1, we thus obtain:

Corollary 8.6. The number of indecomposable tree modules tn(d,e) of K(m) grows (at least) expo-
nentially with the dimension vector, i.e. for every imaginary Schur root (d, e) of K(m) there exists a
real number K(d,e) > 1 such that tn(d,e) > Kn

(d,e).

As a consequence, we obtain the following:

Corollary 8.7. Let (d, e) be a root of the generalized Kronecker quiver K(m). Then the Kac polyno-
mial at one grows (at least) exponentially with the dimension vector, i.e. there exists a real number
K(d,e) > 0 such that

aK(m),n(d,e)(1) > Kn
(d,e).

Actually, Corollary 8.6 can also be used to show that the number of indecomposable tree modules
which have an imaginary Schur root as the dimension vector grows exponentially with the dimension
vector, see [20, Theorem 3.2.8]

We conclude with the following natural question, which was for instance asked in [11, Question
7], but also posed to the second author by W. Crawley-Boevey and A. Hubery:

Question 8.8. Do we always have tα ≥ aΓ,α(1)?

The main result of the paper implies that this needs to be checked only for quivers which are
trees. But actually, similar to the question of the existence of tree modules, it seems that this does
not make things much easier. Many examples which can be found in the literature suggest that this
is true. In the case of extended Dynkin quivers of type D̃n, this can be checked by hand. We also
conjecture that equality holds if and only if the assumptions of Corollary 8.2 hold.

9 Concrete Examples

Consider the generalized Kronecker quiver K(3) and the dimension vector (2, 3). By use of Hua’s
formula [8], we obtain

aK(3),(2,3) = q6 + q5 + 3q4 + 4q3 + 5q2 + 3q + 2

and thus aK(3),(2,3)(1) = 19, see [8, Section 5]. There are 18 cover-thin tree modules of K(3) of
dimension (2, 3) which are given by

• •
m1 // •

•

m1
55❦❦❦❦❦❦❦

m2

))❙❙
❙❙❙

❙❙

• •
m3 //

m2

;;✇✇✇✇✇✇✇✇

m4

##●
●●

●●
●●

● •

•

m3
55❦❦❦❦❦❦❦

m4

))❙❙
❙❙❙

❙❙

• •

Here the arrows mi ∈ {a1, a2, a3} satisfy the conditions m1 6= m2 6= m3 6= m4 in the first case and
the conditions m1 6= m2 and m2,m3,m4 pairwise distinct in the second case. Finally, there is one
tree module which is not cover-thin and whose coefficient quiver is the one on the left hand side in

12



9 Concrete Examples

the case when m2 = m3 and m1,m2,m4 are pairwise distinct. More precisely, its dimension vector is
given by

•

2

m1

55❦❦❦❦❦❦❦❦❦❦ m2 //

m4 ))❙❙
❙❙❙

❙❙❙
❙❙ •

•

i.e. the real root of D4 of dimension (2, 1, 1, 1). Thus, the number of indecomposable tree modules is
19.

We consider the generalized Kronecker quiver K(4) and the root (2, 4). In this case, the number
of indecomposable tree modules, which is 126 (120 cover-thin tree modules and six others), is greater
than a(2,4)(1). Using Hua’s formula [8] we obtain

aK(4),(2,4)(q) = q13 + q12 + 3q11 + 4q10 + 8q9 + 9q8 + 15q7 + 16q6 + 20q5 + 17q4 + 15q3 + 9q2 + 5q + 2

and thus a(2,4)(1) = 125. Up to coloring the arrows, we obtain the following subquivers and dimension
vectors (where the dots indicate one-dimensional vector spaces) which give a contribution to the Kac
polynomial at one:

• •
m1 // • •

•
m2 //

m1
66♠♠♠♠♠♠♠♠

m3 ''P
PP

PP
PP

P • • •

• •
m3

77♥♥♥♥♥♥♥♥

m4

''P
PP

PP
PP

P

m2

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

m5

  ❇
❇❇

❇❇
❇❇

❇❇
❇ 2

m2

77♥♥♥♥♥♥♥♥

m3

''P
PP

PP
PP

P

m1

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

m4

  ❇
❇❇

❇❇
❇❇

❇❇
❇

•

m4
77♥♥♥♥♥♥♥♥

m5

((◗
◗◗

◗◗
◗◗

◗ • •

• • •

It is straightforward to check that there exist (up to translation) 108 possibilities to embed the

first quiver into K̃(4) (resp. to color the arrows with four different colors m1,m2,m3,m4 such that
m1,m2,m3 are pairwise distinct and m3 6= m4 6= m5). For the second one we have 12 possibilities
and, for the last one, there exists only one possible embedding. Since the first two dimension vectors
are real roots, the Kac polynomials are 1. The quiver and the dimension vector considered in the last
case is a quiver of type D̃4 together with the unique imaginary Schur root δ. Thus the Kac polynomial
is q + 4. This can be checked by classifying the absolutely indecomposable representations, which
coincide with the indecomposables in this case, up to isomorphism. In summary, we obtain

aK(4),(2,4)(1) = 108 · 1 + 12 · 1 + 1 · 5 = 125.

Finally, we consider the quiver Lg with only one vertex i and g loops. If αi ≤ 5, all non-empty
moduli spaces appearing are points and the Kac polynomials of the compatible dimension vectors
are one. In particular, the number of indecomposable tree modules coincides with aLg ,αi

(1). The
first non-trivial moduli space appears for αi = 6. Also in this case, we need to consider the Kac
polynomial of the imaginary Schur root δ = (2, 1, 1, 1, 1) of D̃4 with Kac polynomial aL̃g,δ

(q) = q+4.
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10 Conjecture on the Asymptotic Behavior of the Kac Polynomial at One

Taking into account the different possibilities of coloring the arrows of D̃4 with the colors {1, . . . , g}
and orienting the arrows, this gives the contribution

5 ·

(
24
(
g

4

)
+ 3 · 22

(
g

3

)
+

(
g

2

))

to the Kac polynomial at one (we can choose four, three or two different arrows out of the g arrows
of the original quiver). Note that, in the universal covering, the following orientations do not appear

•
a
−−→ •

a
←−− • •

a
←−− •

a
−−→ •

Since there are six indecomposable tree modules of dimension δ of D̃4, one checks that this indeed
fills the gap between aLg ,6(1), see [7, Section 1], and the number of indecomposable tree modules of
dimension αi = 6, see [11, Section 4.1].

10 Conjecture on the Asymptotic Behavior of the Kac Polynomial

at One

The following is based on a conjecture of M. Douglas concerning moduli spaces of stable representa-
tions of generalized Kronecker quivers, see [19, Section 6.1]. It generalizes [20, Conjecture 4.1.2] to
arbitrary dimension vectors:

Conjecture 10.1. There exists a continuous function f : RΓ0 → R such that

f(α) = lim
n→∞

ln(aΓ,nα(1))

n

for all dimension vectors α ∈ NΓ0.

If a function as predicted in Conjecture 10.1 exists, Proposition 8.4 immediately yields a lower
bound in the case of the Kronecker quiver and for coprime dimension vectors (d, e) such that d ≤ e ≤
(m− 1)d + 1.

Lemma 10.2. Let (d, e) be a root of the Kronecker quiver such that d ≤ e ≤ (m− 1)d+1 and define
k := e/d and n := m− 1. Then we have

lim
d→∞

aK(m),(d,kd)(1)

d
≥ lim

d→∞

ct(d,kd)

d
= n(k + 1) ln n+ k(n − 1) ln k − (nk − 1) ln(nk − 1)

−(n− k) ln(n− k).

Proof. Obviously, we only have to consider one of the m summands of the formula obtained in
Proposition 8.4. Then the claim follows straightforwardly when applying the Stirling formula.

Note that the numbers ct(d,e) are not invariant under the reflection functor. Nevertheless, the
reflection functor can clearly be used to obtain a lower bound for aK(m),(d,e)(1) for every dimension
vector (d, e). Furthermore, it would be interesting to know if there are tuples (d, e) for which equality
holds or to know more about the contribution of cover-thin tree modules to the Kac polynomial at
one.
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