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Abstract—The index coding capacity is investigated through
its structural properties. First, the capacity is characterized in
three new multiletter expressions involving the clique number,
Shannon capacity, and Lov́asz theta function of the confusion
graph, the latter notion introduced by Alon, Hassidim, Lubetzky,
Stav, and Weinstein. The main idea is that every confusion graph
can be decomposed into a small number of perfect graphs. The
clique-number characterization is then utilized to show that the
capacity is multiplicative under the lexicographic product of
side information graphs, establishing the converse to an earlier
result by Blasiak, Kleinberg, and Lubetzky. Second, sufficient
and necessary conditions on the criticality of an index coding
instance, namely, whether side information can be removed
without reducing the capacity, are established based on thenotion
of unicycle, providing a partial answer to the question firstraised
by Tahmasbi, Shahrasbi, and Gohari. The necessary condition,
along with other existing conditions, can be used to eliminate
noncritical instances that do not need to be investigated. As an
application of the established multiplicativity and criti cality, only
10,634 (0.69%) out of 1,540,944 nonisomorphic six-messageindex
coding instances are identified for further investigation,among
which the capacity is still unknown for 119 instances.

I. I NTRODUCTION

The index coding problem is a canonical problem in net-
work information theory in which a server has a tuple ofn
messagesxn = (x1, . . . , xn), xj ∈ {0, 1}tj , and is connected
to n receivers via a noiseless broadcast channel. Suppose that
receiver j ∈ [n] := {1, 2, . . . , n} is interested in message
xj and has a set of other messagesx(Aj) := (xi, i ∈
Aj), Aj ⊆ [n] \ {j} as side information. Assuming that the
server knows side information setsA1, . . . , An, one wishes to
characterize the minimum amount of information the server
needs to broadcast and to find the optimal coding scheme that
achieves this minimum.

More precisely, a(t1, . . . , tn, r) index codeis defined by

• an encoderφ :
∏n

i=1{0, 1}
ti → {0, 1}r that mapsn-tuple

of messagesxn to anr-bit index and
• n decodersψj : {0, 1}

r×
∏

k∈Aj
{0, 1}tk → {0, 1}tj that

maps the received indexφ(xn) and the side information
x(Aj) back toxj for j ∈ [n].

Thus, for everyxn ∈
∏n

i=1{0, 1}
ti,

ψj(φ(x
n), x(Aj)) = xj , j ∈ [n].

A (t, . . . , t, r) code is written as a(t, r) code. A rate tuple
(R1, . . . , Rn) is said to beachievablefor the index coding
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problem if there exists a(t1, . . . , tn, r) index code such that

Rj ≤
tj
r
, j ∈ [n].

Thecapacity regionC of the index coding problem is defined
as the closure of the set of achievable rate tuples. The
symmetric capacity(or the capacity in short) of the index
coding problem is defined as

Csym = max{R : (R, . . . , R) ∈ C },

and its reciprocalβ = 1/Csym is referred to as thebroadcast
rate, which can be equivalently defined as

β = inf
t

inf
(t,r) codes

r

t
= lim

t→∞
inf

(t,r) codes

r

t
, (1)

where the equality follows by Fekete’s lemma [1] and the
subadditivity

inf
(t1+t2,r) codes

r ≤ inf
(t1,r1) codes

r1 + inf
(t2,r2) codes

r2.

The goal is to characterize the capacity region or the sym-
metric capacity for the general index coding problem and to
determine the coding scheme that can achieve it.

Any instance of the index coding problem is fully de-
termined by the side information setsA1, . . . , An, and is
represented compactly as(j|Aj), j ∈ [n]. For example, the 3-
message index coding problem withA1 = {2, 3}, A2 = {1},
andA3 = {1, 2} is represented as

(1|2, 3), (2|1), (3|1, 2).

The problem can be equivalently specified by a directed graph
with n vertices, commonly referred to as theside information
graph. Each vertex of the side information graphG = (V,E)
corresponds to a receiver (and its associated message) and
there is a directed edgei → j if and only if (iff) receiver j
knows messagei as side information, i.e.,i ∈ Aj (see Fig. 1).
Throughout the paper, we identify an instance of the index
coding problem with its side information graphG and often
write “index coding problemG.” We also denote the broadcast
rate and the capacity region of problemG with β(G) and
C (G) respectively.

The problem of broadcasting to multiple receivers with
different side information traces back to the work by Celebiler
and Stette [2], Wyner, Wolf, and Willems [3], [4], Yeung [5],
and Birk and Kol [6], [7]. The current problem formulation
is due to the last. This problem has been shown to be
closely related to many other important problems in network
information theory such as network coding [8]–[10], locally
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Fig. 1. The graph representation for the index coding problem with A1 =
{2, 3}, A2 = {1}, andA3 = {1, 2}.

recoverable distributed storage [11]–[13], guessing games on
directed graphs [8], [13], [14], and zero-error capacity ofchan-
nels [15]. In addition, index coding has its own applications
in diverse areas ranging from satellite communication [2]–[7]
and multimedia distribution [16] to interference management
[17] and coded caching [18], [19]. Due to this significance,
the index coding problem has been broadly studied over the
past two decades in several disciplines including graph theory,
coding theory, and information theory, and various bounds
have been established on the capacity region and the broadcast
rate. Despite all these efforts, however, the problem is still
open in general and the capacity in a computable (single-letter)
expression is known only for a handful of special cases (see,
for example, [14], [17], [20]–[31]).

Deviating from the common approach of finding the capac-
ity by establishing tight upper and lower bounds, we take a
more direct attack at the capacity itself by its structural proper-
ties using several graph-theoretic tools. The main contributions
are summarized as follows:

• A new multiletter characterization of the capacity
(Theorem 2).Paralleling the multiletter characterization
of the capacity (broadcast rate) via the chromatic number
of the confusion graph [32], we establish a multiletter
characterization via theclique numberof the confusion
graph. As a corollary, we establish anonasymptotic
upper bound on the broadcast rate via the Lovász theta
function of the confusion graph that can be computed
more efficiently than the existing upper bound using the
chromatic number.

• Multiplicativity of the capacity under the lexico-
graphic product (Theorem 5). As another corollary
of the aforementioned clique-number characterization,
we show that if the side information graph is the lex-
icographic product of two graphs, the capacity is the
product of the capacities of the two component graphs,
completing an earlier result by Blasiak, Kleinberg, and
Lubetzky [33]).

• Conditions on the criticality of an index coding
instance (Theorem 6 and Proposition 10).Providing
a partial answer to the question raised by Tahmasbi,
Shahrasbi, and Gohari [34], we establish conditions under
which the removal of an edge reduces the capacity.
Both sufficient and necessary conditions are based on the
notion of unicycle that is closely related to the maximum
acyclic induced subgraph bound on the capacity.

The rest of the paper is organized as follows. Sections II
and III review graph-theoretic preliminaries and some of
the previously known bounds on the capacity, respectively.
In Section IV, we introduce the notion of confusion graph
associated with a given index coding problem and establish
several properties including a tight bound on the chromatic
number of a confusion graph in terms of its clique number.
In Section V, we characterize the broadcast rate of a general
index coding problem via asymptotic expressions involvingthe
clique number, Shannon capacity, and Lovász theta function
of the confusion graph. Nonasymptotic upper bounds on the
broadcast rate are also established in terms of the Shannon
capacity and Lovász theta function of the confusion graph.
Based on the clique-number characterization, we prove in Sec-
tion VI that the broadcast rate is multiplicative under the lexi-
cographic product of side information graphs. In Section VII,
we investigate the criticality problem and present sufficient
and necessary conditions based on the notion of unicycle.
Section VIII concludes the paper with an application of the
established structural properties in computing the capacity for
index coding problems with six messages.

II. M ATHEMATICAL PRELIMINARIES

Throughout the paper, a graphG = (V,E) (without a
qualifier) means a directed, finite, and simple graph, where
V = V (G) is the set of vertices (nodes) andE = E(G) ⊆
V × V is the set of directed edges. A graphG = (V,E) is
said to beunidirectional if (i, j) ∈ E implies (j, i) 6∈ E.
Similarly, G is said to bebidirectional if (i, j) ∈ E im-
plies (j, i) ∈ E. Given G, its associated undirected graph
U = U(G) is defined by identifyingV (U) = V (G) and
E(U) = {{i, j} : (i, j) ∈ E(G) or (j, i) ∈ E(G)}. A bi-
directional graphG is sometimes identified with its undirected
graph. ThecomplementḠ of the graphG is defined by
V (Ḡ) = V (G) and (i, j) ∈ E(Ḡ) iff (i, j) 6∈ E(G). For
anyS ⊆ V (G), G|S denotes the subgraph induced byS, i.e.,
V (G|S) = S andE(G|S) = {(i, j) ∈ E : i, j ∈ S}.

An independent setI of a graphG is a set of vertices with
no edge among them. Theindependence numberα(G) is the
size of the largest independent set of the graphG. A cliqueK
of a graphG is a set of vertices such that there is a (directed)
edge from every vertex inK to every other vertex inK. Thus,
K is a clique ofG iff it is an independent set of̄G. Theclique
numberω(G) is the size of the largest clique of the graphG.
It is easy to see that

ω(G) = α(Ḡ) (2)

for any directed or undirected graphG. A Hamiltonian cycleof
a graph is a cycle that visits each vertex exactly once. A graph
possessing a Hamiltonian cycle is said to beHamiltonian.

A. Chromatic Number

A (vertex) coloring of an undirected (finite simple) graph
U is a mapping that assigns a color to each vertex such that
no two adjacent vertices share the same color. Thechromatic
numberχ(U) is the minimum number of colors such that a
coloring of the graph exists. More generally, ab-fold coloring



3

assigns a set ofb colors to each vertex such that no two
adjacent vertices share the same color. Theb-fold chromatic
numberχ(b)(U) is the minimum number of colors such that
a b-fold coloring exists. Thefractional chromatic numberof
the graph is defined as

χf (U) = lim
b→∞

χ(b)(U)

b
= inf

b

χ(b)(U)

b
,

where the limit exists sinceχ(b)(U) is subadditive. Conse-
quently,

χf (U) ≤ χ(U). (3)

Let I be the collection of all independent sets inU . The
chromatic number and the fractional chromatic number are
also characterized via the following optimization problem

minimize
∑

S∈I

ρS

subject to
∑

S∈I:j∈S

ρS ≥ 1, j ∈ V.

When the optimization variablesρS , S ∈ I, take integer
values in{0, 1}, then the (integral) solution is the chromatic
number. If this constraint is relaxed andρS ∈ [0, 1], then
the (rational) solution is the fractional chromatic number
[35]. The (fractional) chromatic number can be related to the
independence and clique numbers.

Lemma 1 (Scheinerman and Ullman [35]). For any undirected
graphU with n vertices,

n

α(U)
≤ χf (U).

Lemma 2. For any graphU we have

ω(U) ≤ χf (U) ≤ χ(U).

An undirected graphU = (V,E) is said to beperfect if
for every induced subgraphU |S , S ⊆ V , the clique number
equals the chromatic number, i.e.,ω(U |S) = χ(U |S). Perfect
graphs can be characterized as follows.

Proposition 1 (Chudnovsky, Robertson, Seymour, and Thomas
[36]). A graphU is perfect iff no induced subgraph ofU is an
odd cycle of length at least five (odd hole) or the complement
of one (odd antihole).

Let U = (V,E) be an undirected graph withV = [n]. For
each cliqueK of U , the incidence vectoris ann-dimensional
vector whosejth component is equal to 1 ifj ∈ K and 0
otherwise. Theclique polytopeof U is defined as

PK(U) = {x ∈ Rn
≥0 : x is a convex combination of

incidence vectors of cliques ofU}. (4)

Another (convex) polytope associated withU is defined as

P (U) = {x ∈ Rn
≥0 :

∑

i∈I

xi ≤ 1 for all independent setsI}.

(5)

Since every incidence vectorx of a clique satisfies
∑

i∈I xi ≤
1 for an independent setI, PK(U) ⊆ P (U) for every U .

Lovász’s perfect graph theorem states that equality holdsiff
U is perfect.

Lemma 3 (Lovász [37]). For any graphU the following
statements are equivalent:
• U is perfect.
• PK(U) = P (U).
• Ū is perfect.

We now state a result on chromatic numbers that will be
useful later. The chromatic number of a graph can be upper
bounded by decomposing it into smaller graphs. The following
decomposition result will be proved in Appendix A.

Lemma 4. Let U1 = (V,E1) and U2 = (V,E2) be two
undirected graphs on the set of verticesV . Consider the graph
U = (V,E1 ∪E2) defined on the same vertex setV in which
each edge either belongs toE1 or E2. Then

χ(U) ≤ χ(U1) + χ(U2).

B. Graph Products

Generally speaking, a graph product is a binary operation on
two graphs that produces a graph on the Cartesian product of
the original vertex sets with the edge set constructed from the
original edge sets according to certain rules. In the following,
v1 ∼ v2 denotes that there exists an edge betweenv1 andv2.

Given two undirected graphsU1 and U2, the disjunctive
productU = U1∨U2 [35], [38] is defined asV (U) = V (U1)×
V (U2) and (u1, u2) ∼ (v1, v2) iff

u1 ∼ v1 or u2 ∼ v2.

Throughout the paper,U∨k denotes the disjunctive product of
k copies ofU .

Given two undirected graphsU1 andU2, thestrong product
U = U1 ⊠U2 [39] is defined asV (U) = V (U1)×V (U2) and
(u1, u2) ∼ (v1, v2) iff

(u1 = v1 andu2 ∼ v2),

or (u1 ∼ v1 andu2 = v2),

or (u1 ∼ v1 andu2 ∼ v2).

Throughout the paper,U⊠k denotes the strong product of
k copies ofU . The following lemma elucidates the relation
between the disjunctive product and the strong product.

Lemma 5. For any two undirected graphsU1 andU2

U1 ∨ U2 = U1 ⊠ U2.

Given two graphsG1 and G2, the lexicographic product
G = G1 ◦G2 [39] is defined asV (G) = V (G1)×V (G2) and
((u1, u2), (v1, v2)) ∈ E(G) iff

(u1, v1) ∈ E(G1) or (u1 = v1 and (u2, v2) ∈ E(G2)) .

The lexicographic productG1 ◦ G2 can be thought of as
replacing each vertexi ∈ V (G1) with a copy ofG2. Therefore,
the edges among the vertices of each copy ofG2 remain the
same as inG2 and there exists a directed edge from every
vertex in copyi of G2 to every vertex in copyj of G2 iff
(i, j) ∈ E(G1) (see Fig. 2 for an example).



4

G2 G1

G1 ◦G2

Fig. 2. GraphsG1 andG2 and their lexicographic productG1 ◦G2.
The bold arrows indicate that there is an edge from every vertex in
the circle attached to the tail of the arrow to every vertex inthe circle
attached to the head of the arrow.

The lexicographic product can be generalized as follows.
Let G0 be a graph withm vertices andG1, . . . , Gm be m
graphs withn1, . . . , nm vertices respectively. Thegeneralized
lexicographic productG0 ◦ (G1, . . . Gm) is defined to be a
graph onn1 + · · ·+ nm vertices in which vertexi ∈ V (G0)
is replaced withGi, i.e., the edges among the vertices ofGi

remain the same as before and there is a directed edge from
every vertex ofGi to every vertex ofGj iff (i, j) ∈ E(G0).

C. Shannon Capacity of a Graph and Lovász Function

Consider a graphU whose vertices represent input symbols
of a noisy channel and two vertices are connected iff the
corresponding channel inputs are confusable as they may result
in the same channel output. The goal is to find the zero-error
capacity of the channel represented by the graphU . If we
are limited to use the channel only once, then we can send
up to ⌊log(α(U))⌋ bits without an error. However, if we are
allowed to use the channelt times, then we can construct the
following graph to capture the confusabilities. Assign each t-
tuple of the input symbols to a vertex and the vertices for two
tuplesxt andzt connect iff for everyi, xi = zi or xi ∼ zi in
U . We can easily check that the resulting graph is the strong
productU⊠t. Thus, by using the channelt times, we can send
⌊log(α(U⊠t))⌋ bits without an error. Based on this observation
[40], the Shannon capacityof a graphU is defined as

Θ(U) = sup
t

t

√

α(U⊠t) = lim
t→∞

t

√

α(U⊠t). (6)

In other words,log(Θ) indicates the number of bits per input
symbol that can be sent through the channel without error. By
definition,

α(U) ≤ Θ(U). (7)

Shannon [40] showed that for perfect graphsα(U) = Θ(U).
The equality does not hold in general, however. In fact, com-
puting the Shannon capacity of a general graph is a very hard
problem. Lovász [41] derived an upper bound on the Shannon
capacity referred to as the Lovász theta function, which is
easily computable and results in determining the Shannon
capacity of some graphs. Before defining the Lovász theta
function, we need the following definition. Anorthonormal
representationof an undirected graphU with n vertices is a set
of unit vectors(v1, . . . , vn) such that ifi andj are nonadjacent
vertices ofU , thenvi andvj are orthogonal, i.e.,vTi vj = 0.
For example, a set ofn pairwise orthogonal unit vectors is an
orthonormal representation of any undirectedn-node graph.

The valueof an orthonormal representation is defined as

min
c:‖c‖=1

max
i∈[n]

1

(cT vi)
2 .

The unit vectorc attaining the minimum is referred to as the
handleof the representation. TheLovász theta functionof U ,
denoted asϑ(U), is defined to be the minimum value over all
orthonormal representations ofU . A representation is said to
be optimal if it attains this minimum.

Lemma 6 (Lovász [41]). For any undirected graphU ,

Θ(U) ≤ ϑ(U).

By (2), (7), Lemma 6, and Theorem 10 in [41], the Lovász
theta function is sandwiched by other graph-theoretic quanti-
ties that are NP-hard to compute.

Lemma 7. For any undirected graphU ,

ω(U) ≤ ϑ(Ū) ≤ χ(U).

However, the Lovász theta functionϑ(U) is polynomially
computable in|V (U)| [42].

III. B OUNDS ON THECAPACITY

The simplest approach to index coding is a coding scheme
by Birk and Kol [6] that partitions the side information graph
G by cliques and transmits the binary sums (parities) of all
the messages in each clique.

Proposition 2 (Clique covering bound). Let βCC(G) be the
minimum number of cliques that partitionG, or equivalently,
the chromatic number ofU(Ḡ), which is the solution to the
integer program

minimize
∑

S∈K

ρS

subject to
∑

S∈K:j∈S

ρS ≥ 1, j ∈ V (G),

ρS ∈ {0, 1}, S ∈ K,

(8)

whereK is the collection of all cliques inG. Then for any
index coding problemG, β(G) ≤ βCC(G).

This bound, which is achieved bytime division over a
clique partition, has been extended in several directions.First,
Birk and Kol [6] showed that one can use an MDS code
over a finite field and perform time division over arbitrary
subgraphs (partial cliques) instead of cliques. The numberof
parity symbols needed for a subgraphH is characterized by
the differenceκ(H) between the number of vertices inH and
the minimum indegree withinH .

Proposition 3 (Partial clique covering bound). If G1, . . . , Gm

partitionG, then the optimal broadcast rate is upper bounded
by

βPC(G1, . . . , Gm) =
m
∑

i=1

κ(Gi) (9)

and thus by
βPC = min

G1,...,Gm

βPC(G1, . . . , Gm),

where the minimum is over all partitions.
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Remark 1. If the graphG with n vertices is Hamiltonian, then
the minimum indegree is at least one and thusβPC ≤ n−1, or
equivalently, the symmetric rate( 1

n−1 , . . . ,
1

n−1 ) is achievable
for problemG.

By the standard time-sharing argument, Blasiak, Kleinberg,
and Lubetzky [22] extended the clique covering bound to the
fractional clique covering bound, which is equivalent to the
fractional chromatic number ofU(Ḡ), namely, the solution to
the linear program obtained by relaxing the integer constraint
ρS ∈ {0, 1} in (8) to ρS ∈ [0, 1].

Remark 2. The integral, partial, and fractional clique covering
bounds can be readily extended to the correspondinginner
bounds on the capacity region. For example, by fractional
clique covering, a rate tuple(R1, . . . , Rn) is achievable for
the index coding problem(j |Aj), j ∈ [n], if there exists
(ρS ∈ [0, 1], S ∈ K) such that

∑

S∈K

ρS ≤ 1,

∑

S∈K:j∈S

ρS ≥ Rj , j ∈ V (G).
(10)

Tighter bounds can be found in [25], [26], [28], [43]. In this
paper, we only need the simpler integral, partial, and fractional
clique covering bounds.

As for bounding the broadcast rate from below, Bar-Yossef,
Birk, Jayram, and Kol [20] proposed the following.

Proposition 4 (Maximum acyclic induced subgraph (MAIS)
bound). For any index coding problemG

βMAIS(G) := max
S⊆V (G):G|S is acyclic

|S | ≤ β(G).

Remark 3. Since every independent set is acyclic, Proposi-
tion 4 implies that for anyG, α(G) ≤ β(G).

Remark 4. WhenG is bidirectional (undirected) and perfect
we haveω(Ḡ) = α(G) = χ(Ḡ). Hence, the upper bound of
Proposition 2 matches the lower bound of Remark 3 and the
broadcast rate is known [20].

Remark 5. The MAIS bound can be generalized to an outer
boundRMAIS on the capacity region [25] as follows. If a rate
tuple(R1, . . . , Rn) is achievable for index coding problemG,
then

∑

j∈S

Rj ≤ 1 (11)

for all S such thatG|S is acyclic. This bound is a special case
of the polymatroidal outer bound [33], [44], [45].

Remark 6. WhenG is bidirectional (undirected), the polytope
associated withG in (5) is equivalent to the MAIS outer
bound in (11). It is also easy to see that the rate tuple given
by each incidence vector of cliques inG is achievable by
clique covering and thus the polytope associated withG in
(4) is achievable by fractional clique covering. Therefore, by
Lemma 3, ifG is bidirectional and perfect, then the capacity
region is equal to the MAIS outer bound in (11), which is
achieved by fractional clique covering [14].

IV. CONFUSION GRAPHS

The notion of confusion graph for the index coding problem
was originally introduced by Alon, Hassidim, Lubetzky, Stav,
and Weinstein [32]. In the context of guessing games, an
equivalent notion was introduced independently by Gadouleau
and Riis [46]. Consider a directed graphG = (V,E) with
V = [n]. Let Aj = {i ∈ V : (i, j) ∈ E}, j ∈ [n], and let
t = (t1, . . . , tn) be a length-n integer tuple. Twoq-ary n-
tuplesxn, zn ∈

∏n

i=1{0, . . . , q−1}ti are said to beconfusable
at position l ∈ [tj ] of nodej ∈ [n] if xjl 6= zjl andxi = zi
for all i ∈ Aj .

Given a directed graphG and a length-n integer tuple
t = (t1, . . . , tn), theconfusion graphΓ(jl)

t
(G) at positionl of

nodej is an undirected graph with
∏n

i=1 q
ti vertices such that

every vertex corresponds to aq-ary tuplexn and two vertices
are connected iff the correspondingq-ary tuples are confusable
at positionl of receiverj.

Aggregating over all positions, we say thatxn, zn ∈
∏n

i=1{0, . . . , q− 1}ti areconfusableif they are confusable at
some positionl of some nodej. The confusion graphΓt(G)
is defined as before based on confusion between each pair of
vertices, or equivalently,

E (Γt(G)) =

n
⋃

j=1

tj
⋃

l=1

E(Γ
(jl)
t

(G)). (12)

If t = (t, . . . , t), then Γt(G) is simply denoted byΓt(G).
Fig. 3 showsΓ(11)

t
(G), Γ

(21)
t

(G), and Γ
(31)
t

(G) as well as
Γt(G) corresponding tot = (1, 1, 1) for G in Fig. 1.

By Lemma 4 and (12), the chromatic number ofΓt(G) can
be upper bounded by those of its components.

Proposition 5. χ (Γt(G)) ≤

n
∑

j=1

tj
∑

l=1

χ
(

Γ
(jl)
t

(G)
)

.

Each component confusion graphΓ(jl)
t

(G) has the following
properties.

Lemma 8. Γ
(jl)
t

(G) does not have any chordless cycle of
length greater than four.

Lemma 9. The complement ofΓ(jl)
t

(G) does not have any
chordless cycle of length greater than four.

The proofs of the lemmas are given in Appendices B and
C. By Proposition 1, Lemma 8, and Lemma 9, the following
is immediate.

Proposition 6. Γ(jl)
t

(G) is perfect.

As the main contribution of this section, we now establish
an upper bound on the chromatic number of a confusion graph
in terms of its clique number.

Theorem 1. Given a directed graphG, a length-n integer
tuple t = (t1, . . . , tn), and a positive integerq, the confusion
graphΓt(G) satisfies

χ (Γt(G)) ≤





n
∑

j=1

tj



 ω (Γt(G)) . (13)
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Fig. 3. Confusion graphs for the directed graphG shown in Fig. 1
corresponding to the integer tuplet = (t1, t2, t3) = (1, 1, 1). (a)Γ(11)

t
(G).

(b) Γ(21)
t

(G). (c) Γ(31)
t

(G). (d) Γt(G).

Proof: Consider

χ(Γt(G)) ≤
n
∑

j=1

tj
∑

l=1

χ(Γ
(jl)
t

(G)) (14)

=

n
∑

j=1

tj
∑

l=1

ω(Γ
(jl)
t

(G)) (15)

≤

n
∑

j=1

tj
∑

l=1

ω(Γt(G)) (16)

=

n
∑

j=1

tj ω(Γt(G)),

where (14) follows by Proposition 5, (15) follows by Propo-
sition 6, and (16) follows by (12).

V. M ULTILETTER CHARACTERIZATIONS OF THECAPACITY

Consider an index coding problemG. Using the notion of
confusion graph introduced in Section IV, Alon, Hassidim,
Lubetzky, Stav, and Weinstein [32] showed that

βt(G)

t
:= inf

(t,r) codes

r

t
=

1

t
⌈log(χ(Γt(G)))⌉. (17)

To prove this, consider a coloring of the vertices of the
confusion graphΓ = Γt(G) with χ(Γ) colors. This parti-
tions the vertices ofΓ into χ(Γ) independent sets. By the
definition of the confusion graph, no two message tuples in
each independent set are confusable and therefore assigning
a unique index to each independent set yields a valid index
code. The total number of codewords of this index code is
χ(Γ), which requiresr = ⌈log(χ(Γ))⌉ bits to be broadcast.
Hence,βt(G) ≤ ⌈log(χ(Γt(G)))⌉. Conversely, consider any
(t, r) index code that assigns (at most)2r distinct indices to
message tuples. By definition, all the message tuples mapped
to an index form an independent set of the confusion graph
Γ = Γt(G). Moreover, every message tuple is mapped to
some index so that these independent sets partitionV (Γ).
Thus,χ(Γ) ≤ 2r, or equivalently,r ≥ ⌈log(χ(Γ))⌉, and hence
βt(G) ≥ ⌈log(χ(Γt(G)))⌉.

Based on (17), Alon, Hassidim, Lubetzky, Stav, and We-
instein [32] established the following upper bound on the
broadcast rate

β(G) ≤
1

t
⌈log (χ (Γt(G)))⌉, (18)

for every positive integert, and established a multiletter
characterization of the broadcast rate as

β(G) = lim
t→∞

1

t
log(χ(Γt(G))). (19)

In our earlier work [47], this characterization was strength-
ened using the fractional chromatic number as

β(G) = lim
t→∞

1

t
log(χf (Γt(G))). (20)

We now further strengthen this result and characterize the
broadcast rate in terms of the clique number of the confusion
graph.

Theorem 2. For any side information graphG,

β(G) = lim
t→∞

1

t
log(ω(Γt(G))). (21)

Proof: By settingt = (t, . . . , t) in Theorem 1 and recalling
Lemma 2, we have

ω(Γt(G)) ≤ χ(Γt(G)) ≤ nt · ω(Γt(G)). (22)

Hence,

lim
t→∞

1

t
log(χ(Γt(G))) = lim

t→∞

1

t
log(ω(Γt(G))), (23)

which, combined with (19), completes the proof.
Note that sinceω(Γ) ≤ χf (Γ) ≤ χ(Γ) for any graphΓ,

Equation (20) can be derived as a corollary of Theorem 2.
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Combining (7), Lemma 6, and Lemma 7, we have for any
positive integert

ω(Γt) = α(Γt) ≤ Θ(Γt) ≤ ϑ(Γt) ≤ χ(Γt). (24)

Thus, we can characterize the broadcast rate in terms of
the Shannon capacity and the Lovász theta function of the
complement of the confusion graph.

Corollary 1.

β(G) = lim
t→∞

1

t
log

(

Θ
(

Γt(G)
))

= lim
t→∞

1

t
log

(

ϑ
(

Γt(G)
))

.

In summary, the broadcast rate can be characterized as the
first order in the exponent of six well-known graph theoretic
quantities associated withΓt(G) and its complement, namely,
ω(Γt), α(Γt), Θ(Γt), ϑ(Γt), χ(Γt), andχf (Γt).

In the following, we present nonasymptotic upper bounds on
the broadcast rateβ(G) in terms of the Shannon capacity and
the Lovász theta function that hold for every positive integer
t and, due to (24), are tighter than the upper bound in (18).

Theorem 3. For any side information graphG and any
positive integert,

β(G) ≤
1

t
log

(

Θ
(

Γt(G)
))

. (25)

Proof: Consider

ω(Γtk) ≤ ω(Γ∨k
t ) = α(Γ∨k

t ) = α(Γ⊠k
t ), (26)

where the inequality holds since the set of edges ofΓ∨k
t

contains the set of edges ofΓtk, and the last equality follows
by Lemma 5. Now for anyt,

β(G) = lim
k→∞

log (ω (Γk))

k
(27)

= lim
k→∞

log (ω (Γtk))

tk
(28)

≤ lim
k→∞

log
(

α
(

Γ⊠k
t

))

tk
(29)

= lim
k→∞

log

(

k

√

α
(

Γ⊠k
t

)

)

t

=
1

t
log

(

lim
k→∞

k

√

α
(

Γ⊠k
t

)

)

=
1

t
log

(

Θ
(

Γt

))

, (30)

where (27) follows by Theorem 2, (28) holds since the limit
of a subsequence is equal to the limit of the sequence, (29)
follows by (26), and (30) follows by the definition of the
Shannon capacity in (6).

Corollary 2. For any side information graphG and any
positive integert,

β(G) ≤
1

t
log

(

ϑ
(

Γt(G)
))

. (31)

Remark 7. Unlike the upper bounds in (18) and (25) in terms
of the chromatic number and the Shannon capacity, the upper

bound in (31) can be computed in polynomial time in the
number of vertices of the confusion graph (see [42]).

Remark 8. Equation (20) can be generalized to characterize
the capacity regionC of the index coding problemG as the
closure of all rate tuples(R1, . . . , Rn) such that

Rj ≤
tj

log(χf (Γt(G)))
, j ∈ [n], (32)

for some t = (t1, . . . , tn) [47]. By a sandwich argument
similar to (22), C can be also characterized in terms of
ω(Γt(G)) asymptotically ast → ∞.

Remark 9. Similar to the index coding problem, the optimal
rate region of the locally recoverable distributed storageprob-
lem with recovery graphG [11], [12] is characterized as the
closure of all rate tuples(R′

1, . . . , R
′
n) such that

R′
j ≥

tj
log(α(Γt(G)))

, j ∈ [n], (33)

for some t = (t1, . . . , tn) [11], [13]. Based on the vertex
transitivity of Γt which, inter alia, implies thatlog(α(Γt)) =
∑n

i=1 ti − log(χf (Γt)), the relationship between the index
coding capacity region in (32) and the distributed storage
optimal rate region in (33) can be made precise. See [13] for
the details.

VI. L EXICOGRAPHIC PRODUCT OFSIDE INFORMATION

We first establish an upper bound on the broadcast rate
of the index coding problem whose side information graph
is a general lexicographic product (recall the definition in
Section II).

Theorem 4. Let G = ([m], E) be a directed graph withm
vertices andF1, . . . , Fm bem directed graphs withβ(F1) ≤
· · · ≤ β(Fm). Then

β(G ◦ (F1, . . . , Fm))

≤ β(F1)β(G) +

m−1
∑

i=1

(β(Fi+1)− β(Fi))β(G|[m]\[i]). (34)

The proof of the theorem is given in Appendix D.

Remark 10. For the special case in whichG has two vertices,
the upper bound in Theorem 4 is tight [34], [46], [47]. In
particular, ifG has either no edges or one edge (see Fig. 4(a)
and 4(b)), thenβ(G ◦ (F1, F2)) = β(F1) + β(F2), and if
G is a complete graph on two vertices (see Fig. 4(c)), then
β(G ◦ (F1, F2)) = β(F2) = max{β(F1), β(F2)}.

The following states another special case for which the
bound in Theorem 4 is tight.

Theorem 5. For any two directed graphsG andF ,

β(G ◦ F ) = β(G)β(F ).

In words, the broadcast rate is multiplicative under the
lexicographic product of index coding side information graphs.
Achievability was shown by Blasiak, Kleinberg, and Lubetzky
[33]. It also follows from Theorem 4 by settingF1 = · · · =
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(a)

(b)

(c)

Fig. 4. Graph examples with (a) no interaction, (b) one-way interaction,
and (c) complete interaction among its two parts (↔ indicates that there is a
bidirectional edge between every vertex on the left and every vertex on the
right).

Fm = F . The proof of the converse is based on the clique-
number characterization of the broadcast rate in Theorem 2
and the following.

Lemma 10. For any (t, r) index code for problemG ◦ F ,

⌊log(ω(Γt(F )))⌋β(G) ≤ r.

The proof of the lemma is relegated to Appendix E.

Proof of the converse for Theorem 5:Consider

β(G ◦ F ) = lim
t→∞

inf
(t,r) codes forG◦F

r

t

≥ lim
t→∞

1

t
⌊log(ω(Γt(F )))⌋β(G) (35)

= lim
t→∞

1

t
log(ω(Γt(F )))β(G)

= β(F )β(G), (36)

where (35) follows by Lemma 10, and (36) follows by
Theorem 2.

Example 1. The graph shown in Fig. 5(a) can be considered
as the lexicographic productG ◦ F of two smaller graphs
G and F shown in Fig. 5(b) and 5(c) respectively with
β(G) = 2 andβ(F ) = 2. By Theorem 5, instead of directly
computing the broadcast rate for this six-message problem,we
can use the known broadcast rates of smaller problems and get
β(G ◦ F ) = 4. Note that although this six-message problem
has a certain symmetric structure, it does not fall into the
class of cyclically symmetric index coding problems studied
by Maleki, Cadambe, and Jafar [29].

The bound in Theorem 4 is not tight in general, as illustrated
by the following.

Example 2. Consider the following 7-message index coding

(a) (b) (c)

Fig. 5. (a) A 6-node graph that is the lexicographic productG ◦ F of two
smaller graphsG andF . (b) The 3-node graphG. (c) The 2-node graphF .

problemG

(1|2, 3, 4, 6, 7), (2|1, 3, 6, 7), (3|1, 4, 5, 7), (4|1, 2, 5, 6),

(5|3, 4, 6, 7), (6|2, 4, 5, 7), (7|2, 3, 5, 6),

for which β(G) = 2.5 [17]. Let F1, . . . , F6 be 1-message
problems andF7 be the 2-message problem

(1|2), (2|−).

Then Theorem 4 yields

β (G ◦ (F1, . . . , F7)) ≤ 1× 2.5 + (2 − 1)× 1 = 3.5.

This bound is not tight since the composite coding scheme
[25], [26] achieves the tighter upper bound of 10/3 on
β(G ◦ (F1, . . . , F7)).

Remark 11. The upper bound on the broadcast rate in The-
orem 4 can be generalized to an inner bound on the capacity
region as follows. Denoting the capacity regions of the index
coding problemsG◦ (F1, . . . , Fm), G, andF1, . . . , Fm by C ,
C0, andC1, . . . ,Cm respectively, we have

⋃

α∈C0

{

(α1R1, . . . , αmRm) : Ri ∈ Ci, i ∈ [m]
}

⊆ C . (37)

For the special case in whichG has two vertices, the inner
bound in (37) is tight [34], [47], generalizing the results in
Remark 10. IfG has either no edge or only one edge, then

C =
⋃

α∈[0,1]

{

(αR1, (1− α)R2) : R1 ∈ C1,R2 ∈ C2

}

.

In other words, in this case, the capacity region ofG◦(F1, F2)
is achieved by time division between the optimal coding
schemes for two subproblemsF1 andF2. If G is a complete
graph on two vertices, then

C =
{

(R1,R2) : R1 ∈ C1,R2 ∈ C2

}

.

In other words, the capacity region ofG◦(F1, F2) is achieved
by simultaneously using the optimal coding schemes forF1

andF2.

VII. C RITICAL INDEX CODING INSTANCES

As Remark 11 suggests, if an edgee of the side information
graphG belongs to a directed cut, removinge does not reduce
the capacity region. The Farkas lemma [48, Th. 2.2] states that
each edge in a directed graph either lies on a directed cycle
or belongs to a directed cut but not both. Hence, if edgee
does not lie on any directed cycle, it can be removed fromG



9

without affecting the capacity region. This was first observed
by Tahmasbi, Shahrasbi, and Gohari [34], who then asked for
general conditions under which an edge of the side information
graph can be removed without reducing the capacity region.

Let e be an edge of side information graphG = (V,E). We
denote the graph resulting from removinge from G by Ge,
i.e.,

V (Ge) = V (G) andE(Ge) = E(G) \ {e}.

Given the index coding problemG, the edgee ∈ E is said
to be critical if C (Ge) 6= C (G), or in other words, if the
removal ofe from G strictly reduces the capacity region. The
index coding problemG itself is said to becritical if every
e ∈ E(G) is critical. Thus, each critical graph (= index coding
problem) cannot be made “simpler” into another one of the
same capacity region.

Remark 11 can be paraphrased into the following necessary
condition for criticality.

Proposition 7 (Union-of-cycles condition [34]). If G is criti-
cal, then every edge belongs to a directed cycle.

This simple condition, however, is not sufficient. For the
index coding problem shown in Fig. 1, although the edge2 →
3 lies on a directed cycle, it can be shown that the capacity
region is characterized by

R1 ≤ 1,

R2 +R3 ≤ 1,

with or without this edge.
To observe another simple necessary condition for critical-

ity, consider an index coding problemG with side information
setsA1, . . . , An. These sets are said to bedegradedif there
exist i, j ∈ V (G) such thati ∈ Aj andAi ⊆ Aj . In this case,
the edgei → j can be removed sincexi can be recovered
at nodej. This observation leads to the following necessary
condition.

Proposition 8 (Nondegradedness condition). If G is critical,
then side information sets must be nondegraded.

Satisfying the above two necessary conditions at the same
time is still not sufficient for criticality. As an example, it can
be checked that the side information graph shown in Fig. 6
satisfies both union-of-cycles and nondegradedness conditions.
However, it is not a critical graph as the capacity region is
characterized by

R1 +R3 ≤ 1,

R1 +R4 ≤ 1,

R2 +R4 ≤ 1,

R2 +R5 ≤ 1,

R3 +R5 ≤ 1,

R1 +R2 +R3 +R4 +R5 ≤ 2,

with or without the edge4 → 1.
In order to find a tighter necessary condition, we now focus

on a sufficient condition. Given a graphG = (V,E), the vertex
induced subgraphG|S is referred to as aunicycleif its set of
edges is a (chordless) Hamiltonian cycle overS. Note that if

1

2

34

5

Fig. 6. A 5-message index coding problem. The edge4 → 1 lies on a
directed cycle andA4 6⊆ A1. However, removing this edge does not affect
the capacity region. The capacity region is achieved by the composite coding
scheme [25] with or without this edge.

the subgraphG|S is a unicycle, thenG|S′ cannot be a unicycle
for any S′ that is a proper subset or superset ofS. As an
example, in Fig. 7(a),G|{1,2,3} is a unicycle, butG itself is
not a unicycle. As another example, for the graph in Fig. 7(b),
G|{1,2,3} andG|{1,3,4} are both unicycles.

1 4

32
(a)

1 4

32
(b)

Fig. 7. (a)G|{1,2,3} is a unicycle, butG is not a unicycle. (b)G|{1,2,3}
andG|{1,3,4} are both unicycles.

The following states a sufficient condition for the criticality
of a problem.

Theorem 6 (Union-of-unicycles condition). If every edge of
G belongs to a vertex induced subgraph that is a unicycle,
thenG is critical.

Proof: It suffices to show that removing each edge ofG =
(V,E) that belongs to a unicycle strictly reduces the capacity
region. Lete be an edge ofG|S , whereS ⊆ V andG|S is a
unicycle. The rate tuple(R1, . . . , Rn) such that

Ri =

{

0, i 6∈ S,
1

|S|−1 , i ∈ S,
(38)

is achievable for index coding problemG by partial clique cov-
ering (see Proposition 3 and Remark 1). The vertex-induced
subgraphGe|S , however, is acyclic (since the Hamiltonian
cycle of G|S is broken and by definition there is no other
cycle). Therefore, by the MAIS outer bound, any rate tuple
(R′

1, . . . , R
′
n) ∈ C (Ge) must satisfy

∑

i∈S

R′
i ≤ 1. (39)

The rate tuple in (38), however, does not satisfy (39) and
thus is not inC (Ge). This implies that removing edgee from
G strictly reduces the capacity region (C (Ge) 6= C (G)) and
hencee is critical.

Remark 12. If a graph satisfies the union-of-unicycles con-
dition, it trivially satisfies the union-of-cycles condition. We
now argue that, as expected, satisfying the union-of-unicycles
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condition also implies the nondegradedness condition. Assume
thatG has degraded side information sets. Then, there exists
an edgei → j such thatAi ⊆ Aj . We show that this edge
cannot belong to a unicycle. If the edgei→ j does not belong
to any cycle, then trivially it does not belong to any unicycle.
Otherwise, it suffices to show that none of the cycles that
contain this edge is a unicycle. Assume thati → j lies on a
cycleC = (i, j, . . . , v), which by degradedness must have at
least three vertices. Then, by definition,v ∈ Ai and, by the
assumption,v ∈ Aj . Therefore,(j, . . . , v) is also a cycle and
C is not a unicycle.

The converse to Theorem 6, however, does not hold in
general.

Example 3. The capacity region of the index coding problem
with side information graph shown in Fig. 8 is characterized
by

R1 +R2 ≤ 1,

R1 +R3 ≤ 1,

R1 +R4 ≤ 1,

R2 +R4 ≤ 1,

R2 +R5 ≤ 1,

R3 +R5 ≤ 1,

which is achievable by the composite coding scheme [25].
Although the edge2 → 5 does not belong to any unicycle,
removing it from the side information graph reduces the
capacity region to

R1 +R2 ≤ 1,

R1 +R3 ≤ 1,

R1 +R4 ≤ 1,

R2 +R4 ≤ 1, (40)

R2 +R5 ≤ 1,

R3 +R5 ≤ 1,

R1 +R2 +R3 +R4 +R5 ≤ 2,

which is also achievable by the composite coding scheme [25].

1

2

34

5

Fig. 8. A critical 5-message index coding problem. Althoughthe edge2 → 5
does not belong to any unicycle, it is critical. The capacityregion is achieved
by composite coding [25] with or without the edge2 → 5.

The above example illustrates that the union-of-unicycles
condition does not capture “criticality” with respect to the
capacity region. In the following, we argue that this condition
in fact is sufficient and necessary for the criticality with
respect to the MAIS outer bound. The proof is relegated to
Appendix F.

Proposition 9. Edge e belongs to a unicycle iff the MAIS
boundRMAIS(Ge) on C (Ge) is a proper subset of the MAIS
boundRMAIS(G) on C (G).

Proposition 9 implies the following partial converse to
Theorem 6.

Proposition 10. If G = (V,E) is critical, then
1) every edgee ∈ E belongs to a unicycle, or
2) the MAIS bound is not tight forGe, i.e.,RMAIS(Ge) 6=

C (Ge), for everye ∈ E that does not belong to any
unicycle.

In other words,e is not critical if it does not belong to any
unicycle and the MAIS bound is tight forGe.

Proof: It suffices to show that ifG is critical and there
exists an edgee that does not belong to any unicycle, then
the MAIS bound is not tight forGe. SinceG is critical, we
haveC (Ge) ( C (G). Assume by contradiction that the MAIS
bound is tight forGe. Then

RMAIS(Ge) = C (Ge) ( C (G) ⊆ RMAIS(G),

which contradicts Proposition 9.
Recall that the edge2 → 5 in Fig. 8 is critical and does

not belong to any unicycle. As is suggested by Proposition 10
and verified by (40), the MAIS bound is not tight for the side
information graph resulting from removing this edge.

Remark 13. The three necessary conditions in Proposi-
tions 7, 8, and 10 can be rewritten as follows. For an index
coding problem with the edgee from i to j, if e does not
belong to a directed cycle, orAi ⊂ Aj , or e does not belong
to a unicycle and the MAIS bound is tight forGe, thene can
be removed without reducing the capacity region.

The next three examples demonstrate that these necessary
conditions are mutually independent.

Example 4. The six-message problem

(1|5, 6), (2|6), (3|6), (4|6), (5|1), (6|2, 3, 4, 5)

satisfies the union-of-cycles and nondegradedness conditions.
However, it does not satisfy the necessary condition in Propo-
sition 10, as the edge5 → 6 does not belong to any unicycle
and the MAIS bound is tight (and is achieved by the composite
coding scheme) after removing this edge.

Example 5. The six-message problem

(1|4, 5), (2|5, 6), (3|5), (4|1, 6), (5|1, 2), (6|2, 3, 4, 5)

satisfies the union-of-cycles condition and the necessary con-
dition in Proposition 10. However,A3 ⊂ A6 and thus it does
not satisfy the nondegradedness condition.

Example 6. The six-message problem

(1|4, 6), (2|5, 6), (3|5), (4|1, 6), (5|1, 2), (6|2, 4, 5)

satisfies the nondegradedness condition and the necessary
condition in Proposition 10. However, the edge5 → 3 does
not belong to any cycle and thus the problem does not satisfy
the union-of-cycles condition.
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For the rest of this section, we present a few results that
relate the capacity of index coding problemG and its MAIS
bound to those of simpler problems. Consider the graphG =
(V,E) and letG′ be the graph resulting from removing all
edges ofG that do not belong to any unicycle, i.e.,

V (G′) = V (G),

E(G′) = {e ∈ E(G) : e in a unicycle ofG}. (41)

Proposition 11. RMAIS(G
′) = RMAIS(G).

In words, the set of edges ofG that do not belong to any
unicycle, is the (maximum) set of edges that can be removed
from G without changing the MAIS bound. The proof of the
proposition, which is implied by Proposition 9, is presented
in Appendix G.

This observation leads to a condition under which the
capacity of index coding problemG is equal to the capacity
of the simpler problemG′.

Proposition 12. If the MAIS bound is tight forG′, then

RMAIS(G
′) = C (G′) = C (G) = RMAIS(G).

Consequently, if the MAIS bound is tight forG′, thenG is
not critical and all the edges that do not belong to any unicycle
can be removed without reducing the capacity.

Proof of Proposition 12:Since

RMAIS(G
′) = C (G′) ⊆ C (G) ⊆ RMAIS(G),

the proof follows by Proposition 11.

Remark 14. It can be similarly shown that the result of Propo-
sition 12 also holds for the broadcast rate. IfβMAIS(G

′) =
β(G′), thenβMAIS(G) = β(G) = β(G′) = βMAIS(G

′).

Example 7. Consider the side information graphG shown
in Fig. 9, where edges5 → 3, 3 → 1, and 6 → 5 do not
belong to any unicycle. It can be shown that the capacity
region for problemG′ is achieved by composite coding [25]
and is characterized by

R1 +R3 +R4 ≤ 1,

R1 +R3 +R5 ≤ 1,

R2 +R3 +R4 +R6 ≤ 1,

R2 +R3 +R5 +R6 ≤ 1, (42)

which is equal to its MAIS bound. Thus, by Proposition 12,
G is not critical and its capacity is also characterized by (42).

Proposition 12, together with Remark 6, implies the follow-
ing.

Proposition 13. If G′ is bidirectional andU(G′) is perfect,
thenC (G) = RMAIS(G) which is achieved by the fractional
clique covering scheme.

This result can be recast to an earlier result by Yi, Sun,
Jafar, and Gesbert [14], using the following two lemmas that
are proved in Appendices H and I.

Lemma 11. ConsiderG = (V,E) and letG′ be the graph as
defined in(41). The following statements are equivalent.

1 2

3

45

6

Fig. 9. A noncritical 6-message index coding problem with nondegraded
side information sets. The edges5 → 3, 3 → 1, and6 → 5 lie on a directed
cycle, but do not belong to any unicycle. The capacity regionis equal to the
MAIS outer bound and is achieved by composite coding [25] with or without
these edges.

(1) For each cliqueK in U(Ḡ), G|K is acyclic.
(2) For eachS ⊆ V (G), if G|S contains a cycle, then there
exists a bidirectional edge inG|S , i.e., ∃ i, j ∈ S such that
(i, j) ∈ E(G) and (j, i) ∈ E(G).
(3) No unidirectional edge ofG belongs to a unicycle.
(4) G′ is bidirectional.

Lemma 12. If G′ is bidirectional, thenU(G′) = U(Ḡ).

By Lemma 3 (U is perfect iff Ū is perfect), Lemma 11, and
Lemma 12, we can now restate Proposition 13 as follows.

Proposition 14 (Yi, Sun, Jafar, and Gesbert [14]). If U(Ḡ)
is perfect and for each cliqueK in U(Ḡ), G|K is acyclic,
thenC (G) = RMAIS(G) which is achieved by the fractional
clique covering scheme.

Note that this proposition includes Remark 6 as a special
case.

As a concrete application of Proposition 12, consider a side
information graphG satisfying

Aj ⊆ {j − 1, j + 1}, j ∈ [n].

If Aj = {j − 1, j + 1} or Aj = {j − 1} for all j ∈ [n],
then every edge belongs to a unicycle. (For these cases, the
capacity is known [29] and is achieved by the fractional local
clique covering scheme [23].) Otherwise,G′ is a bidirectional
(undirected) perfect graph (by Proposition 1). Therefore,by
Remark 6, the MAIS bound is tight for index coding problem
G′ and Proposition 12 implies the following.

Corollary 3. For the class of index coding problems satisfying

Aj ⊆ {j − 1, j + 1}, j ∈ [n],

any edge that does not belong to a unicycle can be removed
without reducing the capacity region. Thus, for this class
of index coding problems, the union-of-unicycles sufficient
condition is also necessary for the problem to be critical.

Example 8. In the side information graph shown in Fig. 10
(a), edges5 → 4, 4 → 3, and 2 → 1 do not belong to any
unicycle. Hence, the two side information graphs shown in
Fig. 10 have the same capacity region.

VIII. A PPLICATION: INDEX CODING WITH SIX MESSAGES

The number of instances of the index coding problem with
n messages, which is equal to the number of nonisomorphic
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1

2

34

5

(a)

1

2

34

5

(b)

Fig. 10. Two 5-node index coding problems with the same capacity region.

directed graphs withn vertices [49, Seq. A000273], blows up
quickly with n. Even whenn is as small as six, there are
1,540,944 nonisomorphic instances. In this section, we apply
the structural properties discussed earlier to identify the 6-
message index coding instances for which the capacity can
be characterized via the capacities of “simpler” problems.By
Theorem 5 and Remark 11, ifG can be decomposed into
smaller graphs, then the capacity ofG can be expressed as
a simple function of the capacities of smaller problems with
five or fewer messages, for which the capacity is known [25].
At the same time, by Propositions 7, 8, and 10 (see also
Remark 13), if the graphG does not satisfy the three necessary
conditions, then a violating edgee can be removed to form a
new graphGe of the same capacity (which may or may not
be known asGe still has 6 vertices).

Among the above conditions for simplification, we focus on
the following four properties onG. If any of them is satisfied,
thenG can be simplified.

P1: G is not strongly connected.
P2: The complement ofG is disconnected.
P3: G is not a union-of-unicycles (G 6= G′) and the MAIS

bound is tight forG′.
P4: G has degraded side information subsets.

Note that if the complement ofG is disconnected, thenG is
strongly connected. Hence,P1 andP2 are mutually exclusive.
The propertiesP1 andP2 allow decomposition into smaller
problems, whileP1, P3, andP4 allow removal of some edge.
Finally, P1, P2, and P3 (for the case ofn = 6) lead to
simpler problems with known capacity, whileP4 may result
in a simpler problem with still unknown capacity.

Table I shows the number of 6-message instances that satisfy
each of the mentioned properties.

TABLE I
THE NUMBER OF6-MESSAGE INDEX CODING INSTANCES THAT SATISFY

PROPERTIESP1-P4 .

Structural Property Number of six-message instances
P1 493,936
P2 10,101
P3 ≥ 1,513,890
P4 1,336,566

¬(P1 ∨ P2 ∨ P3 ∨ P4) ≤ 10,634

It can be easily checked that the side information graphs
corresponding to the six-message instances in Examples 4 to
6 have connected complement and thus do not satisfy property
P2. This proves that there are instances satisfying(P1∧¬P2∧

¬P3∧¬P4) or (P3∧¬P1∧¬P2∧¬P4), or (P4∧¬P1∧¬P2∧
¬P3). Moreover, the six-message problem

(1|6), (2|6), (3|6), (4|6), (5|6), (6|1, 2, 3, 4, 5)

satisfiesP2 but notP1, P3, or P4. Therefore, checking all of
these four properties is useful in removing instances that do
not need further investigation.

Among the remaining 10,634 instances that are not simpli-
fied, the polymatroidal bound [25] is achieved by a simplified
form of composite coding [25], [26] for 10,515 instances. This
leaves at most 119 instances that require further investigation
via a tighter bound using non-Shannon inequalities [30] and
more general coding schemes. In addition, there are at most
853 noncritical instances that simplify to one of the 119 crit-
ical instances of unknown capacity. In summary, the capacity
is now fully characterized for at least 1,540,944−119−853=
1,539,972 index coding problems (99.9%) with 6 messages.
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PROOF OFLEMMA 4

Let V ′ be the set of vertices incident to the edges inE2\E1

and letU ′ = (V ′, E2\E1). In order to color the vertices ofU ,
we first color the vertices inV \ V ′ with χ(U1) colors using
the optimal coloring forU1. Next, we colorU ′ with χ(U2)
additional colors using the optimal coloring forU2, which
is valid sinceV ′ ⊆ V andE2 \ E1 ⊆ E2. This guarantees
that any pair of adjacent vertices are assigned different colors,
whether both of them belong toV ′ or to V \ V ′ or one to
each. Therefore, there exists a proper coloring ofU with at
mostχ(U1)+χ(U2) colors and thusχ(U) ≤ χ(U1)+χ(U2).

APPENDIX B
PROOF OFLEMMA 8

It suffices to show that every cycle of length greater than
four has a chord. Letvn1 , v

n
2 , . . . , v

n
k be the vertices (each asso-

ciated with ann-message tuple) of a length-k cycle ofΓ(jl)
t

(G)
for k ≥ 5. Thenvn1 ∼ vn2 , vn2 ∼ vn3 , . . ., vnk−1 ∼ vnk . Therefore,
v1j(l) 6= v2j(l), v2j(l) 6= v3j(l), . . ., v(k−1)j(l) 6= vkj(l),
and v1,Aj

= v2,Aj
= · · · = vk,Aj

. If v1j(l) 6= v3j(l), then
sincev1,Aj

= v3,Aj
, we havevn1 ∼ vn3 and the length-k cycle

has a chord. Otherwise, sincev1j(l) = v3j(l) 6= v4j(l) and
v1,Aj

= v4,Aj
, we havevn1 ∼ vn4 and again the cycle has a

chord.

APPENDIX C
PROOF OFLEMMA 9

It suffices to show that every cycle of length greater than
four has a chord. Letvn1 , v

n
2 , . . . , v

n
k be the vertices of a

length-k cycle of Γ̄ = Γ
(jl)
t

(G) for k ≥ 5. Then vn1 ∼ vn2 ,
vn2 ∼ vn3 , . . ., vnk−1 ∼ vnk in Γ̄. If v1j(l) = · · · = vkj(l),
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then vn1 , v
n
2 , . . . , v

n
k form a clique in Γ̄ and thus the cycle

is not chordless. Hence, assume without loss of generality
that v1j(l) 6= v2j(l), which impliesv1,Aj

6= v2,Aj
. We now

consider two cases.
Case 1 (v2j(l) = v3j(l)): In this case, ifv1,Aj

6= v3,Aj
,

then vn1 ∼ vn3 in Γ̄ and the length-k cycle has a chord.
Supposev1,Aj

= v3,Aj
and considerv4j(l). If v4j(l) = v2j(l),

then vn2 ∼ vn4 in Γ̄ which is a chord for the length-k cycle.
Supposev4j(l) 6= v2j(l). Then, sincevn3 ∼ vn4 in Γ̄ we have
v3,Aj

6= v4,Aj
and hencev1,Aj

6= v4,Aj
. Therefore,vn1 ∼ vn4

in Γ̄ and the length-k cycle has a chord.
Case 2 (v2j(l) 6= v3j(l)): In this case, ifv1j(l) = v3j(l),

thenvn1 ∼ vn3 in Γ̄ which is a chord. Supposev1j(l) 6= v3j(l).
If v1,Aj

6= v3,Aj
, thenvn1 ∼ vn3 in Γ̄ which is a chord. Suppose

v1,Aj
= v3,Aj

. If v3j(l) = v4j(l), then the situation will be
the same as case 1. Otherwise, we havev3,Aj

6= v4,Aj
which

impliesv1,Aj
6= v4,Aj

and thusvn1 ∼ vn4 in Γ̄ which is a chord.

APPENDIX D
PROOF OFTHEOREM 4

Fix ǫ > 0. By the definition of the broadcast rate in (1) and
(17), for sufficiently larget, there exists a(t, ri) index code
for problemFi satisfying

β(Fi) ≤
ri
t
≤ β(Fi) + ǫ, i ∈ [m]. (43)

Let I := {i ∈ [m− 1] : ri+1− ri > 0}, andk be a sufficiently
large integer such that there exist a(kr1, s0) index code for
problemG satisfying

s0
kr1

≤ β(G) + ǫ, (44)

and a (k(ri+1 − ri), si) index code for problemG|[m]\[i]

satisfying

si
k(ri+1 − ri)

≤ β(G|[m]\[i]) + ǫ, i ∈ I. (45)

Consider the following coding scheme that consists ofm inner
codes and at mostm outer codes. First, for eachi ∈ V (G), the
(t, ri) index code for problemFi is applied to the messages
indexed by{i}× V (Fi). This inner code is deployedk times
to generatekri bits. As the second step, the outer codes are
used to send thesek

∑

i∈[m] ri bits. The(kr1, s0) index code
for problemG is used to send the firstkr1 bits generated from
copies of problemsF1, . . . , Fm (If ri < r1 for somei, zero-
pad to get sufficient number of bits). Next, for eachi ∈ I, the
(k(ri+1 − ri), si) index code for problemG|[m]\[i] is used to
sendk(ri+1−ri) bits generated from copiesFi+1, . . . , Fm (If
required, zero-pad to get sufficient number of bits). Using the
above scheme, all the bits generated from messages indexed
by {i} × V (Fi), i ∈ [m], are sent.

As for the decoding, first the decoders of the outer codes
are utilized to recover thekri bits corresponding to messages
indexed by{i} × V (Fi). Next, each of the decoders of the
inner codes is usedk times to recover thekt bits of each
message.

This coding scheme usess0+
∑

i∈I si bits to sendkt bits for
each message of the problemG◦(F1, . . . , Fm). Now consider

s0 +
∑

i∈I

si

≤ kr1(β(G) + ǫ)

+
∑

i∈I

k(ri+1 − ri)(β(G|[m]\[i]) + ǫ) (46)

≤ kt(β(F1) + ǫ)(β(G) + ǫ)

+
∑

i∈I

kt(β(Fi+1)− β(Fi) + ǫ)(β(G|[m]\[i]) + ǫ), (47)

≤ kt(β(F1) + ǫ)(β(G) + ǫ)

+
∑

i∈[m−1]

kt(β(Fi+1)− β(Fi) + ǫ)(β(G|[m]\[i]) + ǫ),

(48)

where (46) follows by (44) and (45), and (47) follows by (43),
and (48) follows by the assumption of the theorem. Letting
ǫ→ 0 completes the proof.

APPENDIX E
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Let K = {y1, y2, . . . , y|K|} be a maximum clique inΓt(F )
and letk = ⌊log(|K|)⌋ = ⌊log(ω(Γt(F )))⌋. By the definition
of the broadcast rate in (1),β(G) ≤ rG/k for any (k, rG)
index code for problemG. Hence, it suffices to show that
given any(t, r) index code for problemG◦F , a (k, rG) index
code for problemG can be constructed such thatrG ≤ r.

Let m = |V (G)| and n = |V (F )|. We denote a tuple of
mn messages of problemG ◦ F by x = (x1, . . . , xm), where
xi = (xi1, . . . , xin) andxij ∈ {0, 1}t for i ∈ [m] andj ∈ [n].
Consider the one-to-one mapping

f : {0, 1}k → {y1, y2, . . . , y2k}

that maps thek-bit binary representation ofi−1 to yi, i ∈ [2k].
Let φG◦F be the encoder associated with the(t, r) in-

dex code for problemG ◦ F . For any message tuplev =
(v1, . . . , vm), vi ∈ {0, 1}k, of problemG define

φG(v1, . . . , vm) = φG◦F (f(v1), . . . , f(vm)). (49)

The functionφG in (49) is the encoder of an index code for
problemG iff any two message tuples to which the same
codeword is assigned are nonconfusable. Hence, it suffices
to show that if φG(v1, . . . , vm) = φG(v

′
1, . . . , v

′
m), then

(v1, . . . , vm) and(v′1, . . . , v
′
m) are nonconfusable for problem

G.
Suppose φG(v1, . . . , vm) = φG(v

′
1, . . . , v

′
m). Then

φG◦F (f(v1), . . . , f(vm)) = φG◦F (f(v
′
1), . . . , f(v

′
m)). By the

definition of the mappingf , for everyi ∈ [m], eitherf(vi) =
f(v′i) or f(vi) ∼ f(v′i) in Γt(F ). As φG◦F is the encoder
of an index code for problemG ◦ F , (f(v1), . . . , f(vm)) and
(f(v′1), . . . , f(v

′
m)) are nonconfusable for problemG ◦F and

thus, if f(vi) ∼ f(v′i) in Γt(F ), thenf(vj) 6= f(v′j) for some
j ∈ Ai(G). Hence, sincef is one-to-one, for everyi ∈ [m],
either vi = v′i or vj 6= v′j for somej ∈ Ai(G). Therefore,
(v1, . . . , vm) and(v′1, . . . , v

′
m) are nonconfusable for problem

G and (49) defines the encoder of a(k, rG) index code for
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problemG such that the set of codewords is a subset of the
set of codewords of the(t, r) index code for problemG ◦ F ,
which impliesrG ≤ r.

APPENDIX F
PROOF OFPROPOSITION9

Sufficiency.If the MAIS bound onC (Ge) is a proper subset
of the MAIS bound onC (G), there exists a subsetS ⊆ V
such thatG|S contains a cycle andGe|S is acyclic. LetSmin be
a minimal such subset. Then,G|Smin is a unicycle that contains
e.

Necessity.Let G|S , S ⊆ V , be a unicycle that containse.
By the definition of unicycle,Ge|S is acyclic. Therefore, by
the MAIS outer bound, any rate tuple(R1, . . . , Rn) ∈ C (Ge)
must satisfy

∑

j∈S

Rj ≤ 1. (50)

However, sinceG|S is not acyclic, (50) is not implied by the
MAIS outer bound onC (G).

APPENDIX G
PROOF OFPROPOSITION11

Proposition 9, together with the following, implies Propo-
sition 11.

Lemma 13. If e1 ande2 do not belong to any unicycle ofG,
thene2 does not belong to any unicycle ofGe1 .

Proof: If e2 does not belong to any cycle ofG, then it
trivially does not belong to any unicycle ofGe1 . Supposee2
belongs to some cycle inG. It suffices to show that for every
cycle C of G that containse2, C \ e1 is not a unicycle of
Ge1 . Let e1 = (u1, u2), e2 = (vl, v1), andC = (v1, . . . , vl)
be a cycle ofG that containse2. By the assumption,C is not
a unicycle and thusl ≥ 3. If |{u1, u2} ∩ {v1, . . . , vl}| < 2,
then removinge1 does not affectC and henceC \ e1 is not
a unicycle ofGe1 . Suppose|{u1, u2} ∩ {v1, . . . , vl}| = 2 and
consider three cases.

Case 1:e1 = (vi, vi+1) for somei ∈ [l − 1]. In this case,
removinge1 breaks the cycleC and henceC \ e1 is not a
unicycle ofGe1 .

Case 2:e1 = (vi, vj) for some1 ≤ i < j ≤ l, (i, j) 6=
(1, l). In this case,(v1, . . . , vi, vj , . . . , vl) is a cycle ofG that
contains bothe1 and e2 and thus, by the assumption, is not
a unicycle and has a chord, which is also a chord ofC \ e1.
Thus,C \ e1 is not a unicycle ofGe1 .

Case 3:e1 = (vj , vi) for some1 ≤ i < j ≤ l, (i, j) 6= (1, l).
In this case,(vi, . . . , vj) is a cycle ofG that containse1 and
thus, by the assumption, is not a unicycle and has a chord,
which is also a chord ofC \ e1. Thus,C \ e1 is not a unicycle
of Ge1 .

APPENDIX H
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(1) ⇒ (2): Assume that (2) does not hold. Then there exists
a subsetS such thatG|S contains a cycle but does not have
any bidirectional edge. By the definition ofU(Ḡ), S is a clique
of U(Ḡ), which contradicts (1).

(2) ⇒ (1): Assume that (1) does not hold. Then there
exists a cliqueK in U(Ḡ) such thatG|K has a cycle. By
the definition ofU(Ḡ), G|K has no bidirectional edge, which
contradicts (2).
(2) ⇒ (3): Assume that there exists a unidirectional edge

e and S ⊆ V , |S| ≥ 3, such thatG|S is a unicycle and
e ∈ E(G|S). By the definition of unicycle, all of the edges of
G|S are unidirectional, which contradicts (2).
(3) ⇒ (2): Assume that (2) does not hold. Then there exists

a subsetS, |S| ≥ 3 such thatG|S has a cycle but does not have
any bidirectional edge. A minimal suchS forms a unicycle
and hence all of its unidirectional edges belong to a unicycle,
which contradicts (3).
(3) ⇒ (4): To form G′, every edge ofG that do not

belong to a unicycle is removed. Hence, if (3) holds, then all
unidirectional edges ofG are removed to form bidirectional
G′.
(4) ⇒ (3): G′ is formed by removing edges ofG that do

not belong to any unicycle. Hence,G′ is bidirectional implies
that no unidirectional edge ofG belongs to a unicycle.

APPENDIX I
PROOF OFLEMMA 12

SinceG′ is bidirectional and every bidirectional edge be-
longs to a unicycle, we have

{i, j} ∈ E(U(G′)) ⇐⇒ (i, j) ∈ E(G) and (j, i) ∈ E(G).

By definition,

{i, j} 6∈ E(U(Ḡ)) ⇐⇒ (i, j) ∈ E(G) and (j, i) ∈ E(G).

Thus,U(G′) = U(Ḡ).
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