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Abstract—The index coding capacity is investigated through problem if there exists &, ...,t¢,,r) index code such that
its structural properties. First, the capacity is charactaized in '
three new multiletter expressions involving the clique nurber, R; < I je [n].

Shannon capacity, _ano! Lodsz theta function o_f _the confusion r
graph, the latter notion introduced by Alon, Hassidim, Lubetzky, The capacity regiorz’ of the index coding problem is defined

Stav, and Weinstein. The main idea is that every confusion gph :
can be decomposed into a small number of perfect graphs. The as the closure of the set of achievable rate tuples. The

clique-number characterization is then utilized to show trat the Symmetric capacityor the capacity in short) of the index
capacity is multiplicative under the lexicographic produd of coding problem is defined as

side information graphs, establishing the converse to an elger

result by Blasiak, Kleinberg, and Lubetzky. Second, suffig@nt Csym = max{R: (R,...,R) € ¢},

and necessary conditions on the criticality of an index codaig . . .

instance, namely, whether side information can be removed @nd its reciprocali = 1/C,m is referred to as theroadcast
without reducing the capacity, are established based on theotion ~ rate, which can be equivalently defined as

of unicycle, providing a partial answer to the question firstraised r r

by Tahmasbi, Shahrasbi, and Gohari. The necessary conditip B=inf inf —=1lim inf -, (1)

along with other existing conditions, can be used to elimina ¢ (tr) codes T t=00 (t,r) codes ¢

noncritical instances that do not need to be investigated. #an where the equality follows by Fekete’s lemma [1] and the
application of the established multiplicativity and criti cality, only

10,634 (0.69%) out of 1,540,944 nonisomorphic six-messagdex subadditivity
coding instances are identified for further investigation,among inf r< inf r 4+  inf .
which the capacity is still unknown for 119 instances. (t14t2,r) codes ~ (t1,r1) codes (t2,r2) codes

The goal is to characterize the capacity region or the sym-
|. INTRODUCTION metric capacity for the general index coding problem and to
gl_etermine the coding scheme that can achieve it.

Any instance of the index coding problem is fully de-
termined by the side information setd4;,...,A,, and is
{ﬁg{esented compactly &g/4,),j € [n]. For example, the 3-
message index coding problem withy = {2,3}, A2 = {1},

The index coding problem is a canonical problem in ne
work information theory in which a server has a tuplerof
messages” = (x1,...,2,), z; € {0,1}%, and is connected
to n receivers via a noiseless broadcast channel. Suppose

receiverj € [n] := {1,2,...,n} is interested in message al .

xz; and has a set of other messagesd;) = (x;,i € and Az = {1, 2} is represented as
Aj),A; C [n]\ {j} as side information. Assuming that the (112,3),(2]1), (3]1,2).
server knows side information sefs, ..., A,,, one wishes to

characterize the minimum amount of information the servaf'€ Problem can be equivalently specified by a directed graph

needs to broadcast and to find the optimal coding scheme 4! 7 vertices, commonly referred to as thiele information
achieves this minimum. graph Each vertex of the side information graph= (V, E)

More precisely, &t1, ..., t,,r) index codeis defined by corres_ponds_ to a rece?ver @_nd its asso_cigted me_ssage) and
n . . there is a directed edge— j if and only if (iff) receiverj
e anencodey : [[._,{0,1}* — {0, 1}" that maps:-tuple , o S .
i=1 L knows messaggeas side information, i.ei,c A; (see Fig. 1).
of messages™ to anr-bit index and . . o .
” ¢ . Throughout the paper, we identify an instance of the index
e ndecodersy; : {0,1}" x[[,c4.{0,1}* — {0,1}% that . A :
th ved ind 4y d the side inf i coding problem with its side information gragh and often
milps be lr(etcewef |n. eX(=") and the side information write “index coding problendz.” We also denote the broadcast
z(4;) back toz; grg < [nl.. rate and the capacity region of problefh with 8(G) and
Thus, for everyz™ € [[;_,{0, 1}", % (G) respectively.
bi((a™), 2(A;)) = 25, j € [n]. _The prc_>b|e_m of br_oadcastlng to multiple receivers thh
_ _ different side information traces back to the work by Cdkabi
A (t,...,t,r) code is written as dt,r) code. A rate tuple and Stette [2], Wyner, Wolf, and Willems [3], [4], Yeung [5],
(R1,...,R,) is said to beachievablefor the index coding and Birk and Kol [6], [7]. The current problem formulation
_ _ _ _ is due to the last. This problem has been shown to be
This paper was presented in part at the IEEE Internationahp®gium . .
on Information Theory, Hong Kong, June 14-19, 2015, and at [EEE closely related to many other important problems in network
Information Theory Workshop, Jeju Island, Korea, Oct 11-A15. information theory such as network coding [8]-[10], logall
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The rest of the paper is organized as follows. Sections Il
and Ill review graph-theoretic preliminaries and some of
the previously known bounds on the capacity, respectively.
In Section IV, we introduce the notion of confusion graph
associated with a given index coding problem and establish

2 3 several properties including a tight bound on the chromatic
number of a confusion graph in terms of its cligue number.
Fig. 1. The graph representation for the index coding probkéth A; = !n SeCtiOn V, we CharQCterize the .broadcaSt_ rate of a general
{2,3}, A = {1}, and A3 = {1,2}. index coding problem via asymptotic expressions invol\g

cligue number, Shannon capacity, and Lovasz theta fumctio
of the confusion graph. Nonasymptotic upper bounds on the
recoverable distributed storage [11]-[13], guessing gaore broadcast rate are also established in terms of the Shannon
directed graphs [8], [13], [14], and zero-error capacitglaéin- capacity and Lovasz theta function of the confusion graph.
nels [15]. In addition, index coding has its own applicationBased on the clique-number characterization, we provedn Se
in diverse areas ranging from satellite communication[[Z]- tion VI that the broadcast rate is multiplicative under tbei
and multimedia distribution [16] to interference managatecographic product of side information graphs. In Sectioh VI
[17] and coded caching [18], [19]. Due to this significanceye investigate the criticality problem and present suffitie
the index coding problem has been broadly studied over thrd necessary conditions based on the notion of unicycle.
past two decades in several disciplines including grapbrihe Section VIII concludes the paper with an application of the
coding theory, and information theory, and various boundstablished structural properties in computing the cayéai
have been established on the capacity region and the brstaditalex coding problems with six messages.
rate. Despite all these efforts, however, the problem it sti
open in general and the capacity in a computable (singlerjet [1. MATHEMATICAL PRELIMINARIES
expression is known only for a handful of special cases (See’Throughout the paper, a grapghi = (V,E) (without a
for example, [14], [17], [20]-{31]). o qualifier) means a directed, finite, and simple graph, where
Deviating from the common approach of finding the capag, _ V(G) is the set of vertices (nodes) addl = E(G) C
ity by establishing tight upper and lower bounds, we takeya . 1/ is the set of directed edges. A graph= (V, E) is

more direct attack at the capacity itself by its structuraber- ¢5iq to beunidirectional if (i,7) € E implies (,i) ¢ E.
ties using several graph-theoretic tools. The main coutiohs Similarly, G is said to bebidirectional if (le)' c E im-

are summarized as follows: plies (j,i) € E. Given G, its associated undirected graph
e A new multiletter characterization of the capacity U = U(G) is defined by identifyingV’ (U) = V(G) and
(Theorem 2). Paralleling the multiletter characterizationE(U) = {{i,j}: (i,5) € E(G) or (j,i) € E(G)}. A bi-
of the capacity (broadcast rate) via the chromatic numbeirectional graph= is sometimes identified with its undirected
of the confusion graph [32], we establish a multilettegraph. ThecomplementG of the graphG is defined by
characterization via thelique numberof the confusion V(G) = V(G) and (i,j) € E(G) iff (i,j) ¢ E(G). For
graph. As a corollary, we establish monasymptotic any S C V(G), G|s denotes the subgraph induced Byi.e.,
upper bound on the broadcast rate via the Lovasz théfdG|s) = S and E(G|s) = {(1,j) € E: i,5 € S}.
function of the confusion graph that can be computed An independent sef of a graphG is a set of vertices with
more efficiently than the existing upper bound using theo edge among them. Thedependence number(G) is the
chromatic number. size of the largest independent set of the grapt clique K
of a graphG is a set of vertices such that there is a (directed)
e Multiplicativity of the capacity under the lexico- edge from every vertex il to every other vertex ids. Thus,
graphic product (Theorem 5). As another corollary g s a clique ofG iff it is an independent set af. Theclique

of the aforementioned clique-number characterizatioRumberw (@) is the size of the largest clique of the graph
we show that if the side information graph is the lextt is easy to see that

icographic product of two graphs, the capacity is the _
product of the capacities of the two component graphs, w(G) = a(G) (2)

completing an earlier result by Blasiak, Kleinberg, angh; any directed or undirected gragh A Hamiltonian cyclef
Lubetzky [33]). a graph is a cycle that visits each vertex exactly once. Algrap

. o . : ossessing a Hamiltonian cycle is said toHemiltonian
e Conditions on the criticality of an index coding P 9 y

instance (Theorem 6 and Proposition 10)Providing )

a partial answer to the question raised by Tahmashy, Chromatic Number

Shahrasbi, and Gohari [34], we establish conditions underA (vertex) coloring of an undirected (finite simple) graph
which the removal of an edge reduces the capacify. is a mapping that assigns a color to each vertex such that
Both sufficient and necessary conditions are based on the two adjacent vertices share the same color. diivematic
notion of unicycle that is closely related to the maximumumberx(U) is the minimum number of colors such that a
acyclic induced subgraph bound on the capacity. coloring of the graph exists. More generallyb-éold coloring



assigns a set ob colors to each vertex such that no twd.ovasz's perfect graph theorem states that equality hifids
adjacent vertices share the same color. ®field chromatic U is perfect.

numbery®(T) is the minimum number of colors such tha
a b-fold coloring exists. Thdractional chromatic numbeof
the graph is defined as

Lemma 3 (Lovasz [37]) For any graphU the following
statements are equivalent:

e U is perfect.

X)) . xP() e« Px(U) = P(U).

= lim &——2 —inf .
Xy (U) = lim = BTy e U is perfect.

where the limit exists sincg(®) (U) is subadditive. Conse- We now state a result on chromatic numbers that will be
quently, useful later. The chromatic number of a graph can be upper
xr(U) < x(U). (3) bounded by decomposing it into smaller graphs. The follgwin

decomposition result will be proved in Appendix A.
Let Z be the collection of all independent setslih The P P PP

chromatic number and the fractional chromatic number akeémma 4. Let U; = (V,E;) and Uy = (V, E;) be two
also characterized via the following optimization problem undirected graphs on the set of vertidésConsider the graph
U = (V, E1 U E») defined on the same vertex $étin which

minimize Z Ps each edge either belongs 6, or E,. Then
Sez

subject to Z ps>1, jeV. x(U) < x(U1) + x(U2).
S€eT.jeS

S . . B. Graph Products
When the optimization variablegs, S € Z, take integer i i , i
values in{0, 1}, then the (integral) solution is the chromatic Generally speaking, a graph productis a binary operation on

number. If this constraint is relaxed angs € [0,1], then two grla_phs that produces_, a graph on the Cartesian product of
the (rational) solution is the fractional chromatic numbdf® Original vertex sets with the edge set constructed ffuem t

[35]. The (fractional) chromatic number can be related t ttP"9inal edge sets according to certain rules. In the fagy
independence and clique numbers. v1 ~ vo denotes that there exists an edge betwgeandvs,.

. . Given two undirected graph&; and U, the disjunctive
Lemma 1 (Scheinerman and Ullman [35]For any undirected productlU = U; VU, [35], [38] is defined ad/ (U) = V (U;) x

graph U with n vertices, V(Usz) and (uq,ug) ~ (vy,ve) iff
% SXf(U) uy ~ vy Or wug ~ vs.

Throughout the papet/V* denotes the disjunctive product of
k copies ofU.

w(U) < x5(U) < x(U). Given two undir_ected_ graphi$; andUs,, the strong product
U =U, XU, [39] is defined ad/(U) = V(U;) x V(Uz) and
(u17u2) ~ (’Ul,vg) Iﬁ

Lemma 2. For any graphU we have

An undirected graplU = (V, E) is said to beperfectif
for every induced subgrapti|s, S C V, the cligue number

equals the chromatic number, i.e:(U|s) = x(Ul|s). Perfect (u1 = v1 anduy ~ v2),
graphs can be characterized as follows. or (uy ~ v andus = vq),
Proposition 1 (Chudnovsky, Robertson, Seymour, and Thomas or (up ~ vy andug ~ va).

[36]). A graphU is perfect iff no induced subgraph &fis an Throughout the paper/®* denotes the strong product of

odd cycle of Ien_gth at least five (odd hole) or the COmplem%tcopies ofU. The following lemma elucidates the relation
of one (odd antihole). between the disjunctive product and the strong product.

Let U = (V, E) be an undirected graph with = [n]. For
each cliqueK of U, theincidence vectois ann-dimensional T
vector whosejth component is equal to 1 if € K and 0 Ur VU =U1 K U>.
otherwise. Thecliqgue polytopeof U is defined as

Lemma 5. For any two undirected graph&; and Us

Given two graphs&; and G, the lexicographic product

Px(U) ={z € RY,: z is a convex combination of G=G10G5[39]is defineq ad/ (G) = V(G1) x V(G,) and
C ((ur, us), (v1,v2)) € E(G) iff

(ul,vl) S E(Gl) or (u1 =v; and (UQ,UQ) S E(GQ)) .

incidence vectors of cliqgues éf}. (4)

Another (convex) polytope associated withis defined as
" . The lexicographic product’; o G> can be thought of as
P(U) = {z € R%y: ) z; <1 for all independent sets}. replacing each vertexe V(G ) with a copy ofGs. Therefore,
el ) the edges among the vertices of each copy-efremain the
same as inG; and there exists a directed edge from every
Since every incidence vectorof a clique satisfie3 ", ; z; < vertex in copyi of G to every vertex in copyj of G iff
1 for an independent set, Px(U) C P(U) for everyU. (i,j) € E(G1) (see Fig. 2 for an example).



The value of an orthonormal representation is defined as

, 1
min max para—
crllel=1i€n] (cTuv;)

The unit vectore attaining the minimum is referred to as the
Fig. 2. GraphsG: and G5 and their lexicographic produci: o Ga. handleof the rep_resen_tanon. THeovasz .th.eta functionf U,
The bold arrows indicate that there is an edge from everyexart denoted ag(U), is defined to be the minimum value over all
the circle attached to the tail of the arrow to every vertethimcircle orthonormal representations bf. A representation is said to
attached to the head of the arrow. be optimal if it attains this minimum.

Lemma 6 (Lovéasz [41]) For any undirected graplv/,

The lexicographic product can be generalized as follows. o(U) < I(U).
Let Gy be a graph withm vertices andGy,...,G,, bem _
graphs withn1, . .., n,, vertices respectively. Thgeneralized By (2), (7), Lemma 6, and Theorem 10 in [41], the Lovasz
lexicographic productGy o (G1,...G,,) is defined to be a theta function is sandwiched by other graph-theoretic tjuan
graph onn; + - - - + n,, vertices in which vertex € V(G,) ties that are NP-hard to compute.

is replaced with(y;, i.e., the edges among the vertices8f | oyyma 7. For any undirected graph/
remain the same as before and there is a directed edge from ' '

every vertex ofG; to every vertex ofG; iff (i,5) € E(Gy). w(U) <9(U) < x(U).
However, the Lovasz theta functiah(U) is polynomially
C. Shannon Capacity of a Graph and l&sz Function computable inV (U)] [42].

Consider a graply whose vertices represent input symbols
of a noisy channel and two vertices are connected iff the
corresponding channel inputs are confusable as they malg res The simplest approach to index coding is a coding scheme
in the same channel output. The goal is to find the zero-erf¥ Birk and Kol [6] that partitions the side information grap
capacity of the channel represented by the graphif we G by cliques and transmits the binary sums (parities) of all
are limited to use the channel only once, then we can self@ messages in each clique.

up to [log(a(U))] bits without an error. However, if we areproposition 2 (Clique covering bound)Let Scc(G) be the
allowed to use the channetimes, then we can construct theninimum number of cliques that partitia®, or equivalently,

following graph to capture the confusabilities. Assignfeac he chromatic number o/ (G), which is the solution to the
tuple of the input symbols to a vertex and the vertices for tWateger program

tuplesz? andz* connect iff for everyi, z; = z; or z; ~ z; in

IIl. BOUNDS ON THECAPACITY

U. We can easily check that the resulting graph is the strong minimize Z ps
productU™*, Thus, by using the channgetimes, we can send SeK
|log(a(U™*)) | bits without an error. Based on this observation subject to Z ps >1, jeV(Q), (8)
[40], the Shannon capacitef a graphU is defined as SeK:jes
ps €{0,1}, SeK,
o) = \/a(UR) = lim /a(UB). 6
) Sgp a(U™) 100 o ) ©) where IC is the collection of all cliques irG. Then for any

In other wordsJlog(©) indicates the number of bits per inpufndex coding problent:, 5(G) < fcc(G).
symbol that can be sent through the channel without error. ByThis bound, which is achieved bgme division over a
definition, clique partition, has been extended in several directibimst,
Birk and Kol [6] showed that one can use an MDS code
a(U) < O(U). (7) over a finite field and perform time division over arbitrary
Shannon [40] showed that for perfect graph&’) = ©(U). sub_graphs (partial cliques) instead of qliques. The _nurober
The equality does not hold in general, however. In fact, coff21y Symbols needed for a subgraphis characterized by
puting the Shannon capacity of a general graph is a very h&r§ differences(H) between the number of vertices i and
problem. Lovasz [41] derived an upper bound on the Shann$i§ Minimum indegree withitt .

capacity referred to as the Lovasz theta function, which Rroposition 3 (Partial clique covering bound)f Gy, ..., Gy,
easily computable and results in determining the Shanngartition G, then the optimal broadcast rate is upper bounded
capacity of some graphs. Before defining the Lovasz theig m
function, we need the following definition. Aarthonormal Brc(Ga,...,Gm) = ZK(GZ') (9)
representatiorof an undirected graptl with n vertices is a set i=1
of unit vectorg(vy, . .., v, ) such that ifi andj are nonadjacent and thus by
vertices ofU, thenv; andv; are orthogonal, i.exlv; = 0. Bpc = G mi% Brc(G1,...,Gn),

15--,Gm

For example, a set of pairwise orthogonal unit vectors is an o _ -
orthonormal representation of any undirectechode graph. where the minimum is over all partitions.



Remark 1. If the graphG with n vertices is Hamiltonian, then IV. CONFUSION GRAPHS
the minimum indegree is at least one and thus < n—1, or
equivalently, the symmetric rate1-, . .., 1) is achievable
for problemG.

The notion of confusion graph for the index coding problem
was originally introduced by Alon, Hassidim, Lubetzky, Gta
and Weinstein [32]. In the context of guessing games, an

By the standard time-sharing argument, Blasiak, Kleinbergduivalent notion was introduced independently by Gaduule
and Lubetzky [22] extended the clique covering bound to tt@d Riis [46]. Consider a directed gragh = (V, E) with
fractional clique covering boundwhich is equivalent to the V' = [n]. Let A; = {i € V: (4,j) € E}, j € [n], and let
fractional chromatic number df (G), namely, the solution to t = (t1,...,%,) be a lengtha integer tuple. Twog-ary n-
the linear program obtained by relaxing the integer coirgtratuplesz™, 2" € [[;_,{0,...,¢—1}" are said to beonfusable
ps € {0,1} in (8) to pg € [0, 1]. at position! € [t;] of nodej € [n] if zj; # z; andz; = z;
Remark 2. The integral, partial, and fractional clique coverinéorGail\lllelneaAgirected grapt and a lengths integer tuple

bounds can be readily extended to the correspondingr t = (t1,....tn), theconfusion grapﬂ“éjl)(G) at positionl of

bounds on the capacity region. For example, by fractionl%dej is an undirected graph witfi]"_, ¢** vertices such that
) ) . ) i
clique covering, a rate tupleR, ..., R,) is achievable for every vertex corresponds togaary tuplex™ and two vertices

the index coding problenij|4;),j € [n], if there exists ;o connected iff the correspondipgry tuples are confusable
(ps € [0,1],5 € K) such that at position! of receiver;.

Z ps <1, Aggregating over all positions, we say that', z" <
Sex I1",{0,...,¢—1}" areconfusabléf they are confusable at
SR iev(C (10)  some positior of some nodej. The confusion graph’y(G)
Z ps = Ry, jEV(G). is defined as before based on confusion between each pair of

SeK:jes . .
e vertices, or equivalently,

Tighter bounds can be found in [25], [26], [28], [43]. In this
paper, we only need the simpler integral, partial, and ivaet
cligue covering bounds.

As for bounding the broadcast rate from below, Bar-Yossef,
Birk, Jayram, and Kol [20] proposed the following. If t = (£,...,t), then FtEG? is simply denoted byl';(G).

Fig. 3 showsfgll)(G), Ft21 (@), and F£31)(G) as well as
I't(G) corresponding ta& = (1,1, 1) for G in Fig. 1.
By Lemma 4 and (12), the chromatic numberlgfG) can

tj

J BTV @)). (12)

j=1l=1

=

E (Ft(G)) =

Proposition 4 (Maximum acyclic induced subgraph (MAIS)
bound) For any index coding problert

Bumars(G) ==

= max
SCV(G):G|s is acyclic

S| < B(@G). be upper bounded by those of its components.
Remark 3. Since every independent set is acyclic, Proposproposition 5. y (Te(G)) <
tion 4 implies that for anyG, «(G) < 5(G). ;

ix (Fiﬂ)(G))
j=11=1

we havew(G) = a(G) = x(G). Hence, the upper bound of properties.
Proposition 2 matches the lower bound of Remark 3 and the D)
broadcast rate is known [20]. Lemma 8. I';’”(G) does not have any chordless cycle of

] length greater than four.
Remark 5. The MAIS bound can be generalized to an outer G

boundZyia1s on the capacity region [25] as follows. If a ratdeemma 9. The complement of ;" (G) does not have any

n

1

tuple (R4, ..., R,) is achievable for index coding probley, ~chordless cycle of length greater than four.

then The proofs of the lemmas are given in Appendices B and
ZRJ <1 (11) C. By Proposition 1, Lemma 8, and Lemma 9, the following
jes is immediate.

for all S such thatG|s is acyclic. This bound is a special casé’roposition 6. 1" (@) is perfect.

of the polymatroidal outer bound [33], [44], [45]. As the main contribution of this section, we now establish

Remark 6. When( is bidirectional (undirected), the polytopean upper bound on the chromatic number of a confusion graph
associated withG' in (5) is equivalent to the MAIS outer in terms of its clique number.

bound in .(11_). It is also easy to_ see that_ the rgte tuple giv%ﬂeorem 1. Given a directed graptG, a lengthn integer
by each incidence vector of cliques i@ is achievable by tuplet = (t1,...,t,), and a positive integey, the confusion
cligue covering and thus the polytope associated wttin graph Ft(G)vsativsfies

(4) is achievable by fractional clique covering. Therefdrg

Lemma 3, ifG is bidirectional and perfect, then the capacity n

region is equal to the MAIS outer bound in (11), which is x (Te(G)) < th w (Te(G)) . (13)
achieved by fractional clique covering [14]. j=1
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Fig. 3. Confusion graphs for the directed graph shown in Fig. 1

corresponding to the integer tupte= (¢1,t2,t3) = (1,1,1). (a) Fiu)(G).
®) IZ(G). @ TP (G). (@) Te(6).

Proof: Consider

X(Te(@)) < Z;lz_;x(w”(c» (14)
= Z_} ;Zjlw(r“” (@) (15)
< ; ltjl w(Te(G)) (16)
= étj w(Te(G)),

where (14) follows by Proposition 5, (15) follows by Propo-
sition 6, and (16) follows by (12). O

V. MULTILETTER CHARACTERIZATIONS OF THECAPACITY

Consider an index coding proble6i. Using the notion of
confusion graph introduced in Section 1V, Alon, Hassidim,
Lubetzky, Stav, and Weinstein [32] showed that

A(G) _ 1

Tt (t,rl)ncodes ; Tt [log(x(I't(G)))1-

To prove this, consider a coloring of the vertices of the
confusion graphl' = T';(G) with x(T') colors. This parti-
tions the vertices of" into x(I") independent sets. By the
definition of the confusion graph, no two message tuples in
each independent set are confusable and therefore agpignin
a unique index to each independent set yields a valid index
code. The total number of codewords of this index code is
x(I"), which requiresr = [log(x(T"))] bits to be broadcast.
Hence,5:(G) < [log(x(T'+(G)))]. Conversely, consider any
(t,r) index code that assigns (at mo&t) distinct indices to
message tuples. By definition, all the message tuples mapped
to an index form an independent set of the confusion graph
I' = T'\(G). Moreover, every message tuple is mapped to
some index so that these independent sets partiion).
Thus,x(T") < 27, or equivalentlyy > [log(x(T'))], and hence
Bi(G) = Nog(x(I't(G)))].

Based on (17), Alon, Hassidim, Lubetzky, Stav, and We-
instein [32] established the following upper bound on the
broadcast rate

5(G) < log (x (Ti(G)],

for every positive integert, and established a multiletter
characterization of the broadcast rate as

5(G) = Jim ~105(x(T4(G)))

In our earlier work [47], this characterization was stréngt
ened using the fractional chromatic number as

1080 (T4(G)))

We now further strengthen this result and characterize the
broadcast rate in terms of the cligue number of the confusion
graph.

(17)

(18)
(19)

B(G) = lim

t—o0

(20)

Theorem 2. For any side information grapl,

B(G) = Jim - log(w(Tu(G))).

Proof: By settingt = (¢,...,t) in Theorem 1 and recalling
Lemma 2, we have

(21)

w(lt(G)) < x(T't(G)) < nt- w(Iy(G)). (22)
Hence,
1 .1
tlif{)lo 7 log(x(I'+(G))) = tliglo 7 log(w(I'+(G))), (23)
which, combined with (19), completes the proof. O

Note that sincevu(I') < x;(I') < x(I') for any graphT,
Equation (20) can be derived as a corollary of Theorem 2.



Combining (7), Lemma 6, and Lemma 7, we have for arfyound in (31) can be computed in polynomial time in the
positive integert number of vertices of the confusion graph (see [42]).

w(ly) = a(Ty) < O(T;) <I(y) < x(Ty). (24) Remark 8. Equation (20) can be generalized to characterize
th? capacity regiory’ of the index coding problend: as the

Thus, we can characterize the broadcast rate in termsﬁ?osure of all rate tuple¢R R,,) such that
1y---y1tn
e

the Shannon capacity and the Lovasz theta function of t
complement of the confusion graph. 7]

Rj < ——A4——, jeln], (32)
Coro”ary 1. IOg(Xf(Ft(G)))
1 for somet = (t1,...,t,) [47]. By a sandwich argument
B(G) = lim - log (9 (Ft(G))) similar to (22), ¥ can be also characterized in terms of

w(T'¢(G)) asymptotically ag — oc.

= lim 1log (19 (I‘t(G))) .
t=oo t _ Remark 9. Similar to the index coding problem, the optimal
~ In summary, the broadcast rate can be characterized as e region of the locally recoverable distributed storageb-
first order in the exponent of six well-known graph theoretiem with recovery grapiG [11], [12] is characterized as the

quantities associated with,(G') and its complement, namely, closure of all rate tupleéR;, ..., R}) such that
w(l), a(I's), OI%), I(Le), x(I'e), andx ¢ (I's). ‘s
In the following, we present nonasymptotic upper bounds on R;» >——2 _____ j¢e[n], (33)
the broadcast ratg(G) in terms of the Shannon capacity and log(a(I'¢(G)))
the Lovasz theta function that hold for every positive g@e for somet = (t1,...,t,) [11], [13]. Based on the vertex

¢ and, due to (24), are tighter than the upper bound in (18)ransitivity of I'y which, inter alia, implies thalog(a(T'y)) =

Theorem 3. For any side information graphG and any 2-i=1t — 108(xs(I't)), the relationship between the index
positive integer, coding capacity region in (32) and the distributed storage

1 optimal rate region in (33) can be made precise. See [13] for
8(G) < S 1og (0 (Ti(@)) ) - (25) the details.

Proof: Consider
VI. LEXICOGRAPHICPRODUCT OFSIDE INFORMATION

vk — _— We first establish an upper bound on the broadcast rate
w(la) < w(TyF) = a(lYF) = o(IF), (26)  of the index coding problem whose side information graph

where the inequality holds since the set of edges'pf is a_general lexicographic product (recall the definition in

contains the set of edges Bf;,, and the last equality follows Section II).

by Lemma 5. Now for any, Theorem 4. Let G = ([m], E) be a directed graph withn

. log(w (') vertices andFy, ..., F,, bem directed graphs with3(F;) <
A(G) = lim —————= @7) < B(F,). Then
_ . log (w(P'e))
= lim ———— (28)  B(Go (Fu---,Fm))l
1 Tk —
< i Bl T) 29) < BENFG) + 3 (B(FE1) — BENBG pmp) (34
— 00 i=1
log ( ¥l (f?’“)) The proof of the theorem is given in Appendix D.
- JE{}O t Remark 10. For the special case in whieh has two vertices,
1 Y s the upper bound in Theorem 4 is tight [34], [46], [47]. In
= —log | lim {/o (TFF) - - - -
¢ s 00 ¢ particular, if G has either no edges or one edge (see Fig. 4(a)
1 _ and 4(b)), them3(G o (Fi, F)) = B(F1) + B(F), and if
-7 log (@ (Ft)) ) (B0) Gisa complete graph on two vertices (see Fig. 4(c)), then

where (27) follows by Theorem 2, (28) holds since the limif (G o (F1, F2)) = B(F2) = max{B(F1), 5(F2)}-
of a subsequence is equal to the limit of the sequence, (29)The following states another special case for which the
follows by (26), and (30) follows by the definition of thebound in Theorem 4 is tight.

Shannon capacity in (6). )
Theorem 5. For any two directed graphé& and F,
Corollary 2. For any side information graplix and any

positive integert, B(G o F) = B(G)B(F).
1 . . . .
B(G) < = log (19 (—Ft(G))). (31) In Words,_ the broadgast rate is m_ultlpllcanve_under the
t lexicographic product of index coding side informationggra.

Remark 7. Unlike the upper bounds in (18) and (25) in term#chievability was shown by Blasiak, Kleinberg, and Lubstzk
of the chromatic number and the Shannon capacity, the upf3]. It also follows from Theorem 4 by setting; = --- =
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Fig. 5. (a) A 6-node graph that is the lexicographic prodtat F' of two
smaller graphgz and F. (b) The 3-node grapld:. (c) The 2-node grapfi.

!

(b)

problemG

(112,3,4,6,7), (2]1,3,6,7), (3|1,4,5,7), (4]1,2,5,6),
(5|3’47 67 7)7 (6|2’47 57 7)7 (7|2’37 576)7

for which §(G) = 2.5 [17]. Let F3,..., Fs; be 1-message
Fig. 4. Graph examples with (a) no interaction, (b) one-watgraction, problems andr; be the 2-message problem
and (c) complete interaction among its two parts {ndicates that there is a
bidirectional edge between every vertex on the left andyevertex on the (1]12), (2]-)-
right).

&

(©

Then Theorem 4 yields

< ) - =3.5.
F,, = F. The proof of the converse is based on the clique- BlGo (P, Fr)) S1x254(2-1) x1=35
number characterization of the broadcast rate in TheorenTRis bound is not tight since the composite coding scheme
and the following. [25], [26] achieves the tighter upper bound of 10/3 on
B(G o (Fi,...,Fy)).

Remark 11. The upper bound on the broadcast rate in The-
[log(w(T:(F)))|B(G) < . orem 4 can be generalized to an inner bound on the capacity
region as follows. Denoting the capacity regions of the inde
The proof of the lemma is relegated to Appendix E. coding problemsr o (F1, ..., F,), G, andF, ..., Fy, by €,

Lemma 10. For any (t,r) index code for problents o F,

%o, and¥y, . .., %, respectively, we have
Proof of the converse for Theorem Gonsider ,
U {(@R1,...,anRy): Ri€%i € [m]} C%. (37)
B(Go F) = lim inf L «E%

fmre0 (1”> codes forGoF' ¢ For the special case in whiofi has two vertices, the inner
> lim = [log(w(T:(F)))]B(G) (35) bound in (37) is t|ght_[34], [47], generalizing the results i

t—o0 i Remark 10. IfG has either no edge or only one edge, then
= Jlim ~log(w(T'e(F)))B(G) “= |J {(aRi,(1-a)R2): Ri € €1, Ra € G}
= B(F)B(G), (36) aclo.1

In other words, in this case, the capacity regioref( F, F»)
where (35) follows by Lemma 10, and (36) follows bys achieved by time division between the optimal coding

Theorem 2. schemes for two subprobleni§ and F;. If G is a complete

Example 1. The graph shown in Fig. 5(a) can be considergdi@ph on two vertices, then

as the Iexicographic p_roducﬁ,‘ o F of two smaller graph_s % = {(R1,Ra): R1 € 61,Rs € %5}

G and F shown in Fig. 5(b) and 5(c) respectively with

B(G) = 2 and 3(F) = 2. By Theorem 5, instead of directlyIn other words, the capacity region 6fo (£}, ) is achieved
computing the broadcast rate for this six-message probiem, by simultaneously using the optimal coding schemesHor
can use the known broadcast rates of smaller problems and&jd .

B(G o F') = 4. Note that although this six-message problem

has a certain symmetric structure, it does not fall into the VIl. CRITICAL INDEX CODING INSTANCES
class of cyclically symmetric index coding problems stddie As Remark 11 suggests, if an edgef the side information
by Maleki, Cadambe, and Jafar [29]. graphG belongs to a directed cut, removingloes not reduce

The bound in Theorem 4 is not tight in general, as iIIustratéBe capacity regio_n. The Farkas Ie_mma_[48, Th. 2'.2] stats th
by the following each edge in a directed graph either lies on a directed cycle

or belongs to a directed cut but not both. Hence, if edge
Example 2. Consider the following 7-message index codingoes not lie on any directed cycle, it can be removed ftem



without affecting the capacity region. This was first observ
by Tahmasbi, Shahrasbi, and Gohari [34], who then asked for 5 2
general conditions under which an edge of the side infoonati
graph can be removed without reducing the capacity region.

Let e be an edge of side information graph= (V, E). We
denote the graph resulting from removiagrom G by G, 4 3
ie.,

V(Ge) = V(G) and E(Ge) = E(G) \ {e}. Fig. 6. A 5-message index coding problem. The edges 1 lies on a
directed cycle andd4 ¢ A;. However, removing this edge does not affect

Given the index coding probler@, the edgec € E is said the capacity region. The capacity region is achieved by timeposite coding

to be critical if €(G.) # €(G), or in other words, if the SCheme [25] with or without this edge.

removal ofe from G strictly reduces the capacity region. The

index coding problenG itself is said to becritical if every the subgrapld|s is a unicycle, thertz|s, cannot be a unicycle

e € E(QG) is critical. Thus, each critical graph (= index codindor any S’ that is a proper subset or superset%fAs an

problem) cannot be made “simpler” into another one of thexample, in Fig. 7(a)(7|{1,2,3) is a unicycle, buiG itself is

same capacity region. not a unicycle. As another example, for the graph in Fig.,7(b)
Remark 11 can be paraphrased into the following necessary, , 5, andG|(; 34, are both unicycles.

condition for criticality.

1 4 1 4
Proposition 7 (Union-of-cycles condition [34])If G is criti- —Q
cal, then every edge belongs to a directed cycle.
This simple condition, however, is not sufficient. For the

index coding problem shown in Fig. 1, although the efige
3 lies on a directed cycle, it can be shown that the capacity 2 3 2 3
region is characterized by CY (b)

Ry <1, Fig. 7. (2)Gl{1,2,33 is a unicycle, butG is not a unicycle. (b)|(1 2, 3}

Ry + R3 <1, and G|y 3,43 are both unicycles.

with or without this edge. The following states a sufficient condition for the criticgl

_ To ob_serve another simple necessary co_ndi'Fion for griticq]f a problem.

ity, consider an index coding proble@with side information _ _ N

setsAi,..., A,. These sets are said to begradedif there Theorem 6 (Union-of-unicycles condition)If every edge of
existi,j € V(G) such that € A; andA; C A;. In this case, G belongs to a vertex induced subgraph that is a unicycle,
the edgei — j can be removed since; can be recovered thenG is critical.

at no_d_ej. This observation leads to the following necessary prqof: It suffices to show that removing each edge(di=
condition. (V, E) that belongs to a unicycle strictly reduces the capacity
Proposition 8 (Nondegradedness conditiorij G is critical, region. Lete be an edge of+|s, whereS C V andG|s is a

then side information sets must be nondegraded. unicycle. The rate tupleR;, ..., R,) such that
Satisfying the above two necessary conditions at the same R — 0, 1 €8, 38
time is still not sufficient for criticality. As an exampld,dan L ISILI’ 1€ 8, (38)

be checked that the side information graph shown in Fig. 6 . _ o
satisfies both union-of-cycles and nondegradedness gmmsiit iS achievable for index coding problefby partial clique cov-
However, it is not a critical graph as the capacity region Bfing (see Proposition 3 and Remark 1). The vertex-induced

characterized by subgraphG,|s, however, is acyclic (since the Hamiltonian
cycle of G|s is broken and by definition there is no other
R+ Ry <1, cycle). Therefore, by the MAIS outer bound, any rate tuple
Ry +Ry4 <1, (R},...,R)) € ¥(G.) must satisfy
R+ Ry <, SR <. (39)
Ry+Rs <1, A
R3 + Rs < 1, The rate tuple in (38), however, does not satisfy (39) and
Ri+ Ro+ Rs + Ry + Rs < 2, thus is not iné(G.). This implies that removing edgefrom
G strictly reduces the capacity regio# (G.) # ¢(G)) and

with or without the edgel — 1. S
: i . hencee is critical. O
In order to find a tighter necessary condition, we now focus
on a sufficient condition. Given a grapgh= (V, E), the vertex Remark 12. If a graph satisfies the union-of-unicycles con-
induced subgraply|s is referred to as anicycleif its set of dition, it trivially satisfies the union-of-cycles conditi. We
edges is a (chordless) Hamiltonian cycle ogerNote that if now argue that, as expected, satisfying the union-of-uésy
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condition also implies the nondegradedness conditiorurgs Proposition 9. Edge e belongs to a unicycle iff the MAIS
that G has degraded side information sets. Then, there exibsund%\a1s(G.) on € (G.) is a proper subset of the MAIS
an edgei — j such that4, C A;. We show that this edge bound%\ia1s(G) on €' (G).

cannot belong to a unicycle. If the edge> j does not belong
to any cycle, then trivially it does not belong to any unieycl . T . .
Otherwise, it suffices to show that none of the cycles th%i?rg%s'gon 9 implies the following partial converse to
contain this edge is a unicycle. Assume that j lies on a '

cycle C = (i,4,...,v), which by degradedness must have &roposition 10. If G = (V, E) is critical, then

least three vertices. Then, by definition,c A; and, by the 1) every edge: € E belongs to a unicycle, or
assumptionp € A;. Therefore(j,...,v) is also a cycle and  2) the MAIS bound is not tight faf., i.e., Zuars(Ge) #

C is not a unicycle. %(G.), for everye € E that does not belong to any

The converse to Theorem 6, however, does not hold in  UMCYCle:

general. In other wordsg is not critical if it does not belong to any

Example 3. The capacity region of the index coding problen‘fmicyCIe and the MAIS bound is tight faf..

with side information graph shown in Fig. 8 is characterized Proof: It suffices to show that ifc is critical a_md there
by exists an edge that does not belong to any unicycle, then

Ri+Ry<1 the MAIS bound is not tight foiG.. SinceG is critical, we
7 have? (G.) ¢ €(G). Assume by contradiction that the MAIS

B+ Rl bound is tight forG.. Then
P Frins(Ge) = €(Ge) C Q) € Frars(G
Ro+ Ry <1, Mals(Ge) = € (Ge) S €(G) € Zaais(G),

Ry +Rs <1, which contradicts Proposition 9. O

B Recall that the edgé — 5 in Fig. 8 is critical and does
Ry + Rs < 1, not belong to any unicycle. As is suggested by Proposition 10

which is achievable by the composite coding scheme [25nd verified by (40), the MAIS bound is not tight for the side

Although the edge2 — 5 does not belong to any unicycle,information graph resulting from removing this edge.

removing it from the side information graph reduces thRemark 13. The three necessary conditions in Proposi-

capacity region to tions 7, 8, and 10 can be rewritten as follows. For an index
Ry + Ry <1, coding proble_m with the edge from i to j, if e does not
B4R <1 belong to a directed cycle, of; C A;, or e does not belong

1+ fis = to a unicycle and the MAIS bound is tight f6,., thene can

Ry + Ry <1, be removed without reducing the capacity region.
R+ Ry <1, (40) The next three examples demonstrate that these necessary
Ry+ Rs <1, conditions are mutually independent.
Rs+ Rs <1,

Example 4. The six-message problem
Ri+ Ro+ Rs + Ry + Rs < 2,
(115,6), (2[6), (3[6), (4]6), (5]1), (6]2,3,4,5)

which is also achievable by the composite coding scheme [Zg]itisfies the union-of-cycles and nondegradedness i

1 However, it does not satisfy the necessary condition in &rop
sition 10, as the edge — 6 does not belong to any unicycle
5 2 and the MAIS bound is tight (and is achieved by the composite
coding scheme) after removing this edge.

Example 5. The six-message problem
4 3 (1[4,5), (2[5,6), (3]5), (4[1,6), (5[1,2), (6]2,3,4,5)

) - ] ) satisfies the union-of-cycles condition and the necessamy c
Fig. 8. A critical 5-message index coding problem. Althotlgé edge2 — 5

does not belong to any unicycle, it is critical. The capacodgion is achieved dition ”_1 Proposition 10. Howeverls C {4_6 and thus it does
by composite coding [25] with or without the edge— 5. not satisfy the nondegradedness condition.

The above example illustrates that the union-of-unicycl&x@mple 6. The six-message problem
condition does not capture “criticality” with respect toeth (1]4,6), (2]5,6), (3]5), (4|1,6), (5/1,2), (6/2,4,5)
capacity region. In the following, we argue that this coioait o .
in fact is sufficient and necessary for the criticality witrsatisfies the nondegradedness condition and the necessary

respect to the MAIS outer bound. The proof is relegated f@ndition in Proposition 10. However, the edge- 3 does
Appendix F. not belong to any cycle and thus the problem does not satisfy

the union-of-cycles condition.
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For the rest of this section, we present a few results that e
relate the capacity of index coding problethand its MAIS
bound to those of simpler problems. Consider the gi@ph

(V,E) and letG’ be the graph resulting from removing all 6 3
edges ofG that do not belong to any unicycle, i.e.,
~ O
V(GI) = V(G)a 5 4

E(G") ={e € E(G): e in a unicycle ofG}.  (41)
Fig. 9. A noncritical 6-message index coding problem wittnaegraded
Proposition 11. Zya1s(G') = %aars(G). side information sets. The edgés— 3, 3 — 1, and6 — 5 lie on a directed
cycle, but do not belong to any unicycle. The capacity regoaqual to the
In words, the set of edges @f that do not belong to any MAIS outer bound and is achieved by composite coding [25hwit without

unicycle, is the (maximum) set of edges that can be remov&gse edges.
from G without changing the MAIS bound. The proof of the

proposition, which is implied by Proposition 9, is presehte ; ; 5 ; -
in Appendix G. (1) For each cliqueK in U(G), G|k is acyclic.

c ) :
This observation leads to a condition under which th 2) For eachS ¢ V(G), if G|s contains a cycle, then there

! ; ; X . ists a bidirectional edge it:|s, i.e.,3 i,5 € S such that
capacity of index coding probler®y is equal to the capacity (i,7) € E(G) and (j,7) € E(G)

of the simpler problent”. (3) No unidirectional edge off belongs to a unicycle.

Proposition 12. If the MAIS bound is tight fot’, then (4) G is bidirectional.
Fanis(G) = €(G) = C(G) = Zanis(G). Lemma 12. If G’ is bidirectional, thenU (G") = U(G).

Consequently, if the MAIS bound is tight f@¥’, thenG is By Lemma 3 UV is perfect iff U is perfec_:t.), Lemma 11, and
not critical and all the edges that do not belong to any ur’rﬁ:yd'emma 12, we can now restate Proposition 13 as follows.
can be removed without reducing the capacity. Proposition 14 (Yi, Sun, Jafar, and Gesbert [14])f U(G)

Proof of Proposition 12Since is perfect and for each cliqu& in U(G), G|k is acyclic,

then?%(G) = # G) which is achieved by the fractional
Funis(G) = €(G") C C(G) € Auais(G), clique E:O\)/eringlvgéﬁe(m)e. g

the proof follows by Proposition 11. O Note that this proposition includes Remark 6 as a special
Remark 14. It can be similarly shown that the result of Propocase.

sition 12 also holds for the broadcast rate Sifia1s(G') = As a concrete application of Proposition 12, consider a side
B(G"), then Byats(G) = B(G) = B(G') = Puars(G). information graphG satisfying

Example 7. Consider the side information graphi shown A C{i-1j+1}, jen].

in Fig. 9, where edges — 3,3 — 1, and6 — 5 do not Ay ={j—1,j+1}orA; = {j—1} forall j € [n],

belpng to any unlcy//c_le. It can be shown that the_ capactyqn, every edge belongs to a unicycle. (For these cases, the
region for problemG" is achieved by composite coding [25],404city is known [29] and is achieved by the fractional loca
and is characterized by clique covering scheme [23].) Otherwisg, is a bidirectional
Ri+Rs+ Ry <1, (undirected) perfect graph (_by_Propos?tion 1). T_herefdnye,
Ry + Ro+ Re < 1 Remark 6, the MAIS bound is tight for index coding problem
LA s =5 G’ and Proposition 12 implies the following.
Ro+ R3+ Ry + Rg <1,

Ro+ Ry + Rs+ Rg < 1, (42) Corollary 3. For the class of index coding problems satisfying

s - " A c{j-1j+1} jelnl
which is equal to its MAIS bound. Thus, by Proposition 12, _
G is not critical and its capacity is also characterized by).(42any edge that does not belong to a unicycle can be removed

. _ o without reducing the capacity region. Thus, for this class
Proposition 12, together with Remark 6, implies the follows j,jex coding problems, the union-of-unicycles suffitien

ing. condition is also necessary for the problem to be critical.

Proposition 13. If G is bidirectional andU(C") is perfect, gyample 8. In the side information graph shown in Fig. 10

th.en % (QG) = Zvais(G) which is achieved by the fractional (a), edgess — 4, 4 — 3, and2 — 1 do not belong to any

clique covering scheme. unicycle. Hence, the two side information graphs shown in
This result can be recast to an earlier result by Yi, Sufiig. 10 have the same capacity region.

Jafar, and Gesbert [14], using the following two lemmas that

are proved in Appendices H and |. VIIl. A PPLICATION: INDEX CODING WITH SIX MESSAGES

Lemma 11. ConsiderG = (V, E) and letG’ be the graph as  The number of instances of the index coding problem with
defined in(41). The following statements are equivalent. n messages, which is equal to the number of nonisomorphic
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_‘Pg/\_'P4) or (Pg/\_‘Pl/\_‘PQ/\_‘P4), Or(P4/\_‘P1/\_|P2/\
5 2 5 2 —-P3). Moreover, the six-message problem
(116), (2[6), (3[6), (46), (5]6), (6]1,2,3,4,5)

satisfiesP, but not P, Ps, or P;. Therefore, checking all of
4 3 4 3 these four properties is useful in removing instances tloat d
@) (b) not need further investigation.
Among the remaining 10,634 instances that are not simpli-
Fig. 10. Two 5-node index coding problems with the same dapaegion.  fied, the polymatroidal bound [25] is achieved by a simplified
form of composite coding [25], [26] for 10,515 instancesisTh
) ] ] leaves at most 119 instances that require further invegiiga
directed graphs with vertices [49, Seq. A000273], blows upyig a tighter bound using non-Shannon inequalities [30] and
quickly with n. Even whenn is as small as six, there aremore general coding schemes. In addition, there are at most
1,540,944 nonisomorphic instances. In this section, wéyapRs3 noncritical instances that simplify to one of the 119 crit-
the structural properties discussed earlier to identiy €3 c3] instances of unknown capacity. In summary, the capacit
message index coding instances for which the capacity Gahow fully characterized for at least 1,540,94219— 853 =

be characterized via the capacities of “simpler” probleB. 1 539 972 index coding problems (99.9%) with 6 messages.
Theorem 5 and Remark 11, & can be decomposed into

smaller graphs, then the capacity Gf can be expressed as IX. ACKNOWLEDGMENTS

a simple function of the capacities of smaller problems with This work was supported by the National Science Founda
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Among the above conditions for simplification, we focus on APPENDIX A

the following four properties oi. If any of them is satisfied, PROOF OFLEMMA 4

thenG can be simplified. Let V’ be the set of vertices incident to the edge&in, F;

Pz G is not strongly connected. and letU’ = (V', E»\ E1). In order to color the vertices df,

P,: The complement o+ is disconnected. we first color the vertices iV \ V' with x(U;) colors using

P31 G is not a union-of-unicycles{ # G') and the MAIS  the optimal coloring forl/;. Next, we colorlUl’ with y(Us)
bound is tight forG’. additional colors using the optimal coloring féf,, which

P4: G has degraded side information subsets. is valid sinceV’ C V and E, \ E; C FE,. This guarantees

Note that if the complement of is disconnected, the@ is that any pair of adjacent vertices are assigned differelorgo
strongly connected. Henc®; and P, are mutually exclusive. whether both of them belong t&’ or to V' \ V' or one to
The properties?; and P, allow decomposition into smaller each. Therefore, there exists a proper coloring/ofvith at
problems, whileP;, P3, and P, allow removal of some edge. mostx (Ui ) + x(Uz) colors and thug(U) < x(U1) + x(U2).
Finally, P, P>, and P; (for the case ofn = 6) lead to
simpler problems with known capacity, while, may result
in a simpler problem with still unknown capacity.

Table | shows the number of 6-message instances that satisfit Suffices to show that every cycle of length greater than

APPENDIXB
PROOF OFLEMMA 8

each of the mentioned properties. four has a chord. Let}, v%, ..., v be the vertices (each asso-
ciated with am-message tuple) of a lengtheycle offéﬂ) (@)
TABLE | for k > 5. Thenv} ~ v%, vi ~ g, ..., vp_, ~ vp. Therefore,
THE NUMBER OF 6-MESSAGE INDEX CODING INSTANCES THAT SATISFY I I I I I I
PROPERTIESP; -P;. Ulj() # v25( )s U2j() 7# w3 )s oo U(kfl)j() # vpj( )s
andvl,Aj = UgA; = 0t = UgA;. If ’Ulj(l) #* Ugj(l), then
1 i n ~ n
Structural Property Number of six-message instances SINCEV1L,4; = 13,4, W.e haV(_?Ul U3 and the Iength% CyCIe
Py 793,936 has a chord. Otherwise, sineg;(l) = vs;(l) # v4;(1) and
Py 10,101 V1,4, = V4,4;, We havevi ~ v and again the cycle has a
Ps > 1,513,890 chord
Py 1,336,566 '
—(P1 V Py V P3V Py) < 10,634 APPENDIXC

PROOF OFLEMMA 9

It can be easily checked that the side information graphs!t suffices to show that every cycle of length greater than
corresponding to the six-message instances in Examples {adr has a chord. Levy, vy, ..., v be the vertices of a
6 have connected complement and thus do not satisfy propeetygth# cycle of ' = Fiﬂ)(G) for £ > 5. Theno} ~ v,
P,. This proves that there are instances satisfyiRg\ ~P> A~ v§ ~ 0%, ..., vl ~ v in L. If v(l) = -+ = vg;(0),
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then v}, v%,..., vy form a clique inT and thus the cycle This coding scheme uses+>_, ., s; bits to send:t bits for
is not chordless. Hence, assume without loss of generalisich message of the problewv (F1, .. ., F,,,). Now consider
that vy, (1) # v2;(1), which impliesvy 4, # vz 4,. We now
consider two cases. S0+ Z 54

Case 1 {2;(1) = v3;(1)): In this case, ifvy 4. # vs.a., el
then v ~ o% in T and the lengthe cycle has a chord. < kri(B(G) +¢)

Suppose a; = vz a, and consideny;(1). If vy (1) = va; (1), + Zk(ri-H = 13)(B(Gmp\[3)) + €) (46)
thenvy ~ o} in I which is a chord for the Ien_gth-cycle. il

Supposevy; (1) # ve;(1). Then, sincevy ~ v} in I' we have < kt(B(FL) + €)(B(G) + ¢€)

v3,4; 7 va,4; and hencev; 4, # vy 4,. Thereforepy ~ vy

in T and the lengthe cycle has a chord. + Zkt Fir1) = B(E) + ) (B(G ) +€) (47)

Case 2 {2;(1) # v3;(1)): In this case, ifvy;(l) = vs;(1), el
thenv ~ v} in T which is a chord. Suppose; (1) # vs;(1). < kt(B(F1) + 6)(5(@ +€)
If v1,4;, # v3,4;, thenvf ~ vy in T whichis a ghorq. Suppose 4 Z kt(B(Fip1) — B(F;) + €)(B (G| \[z]) €),
V1,4; = U3,A;. If Ugj(l) = U4j(l), then the situation will be i€[m—1]
the same as case 1. Otherwise, we hayg, # v4 4, Which (48)

impliesvy 4, 7 va,a, and thusy' ~ it in 'whichis achord. oo o (46) follows by (44) and (45), and (47) follows by (43),
and (48) follows by the assumption of the theorem. Letting

APPENDIXD ¢ — 0 completes the proof.

PROOF OFTHEOREM4

Fix € > 0. By the definition of the broadcast rate in (1) and APPENDIX E
(17), for sufficiently larget, there exists dt,r;) index code PROOF OFLEMMA 10
for problem F; satisfying Let K = {y1, 92, ...,y x|} be a maximum clique i, (F)
- . and letk = |log(|K])] = |log(w(T+(F)))|. By the definition
BlE) < — < B(Fy) +e i€ [m]. (43)  of the broadcast rate in (18(G) < r¢/k for any (k,r¢)

index code for problenG. Hence, it suffices to show that
given any(t, r) index code for problentzo F', a (k, r¢) index
code for problenmz can be constructed such that < r.

Let m = |V(G)| andn = |V (F)|. We denote a tuple of

LetI:={i e [m—1]: r41—r; > 0}, andk be a sufficiently
large integer such that there exist(far;, so) index code for
problemG satisfying

mn messages of probled@ o F by z = (x1,...,2,,), where
< B(G) + (44) =i = (Ti1,. .., 2in) anda;; € {0,1} fori € [m] andj € [n].
"”’1 Consider the one-to-one mapping
and a (k(riy1 — 7i),s;) index code for problemG|,\j; ) k
Satisfying f . {071} — {ylay27"'ay2k}

that maps thé-bit binary representation 6f-1to y;, i € [2¥].
S Let ¢cor be the encoder associated with ther) in-

k(riz1 —m3) < BGlpmna) + rel. (45) " dex code for problentG o F'. For any message tuple =
, k i
Consider the following coding scheme that consists:dhner (V1 vm), i € {0, 1}%, of problem¢ define
codes and at most outer codes. First, for eaghe V(G), the dc(V1,. . Um) = daor(f(V1), ..., f(um)).  (49)

(t,r;) index code for problent; is applied to the message
indexed by{i} x V(F;). This inner code is deployeld times
to generatekr; bits. As the second step, the outer codes are
used to send theslezl6 (m) T bits. The(kry, so) index code
for problemG is used to send the firét-; bits generated from
copies of problemd~,..., F,, (If r; < r, for somei, zero- (vr, -
pad to get sufficient number of bits). Next, for each I, the ' , ,

(k(riz1 — r;), s;) index code for problen@|(,,;\; is used to Suppose g vy, - ’vf) - Q?G(Ul’ "' 73””)' BTTﬁg
sendk(r;41 —r;) bits generated from copieg 1, . .., F,, (If gG]f.F.g(Ul)f’ th f(vm)) = (?G"F(f(vl_)’ e f(l.}tﬁ))' y -
required, zero-pad to get sufficient number of blts) Usimg t efinition of the mapping, for everyi € [m], €ither f(v;) =

~ i As ¢gor is the encoder
above scheme, all the bits generated from messages mde&ﬁe or f(vi) ~ f(v;) In I'y(F). GoF
by {i} x V(F,), i € [m], are gent 9 an index code for probler& o F', (f(v1),..., f(vm)) and
v ' ' (f(v}),..., f(vl,)) are nonconfusable for proble@io F' and

As for the decoding, first the decoders of the outer cod#us, if f(v;) ~ f(v}) in T.(F'), thenf(v;) # f(v}) for some
are utilized to recover thér; bits corresponding to messageg € A;(G). Hence, sincqf is one-to-one, for every € [m],
indexed by{i} x V(F;). Next, each of the decoders of theeither v; = v; or v; # v; for somej € A;(G). Therefore,
inner codes is used times to recover thét bits of each (v1,...,v,) and(vi,...,v),) are nonconfusable for problem
message. G and (49) defines the encoder of(k, rg) index code for

SThe functiongg in (49) is the encoder of an index code for
ProblemG iff any two message tuples to which the same
codeword is assigned are nonconfusable. Hence, it suffices
to show that if pg(v1,...,vm) = ¢g(vi,...,v),), then

,Um) and(vy, ..., v),) are nonconfusable for problem
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problemG such that the set of codewords is a subset of the(2) = (1): Assume that (1) does not hold. Then there

set of codewords of th@, r) index code for problentz o F, exists a cliqgueK in U(G) such thatG|x has a cycle. By
which impliesrqg < r. the definition ofU (G), G|k has no bidirectional edge, which
contradicts (2).
(2) = (3): Assume that there exists a unidirectional edge
o _ eand S C V, |S| > 3, such thatG|s is a unicycle and
Sufficiencylf the MAIS bound orf6'(G.) is a proper subset . ¢ £(G|). By the definition of unicycle, all of the edges of
of the MAIS bound on¢’(G), there exists a subsét C V' G|, are unidirectional, which contradicts (2).
such thalG|s contains a cycle an@.|s is acyclic. LetSmin be  (3) = (2): Assume that (2) does not hold. Then there exists
a minimal such subset. The¥|s,,, is a unicycle that contains 4 gybses, S| > 3 such thatG| s has a cycle but does not have
= ) . ) any bidirectional edge. A minimal such forms a unicycle
NecessityLet G|s, S C V, be a unicycle that contains  and hence all of its unidirectional edges belong to a unéycl
By the definition of unicycle.|s is acyclic. Therefore, by \yhich contradicts A3).

the MAIS outer bound, any rate tupl&, ..., R,) € ¢(Ge) (3) = (4): To form G’, every edge ofG that do not

APPENDIXF
PROOF OFPROPOSITION9

must satisfy belong to a unicycle is removed. Hence, if (3) holds, then all
ZRJ <1. (50) zl;r)idirectional edges ofs are removed to form bidirectional
JjES :

. . . ) o (4) = (3): G’ is formed by removing edges @F that do
However, sincei|s is not acyclic, (50) is not implied by the not pejong to any unicycle. Hence! is bidirectional implies

MAIS outer bound ori¢'(G7). that no unidirectional edge @ belongs to a unicycle.

APPENDIXG
PROOF OFPROPOSITION11 APPENDIXI
Proposition 9, together with the following, implies Propo- PROOF OFLEMMA 12
sition 11. Since G’ is bidirectional and every bidirectional edge be-

. longs to a unicycle, we have
Lemma 13. If e; andes do not belong to any unicycle df,

thene, does not belong to any unicycle 6%, . {i,j} € E(U(G") < (i,j) € B(G) and (j,1) € E(Q).

Proof: If e; does not belong to any cycle a¥, then it By definition,
trivially does not belong to any unicycle @f.,. Suppose:, o _ o o
belongs to some cycle i6. It suffices to show that for every 167} & E(U(G)) <= (i,j) € E(G) and (j, 1) € E(G).
cycle C of G that containse;, C'\ e, is not a unicycle of Thys T7(G7) = U(G).
G.,. Leter = (ug,u2), e2 = (v, v1), andC = (vy,..., 1)
be a cycle ofG that contains,. By the assumption(’' is not
a unicycle and thug > 3. If [{uj,u2} N {v1,...,u} < 2,

then removingel does not affectC and hence” \ ey is not [1] M. Fekete, “Uber die verteilung der wurzeln bei gewissdgebraischen
gleichungen mit ganzzahligen koeffizienteMathematische Zeitschrift
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