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GORENSTEIN PROPERTIES AND INTEGER DECOMPOSITION

PROPERTIES OF LECTURE HALL POLYTOPES

TAKAYUKI HIBI, MCCABE OLSEN, AND AKIYOSHI TSUCHIYA

Abstract. Though much is known about s-lecture hall polytopes, there are still

many unanswered questions. In this paper, we show that s-lecture hall poly-

topes satisfy the integer decomposition property (IDP) in the case of monotonic

s-sequences. Given restrictions on a monotonic s-sequence, we discuss necessary

and sufficient conditions for the Fano, reflexive and Gorenstein properties. Addi-

tionally, we give a construction for producing Gorenstein/IDP lecture hall poly-

topes.

1. Introduction

Let P ⊂ Rd be a d-dimensional convex lattice polytope. For t ∈ Z>0, lattice point

enumerator i(P, t) gives the number of lattice points in tP = {tα : α ∈ P}, the tth

dilation of P. That is,

i(P, t) = #(tP ∩ Zd), t ∈ Z>0.

Provided that P is a lattice polytope, it is known that this is a polynomial in the

variable t of degree d ([6]). The Ehrhart series for P, EhrP (λ), is the rational

generating function

EhrP(λ) =
∑

t≥0

i(P, t)λt =
δ(P, λ)

(1− λ)d+1

where δ(P, λ) = δ0 + δ1λ + δ2λ
2 + · · ·+ δdλ

d is the δ-polynomial of P and δ(P) =

(δ0, δ1, δ2, . . . , δd) the δ-vector of P. The δ-polynomial (δ-vector) is endowed with

the following properties:

• δ0 = 1, δ1 = i(P, 1)− (d+ 1), and δd = #(P \ ∂P ∩ Zd);

• δi ≥ 0 for all 0 ≤ i ≤ d ([15]);

• If δd 6= 0, then δ1 ≤ δi for each 0 ≤ i ≤ d− 1 ([10]).

The Ehrhart series and δ-polynomials for polytopes have been studied extensively.

For a detailed background on these topics, please refer to [4, 6, 8, 16].
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Let Zd×d denote the set of d×d integer matrices. A matrix A ∈ Zd×d is unimodular

if det(A) = ±1. Given lattice polytopes P ⊂ Rd and Q ⊂ Rd of dimension d, we

say that P and Q are unimodularly equivalent if there exists a unimodular matrix

U ∈ Zd×d and a vector w ∈ Zd such that Q = fU(P) + w, where fU is the linear

transformation of Rd defined by U , i.e., fU(v) = vU for all v ∈ Rd.

We say that a lattice polytope P is Fano if (P \ ∂P) ∩ Zd = {0}. We say that P

is reflexive if it is Fano and its dual polytope

P∨ =
{

y ∈ Rd : 〈x, y〉 ≤ 1 for all x ∈ P
}

is a lattice polytope. Moreover, it follows from [9] that the following statements are

equivalent:

• P is unimodularly equivalent to some reflexive polytope;

• δ(P, λ) is of degree d and is symmetric, that is δi = δd−i for 0 ≤ i ≤ ⌊d
2
⌋.

We say that P is Gorenstein of index c where c ∈ Z>0 if cP is unimodularly equiv-

alent to a reflexive polytope [5]. Equivalently, P is Gorenstein if and only if δ(P, λ)

is symmetric with deg(δ(P, λ)) = d− c+ 1 ([14]).

We now give the definition of lecture hall polytopes. For a sequence of positive

integers s = (s1, s2, . . . , sd), the s-lecture hall polytope is

P
(s)
d :=

{

x ∈ Rd : 0 ≤
x1

s1
≤

x2

s2
≤ · · · ≤

xd

sd
≤ 1

}

which alternatively has the vertex representation as the column vectors of the matrix














0 sd sd sd · · · sd
0 0 sd−1 sd−1 · · · sd−1

0 0 0 sd−2 · · · sd−2
...

...
...

. . .
...

0 0 0 · · · 0 s1















where xd is given by the first row and so on with x1 given by the last row. It should

be noted that there is a easy unimodular equivalence P
(s)
d

∼= P
(sd,...,s2,s1)
d .

For a given s = (s1, s2, . . . , sd), we define the s-inversion sequences by the set

I
(s)
d := {e ∈ Zd : 0 ≤ ei < si}. Given e ∈ I

(s)
d , we define the ascent set of e by

Asc e :=

{

i : 0 ≤ i < d and
ei

si
<

ei+1

si+1

}

with the convention that e0 = 1 and s0 = 1. Let asc e := |Asc e|. The following

result of the δ-polynomials of s-lecture hall polytopes for arbitrary s.

Lemma 1.1 ([13, Theorem 5]). For any s, the δ-polynomial of P
(s)
d is given by

δ
(

P
(s)
d , λ

)

=
∑

e∈I
(s)
d

λasc e.
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Moreover, these polynomials are real-rooted and hence unimodal.

The theory of lecture hall polytopes and lecture hall partitions is extensive [12]

and many questions have been answered. Some particular motivating work includes

the thorough study of Gorenstein properties for s-lecture hall cones [1]. These results

imply Ehrhart theoretic properties of the rational s-lecture hall polytopesRd
(s), but do

not imply the same properties for Pd
(s). Additionally, the existence of a unimodular

triangulation for the s-lecture hall cone of s = (1, 2, · · · , d) was recently shown [2].

However, showing the existence or nonexistence of a unimodular triangulation of

Pd
(s) for most s is still an open question. This motivates the following unanswered

questions:

• For what s is P
(s)
d Fano, reflexive, or Gorenstein?

• For what s does P
(s)
d satisfies the integer decomposition property?

• If P
(s)
d satisfies the integer decomposition property, for what conditions will

it admit a unimodular triangulation?

In this paper, we answer these questions for particular large classes of s as progress

towards a complete characterization. First we consider P
(s)
d when s is a monotonic

sequence. We will show necessary and sufficient conditions for Fano and reflexive

in the case when s is a sequence with 0 ≤ si+1 − si ≤ 1 for all 0 ≤ i ≤ d − 1

(or equivalently 0 ≤ si − si−1 ≤ 1 for all 0 ≤ i ≤ d − 1), the case when s is a

strictly monotonic sequence, and the case when s is constant then strictly increasing.

In the two latter cases, we can also provided necessary and sufficient conditions

for when P
(s)
d is Gorenstein. We continue to show that P

(s)
d satisfies the integer

decomposition property for all monotonic s and show that in some special cases, we

can prove that P
(s)
d admits a unimodular triangulation, which is a stronger condition.

Furthermore, if we have two lecture hall polytopesP
(s)
d andP

(t)
e which are Gorenstein

and/or satisfies the integer decomposition property, we can construct a (d+ e+ 1)-

dimensional lecture hall polytope with the respective property.

2. Fano, Reflexive, and Gorenstein

Suppose that s is a monotonic sequence. We give necessary and sufficient condi-

tions for when P
(s)
d is Fano or reflexive in the special cases of s a strictly increasing

sequence and s a sequence which increases by at most one. In the case of strictly

increasing, we can also find necessary and sufficient conditions for when P
(s)
d is Goren-

stein.

Remark 2.1. All of the results in this section can be rephrased in the obvious way for

when s is decreasing. This follows from the observation P
(s1,s2,...,sd)
d

∼= P
(sd,sd−1,...,s1)
d .

2.1. Strictly increasing s-sequences. Suppose that s = (s1, s2, . . . , sd) is a se-

quence of positive integers such that si � si+1 for all i ∈ {1, 2, . . . , d − 1}. We
3



have the following necessary and sufficient conditions for when P
(s)
d is translation

equivalent to a Fano polytope.

Theorem 2.2. Suppose s is a sequence of strictly increasing positive integers. Then

P
(s)
d is translation equivalent to a Fano polytope if and only if s1 = 2 and si+1 ≤ 2si

for all 1 ≤ i ≤ d− 1. Moreover, if P
(s)
d is Fano, the unique interior point of P

(s)
d is

(sd − 1, sd−1 − 1, . . . , s2 − 1, s1 − 1)T .

Proof. Suppose that s is a sequence with the property that s1 = 2 and si+1 ≤ 2si.

We will show that this implies that P
(s)
d is Fano. It is sufficient to show that I

(s)
d has

exactly 1 inversion sequence e such that asc e = d, as this implies that δd(P
(s)
d ) = 1

by Lemma 1.1. If we let e = (s1 − 1, s2 − 1, s3 − 1, . . . , sd − 1), we should note that

asc e = d because
si − 1

si
<

si+1 − 1

si+1

follows from the fact that −si+1 < −si which is true by assumption. To claim that

this is the only such inversion sequence note that

si − 1

si
<

si+1 − 2

si+1

is never true for any i because this would imply that −si+1 < −2si which is false

by assumption. Moreover, in order for e to have an ascent in position 1, we need

e1 = 1 = s1 − 1, so it follows that there is a single inversion sequence of this type.

Hence, Additionally, we should note that because we have

0 <
s1 − 1

s1
<

s2 − 1

s2
< · · · <

sd − 1

sd
< 1

it follows that the point (sd − 1, sd−1 − 1, . . . , s2 − 1, s1 − 1)T does not lie on a

supporting hyperplane and is hence the unique interior point of P
(s)
d .

Now, suppose that s is not of the prescribed form. We will show that P
(s)
d is not

Fano. There are three possible cases:

(i) s1 = 1;

(ii) s1 ≥ 3;

(iii) s1 = 2 and si+1 > 2si for some 1 ≤ i ≤ d− 1.

Each of these cases preclude P
(s)
d from being Fano.

For (i), if s1 = 1, it is clear from the vertex description of the polytope that

P
(s)
d

∼= Pyr(P
(s2,s3,...,sd)
d−1 ) and hence δd(P

(s)
d ) = 0.

For (ii), if s1 ≥ 3, it is easy to see that P
(3,4,...,d+2)
d ⊆ P

(s)
d . We can see that

δd(P
(3,4,...,d+2)
d ) ≥ 2 because both the inversion sequences e = (1, 2, . . . , d) and e′ =

(2, 3, . . . , d+ 1) have the property asc e = asc e′ = d. So, P
(3,4,...,d+2)
d has at least 2

interior points, which must also be interior points of P
(s)
d , meaning it is not Fano.
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For (iii), if we have s1 = 2 but that there exists at least one 1 ≤ i ≤ d − 1 such

that si+1 > 2si. If there exist multiple such i, choose the smallest. We can see

that P
(t)
d ⊆ P

(s)
d , where t = (s1, . . . , si, 2si + 1, 2si + 2, . . . , 2si + (d− i + 1)). If we

consider this smaller polytope, we can again ascertain that δd(P
(t)
d ) ≥ 2. Note that

e = (s1 − 1, . . . si − 1, 2si, 2si + 1, . . . , 2si + (d− i)) has asc e = d as

si − 1

si
<

2si
2si + 1

follows from −si − 1 < 0 and the other inequalities follow from previous arguments.

However, e′ = (s1−1, . . . si−1, 2si−1, 2si, . . . , 2si+(d−i−1)) also has the property

asc e′ = d because
si − 1

si
<

2si − 1

2si + 1

is follows from −1 < 0 and

2si + k

2si + k + 2
<

2si + k + 1

2si + k + 3

follows from 0 < 4si + 2k + 6. Hence, P
(t)
d , and therefore P

(s)
d , has at least two

interior points, and is not Fano. �

We can go further to provide necessary and sufficient conditions for when P
(s)
d is

translation equivalent to a reflexive polytope.

Theorem 2.3. Suppose that s is a sequence of strictly increasing positive integers

such that P
(s)
d is Fano. Then P

(s)
d is reflexive (up to translation) if and only if for

each 0 ≤ i ≤ d− 1, ki = si+1 − si has the property ki|si and ki|si+1.

Proof. If P
(s)
d is Fano, by Theorem 2.2 we know that the interior point is (sd −

1, sd−1 − 1, . . . , s2 − 1, s1 − 1)T . If we translate P
(s)
d such that the interior point is

the origin, the resulting polytope has vertices given by the columns of














1− sd 1 1 1 · · · 1

1− sd−1 1− sd−1 1 1 · · · 1

1− sd−2 1− sd−2 1− sd−2 1 · · · 1
...

...
...

. . .
...

−1 −1 −1 · · · −1 1















This polytope has H-representation

• xd ≤ 1

• si+1xi − sixi+1 ≤ si+1 − si for all 1 ≤ i ≤ d− 1

• −x1 ≤ 1

using the convention of xd given by the first row and so on with x1 given by the

last row, as it is clear that each vertex satisfies d equations with equality and 1 with

strict inequality.
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It follows then that (P
(s)
d )∨ is a lattice polytope if and only if ki|si and ki|si+1

where ki = si+1 − si. �

We have the following corollary.

Corollary 2.4. Suppose s is a sequence of strictly increasing positive integers. Then

P
(s)
d is Gorenstein of index 2 if and only s = ( t1

2
, t2
2
, . . . , td

2
) where t = (t1, . . . , td) is

a sequence such that P
(t)
d is reflexive. Moreover, there is no sequence s of strictly

increasing positive integers such that P
(s)
d is Gorenstein of index ≥ 3.

Proof. This follows immediately from the observation that rP
(s)
d = P

(rs1,rs2,...,rsd)
d

and the condition that s1 = 2 when P
(s)
d is reflexive. �

2.2. Constant then strictly increasing s-sequences. Suppose that we have a

sequence of positive integers s = (s1, s2, . . . , si, si+1, . . . , sd) such that s1 = s2 =

· · · = si and sj < sj+1 for all j ≥ i. We will given necessary and sufficient conditions

for when P
(s)
d is translation equivalent to a Fano polytope for such sequences.

Theorem 2.5. Suppose that s is a sequence such that s1 = · · · = si for some 1 ≤

i ≤ d ,and sj < sj+1 for all i ≤ j ≤ d−1. The polytope P
(s)
d is translation equivalent

to a Fano polytope if and only if s1 = · · · = si = i+ 1 and for all j ≥ i, sj+1 ≤ 2sj.

Moreover, the unique interior point is (sd − 1, . . . , si+1 − 1, i, i− 1, . . . , 2, 1)T .

Proof. Suppose that s is a sequence of this form such that s1 = · · · = si = i + 1

and sj+1 ≤ 2sj for all j ≥ i. We will show that δd(P
(s)
d ) = 1 by showing that there

is a unique inversion sequence e such that asc e = d. Let e = (1, 2, . . . , i, si+1 −

1, si+2 − 1, . . . , sd − 1). It is clear that this sequence has d ascents, as c
i+1

< c+1
i+1

for

all 1 ≤ c ≤ i,
sj − 1

sj
<

sj+1 − 1

sj+1

for all j > i because sj < sj+1, and

i

i+ 1
<

si+1 − 1

si+1

= 1−
1

si+1

because si+1 > i + 1. To claim that this is the unique such inversion sequence,

note that the only way to obtain an ascent each of the first i positions is have the

sequence begin 1, 2, . . . , i. From previous work, we know that

sj − 1

sj
<

sj+1 − 2

sj+1

cannot hold by the assumption sj+1 ≤ 2sj for all j ≥ i. This ensures that no other

such inversion sequence with d ascents exists. Thus, we have δd(P
(s)
d ) = 1 so the

polytope is Fano. Additionally, because we have

0 <
1

i+ 1
< · · · <

i

i+ 1
<

si+1 − 1

si+1
< · · · <

sd − 1

sd
< 1

6



the point (sd − 1, . . . , si+1 − 1, i, i − 1, . . . , 2, 1)T is in P
(s)
d and cannot lie on any

supporting hyperplane and is hence the unique interior point.

Now, suppose that s does not have the desired properties. We will show that P
(s)
d

is not Fano. There are 3 possibilities:

(i) s1 = · · · = si ≤ i;

(ii) s1 = · · · = si ≥ i+ 2;

(iii) s1 = · · · = si = i+ 1, but there exists some j ≥ i such that 2sj < sj+1

Each of these cases preclude P
(s)
d from being Fano.

For (i), note that it is impossible for there to be an ascent in each of the first i

positions. Hence, we have δd(P
(s)
d ) = 0.

For (ii), notice that P
(i+2,...,i+2,i+3,i+4,...,d+2)
d ⊂ P

(s)
d . If we consider inversion se-

quences in I
(i+2,...,i+2,i+3,i+4,...,d+2)
d , we have that both e = (1, 2, . . . , i, i+1, i+2, . . . , d)

e′ = (2, 3, . . . , i+ 1, i+ 2, i+ 3, . . . , d+ 1) have the property asc e = asc e′ = d and

hence δd(P
(i+2,...,i+2,i+3,i+4,...,d+2)
d ) ≥ 2, which implies it has at least two interior

points, which are also interior points of P
(s)
d .

For (iii), note that P
(2,3,...,i+1,si+1,...,sd)
d ⊂ P

(s)
d . By the proof of Theorem 2.2, we

know that δd(P
(2,3,...,i+1,si+1,...,sd)
d ) ≥ 2, which implies that δd(P

(s)
d ) ≥ 2. �

Now that we have a complete characterization of when P
(s)
d is Fano for s of this

type, we can now give necessary and sufficient conditions for when they are reflexive.

Theorem 2.6. Suppose that s is a sequence such that s1 = · · · = si for some

1 ≤ i ≤ d ,and sj < sj+1 for all i ≤ j ≤ d− 1 and suppose that P
(s)
d is Fano. Then

P
(s)
d is reflexive if and only if for all i ≤ j ≤ d− 1 we have kj |sj and kj|sj+1 where

kj = sj+1 − sj.

Proof. By Theorem 2.5, we know that the interior point is (sd−1, . . . , si+1−1, i, i−

1, . . . , 2, 1)T . If we translate P
(s)
d so the interior point is the origin, the resulting

polytope has vertices given as the columns of
































1− sd 1 1 · · · 1 1 1 · · · 1 1

1− sd−1 1− sd−1 1 · · · 1 1 1 · · · 1 1

1− sd−2 1− sd−2 1− sd−2 · · · 1 1 1 · · · 1 1
...

...
. . .

...
...

...
...

...

1− si+1 1− si+1 1− si+1 · · · 1− si+1 1 1 · · · 1 1

−i −i −i · · · −i −i 1 · · · 1 1

1− i 1− i 1− i · · · 1− i 1− i 1− i · · · 2 2
...

...
...

...
...

. . .
...

−1 −1 −1 · · · −1 −1 −1 · · · −1 i− 1

































.

This polytope has H-representation

• −x1 ≤ 1;
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• xd ≤ 1;

• xj−1 − xj ≤ 1 for all 2 ≤ j ≤ i;

• sj+1xj − sjxj+1 ≤ sj+1 − sj for all i ≤ j ≤ d− 1.

using the convention that xd is given by the first row and so on with x1 given by

the last row. It is easy to see that each column of the matrix satisfies precisely d

equations with equality and 1 with strict inequality validating the H-representation.

It follows then that the dual polytope (P
(s)
d )∨ is a lattice polytope exactly when kj|sj

and kj|sj+1 where kj = sj+1 − sj for i ≤ j ≤ d− 1. �

We can additionally give a description of Gorenstein lecture hall polytopes where

s is of this form.

Corollary 2.7. Suppose that s is a sequence such that s1 = · · · = si for some

1 ≤ i ≤ d ,and sj < sj+1 for all i ≤ j ≤ d − 1. Then P
(s)
d is Gorenstein of index

k ∈ Z>0 if and only if there exists a sequence t = (t1, . . . , td) such that tj = ksj for

all j (which implies that t1 = · · · = ti and tj < tj+1 for j ≥ i) and P
(t)
d is reflexive.

Proof. This is immediate with the observation that kP
(s)
d = P

(t)
d and applying the

conditions given in Theorem 2.6. �

2.3. s-sequences increasing by at most 1. We now consider an additional sub-

class of s-sequences. Suppose the s = (s1, s2, . . . , sd) is a sequence of positive integers

such that si ≤ si+1 and 0 ≤ si+1−si ≤ 1 for all 1 ≤ i ≤ d−1. We have the following

characterizations for when P
(s)
d is Fano and reflexive.

Theorem 2.8. Suppose that s = (s1, s2, . . . , sd) is a sequence of positive integers

such that si ≤ si+1 and 0 ≤ si+1 − si ≤ 1 for all 1 ≤ i ≤ d − 1. Then P
(s)
d is

translation equivalent to a Fano polytope if and only if sd = d + 1. Moreover, the

unique interior point is (d, d− 1, . . . , 2, 1)T .

Proof. Suppose that sd = d + 1. We will show that there is a unique e ∈ I
(s)
d such

that asc e = d. It is clear that the sequence e = (1, 2, . . . , d) satisfies this property,

as both i
k

< i+1
k

and i
k
< i+1

k+1
are true which implies i

si
< i+1

si+1
. Moreover, to

have maximum ascents, we must have ei < ei+1, which means that if ed ≤ d − 1,

e1 = 0 implying that there is no ascent in the first position. Thus, the sequence

e = (1, 2, . . . , d) is the only inversion sequence with d ascents, giving δd(P
(s)
d ) = 1.

It also follows that the unique interior point of P
(s)
d is (d, d− 1, . . . , 2, 1)T , as

0 <
1

s1
<

2

s2
< · · · <

d

sd
< 1

implies that the point is in P
(s)
d and not on any supporting hyperplane.

Now, note that if sd ≥ d + 2, both the inversion sequences (1, 2, 3, . . . , d) and

(2, 3, . . . , d+ 1) has d ascents. Thus, δd(P
(s)
d ) ≥ 2 in this case.
8



If we have that sd ≤ d, it follows that P
(s)
d ⊆ P

(t)
d where t = (d, d, . . . , d).

Since it is clear that for e ∈ I
(t)
d we have i ∈ Asc e if and only if ei−1 < ei and

since ei ∈ {0, 1, ..., d − 1} there is no sequence with asc e = d. Thus, we have

δd(P
(s)
d ) = δd(P

(t)
d ) = 0. �

Theorem 2.9. Suppose that s = (s1, s2, . . . , sd) is a sequence of positive integers

such that si ≤ si+1 and 0 ≤ si+1−si ≤ 1 for all 1 ≤ i ≤ d−1. and suppose that P
(s)
d is

Fano. Then P
(s)
d is reflexive if and only if ki|si and ki|si+1 where ki = (i+1)si−isi+1.

Proof. By Theorem 2.8, the interior point of P
(s)
d is (d, d − 1, . . . , 2, 1)T . So, if we

translate the polytope such that the origin is the interior point, we have the polytope

with vertices














−d 1 1 1 · · · 1

1− d 1− d sd−1 − d+ 1 sd−1 − d+ 1 · · · sd−1 − d+ 1

2− d 2− d 2− d sd−2 − d+ 2 · · · sd−2 − d+ 2
...

...
...

. . . · · ·

−1 −1 −1 · · · −1 s1 − 1















which, using the convention of xd given by the first row and so on with x1 given by

the last row, has the H-representation

• xd ≤ 1

• si+1xi − sixi+1 ≤ (i+ 1)si − isi+1 for all 1 ≤ i ≤ d− 1

• −x1 ≤ 1

as it is not hard to see that each vertex satisfies d equations with equality and 1

equation with strict inequality. It is now clear that (P
(s)
d )∨ is a lattice polytope if

and only if ki|si and ki|si+1 for ki = (i+ 1)si − isi+1. �

3. Integral decomposition property and triangulations

We say P satisfies the integral decomposition property (IDP) if for all z ∈ kP ∩Zd

there exists x1,x2, . . . ,xk ∈ P ∩ Zd such that

x1 + x2 + · · ·+ xk = z.

If P satisfies then integer decomposition property, we say that P is IDP. For s-lecture

hall polytopes where s is monotonic sequence, we have the following theorem.

Theorem 3.1. Let s = (s1, s2, . . . , sd) be a monotone sequence of positive integers.

Then the polytope P
(s)
d is IDP.

Proof. Without loss of generality, suppose that s is increasing. We will show that

given k ≥ 2, for any x ∈ kP
(s)
d ∩ Zd, there exists some y ∈ P

(s)
d ∩ Zd such that

(x − y) ∈ (k − 1)P
(s)
d ∩ Zd. Note that this is sufficient, because this result allows

integral closure to follow from induction on k.
9



First note that kP
(s)
d = P

(ks1,ks2,...,ksd)
d , which is clear by definition. Let x =

(xd, xd−1, . . . , x1)
T ∈ kP

(s)
d ∩ Zd, so we have that x satisfies

0 ≤
x1

ks1
≤

x2

ks2
≤ · · · ≤

xd

ksd
≤ 1.

Note that since s is increasing, given any C ∈ Z>0 by the above we must have that

xi ≤ Csi implies that xi−1 ≤ Csi−1 and likewise xi > Csi implies xi+1 > Csi+1. So,

let 1 ≤ j ≤ d be the minimum index such that xj > (k − 1)sj. Then we let

y = (xd − (k − 1)sd, . . . , xj − (k − 1)sj, 0, . . . , 0)
T

with y = 0 if there is no such j.

We know that the lattice point is in P
(s)
d because for any j ≤ i < d we have

xi − (k − 1)si
si

≤
xi+1 − (k − 1)si+1

si+1

is equivalent to
xi

ksi
≤

xi+1

ksi+1

and 0 < xi − (k − 1)si ≤ si by construction.

It is left to verify that (x − y) = ((k − 1)sd, . . . , (k − 1)sj, xj−1, . . . , x1)
T ∈

P
((k−1)s1,...,(k−1)sd)
d ∩Zd. However, this is immediate, because

xi

(k − 1)si
≤

xi+1

(k − 1)si+1

is equivalent to
xi

ksi
≤

xi+1

ksi+1
and it is clear that since xj−1 ≤ (k−1)sj−1 by assump-

tion that
xj−1

(k − 1)sj−1
≤

(k − 1)sj
(k − 1)sj

= 1.

Thus, we have the P
(s)
d is IDP. �

Recall that a triangulation of a lattice polytope P is a subdivison of P into d-

dimensional simplices. We say that a triangulation is unimodular if each simplex ∆

of the triangulation is unimodularly equivalent to the standard d-simplex or equiv-

alently, each simplex has smallest possible normalized volume Vol(∆) = 1. One

should note that a polytope P possessing a unimodular triangulation means that

P can be covered by IDP polytopes which implies that P is IDP. We will show the

existence for a unimodular triangulation of P
(s)
d provided that for all 1 ≤ i ≤ d− 1,

si+1 = nisi where ni ∈ Z>0.

First, we define chimney polytopes. Given a polytope P ⊂ Rd and two integral

linear functionals ℓ and u such that ℓ ≤ u, then the chimney polytope associated to

P, ℓ, and u is

Chim(P, ℓ, u) := {(x, y) ∈ Rd × R : x ∈ P, ℓ(x) ≤ y ≤ u(x)}.

For chimney polytopes we have the following theorem regarding triangulations.

Lemma 3.2 ([7, Theorem 2.8]). If P admits a unimodular triangulation, then so

does Chim(P, ℓ, u).
10



With this in mind, we can now state and prove a theorem for P
(s)
d where s is

increasing of a particular form.

Theorem 3.3. Let s be an increasing sequence of positive integers such that si+1 =

kisi for some ki ∈ Z>0 for all 1 ≤ i ≤ d − 1. Then P
(s)
d admits a unimodular

triangulation.

Proof. Note that if s has the property sd = kd−1sd−1 for some kd−1 ∈ Z>0, we can

express P
(s)
d as a chimney polytope, namely

P
(s)
d

∼= Chim(P
(s1,...,sd−1)
d−1 , kd−1xd−1, sd)

where sd is constant function of value sd. It is easy to see this isomorphism as

all of the supporting hyperplanes for Chim(P
(s1,...,sd−1)
d−1 , kd−1xd−1, sd) are those of

P
(s1,...,sd−1)
d−1 with the addition of xd ≤ sd and kd−1xd−1 ≤ xd. However, these hyper-

planes are precisely the supporting hyperplanes of P
(s)
d .

Now, note that any 1 dimensional lecture hall polytope trivially has a unimodular

triangulation. So, if s has the property that si+1 = kisi for a positive integer ki for

each i, then applying Theorem 3.2 to this inductive chimney polytope construction

of P
(s)
d yields the existence of a unimodular triangulation. �

Remark 3.4. We should note that Theorem 3.3 implies that P
(s)
d where s has the

property si+1 = si
ki

for some positive integer ki for all i also admits a unimodular

triangulation.

4. Constructing new examples

In this section, we construct new Gorenstein and IDP lecture hall polytopes. We

will do this by identifying an s-lecture hall polytope as the free sum of two smaller

lecture hall polytopes which are Gorenstein and/or IDP.

Recall that given two lattice polytopes P ⊂ RdP and Q ⊂ RdQ such that 0dP ∈ P

and 0dQ ∈ Q, the free sum of P and Q is the (dP + dQ)-dimensional polytope given

by P ⊕Q = conv{(0P ×Q)∪ (P × 0Q)}. We can view lecture hall polytopes as free

sum of smaller lecture hall polytopes.

Proposition 4.1. For integer sequences s = (s1, . . . , sd) and t = (t1, . . . , te), we

have P
(s,t)
d+e

∼= P
(s)
d ⊕P

(t̃)
e , where (s, t) = (s1, . . . , sd, t1, . . . , te) and t̃ = (td, td−1, . . . , t1).

Proof. Translate by the vector (te, . . . , t2, t1, 0, 0, . . . , 0)
T . �

The following generalization of Braun’s formula gives us conditions on the δ-

polynomial of a free sum of two polytopes.

Lemma 4.2 ([3, Theorem 1.4]). Let P ⊂ Rd and Q ⊂ Re be integral convex polytopes

each containing its respective origin. Then δ(P ⊕ Q, λ) = δ(P, λ)δ(Q, λ) holds if
11



and only if either P or Q satisfies that the equation of each facet is of the form
∑f

i=1 aixi = b where ai is an integer, b ∈ {0, 1}, and f ∈ {d, e}.

We can now give a construction for larger lecture hall polytopes which must be

Gorenstein.

Theorem 4.3. Suppose that s = (s1, s2, . . . , sd) and t = (t1, t2, . . . , te) are integer

sequences such that P
(s)
d is Gorenstein of index k and P

(t)
e is Gorenstein of index ℓ.

Then P
(s,1,t)
d+e+1 is Gorenstein of index k + ℓ.

Proof. Note that by Proposition 4.1, we have that P
(s,1,t)
d+e+1

∼= P
(s,1)
d+1 ⊕ P

(t̃)
e . By the

H-representation, we know that P
(s,1)
d+1 satisfies that the equation of each facet is

of the form
∑d+1

i=1 aixi = b where ai is an integer, b ∈ {0, 1}. Moreover, from the

V-represntation it is clear that P
(s,1)
d+1

∼= Pyr(P
(s)
d ), so it has the same δ-vector and is

thus Gorenstein. By Lemma 4.2, we then know that δ(P
(s,1,t)
d+e+1, λ) = δ(P

(s)
d , λ)δ(P

(t)
e , λ)

because P
(t̃)
e

∼= P
(t)
e . Therefore, δ(P

(s,1,t)
d+e+1, λ) is symmetric polynomial of degree

(d+ e+ 1)− (k + ℓ) + 1 and we have the desired. �

Additionally, necessary and sufficient conditions for the integral closure of a free

sum of two polytopes are known. These are given in the following theorem.

Lemma 4.4 ([11, Theorem 0.1]). Let P ⊂ Rd and Q ⊂ Re be integral convex

polytopes each containing its respective origin. Suppose that P and Q satisfy Z(P ∩

Zd) = Zd, Z(Q ∩ Ze) = Ze, and

(P ⊕Q) ∩ Zd+e = µ(P ∩ Zd) ∪ ν(Q∩ Ze)

where µ and ν are the canonical injections defined µ : Rd → Rd+e by α 7→ (α, 0e)

and ν : Re → Rd+e by β 7→ (0d, β). Then the free sum P ⊕ Q is IDP if and only if

the following two conditions hold:

• each of P and Q is IDP;

• either P or Q has the property that the equation of each facet is of the form
∑f

i=1 aixi = b where ai is an integer, b ∈ {0, 1}, and f ∈ {d, e}.

We can now give a construction for larger IDP lecture hall polytopes.

Theorem 4.5. Suppose that s = (s1, s2, . . . , sd) and t = (t1, t2, . . . , te) are integer

sequences such that P
(s)
d and P

(t)
e are IDP. Then P

(s,1,t)
d+e+1 is IDP.

Proof. Note that for any 2 lecture hall polytopes P
(s)
d and P

(t)
e , we have Z(P

(s)
d ∩

Zd) = Zd and Z(P
(t)
e ∩ Ze) = Ze follow immediately.

Now, by Proposition 4.1, we have that P
(s,1,t)
d+e+1

∼= P
(s,1)
d+1 ⊕ P

(t̃)
e . By the H-

representation, we know that P
(s,1)
d+1 satisfies that the equation of each facet is of

the form
∑d+1

i=1 aixi = b where ai is an integer, b ∈ {0, 1}. To see that

(P
(s,1)
d+1 ⊕P(t̃)

e ) ∩ Zd+1+e = µ(P
(s,1)
d+1 ∩ Zd+1) ∪ ν(P(t̃)

e ∩ Ze)
12



holds, note that the right side is clearly contained in the left side. If we consider an

element x such that

x ∈ (P
(s,1)
d+1 ⊕P(t̃)

e ) ∩ Zd+1+e \
(

µ(P
(s,1)
d+1 ∩ Zd+1) ∪ ν(P(t̃)

e ∩ Ze)
)

,

we have that
∑d+e+1

i=1 civi = 1 where ci is constant and vi is the ith vertex. However,

we also must have that xd+1 = 1, which implies that
∑d+1

i=1 ci = 1 from the definition

of the free sum. So this implies that x ∈ µ(P
(s,1)
d+1 ∩ Zd+1) which is a contradiction.

The result now follows from Lemma 4.4. �

5. Concluding Remarks

While we have been able to ascertain many previously unknown properties of

lecture hall polytopes, full characterizations of all of these properties remain elusive.

We conclude with two conjectures.

Conjecture 5.1. For any s = (s1, · · · , sd), P
(s)
d is IDP.

For many randomly generated s, we have found P
(s)
d to be IDP and we have been

unable to find an example of a non IDP lecture hall polytope. Additionally, the con-

venient description of dilates of lecture hall polytopes, namely cP
(s)
d = P

(cs1,cs2,··· ,csd)
d ,

suggests that one may be able to generalize our arguments for monotone sequences

to arbitrary s.

Conjecture 5.2. For any s = (s1, · · · , sd), P
(s)
d admits a unimodular triangulation.

We have come across no examples of lecture hall polytopes which do not admit

a unimodular triangulation. However, using Gröbner bases has not proved fruitful

given that though a variable ordering and monomial ordering which yield a quadratic

squarefree Gröbner basis seem to always exist, it is not always the same ordering. A

positive answer to this conjecture would resolve Conjecture 5.1 as well. Moreover,

a counterexample, or a positive partial result such as the monotone case would be

of great interest.
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[2] M. Beck, B. Braun, M. Köppe, C. D. Savage and Z. Zafeirakopoulos, Generating functions

and triangulations for lecture hall cones, SIAM J. Discrete Math., 30 (2016), 1470–1479.

[3] M. Beck, P. Jayawant, and T. B. McAllister, Lattice-point generating functions for free sums

of convex sets, J. Combin. Theory, Ser. A 120 (2013), 1246–1262.

[4] M. Beck and S. Robins. “Computing the continuous discretely: Integer-point enumeration in

polyhedra,” Undergraduate Texts in Mathematics, Springer, 2007.

[5] E. De Negri and T. Hibi. Gorenstein algebras of Veronese type. J. Algebra, 193 (1997), 629–

639.
13



[6] E. Ehrhart. Sur les polyédres rationnels homothétiques á n dimensions, C. R. Acad. Sci. Paris
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