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ON THE CONE OF WEIGHTED GRAPHS

GENERATED BY TRIANGLES

Peter J. Dukes and Kseniya Garaschuk

August 23, 2016

Abstract. We examine the facet structure of the cone of weighted graphs generated by triangles.
We also explore the application of this cone to the problem of edge-decomposition of graphs into
triangles and point out connections with the perimeter inequalities defining the metric polytope.

1. Introduction

1.1. Set-up. For our purposes, a weighted graph on a vertex set V is a function f :
(

V
2

)

→ R

assigning a real number to each edge of the complete graph on V . For e ∈
(

V
2

)

, we say that f(e) is
the weight of e. A weighted graph is nonnegative if every edge has nonnegative weight. Alternatively,
a nonnegative weighted graph on V is a triple (V,E, f), where G = (V,E) is a (simple) graph and
f : E → R+ is an assignment of positive reals to the edges; here, it is understood that pairs in
(

V
2

)

\ E get weight 0. A similar notion may be used in the presence of negative edges.

Here we assume a finite vertex set, typically V = [n] := {1, 2, . . . , n}. The set of weighted graphs
forms a vector space of dimension

(

n
2

)

over the reals. Thus we may identify weighted graphs with

vectors in R(
n

2). As one possible convention, the coordinates can be indexed colexicographically
so that, e.g., the vector (1, 1, 0, 1, 0, 0,−1, 0, 0, 0) ∈ R10 corresponds to a weighted star on V =
{1, 2, 3, 4, 5}.

Recall that a cone in Rm is a set κ which is closed under both addition and scalar multiplication by

nonnegative reals. The cone generated by v1, . . . , vk is {
∑k

i=1 aivi : ai ≥ 0}. For instance, the set of

nonnegative weighted graphs forms a cone corresponding to the nonnegative orthant of R(
n

2), and
hence it is generated by the standard basis.

We are interested here in the cone τn ⊂ R(
n

2) of weighted graphs on n vertices generated by triangles.
Here, a triangle is understood to mean the weighted graph (V, {{x, y}, {y, z}, {x, z}}, 1) which takes
the value 1 on the edges of a 3-subset {x, y, z} ⊆ V and 0 otherwise. When n = 3, this cone is
simply the ray {(t, t, t) : t ≥ 0} ⊂ R3. In the case n = 4, it is easy to see that a weighted graph is
spanned by triangles if and only if the sum of weights on disjoint edges is a constant. For n ≥ 5, the

triangles span R(
n

2) by linear combinations. It follows that τn has ‘full dimension’
(

n
2

)

in this case.

1.2. Graph decompositions. A graph G = (V,E) has an F -decomposition if its edge set E can
be partitioned by subgraphs, each isomorphic to F . The first interesting case occurs when F = K3,
a triangle. A triangle decomposition of Kn is equivalent to a Steiner triple system of order n, which
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exists if and only if n ≡ 1 or 3 (mod 6). It is NP-complete to decide whether an arbitrary graph G
has a triangle decomposition; see [6].

For the existence of a triangle decomposition of G, it is necessary that every vertex of G have even
degree and that |E| be divisible by three. These are ‘arithmetic’ necessary conditions. It is also
necessary that G ∈ τn. This is a ‘geometric’ necessary condition. In fact, we say that a (nonnegative
weighted) graph has a fractional triangle decomposition if and only if it belongs to τn. A few recent
papers have explored fractional triangle decompositions. The paper [12] studies the case of planar
graphs G. For dense graphs, Dross in [7] obtains a minimum degree threshold sufficient for the
existence of a fractional triangle decomposition.

Theorem 1.1 ([7]). Every graph G on n vertices with δ(G) ≥ 9
10n belongs to τn.

The breakthrough paper [1] shows that a minimum degree threshold sufficient for fractional de-
composition is also roughly sufficient for the exact decomposition problem. This gives considerable
motivation to the question of degree thresholds for fractional decompositions, and of geometric nec-
essary conditions in general. In particular, reducing 9

10 to 3
4 in Theorem 1.1 would nearly establish

Nash-Williams’ conjecture, [13], except for some cases very close to the boundary. This conjecture
states that δ(G) ≥ 3n/4 together with the arithmetic conditions are sufficient for the existence of a
triangle decomposition of G. We note that there exist counterexamples to weakening this minimum
degree assumption. For instance, the lexicographic graph product C4 ·K6m+3 satisfies the arithmetic
conditions for positive integers m, has minimum degree near 3n/4, but it violates a ‘geometric bar-
rier’ for K3-decomposition. In other words, one can find a hyperplane which separates this graph
from the cone τn. We give more details later.

1.3. The metric polytope. The cone τn appears ‘locally’ inside a well-studied polytope. Recall
that a metric d on a set X is a function d : X ×X → R such that, for all x, y, z ∈ X ,

(a) d(x, y) ≥ 0,
(a′) d(x, y) = 0 if and only if x = y,
(b) d(x, y) = d(y, x),
(c) d(x, z) ≤ d(x, y) + d(y, z).

A semi-metric is a function that satisfies only conditions (a), (b) and (c). The metric cone Metn
consists of all semi-metrics on an n-set. If we bound Metn by considering only those semi-metrics
which satisfy the ‘perimeter inequalities’

d(x, y) + d(x, z) + d(y, z) ≤ 2

for all 3-subsets {x, y, z} ⊆ [n], then we obtain the metric polytope metn. Each of the triangle
inequalities and perimeter inequalities defines a half-space bounding metn. Taking X = [n] and

writing dij for d(i, j), we can consider the metric d as a vector (d12, d13, d23, . . . , dn−1,n) in R(
n

2),

and thus embed Metn and metn in R(
n

2). It is easy to see that the point (2/3, . . . , 2/3) is a vertex
of metn. Near this point, only the perimeter inequalities bound metn. So, upon complementing the
inequalities, we see that (2/3, . . . , 2/3) − metn coincides with the dual cone of τn near the origin.
The following result is an immediate consequence.

Proposition 1.2. The edges of metn incident with (2/3, . . . , 2/3) are in correspondence with the

facets of τn.

1.4. Organization. The purpose of this note is to initiate a detailed study of the facets of τn,
especially as they connect with weighted graphs. The next section contains some additional back-
ground relevant for our problem, including some example facets to illustrate the connection with
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triangle decompositions. In Section 3, we identify some simple arithmetic constraints on entries of
the normal vectors. Then, in Section 4, we report on a computer-aided classification of facets of
τn for n ≤ 8 (this being essentially contained in earlier computations on metn via Proposition 1.2),
and in addition push the computation to a near-classification for n = 9. Section 5 contains a ‘vertex
splitting’ operation which generates many infinite families of facets. In spite of this partial induc-
tive structure, there is a surprising level of complexity to τn. This appears to be true even when
symmetries under the action of of the symmetric group Sn are considered.

2. Background

2.1. Cones. First we review some background on cones. For our purposes, all cones are assumed
to be ‘polyhedral’ (finitely generated). Unless otherwise specified, cones are ‘pointed’ (u,−u ∈ κ
implies u = 0) and of full dimension in their vector space.

Let κ be a cone. A face of κ is a cone η ⊆ κ such that for all u ∈ η, if u = u1 + u2 with u1, u2 ∈ κ,
then u1, u2 ∈ η. A face of dimension 1 is called an extremal ray of κ, while a face of codimension 1
is called a facet of κ.

The discussion from now on focuses on cones in real Euclidean space Rm. The usual inner product
〈·, ·〉 is used. When matrices are involved, we adopt the convention that in 〈a, b〉, a is a (dual) row
vector and b is an (ordinary) column vector. The set κ′ = {y ∈ Rm : 〈y, u〉 ≥ 0 for all u ∈ κ} is a
cone called the dual of κ. The dual of a facet of κ is an extremal ray of κ′. For example, the ray
defined by y ∈ Rm \{0} is the dual of the half-space in Rm having boundary y⊥ and direction y. We
say that such a y is a supporting vector for any cone contained in this half-space. If y is a supporting
vector for κ and η = κ∩y⊥ is a face of κ, then y is said to support κ along η. A result of fundamental
importance is that a cone κ is the intersection of all half-spaces described by supporting vectors of
κ. Theorem 2.1 below states this in the concrete setting which shall be used herein.

Given an m×n matrix A, the set cone(A) = {Ax : x ∈ Rn, x ≥ 0} is a closed and polyhedral cone in
Rm. The dimension of cone(A) is equal to the rank of A. The following well known result provides
necessary and sufficient conditions for a point to belong to cone(A).

Theorem 2.1 (Farkas Lemma). Let A be an m × n matrix, and b ∈ Rm. The equation Ax = b
has an entrywise nonnegative solution x if and only if 〈y, b〉 ≥ 0 for all y ∈ Rm such that y⊤A ≥ 0.

Remarks. One direction of this result is immediate. Suppose Ax = b has a nonnegative solution
x ∈ Rn, and let y be such that y⊤A ≥ 0. Then 〈y, b〉 = 〈y,Ax〉 = 〈yA, x〉 ≥ 0. The converse is
deeper, asserting the existence of a ‘separating hyperplane’ between cone(A) and a given point not
in this cone.

It is enough to check the condition in Theorem 2.1 for y corresponding to facets of cone(A). Adapting
the simplex algorithm or Fourier-Motzkin elimination gives a procedure to enumerate the facets of
cone(A); hence, it is a finite problem to determine whether Ax = b has a nonnegative solution x.
However this is seldom easy in practice.

2.2. Graphs and special vectors. We return to the setting of (edge-weighted) graphs. For a

simple graph G on vertex set [n], let 1G denote the characteristic vector of E(G) in R(
n

2), where
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again coordinates are indexed by
(

[n]
2

)

. That is,

1G(e) =

{

1 if e ∈ E(G),

0 otherwise.

Let us define W as the matrix whose columns are the characteristic vectors of all triangles in Kn.

We have, for e ∈
(

[n]
2

)

and K ∈
(

[n]
3

)

,

W (e,K) =

{

1 if e ⊆ K,

0 otherwise.
.

Up to the isomorphism from the vector space of edge-weighted graphs to R(
n

2), we see that τn =
cone(W ). In particular, the existence of a fractional triangle decomposition of G is equivalent to
the existence of a nonnegative solution x to Wx = 1G. In light of Theorem 2.1 and the ensuing

discussion, we are motivated to understand the facets of τn. A vector y ∈ R(
n

2), or alternatively an
edge-weighted graph on n vertices, is a facet normal of τn if: (1) 〈y,1K〉 ≥ 0 for all triangles K,
and (2) the span of triangles K for which 〈y,1K〉 = 0 has codimension 1. For instance, the graph
consisting of a single nonzero edge (of weight 1) is a facet normal of τn, which we call trivial.

Example 2.2. Let n ≥ 6. The edge-weighted graph y on vertex set [n] with

y(e) =











−1 if e = {1, n},

1 if e = {i, n} for i ∈ {2, . . . , n− 1},

0 otherwise

is a facet normal of τn. This is easy to verify directly. Any triangle avoiding vertex n has all of its
edges of weight zero, and any triangle containing edge {1, n} also has weight 1−1 = 0. If we include
among this family of zero-sum triangles any triangle of positive weight, say {2, 3, n}, it is possible
to span any other such triangle. For more details, including why n ≥ 6 is needed, see [9].

It is natural to call the facet y described by Example 2.2 a star facet of τn. It has a combinatorial
interpretation for triangle decomposition, albeit of very mild significance: the inequality 〈y,1K〉 ≥ 0
is asserting that, should G have a fractional triangle decomposition, there cannot exist any vertex
of degree 1 in G. The star y centered at such a vertex would have 〈y,1G〉 = −1.

Example 2.3. Let n ≥ 5 and suppose (A,B) is a partition of [n] with |A|, |B| ≥ 2. The vector y
defined by

y(e) =

{

2 if e ⊆
(

A
2

)

∪
(

B
2

)

,

−1 otherwise

is a facet normal of τn. This follows from Propositions 4.1 and 5.1 to follow. Let us call this vector
an (|A|, |B|)-cut.

Suppose 4 | n and recall the graphG = C4·Kn/4 mentioned in Secton 1. There exists an equipartition

of the vertices (A,B) so that the number of edges of G within A or B equals 4
(

n/4
2

)

= n2/8− n/2,

while the number of edges crossing the partition equals n2/4. Taking y to be the (n/2, n/2)-cut
facet defined by (A,B), we see that 〈y,1G〉 < 0. In fact, this same cut witnesses many other graphs
with minimum degree near 3n/4 also failing to have a (fractional) triangle decomposition.

Lemma 2.4. Let y be a nontrivial facet normal of τn. Then every edge in
(

[n]
2

)

is contained in a

triangle K such that 〈y,1K〉 = 0.
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Proof. If e is an edge in no such triangle, then it is possible to decrease the weight of e in y such
that the resulting vector still supports τn. Therefore, the standard form of y can only be 1e. �

2.3. Stabilizers. The symmetric group Sn acts on R(
[n]
2 ) in a natural way. For an edge-weighted

graph y and permutation α ∈ Sn, we have yα(e) = y(α−1e); that is, the action is induced on edges
(edge weights) by permutations of the vertices.

Let us define the stabilizer of y to be stab(y) = {α ∈ Sn : yα = y}. By the orbit-stabilizer theorem,
the number of distinct edge-weighted graphs isomorphic to y on n vertices is n!/|stab(y)|.

Suppose G has automorphism group Γ. Testing whether G ∈ τn amounts to checking 〈y,1G〉 ≥ 0
on all y of the form

y =
1

|Γ|

∑

α∈Γ

yα

for some facet normal y of τn. The set of weighted graphs invariant under Γ is a subspace of R(
[n]
2 ).

Therefore, its intersection with τn is a sub-cone. For example, if Γ = Sa × Sb for n = a + b, then
the (a, b)-cut and nonnegative orthant give a complete description; see [8]. It would be interesting
to study invariant sub-cones for other specific groups Γ ≤ Sn.

2.4. A matrix formulation. As an alternative to placing edge-weighted graphs in correspondence

with R(
n

2), we can use the n×n symmetric matrices with zero diagonal. Under this slight change in
notation, τn is equivalent to the cone generated by the

(

n
3

)

matrices

P⊤





0 1 1
1 0 1
1 1 0



P,

where P is comprised of three rows of an n × n permutation matrix. This alternate presentation
has some advantages. For example, the characteristic polynomial χy(t) of the matrix corresponding
to an edge-weighted graph y is preserved under vertex permutation, making it a useful invariant.
Moreover, the factorization of χy(t) in Q[t] appears to be related to the stabilizer of y.

3. Arithmetic and combinatorial structure

As we shall see, classifying the facets of τn is very challenging. In this section, though, we sample
some of the structure that is forced upon facets. We begin with an easy observation on the relative
sizes of extreme entries in facet normals.

Proposition 3.1. Let y be a nontrivial facet normal of τn. Let a and b denote, respectively,

the maximum of the positive entries and minimum of the negative entries in y. Then we have

−b/2 ≤ a ≤ −2b.

Proof. First, suppose a ≥ −b. Using Lemma 2.4, choose in y a zero-sum triangle K containing an
edge of weight a. The other two edges of K must have negative weight, since a is largest among the
entries in magnitude. It follows that one of these other edges in K has weight at most −a/2. This
establishes a ≤ −2b. The case a < −b is similar. �

5



Remarks. It is an easy exercise to see that a = 1, b = −2 is not possible for facets (although
it is possible for supporting vectors). Indeed, it may be the case that the first inequality can be
strengthened to a > −b/2 or even a ≥ −b.

Presumably, Proposition 3.1 only scratches the surface of constraints on the signs and relative
magnitudes in facet normals. We do not explore this further here, although it seems reasonable to
guess that entries have some central tendency and are roughly symmetric about their mean.

Proposition 3.2. Let y be a facet normal of τn and let G be the simple graph carrying the

nonpositive entries of y. If G is bipartite, then it is complete bipartite.

Proof. Suppose (A,B) is a bipartition of the vertices of G such that all edges in
(

A
2

)

and
(

B
2

)

are
positive. Let z be the cut facet corresponding to (A,B); see Example 2.3. Since all entries of y on
edges within A and B are positive, it follows that for some ǫ > 0, y − ǫz also supports τn. This is a
contradiction to the indecomposability of y. �

Next, we offer a purely arithmetic constraint. Let us say that a facet normal is in standard form if
its entries are integers with greatest common divisor equal to 1.

Proposition 3.3. Let n ≥ 5 and suppose y is a facet normal of τn in standard form. The following

are equivalent:

(a) 〈y,1K〉 ≡ 0 (mod 3) for all triangles K;

(b) no entry of y is 0 (mod 3); and
(c) all entries of y are 1 (mod 3) or all entries of y are 2 (mod 3).

Proof. It is enough to prove (a) ⇒ (c) and (b) ⇒ (c). We let F3 denote the ternary field.

Suppose y is a ternary vector satisfying (a). Then it is easy to check that y agrees on the opposite
edges of any 4-cycle in Kn. Consider any two adjacent edges, e and f , say. Since n ≥ 5, there exist
4-cycles for which e and f are both opposite the same other edge. Therefore y is constant. Being in
standard form, it is also nonzero modulo 3, and we obtain (c).

Now, suppose no entry of y is 0 (mod 3). Let K0 be the set of triangles K such that 〈y, 1K〉 = 0.

Since y is a facet normal, there exists an edge f such that {1K : K ∈ K0} ∪ {1f} spans Q(n2) over
the rationals. Let e be any edge. Choose rationals aK and b such that 1e =

∑

K aK1K + b1f . Since
ye 6= 0, we have 0 6= ye = 0 + b〈y, 1f〉. Therefore, b 6= 0; say b = p/q in lowest terms. Then

(3.1) q1e =
∑

K

qaK1K + p1f .

Taking inner products of both sides with 1 gives q = p+3q
∑

K aK ≡ p (mod 3). Since gcd(p, q) = 1,
we may assume p ≡ q ≡ 1 (mod 3). Returning then to (3.1), we have

(3.2) 1e − 1f ≡
∑

K

tK1K

in F
(n2)
3 for some tK ∈ F3. Taking inner products of both sides with y gives ye − yf ≡ 0 in F3. Since

e was arbitrary, we obtain (c). �

As a result of Proposition 3.3, we can classify all facets of τn according to their normal vectors in
standard form. We have those which contain an entry 0 (mod 3), and those whose entries are all 1
(or all 2) modulo 3. It is natural to label these categories 0, 1, 2, respectively.
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For example, the family of star facets belongs to category 0, and the family of cut facets belongs to
category 2. The first example of a facet in category 1 appears when n = 7. We discuss facets of τn
for small n in the next section, and explore some interesting examples that arise.

4. Classification for small n

n = 5

The case n = 5 is the first in which τn has full dimension. We study it via the inclusion matrix W .

Proposition 4.1. Let n = 5. The inverse of the 10× 10 inclusion matrix W , with rows indexed by

triangles and columns indexed by pairs, is the matrix whose (K, e)-entry equals 1/3 if |K∩e| ∈ {0, 2},
and equals −1/6 otherwise.

Proof. Let U be the given matrix. The inner product of row K of U and column K ′ of W is
computed in cases. If K ′ = K, the product is 3 · 1/3. If |K ′ ∩K| = 1 or 2, exactly one edge e of K ′

satisfies |K ∩ e| ∈ {0, 2} (this being Kc = K ′ \K or K ∩K ′, respectively). In either of these cases,
the inner product is 1/3− 2 · 1/6 = 0. So UW = I. �

Corollary 4.2. Up to isomorphism, the only facet of τ5 is the (2, 3)-cut, giving a total of 10 facets.

Two extreme rays in a cone are adjacent if they span a face of dimension 2. Likewise, facets are
adjacent if they intersect in a face of codimension 2. It is clear that the facet structure of τ5 is
‘simplicial’ (any two are adjacent) since the ten facet normals are linearly independent in R10.

n = 6

Using the built-in function ‘Cone()’ in Sage [14], we obtain a classification of facets of τ6. This is
shown in Table 1. Each row gives a vector, with coordinates corresponding to the colex order on
(

[6]
2

)

for an isomorphism class. The right column indicates the number of distinct copies induced
under the action of S6. The three nontrivial isomorphism types are displayed as weighted graphs in
Figure 1. A {green,red}-edge-coloring illustrates the positive and negative weights, with magnitudes
as labeled.

representative # deg
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 15 32
(1, 1, 0, 1, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0) 30 14
(2, 2, 2, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, 2, 2) 10 57
(2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, 2) 15 32
total 70

Table 1. Isomorphism classes of facet normals of τ6, in standard form

We conclude by summarizing the structure of τ6.

Proposition 4.3 (See also [2]). The facets of τ6 fall into four isomorphism classes: trivial, star,

(3, 3)-cut, and (4, 2)-cut.

Our computation shows that the four types of facets have respective degrees 32, 14, 57, 32. It is
noteworthy that each type is adjacent to a mixture of the other types. In general, adjacent facets of
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1

−1

2−1 2

−1

Figure 1. Weighted graphs for the nontrivial facet normals of τ6

τn appear to possess interesting combinatorial properties, although we do not presently have a test
for adjacency which is ‘algebra-free’.

n = 7

For n = 7, the computation of cone facets is still quite fast. Our classification appears in Table 2
with headings as before. See also [2]. Weighted graphs for the nontrivial isomorphism types are given
in Figure 2. As edge-colored graphs, shades of green represent positive edges of different weights.

representative # deg
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 21 340
(1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, -1, -1, 0, 0, 0, 0, 1) 420 20
(1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0) 42 75
(2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, 1) 105 75
(2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, -1, 2, 2) 35 340
(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2) 21 75
(4, 4, -2, 1, 1, 1, 1, 1, 1, -2, -2, 4, -2, 1, 1, -2, -2, 4, 1, 1, 4) 252 20
total 896
Table 2. Isomorphism classes of facet normals of τ7, in standard form

1

−1

1

−1

2

−1

1

2

−1

2

−1

4

−2
1

Figure 2. Weighted graphs for the nontrivial facet normals of τ7
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n = 8

The classification of facets of τ8 is computed similarly as for τ7 and is displayed in Table 3.

representative # deg

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 28 18848
(1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 1, 1) 560 82
(1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, -1, 0, 1, 1, -1, 1, 0, -1, 0, 0, 0, 0, 1, 1) 3360 52
(1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0) 56 82
(1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 1) 840 902
(2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, 1, 1) 168 1580
(2, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, 1, 1, 1, 1) 3360 125
(2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 1) 3360 245
(2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 2) 420 27
(2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1) 280 347
(2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, -1, 2, 2, -1, -1, -1, -1, 2, 2, 2) 35 11878
(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, 2, 2) 56 4641
(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2) 28 245
(3, 2, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -2, -1, 0, 0, 2, 2, 2) 10080 27
(4, 4, -2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, -2, -2, -2, 4, -2, 1, 1, 1, -2, -2, 4, 1, 1, 1, 4) 2016 95
(4, 4, 4, 4, 4, -2, 1, 1, 1, 1, 1, 1, 1, 1, -2, -2, -2, 4, -2, 1, 1, -2, -2, -2, 4, 1, 1, 4) 5040 60
(5, 5, 2, 2, -1, -1, 2, -1, -1, 2, -1, 2, 2, -1, -1, -1, 2, 2, -1, -1, 2, -4, -1, -1, 2, 2, 5, 5) 2520 109
(7, 7, 4, 4, 1, 1, 4, 1, 1, -2, 1, 4, -2, 1, 1, 1, -2, 4, 1, 1, -2, -5, -2, -2, 1, 1, 4, 4) 10080 27
(8, 5, -1, 5, -1, 2, 2, 2, 5, 5, 2, 2, -1, -1, -4, -4, 2, -1, -1, 2, 2, -4, -4, 5, 5, 2, 2, 8) 10080 27

total 52367
Table 3. Isomorphism classes of facet normals of τ8, in standard form

The total count of 52367 facets also appears in [2] as the degree of anti-cuts in the metric polytope
met8.

Here, for the first time, we encounter facets in category 2 (mod 3) other than cuts. The significance
of these new facets is still poorly understood. We also notice that the trivial facet and cut facets
have the richest neighborhood structure; this is likely connected with the relatively large number of
triangles on which the corresponding facet normals vanish.

The number of facets of τn for n = 5, 6, 7, 8 is now sequence A246427 in the OEIS database; see [15].

n = 9

It is presently out of reach to compute and classify all facets of τn for n ≥ 9. However, for n = 9,
we sampled a large number of ‘random’ facets using standard elimination steps. We found 143
isomorphism classes of facets of τ9, accounting for nearly 12 million distinct facets. This possibly
represents a complete classification, since all but five types have had their neighborhoods exhaustively
checked (and are adjacent to no new types). The trivial and (5, 4)-cut facets have by far the largest
degrees and may be particularly challenging to fully check. See [3] for more detail on the ‘adjacency
decomposition’ method for symmetric cones and polytopes. A list of the known facets of τ9 can be
found at the first author’s webpage: http://www.math.uvic.ca/~dukes/facets-tri9.txt

A new feature that emerges at n = 9 is the existence of automorphism-free facets.

Example 4.4. With coordinates given in colex order, the facet of τ9 which is normal to

y = (4, 2, 2, 2, 0, 0, 1, 1,−1, 1, 1,−1,−1, 1, 2, 0, 0, 2, 0,−1, 1,−1, 1, 1,−1, 0, 0, 1,−2,−2, 0, 2, 1, 3, 2, 3)
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has no automorphisms, and hence generates 9! distinct facets of τ9 under the action of S9.

We find it interesting that the number of facets of τ9 is already so large. As n grows, if the number

of facets of τn exceeds 2(
n

2), then it would follow that certain inequalities are only useful to exclude
(non-simple) multigraphs from the cone. A starting estimate on the number of facets of τn via the
metric polytope (see Section 6) can be obtained from [10].

5. Lifting facets

Our next result concerns lifting facets of τn to facets of τn+1 via a ‘vertex splitting’ operation.

Proposition 5.1. Let n ≥ 5 and suppose y is a facet normal of τn. Suppose there exists a triangle

K ⊂ [n− 1] with 〈y,1K〉 > 0. Define the vector yspl on
(

[n+1]
2

)

by

yspl(e) =











y(e) if e ⊂ [n],

y({i, n}) if e = {i, n+ 1} for i ∈ [n− 1],

−2min{y({i, n}) : i ∈ [n− 1]} if e = {n, n+ 1}.

Then yspl is a facet normal of τn+1.

Proof. It is straightforward to check that yspl is nonnegative on all triangles. Let K ⊆
(

[n+1]
3

)

contain K, along with all zero-sum triangles with respect to yspl. Since y is a facet normal of τn,

every edge in
(

[n+1]
2

)

, except possibly {n, n+ 1}, is a linear combination of triangles in K. By the
choice of weight on {n, n + 1}, there exists j such that {j, n, n + 1} ∈ K. Then, since {j, n} and
{j, n+ 1} are spanned by K, so is {n, n+ 1}. �

The second author’s dissertation presents a similar construction which allows copies of a facet of τn
to be glued together along a common positive triangle to produce facets of τm for m > n ≥ 5. This
allows for somewhat more general lifts of facets. See [9, Proposition 3.8] for details.

Example 5.2. The weighted graph shown in Figure 3 corresponds to a facet of τ8. Repeatedly
applying Proposition 5.1 to leaf vertices gives an infinite family of facets of τn, n ≥ 8, as follows.
Given any partition (A,B) of {3, . . . , n} with |A|, |B| ≥ 3, a facet normal arises from the vector y
defined by

y(e) =











−1 if e = {1, 2},

1 if e = {1, a} for a ∈ A, or e = {2, b} for b ∈ B,

0 otherwise.

−1

1

Figure 3. The weighted graph corresponding to the ‘binary star’ facet of τ8
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The terminology ‘binary star’ was used for such facets in [9]. These have some significance for triangle
decompositions. Consider the question of whether G has a fractional triangle decomposition under
the assumption that it has at least 3

4

(

n
2

)

edges and has minimum degree δ(G) ≥ cn. The binary star

y reveals that we cannot take c < 1
2 . For instance, the graph G built from a complete graph Kn−2

on A ∪B with A joined to 2, B joined to 1, and the edge {1, 2} satisfies 〈y,1G〉 = −1.

6. Conclusion

We have seen many properties of the facet structure of τn and connected some of these with the
triangle decomposition problem for graphs. There are still many more questions than answers. As
next steps, we believe some of these questions deserve consideration.

(1) Can τn be ‘approximated’ by a cone with simpler facet structure?
(2) Do there exist tighter bounds on the entries of a facet normal, improving on Proposition 3.1?
(3) Are there other ways to lift facets from τn to τn+1, perhaps generalizing Proposition 5.1?
(4) Can it be argued that no facet is adjacent only to trivial facets, bypassing the need to search

the largest neighborhood for n = 9?
(5) Is there a combinatorial description of adjacency of facets?

As mentioned in Section 1.3, our problem is essentially (properly) contained in the study of the ver-
tices of metric polytope metn. However, for general n it does not seem that the triangle inequalities
can shed much light on τn. That is, analysis of the neighborhood of (2/3, . . . , 2/3) in metn probably
requires separate treatment, which we hope this paper initiates to some extent.

It is worth briefly mentioning the ‘cut cone’ in R(
n

2), which is generated by all vertex cuts in the
complete graph Kn. This cone is superficially similar to τn and its structure has been quite thor-
oughly investigated; see for instance [4, 5]. While we can find no obvious explicit connection between
τn and the cut cone, we are hopeful that the results and conjectures for the latter can guide future
work on τn.

It should be mentioned that the cone τn even long ago attracted some interest in quantum physics
for its connection with the ‘N -representability problem’; see for instance [11].

Finally, our cone τn is a special case of the family of cones introduced in [8]. This more general

setting considers the cone generated by the inclusion matrix of t-subsets
(

[n]
t

)

versus k-subsets
(

[n]
k

)

,
where t, k, n are positive integers satisfying k ≥ t and n ≥ k + t. Alternatively, this is the cone of

weighted t-uniform hypergraphs on n vertices generated by k-vertex cliques K
(t)
k . This class of cones

was not studied in much detail in [8]. However, some interesting supporting vectors connected with
association schemes were shown to imply various inequalities for t-designs.
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