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A GENERALIZED CUBIC MOMENT AND THE PETERSSON

FORMULA FOR NEWFORMS

IAN PETROW AND MATTHEW P. YOUNG

Abstract. Using a cubic moment, we prove a Weyl-type subconvexity bound for the qua-
dratic twists of a newform of square-free level, trivial nebentypus, and arbitrary even weight.
This generalizes work of Conrey and Iwaniec in that the newform that is being twisted may
have arbitrary square-free level, and also that the quadratic character may have even con-
ductor. One of the new tools developed in this paper is a more general Petersson formula
for newforms of square-free level.

1. Introduction

1.1. Cubic moments. Let χq be a real, primitive character of conductor q and q̃ = rad(q)
its square-free kernel. Let H∗

κ(N) be the set of holomorphic newforms for Γ0(N), of weight
κ, and trivial central character. Our main result is

Theorem 1.1. For any square-free r with (r, q) = 1 we have

(1.1)
∑

f∈H∗

κ(rq
′)

q′|q̃

ωfL(1/2, f ⊗ χq)
3 ≪κ,ε (qr)

ε.

The estimate holds for any even κ ≥ 2, and depends polynomially on κ. Here ωf are certain
positive weights satisfying

(1.2) ωf ≍ (qr)−1+o(1).

Corollary 1.2. For any newform f of square-free level s and χq any real primitive character
of conductor q we have

(1.3) L(1/2, f ⊗ χq) ≪
(

sq

(s, q)

)1/3+ε

.

Remark. The conductor of L(1/2, f ⊗ χq) is sq2/(s, q). Note that the corollary holds
without a relatively prime hypothesis on s, q. Therefore, the bound (1.3) is a Weyl-type
subconvexity bound in q-aspect, but does not reach the convexity bound in the s-aspect.

Corollary 1.2 gives a non-trivial bound when the root number ǫf⊗χq = +1 (since otherwise
L(1/2, f ⊗ χq) = 0). See Section 8.1, specifically equation (8.2) for a concrete formula for
the root number.

Our work here is a generalization of the cubic moment studied by Conrey and Iwaniec [CI],
who, in our notation, obtained the case r = 1, κ ≥ 12, and q odd. The extension of their
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2 IAN PETROW AND MATTHEW P. YOUNG

work to κ ≥ 2 was obtained by the first-named author [Pet]. It may be somewhat surprising
that a Weyl-type subconvex bound in the q-aspect was previously not known for any values
of r besides 1 (nor for even q). The case r = 1 has some pleasant simplifications; for one,
the conductor of L(f ⊗ χq, 1/2) is q2 for all f of level dividing q. Furthermore, the nth
Fourier coefficient of f ⊗ χq vanishes unless (n, q) = 1. For these reasons, Conrey and
Iwaniec could use a formula of Iwaniec, Luo, and Sarnak [ILS], who proved a Petersson
formula that is applicable to (1.1) with r = 1. The case r 6= 1 lacks these simplifications,
so in order to approach the proof of Theorem 1.1 we developed a more general form of the
Petersson formula that is applicable to (1.1) with any square-free r. This formula, which is
of independent interest, is described in Section 1.3.

Corollary 1.2 improves on a hybrid subconvexity result of Blomer and Harcos [BH, Theo-
rem 2], which in our notation (and assuming (q, r) = 1) takes the form

(1.4) L(1/2, f ⊗ χq) ≪ (r1/4q3/8 + r1/2q1/4)(rq)ε.

One may check that Corollary 1.2 is superior to (1.4), except in the range r ≍ q1/2+o(1)

where all the bounds are equalized. This result of Blomer and Harcos is more general in
that χq can be replaced by an arbitrary Dirichlet character, f may be a Maass form, and
it is not restricted to the central point. In addition, the Blomer-Harcos bound proceeds by
bounding an amplified second moment, and is Burgess-quality in the q-aspect for r fixed.
If q is fixed and r is large, then the cubic moment is not the appropriate moment to use,
and both Corollary 1.2 and (1.4) are weaker than the convexity bound (specifically, (1.3) is
superior to the convexity bound of (rq2)1/4+ε for r ≪ q2−ε).

The work of [CI] treats both holomorphic forms and Maass forms, with similar proofs.
Provided one generalizes our newform Petersson formula to the setting of the Bruggeman-
Kuznetsov formula (which should be straightforward, but nonetheless requires a proof), then
our methods would carry over to the Maass case, as in [CI].

The type of sum appearing in Theorem 1.1 may look somewhat unusual, but it is very
important for the proof. It is crucial in [CI] that, after applying the Petersson formula, the
moduli of the Kloosterman sums are all divisible by q. The weights ωf are carefully chosen to
group together the terms with q′ | q to give a sum of Kloosterman sums with c ≡ 0 (mod q).
As a rough sketch of what this means, and why it is important, one may consider the case
of prime level q. Very roughly, one naively expects the Petersson formula to say

(1.5)
∑

f level 1

af(m)af (n)

〈f, f〉 +
∑

f new of level q

af(m)af (n)

〈f, f〉 ↔ δm,n + 2πi−κ
∑

c≡0 (mod q)

S(m,n; c)

c
.

This is not quite correct because there are other types of oldforms not appearing on the left
hand side, but that does not affect the broader thrust of this discussion (the reader interested
in the correct version of this formula will find abundant discussion throughout this paper!).
Meanwhile, the sum over f of level 1 has a Petersson formula with all c appearing. Thus, by
rearranging these expressions, we see that a newform formula for f of level q should have all
c appearing. With the cubic moment, one also has a factor χq(mn), and one wishes to apply
Poisson in these variables. The total modulus of χq(mn)S(m,n; c) is [q, c] which for q | c is
still c, but if (q, c) = 1 it is qc which is much larger. In this latter case, Poisson summation
is practically ineffectual.
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Our proof of Theorem 1.1 in fact shows a stronger asymptotic result of the form

(1.6)
∑

f∈H∗

κ(rq
′)

q′|q̃

ωfL(1/2, f ⊗ χq)
3 = Rr,q +O((qr)ε(r−1/2 + q−1/2r−1/4)),

where Rr,q is a complicated main term arising from a residue calculation (see Section 8.4
for details). The error term here is seen to be o(1) provided r ≫ qδ for some fixed δ > 0.
Conrey and Iwaniec [CI] express interest in finding the asymptotic of the cubic moment in
their case r = 1; it is perhaps surprising that deforming the problem slightly in the r-aspect
allows us to solve this problem in a hybrid range. In light of (1.6), perhaps it is possible to
amplify the moment in the r-aspect, and thereby improve the exponent of s in (1.3).

1.2. Arithmetical applications of the cubic moment. The bound from Corollary 1.2
implies a bound on the Fourier coefficients of half-integral weight cusp forms, as we now
describe. Suppose that g(z) =

∑
n c(n)e(nz) is a weight

κ+1
2

Hecke eigenform of level 4r where
r is odd and square-free, and κ is even. The Shimura correspondence links g to a form f of

weight κ and level 2r, and Waldspurger’s formula gives that c(|D|)2 = c0|D|κ−1
2 L(1/2, f⊗χD)

where D is a fundamental discriminant, and c0 is some constant of proportionality depending
on g. Since 2r is square-free, Corollary 1.2 applies, and we deduce:

Theorem 1.3. With notation as above, we have

(1.7) c(|D|) ≪g |D|κ−1
4

+ 1
6
+ε.

Theorem 1.3 has applications to the representation problem for ternary quadratic forms
which has been studied by a number of authors, including [DS-P] [D2] [Ka] [B1] [B2] from
which we have drawn some of the following background material. Suppose that Q is a ternary
quadratic form with associated theta function θQ of level dividing 4N with N odd and square-
free. For instance, any diagonal form ax2 + by2 + cz2 with abc odd and square-free satisfies
these conditions. Then θQ = E+U +S where E is a linear combination of Eisenstein series,
U is a linear combination of unary theta functions, and S is a linear combination of Hecke
cusp forms. According to this decomposition, write rQ(n) = cE(n) + cU(n) + cS(n) where
rQ(n) is the number of representations of n by Q, and c∗(n) is the nth Fourier coefficient of
∗ = E,U, S. For ease of exposition, suppose that n is square-free and coprime to the level,
which implies cU(n) = 0. If n is locally represented everywhere by Q, then cE(n) ≫Q n

1/2−ε.
Theorem 1.3 implies cS(n) ≪Q n

5/12+ε, which is an improvement over that derived from the
Burgess-quality subconvex bound of [BH].

For some more advanced questions, one may desire to explicate the dependence on g in
Theorem 1.3. Blomer [B2] remarks that in general this is difficult, and that Mao [BHM,
Appendix 2] has done this but at the expense of relating the Fourier coefficients to twisted

L-values of an auxiliary form f̃ of level 4r2. Our results here then do not apply to f̃ .
However, if g is in Kohnen’s plus space, then the constant of proportionality is given

explicitly by the Kohnen-Zagier formula, and our results apply, as we now explain. We gather
some notation from Kohnen’s paper [Ko], paying careful attention to normalizations. Let g be

as defined in this subsection, in Kohnen’s plus space, and write f(z) =
∑∞

n=1 n
κ−1
2 λf(n)e(nz)

with λf(1) = 1. Define the Petersson inner product by

〈f, f〉Kohnen =
1

[Γ0(1) : Γ0(r)]

∫

Γ0(r)\H
yκ|f(z)|2dxdy

y2
.
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(For the rest of the paper we will mainly use a different normalization of the inner product.)
Using [ILS, Lemma 2.5] [HL] [Iw1], we have 〈f, f〉Kohnen = ro(1). Let D be a fundamental
discriminant with (−1)κ/2D > 0, coprime to r. By [Ko, Corollary 1], we have

|c(|D|)|2
〈g, g〉Kohnen

= 2ν(r)
(κ
2
− 1)!

πκ/2
|D|κ−1

2
L(1/2, f ⊗ χD)

〈f, f〉Kohnen
,

under the assumption χD(p) = ηp(f) for all p | r (here ηp(f) is the eigenvalue of the Atkin-
Lehner operator). If χD(p) = −ηp(f) for some p | r then c(|D|) = 0 while the right hand side
may not vanish. As an aside, we mention that Baruch and Mao [BM] have generalized the
Kohnen-Zagier/Waldspurger formula by removing these conditions on D, relating the central
value to a Fourier coefficient of a different half-integral weight cusp form. By Corollary 1.2,
we have

(1.8)
|c(q)|2

〈g, g〉Kohnen
≪κ r

1
3
+εq

κ−1
2

+ 1
3
+ε.

It is also natural to inquire into the normalization of the form g. There is a slight difficulty
here in that we cannot scale g by taking c(1) = 1, since c(1) may vanish. There exists
a D0, polynomially bounded in r, so that L(1/2, f ⊗ χD0) ≫ ro(1) (e.g., see [HK]). Then

we may choose the constant of normalization so that |c(|D0|)|2 = |D0|
κ−1
2 . Then with this

normalization, 〈g, g〉Kohnen = ro(1), and hence

(1.9) |c(q)| ≪κ,ε r
1
6
+εq

κ−1
4

+ 1
6
+ε.

Theorem 1.1 itself can be used to improve many exponents in the results of [LMY2]. In
particular, we improve the rate of equidistribution of the reductions of CM elliptic curves (see
[LMY2] for a full description of this arithmetical problem). For brevity, we shall not repeat
any material from [LMY2], but will instead indicate which exponents may be improved. The
bound q1/8+εD7/16+ε in [LMY2, (1.5)] may be replaced by qεD5/12+ε. In [LMY2, Corollary
1.3], the bound D ≫ q18+ε may be replaced by D ≫ q12+ε. In [LMY2, (1.10), (1.12)],
the bound q7/8D7/16 may be replaced by q3/4D5/12. All these changes result from a use of
Theorem 1.1 to bound M2 defined by [LMY2, (4.7), (3.1)] with

(1.10) M2 ≪
D1/2+ε

q1/3−ε

( ∑

f∈H∗

2 (q)

L(1/2, f ⊗ χD)
3
)1/3

≪ qεD5/6+ε.

If one can generalize Theorem 1.1 (and hence Corollary 1.2) to allow for f to be a Hecke-
Maass cusp form, then there are additional applications. This is the setting required for
equidistribution of integral points on ellipsoids [D1]. The various exponents appearing in
[LMY1] would be updated similarly to the improvements to [LMY2] described in the previous
paragraph. As another example in this vein, Folsom and Masri [FM] [M] have improved the
error term in the asymptotic formula for the partition function which requires subconvexity
for quadratic twists of a cusp form of level 6; the previous bounds of [CI] do not apply, and
so the methods developed in this paper pave the way for further improvements.

The second-named author [Y] generalized the [CI] method allowing for large weights (or
spectral parameters, in the Maass case) giving a Weyl-type hybrid subconvexity bound. This
had applications to equidistribution problems on shrinking sets. For simplicity, in this paper
we have kept the weight κ fixed but it seems likely that the methods of [Y] could be combined
with those in this paper to allow κ to vary.



A GENERALIZED CUBIC MOMENT AND THE PETERSSON FORMULA FOR NEWFORMS 5

1.3. Petersson formula for newforms. We begin with an expanded discussion on why a
newform Petersson formula is relevant for Theorem 1.1.

One encounters a significant difficulty when attempting to generalize the [CI] method to
allow level structure of the base form, as we describe. One begins by using an approximate
functional equation of the L-function L(1/2, f ⊗ χq), which has conductor rq2 when f is a
newform of level rq′ with (r, q) = 1 and q′ | q. Next one would wish to apply the Petersson
formula to average over an orthogonal basis of cusp forms. The problem is that this basis
consists of oldforms as well as newforms, which causes a variety of problems. Firstly, it is
not clear what Dirichlet series to attach to f ⊗χq when f is an oldform. One could take this
to mean that if f is induced from a newform f ∗ of lower level, then we take L(1/2, f ∗⊗ χq).
However, with this definition the conductor of this L-function may be a divisor of rq2,
in which case there is some dependence on the level of f ∗ in the approximate functional
equation. The classical Petersson formula is unable to distinguish between these forms.

It is plausible that there is some trick that lets one set up the problem to prove Theorem
1.1 using the classical Petersson formula, but the authors are not aware of one (if the moment
was an even power, this would be easy because of positivity; the fact that the moment is an
odd power in this application makes this more difficult).

The robust solution is to prove a Petersson formula for the newforms only, similarly to
the existence of averaging formulas for primitive Dirichlet characters of a given modulus
(see [IK, (3.8)]). Iwaniec, Luo, and Sarnak have proven a Petersson formula for newforms of
square-free level [ILS, Proposition 2.8], but with some coprimality conditions on the level and
the Fourier coefficients of the modular forms, which in our application are crucial to avoid.
When working with 1-level density of zeros of L-functions, it is easy to ensure coprimality
because the log derivative of an L-function is a sum over primes. However, the L-function
itself is not so easily treated, because altering a single Euler factor will ruin the functional
equation. For this reason, we have generalized the [ILS] formula to hold with square-free
level and arbitrary Fourier coefficients.

Suppose that N is a positive integer, and let Bκ(N) denote an orthogonal basis for the
space of weight κ cusp forms for Γ0(N). For f ∈ Bκ(N), write f(z) =

∑∞
n=1 af(n)e(nz), and

af (n) = λf(n)n
κ−1
2 . Let

(1.11) ∆N (m,n) = cκ
∑

f∈Bκ(N)

λf(m)λf(n)

〈f, f〉N
, where cκ =

Γ(κ− 1)

(4π)κ−1
,

and where

〈f, g〉N =

∫

Γ0(N)\H
yκf(z)g(z)

dxdy

y2
.

Since the main interest here is in the level aspect, we often suppress the dependence on the
weight κ in the notation. The Petersson formula states

(1.12) ∆N (m,n) = δm=n + 2πi−κ
∑

c≡0 (mod N)

S(m,n; c)

c
Jκ−1

(4π√mn
c

)
.

We have
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Theorem 1.4. Let N be square-free, and let H∗
κ(N) denote the set of newforms on Γ0(N)

of trivial central character. Let

(1.13) ∆∗
N (m,n) = cκ

∑

f∈H∗
κ(N)

λf(m)λf(n)

〈f, f〉N
.

Then with ν(L) defined to be the completely multiplicative function satisfying ν(p) = p + 1
for p prime, we have

(1.14) ∆∗
N (m,n) =

∑

LM=N

µ(L)

ν(L)

∑

ℓ|L∞

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

e1|(d1, m
a2(u,v)

)

e2|(d2, n
b2(u,v)

)

∆M

( md1
a2e21(u, v)

,
nd2

b2e22(u, v)

)
.

Here cℓ(d) with d | ℓ is jointly multiplicative, and cpn(p
j) = cj,n where

(1.15) xn =
n∑

j=0

cj,nUj

(x
2

)
,

and Uj(x) are the Chebyshev polynomials of the second kind.

The constants cj,n arise from repeated application of the Hecke multiplicativity relations
and we call them the Chebyshev coefficients. We describe some of their relevant properties
in Section 6, for instance, we shall show cj,n ≥ 0, and derive sharp bounds on cj,n. Many of
the bounds on the Chebyshev coefficients appearing in Section 6 arose out of necessity for
the proof of Theorem 1.1.

In Theorem 7.1, we give an approximate version of (1.14) with the additional restriction
ℓ ≤ Y , which makes the right hand side a finite sum. For our application to the cubic
moment, we have found the approximate version most suitable.

The method of proof of [ILS] is to explicitly choose a basis Bk(N) (see [ILS, Proposition
2.6]) that relates the oldforms to the newforms, and thereby deduce an arithmetic formula
for ∆N (m,n) in terms of ∆∗

M (m′, n′)’s, with M | N . An inversion of this formula then gives
their formula for ∆∗

N(m,n). As mentioned in [ILS], there are many interesting choices of
basis and it could be argued that their choice is ad-hoc. Other authors have also constructed
various bases. Choie and Kohnen [CK, Proposition 2] use the same basis that we will use here.
Rouymi [R] gave a basis for prime power level and derived a newform Petersson formula from
it. Building on Rouymi, Blomer and Milićević [BM, (3.7)] give a basis for arbitrary level,
and recently five authors [BBDDM] used Blomer and Milićević’s basis to give a newform
Petersson formula for arbitrary level (but with restrictive coprimality conditions on the level
and the Fourier coefficients). It is important for our work that there is no restriction on m,n
appearing in Theorem 1.4.

Nelson [N] has described a method for proving a Petersson formula for newforms without
explicitly choosing a basis, and gives such a formula when the level N is divisible by the
cube of each prime dividing it.

Our proof takes a different path from [ILS,R,BM,BBDDM] in that we choose our basis
to be eigenfunctions of the Atkin-Lehner operators, which for square-free level is enough to
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diagonalize the basis. This choice is natural and leads to many pleasant simplifications. Our
method of proof of Theorem 1.4 most naturally shows

(1.16) ∆N (m,n) =
∑

LM=N

1

ν(L)

∑

ℓ|L∞

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

e1|(d1, m
a2(u,v)

)

e2|(d2, n
b2(u,v)

)

∆∗
M

( md1
a2e21(u, v)

,
nd2

b2e22(u, v)

)
.

We deduce Theorem 1.4 from (1.16) in Section 4 below.
In this introduction, we have not presented the Petersson formula that is required for the

proof of Theorem 1.1. What we need is a kind of hybrid formula for modular forms of level
rq that in the r-aspect restricts to newforms of level r, and in the q-aspect groups together
all the newforms of level dividing q, in accordance with the setup of Theorem 1.1. This
formula appears in Section 5.

The newform formula of [ILS, Proposition 2.8] has coprimality assumptions of the form
(m,N) = 1 and (n,N2) | N , which on the face of it is rather restrictive, however, one may
reduce to this case as follows. Firstly, using that λf(d)λf(p) = λf(dp) for any d ∈ N, and p |
N , one may write λf(m)λf(n) = λf(m

′)λf (n
′) where mn = m′n′, and (m′, N) = 1. Secondly,

we have λf(p
2d) = λf (p)

2λf(d) = p−1λf (d) (see (8.1)), which by repeated applications allows
one to reach the case (n,N2) | N . It is not obvious how to use the [ILS] newform formula
to derive our hybrid version presented in Section 5 below. The problem is that the above
factorizations of m and n depend on the ambient level, and so summing over different levels
introduces some complications.

1.4. Structure of the paper. Sections 2 – 7 are devoted to proving a number of versions of
the Petersson formula with newforms as well as some estimates for the Chebyshev coefficients.
This part of the paper is self-contained.

In Sections 8–11, we prove the cubic moment bound, that is, Theorem 1.1.

1.5. Acknowledgments. The second author acknowledges Eren Mehmet Kiral for valuable
input on Section 10.1, which was originally written in joint work for a paper in preparation.

2. Atkin-Lehner theory

2.1. Construction of basis. We briefly review some of the theory developed by Atkin
and Lehner [ALe]. Throughout we assume that the level N is square-free. For a matrix in
GL+

2 (Z), define

f|(a bc d )
(z) = (ad− bc)k/2(cz + d)−kf

(az + b

cz + d

)
.

Atkin and Lehner showed that

Sk(N) =
⊕

LM=N

⊕

f∈H∗

k(M)

Sk(L; f),

where Sk(L; f) is the span of forms f|Aℓ
, with ℓ | L, where Aℓ =

(
ℓ 0
0 1

)
. They call Sk(L; f)

the oldclass associated to f . Observe f|Aℓ
(z) = ℓk/2f(ℓz), so Sk(L; f) = span{f(ℓz) : ℓ | L}.
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Our goal here is to construct an explicit orthogonal basis of Sk(L; f), in the case that N is
square-free.

We turn to the Atkin-Lehner operators Wd. Suppose that d | N , N = LM , and let

(2.1) Wd =

(
dx y
Nz dw

)
,

where x, y, z, w ∈ Z are chosen so that det(Wd) = d (such a choice exists because (d,N/d) =
1, since N is square-free, and the forthcoming properties ofWd are independent of the choices
of x, y, z, w). If d |M and f ∈ H∗

k(M) then f is an eigenfunction of Wd (see [ALe, Theorem
3 (iii)]), so suppose now that d | L. Let

(2.2) V =

(
1 0

−LM
d

1

)
∈ Γ0(M).

Note that taking x = z = 1 in the definition of Wd we have

VWd =

(
d y
0 1

)
.

Therefore, if f ∈ H∗
k(M) and d | L, then

(2.3) f|Wd
= f|V |Wd

= f|VWd
= dk/2f(dz + y) = f|Ad

.

This calculation easily shows that Sk(L; f) is preserved by all Wd with d | L, that each
Wd is an involution, and that the Wd commute with each other. Therefore, the group of
transformations of Sk(L; f) generated by the Wd is isomorphic to (Z/2Z)ω(L), where ω(n) is
the number of prime divisors of n. Note 2ω(L) = τ(L). Furthermore, the Wd are Hermitian
with respect to the Petersson inner product (see [ALe, Lemma 25]). By some simple character
theory, we can show that Sk(L; f) has an explicit orthogonal basis of common eigenfunctions
of the Wd.

We briefly describe a more abstract statement. Let G be a group isomorphic to (Z/(2Z))n,

and let φ be a character on G, which we denote by φ ∈ Ĝ. There are 2n such characters. For
each g ∈ G, suppose there exists an involution Wg acting on some vector space of functions,

and such that Wg1Wg2 =Wg1g2 . For each f in the vector space and character φ ∈ Ĝ, define

(2.4) fφ =
∑

g∈G
φ(g)Wgf.

It is easy to see that

Wgfφ = φ(g)fφ.

Therefore, each fφ is an eigenfunction of all the Wg. Also, the fφ are distinct because any
two choices of fφ have a different eigenvalue for some Wg. This also means that if the Wg

are Hermitian with respect to some inner product, then all the fφ are orthogonal. In the
case of Sk(L; f), which has dimension 2ω(L) = τ(L), there are 2ω(L) eigenfunctions fφ, so by
dimension counting, the fφ form a basis. Finally, we derive a useful formula for 〈fφ, fφ〉:

(2.5) 〈fφ, fφ〉 =
∑

g1,g2∈G
φ(g1)φ(g2)〈Wg1f,Wg2f〉

=
∑

g1,g2∈G
φ(g1g2)〈Wg1g2f, f〉 = |G|

∑

g∈G
φ(g)〈Wgf, f〉.



A GENERALIZED CUBIC MOMENT AND THE PETERSSON FORMULA FOR NEWFORMS 9

Returning to Sk(L; f), by [ILS, Lemma 2.4] (which in turn follows closely a proof in [AU]),
we have

〈f|Wd
, f〉 = 〈f|Ad

, f〉 = λf(d)

ν(d)
d1/2〈f, f〉.

We endow the set of divisors d | L with the group structure (Z/(2Z))ω(L) and define characters
on it by φ(d) =

∏
p|d φ(p), where φ(p) is chosen to be +1 or −1 independently for each prime

divisor of L. In this way, we obtain

(2.6) 〈fφ, fφ〉 = |G|〈f, f〉
∑

d|L
φ(d)

λf(d)

ν(d)
d1/2 = τ(L)〈f, f〉

∏

p|L

(
1 +

φ(p)λf(p)p
1/2

ν(p)

)
.

All of the above inner products are 〈 , 〉N .

2.2. Dirichlet series of the basis of oldforms. To lend some support to the assertion
that our choice of basis of Sk(L; f) given above is natural, here we describe some pleasant
features of the Dirichlet series corresponding to these modular forms. Let λfφ(n) be the
Fourier coefficients of fφ and define

(2.7) D(fφ, s) =

∞∑

n=1

λfφ(n)

ns
.

The reader should beware that this is not a character twist of f , because φ is not a Dirichlet
character (in fact φ is only defined on the divisors of L). We show here that D(fφ, s) satisfies
a functional equation similar to that of a level N newform.

By a direct calculation with the Fourier expansion, we have

(2.8) λfφ(m) =
∑

u|(m,L)
φ(u)u1/2λf(m/u),

Therefore, we have

(2.9) D(fφ, s) = L(f, s)
∏

p|L

(
1 +

φ(p)

ps−1/2

)
.

Then define the “completed” Dirichlet series

(2.10) (N/π)s/2Γf(s)D(fφ, s) = Λ(f, s)Ls/2
∏

p|L

(
1 +

φ(p)

ps−1/2

)
,

where Γf(s) is the gamma factor associated to L(f, s) and Λ(f, s) = (M/π)s/2Γf(s)L(f, s).
This satisfies the functional equation Λ(f, s) = ǫfΛ(1 − f, s). Meanwhile, the secondary
factor satisfies

g(s) := Ls/2
∏

p|L

(
1 +

φ(p)

ps−1/2

)
=

∏

p|L

(
ps/2 + φ(p)p

1−s
2

)
= φ(L)g(1− s).

Therefore, D(fφ, s) satisfies the functional equation

(2.11) (N/π)
s
2Γf(s)D(fφ, s) = ǫfφ(L)(N/π)

1−s
2 Γf(1− s)D(fφ, 1− s).
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3. Manipulations with sums of Fourier coefficients

The goal of this section is to prove (1.16).
We begin by describing (1.11) for the basis chosen in Section 2.1. We have

(3.1) ∆N(m,n) = ck
∑

LM=N

∑

f∈H∗

k (M)

∑

φ

λfφ(m)λfφ(n)

〈fφ, fφ〉N
.

We therefore need to evaluate the inner sum over φ, namely
(3.2)

T (m,n) :=
∑

φ

λfφ(m)λfφ(n)

〈fφ, fφ〉N
=

1

τ(L)〈f, f〉N

∑

φ

λfφ(m)λfφ(n)
∏

p|L

(
1 +

φ(p)λf(p)p
1/2

ν(p)

)−1

,

where we have used (2.6). We multiply and divide by
∏

p|L(1−
φ(p)λf (p)p

1/2

ν(p)
), giving that

T (m,n) =
1

τ(L)ρf (L)〈f, f〉N

∑

φ

λfφ(m)λfφ(n)
∑

t|L

µ(t)φ(t)λf(t)t
1/2

ν(t)
,

where as in [ILS], we define

(3.3) ρf (L) =
∏

p|L

(
1− p

λf (p)
2

(p+ 1)2

)
.

The formula (2.8) implies

T (m,n) =
1

τ(L)ρf (L)〈f, f〉N

∑

φ

∑

u|(m,L)

∑

v|(n,L)
∑

t|L
φ(u)u1/2λf(m/u)φ(v)v

1/2λf(n/v)
µ(t)φ(t)λf(t)t

1/2

ν(t)
,

where we have used that λf(n) is real to remove the complex conjugate symbols. The sum
over φ detects if uvt is a square, precisely

∑

φ

φ(u)φ(v)φ(t) =

{
τ(L), if uvt = �,

0, otherwise.

Since u and v are square-free, and so is t, the condition uvt = � determines t uniquely,
namely

t =
uv

(u, v)2
=

u

(u, v)

v

(u, v)
.

One may compare this with Lemma 2.4 of [ILS]. Therefore, T (m,n) equals

(3.4)
1

ρf (L)〈f, f〉N

∑

u|(m,L)

∑

v|(n,L)
u1/2λf(m/u)v

1/2λf(n/v)
µ( uv

(u,v)2
)λf(

uv
(u,v)2

)( uv
(u,v)2

)1/2

ν( uv
(u,v)2

)
.
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To check this against [ILS], suppose that (m,n,N) = 1. This means ((m,L), (n, L)) =
(m,n, L) | (m,n,N) = 1, so in particular, (u, v) = 1. Hence

(3.5) T (m,n) =
1

ρf (L)〈f, f〉N

∑

u|(m,L)

µ(u)u

ν(u)
λf(u)λf(m/u)

∑

v|(n,L)

µ(v)v

ν(v)
λf(v)λf(n/v),

which equals

Af(m,L)Af (n, L)

ρf(L)〈f, f〉N
, where Af (m,L) :=

∑

u|(m,L)

µ(u)u

ν(u)
λf(u)λf(m/u),

as in [ILS, p.76]. In summary, if (m,n,N) = 1, then

(3.6) ∆N(m,n) = ck
∑

LM=N

∑

f∈H∗

k (M)

Af(m,L)Af (n, L)

ρf(L)ν(L)〈f, f〉M
.

From this we may quickly derive (2.48) of [ILS].
We continue with the calculation of ∆N (m,n), without the assumption (m,n,N) = 1.

Since f is on Γ0(M), we have 〈f, f〉N = ν(N)
ν(M)

〈f, f〉M = ν(L)〈f, f〉M . The formula (3.4)

shows

∆N (m,n) = ck
∑

LM=N

∑

f∈H∗

k(M)

1

ν(L)ρf (L)〈f, f〉M
∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)
λf

(m
u

)
λf

( u

(u, v)

)
λf

(n
v

)
λf

( v

(u, v)

)
.

Recall that the Hecke relation for a form of level M with trivial nebentypus is

λf (m)λf(n) =
∑

d|(m,n)
(d,M)=1

λf

(mn
d2

)
.

In our desired application, u and v divide L and (M,L) = 1, so any divisor of u or v is
automatically coprime to M . Using the Hecke relation, we then deduce

(3.7) ∆N(m,n) = ck
∑

LM=N

∑

f∈H∗

k(M)

1

ν(L)ρf (L)〈f, f〉M
∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

λf

( m

a2(u, v)

)
λf

( n

b2(u, v)

)
.

The tricky part of our analysis of ∆N(m,n) is to express ρf (L)
−1 in terms of Fourier

coefficients of f . We have

(3.8)
1

ρf(L)
=

∏

p|L

(
1− p

λf(p)
2

(p+ 1)2

)−1

=
∑

ℓ|L∞

ℓ
λ∗f(ℓ)

2

ν(ℓ)2
,
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where λ∗f(ℓ) is the completely multiplicative version of λf (n), that is,

λ∗f(ℓ) =
∏

pn||ℓ
λf(p)

n.

Using only the weak bound |λf(p)| ≤ pθ + p−θ with some θ < 1/2 shows that the product
and sum in (3.8) converge absolutely.

Define the Chebyshev coefficients cj,n by

(3.9) λf (p)
n =

n∑

j=0

cj,nλf(p
j),

where p is coprime to the level of f . Let Uk(x) denote the degree k Chebyshev polynomial
of the second kind (defined below). Then

xn =
n∑

j=0

cj,nUj

(x
2

)
,

where the cj,n can be written in various ways using that the Uj form a system of orthogonal
polynomials. Here the Uj can be defined concisely by the generating function

(1− 2yx+ x2)−1 =

∞∑

j=0

Uj(y)x
j.

For instance, since U4(x/2) = x4 − 3x2 + 1, U2(x/2) = x2 − 1, and U0(x) = 1, we get

x4 = U4(x/2) + 3U2(x/2) + 2U0(x/2).

An alternative formula is Uj(cos(θ)) =
sin((j+1)θ)

sin θ
. The orthogonality of the Uj implies that

(3.10) cj,n =

∫ π

0

Uj(cos θ)(2 cos θ)
n 2
π
sin2 θdθ.

We will develop some properties of the Chebyshev coefficients in Section 6.
With this notation in hand, we have for f a newform of level M with (ℓ,M) = 1, that

(3.11) λ∗f(ℓ) =
∏

pn||ℓ
(

n∑

j=0

cj,nλf(p
j)) =:

∑

d|ℓ
cℓ(d)λf(d),

where

cℓ(d) =
∏

pj ||d
cj,n,

and where pn||ℓ. Moreover, we have

(3.12)
1

ρf(L)
=

∑

ℓ|L∞

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)λf(d1)λf(d2).
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Inserting (3.12) into (3.7), we get

∆N (m,n) = ck
∑

LM=N

∑

ℓ|L∞

ℓ

ν(ℓ)2ν(L)

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

f∈H∗

k(M)

1

〈f, f〉M
λf (d1)λf(d2).

∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

λf

( m

a2(u, v)

)
λf

( n

b2(u, v)

)
.

Now we can use the Hecke relations one final time (again the divisors are coprime to M), to
give

∆N (m,n) = ck
∑

LM=N

∑

ℓ|L∞

ℓ

ν(ℓ)2ν(L)

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

f∈H∗

k(M)

1

〈f, f〉M
∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

e1|(d1, m
a2(u,v)

)

e2|(d2, n
b2(u,v)

)

λf

( md1
a2e21(u, v)

)
λf

( nd2
b2e22(u, v)

)
.

This is precisely the desired formula (1.16), after a rearrangement.

4. Inversion

In this section, we show how to deduce (1.14) from (1.16). We work in greater generality
than what is immediately required, which will be useful in Section 5. Suppose that F and
G are two arithmetic functions that we write in the form F (m,N), G(m,N) where N is a
positive square-free integer, and m = (m1, . . . , md) is a tuple of integers. We assume there
is a relation of the form

(4.1) F (m,N) =
∑

LM=N

∑

a|L∞

A(a,mL)G(α(a,mL)
m

mL
,M),

where: A is some multiplicative arithmetical function, mL denotes the part of m having
common factors with L, so mL | L∞ and (m/mL, L) = 1, and α is some integer-valued
multiplicative function having the property that α(pi1, . . . pik) | p∞ for all primes p. Fur-
thermore, a is shorthand for some tuple (a1, . . . , aJ), and the condition a | L∞ means that
ai | L∞ for all i = 1, . . . , J .

We can derive that F (m, 1) = G(m, 1) for all m, by taking N = 1 in (4.1). The main
topic of this section is to prove

Lemma 4.1. For square-free N we have the inversion formula

(4.2) G(m,N) =
∑

LM=N

µ(L)
∑

a|L∞

A(a,mL)F (α(a,mL)
m

mL
,M).

Now Lemma 4.1 implies Theorem 1.4 since (4.1) encompasses (1.16).

Proof. If N = 1, then (4.2) is true, by an easy calculation.
If N is prime, then again it is an easy calculation to solve for G in terms of F using (4.1),

giving (4.2) again.
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Now induct on the number of prime factors of N . We replace N by NP with P a prime
(whence (P,N) = 1), giving

F (m,NP ) = G(m,NP ) +
∑

LM=NP
L 6=1

∑

a|L∞

A(a,mL)G(α(a,mL)
m

mL

,M).

Since M has fewer prime factors than NP , we can use the induction hypothesis to give

F (m,NP ) = G(m,NP ) +
[ ∑

LM=NP
L 6=1

∑

a|L∞

A(a,mL)

×
∑

CD=M

µ(C)
∑

b|C∞

A(b,mC)F (α(b,mC)
α(a,mL)

m
mL

mC
, D)

]
.

Here we have used that (
α(a,mL)

m

mL

)
C
= mC ,

which follows from (L,C) = 1. Next we put back L = 1 and subtract it off again, giving

F (m,NP ) = G(m,NP )−
∑

CD=NP

µ(C)
∑

b|C∞

A(b,mC)F (α(b,mC)
m

mC

, D)

+
[ ∑

LM=NP

∑

a|L∞

A(a,mL)
∑

CD=M

µ(C)
∑

b|C∞

A(b,mC)F (α(b,mC)
α(a,mL)

m
mL

mC
, D)

]
.

We need to show that the term in square brackets equals F (m,NP ), since we can then solve
for G(m,NP ), giving (4.2). We have

[. . . ] =
∑

CDL=NP

µ(C)
∑

a|L∞

A(a,mL)
∑

b|C∞

A(b,mC)F (α(b,mC)
α(a,mL)

m
mL

mC
, D).

Using multiplicativity of A and α, and that (C,L) = 1, we get

[. . . ] =
∑

CDL=NP

µ(C)
∑

c|(LC)∞

A(c,mCL)F (α(c,mCL)
m

mCL

, D).

We can write this as

[. . . ] =
∑

D|NP

∑

c|(NP/D)∞

A(c,mNP/D)F (α(c,mNP/D)
m

mNP/D

, D)
∑

CL=NP/D

µ(C).

The inner sum over C gives D = NP , which simplifies as [. . . ] = F (m,NP ), as desired. �

5. Hybrid formulas

We desire a formula that is “intermediate” between ∆N (m,n) and ∆∗
N(m,n), in order

to capture the weights appearing in Theorem 1.1. See the discussion surrounding (1.5) for
motivation for this goal.

For square-free AB, define

(5.1) ∆̃A,B(m,n) = ck
∑

CD=B

∑

f∈H∗

k (AD)

1

ν(C)

1

ρf (C)

λf(m)λf(n)

〈f, f〉AD
.
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Note that ∆̃A,1(m,n) = ∆∗
A(m,n). Provided (mn,B) = 1, we have Af(m,C) = λf(m) for m

coprime to C, and then by (3.6) and we get ∆̃1,B(m,n) = ∆B(m,n). This discussion explains

why ∆̃A,B(m,n) interpolates between ∆AB(m,n) and ∆∗
AB(m,n), provided (mn,B) = 1.

Because of our application to the cubic moment problem, we are interested in the case
where qN is square-free, and (mn, q) = 1. In (3.7) we substitute N → Nq, and factor
L = LNLq with LN | N and Lq | q, giving

∆Nq(m,n) = ck
∑

LN |N

1

ν(LN )

∑

u|(m,LN )
v|(n,LN )

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

LNLqM=Nq
Lq |q

∑

f∈H∗

k (M)

λf (
m

a2(u,v)
)λf(

n
b2(u,v)

)

ν(Lq)ρf(Lq)ρf(LN )〈f, f〉M
.

Here we used that (mn,Lq) = 1 to simplify the divisiblity conditions. Next we use (3.12) on
1

ρf (LN )
, and use the Hecke relation again, giving now

∆Nq(m,n) =
∑

LN |N

∑

ℓ|L∞

N

ℓ

ν(LN )ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|(m,LN )
v|(n,LN )

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

e1|(d1, m
a2(u,v)

)

e2|(d2, n
b2(u,v)

)

ck
∑

Lq|q

∑

f∈H∗

k(
N
LN

q
Lq

)

λf(
md1

a2e21(u,v)
)λf(

nd2
b2e22(u,v)

)

ν(Lq)ρf(Lq)〈f, f〉 Nq
LNLq

.

With A = N/LN , B = q, C = Lq, and D = q/Lq, we can write the sum over Lq | q above as

∆̃N/LN ,q(m
′, n′), for m′ and n′ the obvious integers. Therefore, this shows

∆Nq(m,n) =
∑

LN |N

∑

ℓ|L∞

N

ℓ

ν(LN )ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|(m,LN )
v|(n,LN )

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
v
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

e1|(d1, m
a2(u,v)

)

e2|(d2, n
b2(u,v)

)

∆̃ N
LN

,q

( md1
a2e21(u, v)

,
nd2

b2e22(u, v)

)
.

At this point, we replace the condition LN | N by LM = N (i.e. rename LN by just L,
and then call M the complementary divisor). This gives

(5.2) ∆Nq(m,n) =
∑

LM=N

∑

ℓ|L∞

ℓ

ν(L)ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

e1|(d1, m
a2(u,v)

)

e2|(d2, n
b2(u,v)

)

∆̃M,q

( md1
a2e21(u, v)

,
nd2

b2e22(u, v)

)
.
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Now we fix q, and suppress it in the following notation. Set F (m,n,N) = ∆Nq(m,n), and

likewise G(m,n,N) = ∆̃N,q(m,n). Then the relation (5.2) is essentially the same formula
as (1.16), and, more precisely, is encompassed by (4.1). By Lemma 4.1, we therefore have
(recall (mn, q) = 1, and Nq is square-free)

(5.3) ∆̃N,q(m,n) =
∑

LM=N

µ(L)

ν(L)

∑

ℓ|L∞

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

e1|(d1, m
a2(u,v)

)

e2|(d2, n
b2(u,v)

)

∆Mq

( md1
a2e21(u, v)

,
nd2

b2e22(u, v)

)
.

6. Formulas and estimates with Chebyshev coefficients

We begin with a combinatorial evaluation of cj,n. From (3.10), combined with the formula

Uj(cos θ) =
sin((j+1)θ)

sin θ
, we have

(6.1) cj,n = 1
2

∫ π

−π
sin((j + 1)θ)(2 cos(θ))n 2

π
sin θdθ.

Writing everything in terms of eiθ, we get

cj,n =
1

π

1

(2i)2

∫ π

−π

( n∑

r=0

(
n

r

)
eiθ(n−2r))(ei(j+2)θ − eijθ − e−ijθ + e−i(j+2)θ

)
dθ.

At this point it is clear that cj,n = 0 if j 6≡ n (mod 2), so assume j ≡ n (mod 2). We also
see that cj,n = 0 if j > n. If j = n, then it is not hard to see that cn,n = 1, since the only
values of r for which the integral does not vanish are r = 0, and r = n. If j ≤ n − 2, then
we see that

(6.2) cj,n =

(
n
n+j
2

)
−

(
n

n+j
2

+ 1

)
,

which in fact agrees with cn,n too, since
(
n
n+1

)
= 0. One may find this sequence of Chebyshev

coefficients in the OEIS [O] which thereby leads to interesting connections. For instance, the
list (where we omit terms with j 6≡ n (mod 2))

c0,0, c1,1, c0,2, c2,2, c1,3, c3,3, c0,4, c2,4, c4,4, · · · = 1, 1, 1, 1, 2, 1, 2, 3, 1, 5, 4, 1, 5, 9, 5, 1 . . .

is the same as Catalan’s triangle ordered along diagonals in reverse order.
From (6.2), we deduce cj,n ≥ 0 for all j, n, and we have

(6.3)

n∑

j=0

cj,n =

{(
n
n/2

)
, n even,(

n
(n+1)/2

)
, n odd,

since the sum telescopes. Let δ ∈ {0, 1}, δ ≡ n (mod 2). Note that Stirling’s formula gives

(6.4)

(
n
n+δ
2

)
∼ 2n√

πn/2
.
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Lemma 6.1. Let cℓ(d) be as defined in Section 3, and suppose γ ≥ 0. Then
∑

d|ℓ
cℓ(d)d

γ ≤
∏

pn||ℓ
(p−γ + pγ)n.

Remark. For γ = 0, this bound is slightly worse than that implied by (6.3), in view of
(6.4).

Proof. We have

(6.5)
∑

d|ℓ
cℓ(d)d

γ =
∏

pn||ℓ

n∑

j=0

pγjcj,n,

so it suffices to show for x > 0 that

(6.6)

n∑

j=0

cj,nx
j ≤ (x−1 + x)n.

From (6.2), we obviously have that

(6.7) cj,n ≤
(
n
n+j
2

)
.

From this, we shall deduce (6.6), as we presently explain. On the one hand, we have from
(6.7) that

(6.8)
n∑

j=0

cj,nx
j ≤ xn +

(
n

n− 1

)
xn−2 + · · ·+

(
n
n+δ
2

)
xδ,

and on the other hand, we have

(6.9) (x−1 + x)n = xn +

(
n

n− 1

)
xn−2 + · · ·+

(
n
n+δ
2

)
xδ +

(
n

n+δ
2

− 1

)
xδ−2 + · · ·+ x−n.

In words, the positive powers of x appearing in (6.9) precisely match the upper bound on
(6.8). �

For later use, we require an estimate for the following expression:

(6.10) S(L, Y ) :=
∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2
(
∑

d|ℓ
cℓ(d)d

1/2)2.

Lemma 6.2. We have

(6.11) S(L, Y ) ≪ε Y
ετ(L).

Proof. Without the restriction ℓ ≤ Y , the estimate in Lemma 6.1 would barely fail to show
the sum converges, since

p(p−1/2 + p1/2)2

(1 + p)2
= 1.

However, using Rankin’s trick and Lemma 6.1 we obtain

S(L, Y ) ≤
∑

ℓ|L∞

(Y
ℓ

)ε
= Y ε

∏

p|L
(1− p−ε)−1 ≤ C(ε)Y ετ(L),
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where we have used the following:

(6.12)
∏

p|L
(1− p−ε)−1 ≤

( ∏

p|L
pε≥2

2
)( ∏

p|L
pε<2

(1− p−ε)−1
)
≤ τ(L)C(ε),

where C(ε) =
∏

p:pε<2(1− p−ε)−1. �

We will additionally need the following bound.

Lemma 6.3. Let cℓ(d) be as defined in Section 3. Then

(6.13)

∑
d|ℓ cℓ(d)

ν(ℓ)
≤ ℓ−

log(3/2)
log 2 = ℓ−0.5849....

Proof. By Lemma 6.1, we have

(6.14) ℓ
log(3/2)

log 2

∑
d|ℓ cℓ(d)

ν(ℓ)
≤

∏

pn||ℓ

( 2

(p+ 1)
p

log(3/2)
log 2

)n
.

Let

fδ(x) =
2xδ

x+ 1
,

where x ≥ 2 and 0 < δ < 1. If δ = log(3/2)
log 2

is such that fδ(x) is decreasing for x ≥ 2, and

fδ(2) ≤ 1, then this will show that the product on the right hand side of (6.14) is ≤ 1, which
suffices to prove the desired bound. It is easy to check with basic calculus that the desired
properties hold for fδ(x). �

Remark. The exponent occurring in (6.13) is mainly controlled by the powers of 2 dividing
ℓ. If ℓ = 2n, and n is even, then in fact

∑
d|ℓ cℓ(d) =

(
n
n/2

)
≍ 2n/n1/2, while ν(ℓ) = 3n, so

if ℓ = 2n then (6.13) is sharp up to the factor n−1/2 = (log2 ℓ)
−1/2. If ℓ has no small prime

divisors then the exponent can be improved.

Corollary 6.4. Let γ0 =
log(3/2)
log 2

− 1
2
= 0.0849625 . . . , and suppose ε > 0 is small. Then

(6.15)
∑

ℓ|L∞

ℓ>Y

ℓ1+ε

ν(ℓ)2
(
∑

d|ℓ
cℓ(d))

2 ≪ε Y
−2γ0+2ετ(L).

Proof. By Lemma 6.3, we have

ℓ1+ε

ν(ℓ)2
(
∑

d|ℓ
cℓ(d))

2 ≤ ℓε−2γ0 .

Then, we have by Rankin’s trick and (6.12), that
∑

ℓ|L∞

ℓ>Y

ℓ−2γ0+ε ≤ Y −2γ0+2ε
∑

ℓ|L∞

ℓ−ε = Y −2γ0+2ε
∏

p|L
(1− p−ε)−1 ≪ε Y

−2γ0+2ετ(L). �
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7. Approximate Petersson formulas

Our main Petersson formula, (1.14), has a technical problem arising from the fact that
the sum over ℓ | L∞ is not a finite sum. Iwaniec, Luo, and Sarnak encountered a similar
difficulty in [ILS]. The idea is to truncate the sum at some large parameter Y , and estimate
the tail trivially.

To this end, we begin with some simple bounds. Throughout this section we assume the
weight κ is fixed, and do not display any κ-dependence in the error terms. First, we claim
the crude bound

(7.1) |∆N(m,n)| ≪κ (m,N)1/2(n,N)1/2τ3(m)τ3(n),

for fixed weight κ.

Proof. We use (3.1). Using (2.8) and the Deligne bound, we have

|λfφ(m)| ≤
∑

u|(m,L)
u1/2τ(m/u) ≤ (m,L)1/2τ3(m) ≤ (m,N)1/2τ3(m).

Therefore, by the fact that λfφ(1) = λf(1) = 1, we have

|∆N (m,n)| ≤ (m,N)1/2(n,N)1/2τ3(m)τ3(n)∆N(1, 1).

One can then apply the Kloosterman sum formula for ∆N(1, 1) to show (e.g. see [ILS,
Corollary 2.3])

∆N(1, 1) = 1 +O
(τ(N)

N3/2

)
≪ 1. �

Now we state an approximate version of Theorem 1.4.

Theorem 7.1. Let γ0 =
log(3/2)
log 2

− 1
2
= 0.0849625 . . . , and suppose ε > 0 is small. We have

(7.2) ∆∗
N(m,n) =

∑

LM=N

µ(L)

ν(L)

∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

e1|(d1, m
a2(u,v)

)

e2|(d2, n
b2(u,v)

)

∆M

( md1
a2e21(u, v)

,
nd2

b2e22(u, v)

)
+O((mnNY )εNY −2γ0).

Proof. It suffices to bound the tail of the sum over ℓ, namely the terms with ℓ > Y . Using
(7.1), we have that the difference between ∆∗

N (m,n) and the main term sum on the right
hand side of (7.2) is

(7.3) ≪
∑

LM=N

1

ν(L)

∑

ℓ|L∞

ℓ>Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

1

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

e1|(d1, m
a2(u,v)

)

e2|(d2, n
b2(u,v)

)

(
M,

md1
a2e21(u, v)

)1/2(
M,

nd2
b2e22(u, v)

)1/2

τ3(md1)τ3(nd2).
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We use the weak bound (M,m′) ≤ M (for any integer m′), and use τ3(md1) ≪ (mℓ)ε, and
similarly for τ3(nd2), and trivially estimate the sums over u, v, a, b, e1, e2 to give that (7.3) is

≪ (mn)εN
∑

L|N

Lε

ν(L)

∑

ℓ|L∞

ℓ>Y

ℓ1+ε

ν(ℓ)2
(
∑

d|ℓ
cℓ(d))

2.

The desired bound then follows from Corollary 6.4. �

The same method of proof applies verbatim to ∆̃N,q(m,n):

Theorem 7.2. Suppose (mnN, q) = 1. We have

(7.4) ∆̃N,q(m,n) =
∑

LM=N

µ(L)

ν(L)

∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a|(m
u
, u
(u,v)

)

b|(n
v
, v
(u,v)

)

∑

e1|(d1, m
a2(u,v)

)

e2|(d2, n
b2(u,v)

)

∆Mq

( md1
a2e21(u, v)

,
nd2

b2e22(u, v)

)
+O((mnNY )εNY −2γ0).

In our desired application, we shall take Y to be a very large power of the level, in which
case the error term is very small. For this reason, we made no attempt to optimize the error
term.

8. Initial Structural Steps

8.1. Invariants of the twisted L-functions. We begin by calculating the root number and
conductor of L(f ⊗ χq, s), which is apparently somewhat difficult to locate in the literature.
Our proof of Theorem 1.1 does not require any formula for the root number of the twisted
L-function, but it is helpful for interpreting Corollary 1.2.

More generally, suppose that g is a weight κ newform of level N with trivial central
character. Also recall the definition of the Atkin-Lehner operators (2.1). Then g is an
eigenform for the Wd, and we write its eigenvalue as g|Wd

= ηd(g)g. Then the sign of the
functional equation for Λ(g, s) is given by iκηN(g). Since the Atkin-Lehner operators satisfy
g|Wd1

|Wd2
= g|Wd1d2

for (d1, d2) = 1, it suffices to consider the eigenvalues of Atkin-Lehner

operartors ηQ(g) where Q is a prime power dividing the conductor of g.
Let χq be a primitive quadratic Dirichelet character of conductor q = qoqe with qo odd

and qe a power of 2. Explicitly, χq(n) =
(
n
qo

)
χqe(n) where

(
n
qo

)
is the Jacobi symbol and

χqe(n) is either 1, χ4, χ8, or χ4χ8. Recall we set q̃ = rad(q) the largest square-free divisor of
q. Let f be a newform of square-free level rq′, where (r, q) = 1 and q′ | q̃. We also take q′′

to be such that q′′ | q′∞ and (q/q′′, q′) = 1. Let us write f ⊗χq = (f ⊗χq′′)⊗χq/q′′ . We have
by [ALi, Theorem 4.1] and e.g. [IK, Proposition 14.20] that f ⊗χq′′ and f ⊗χq are newforms
of conductors rq′′2 and rq2, respectively.

We have by Deligne [De, (5.5.1)] that for each p | r that

ηp(f ⊗ χq′′) = χq′′(p)ηp(f)

where in Deligne’s notation a(V ) = 1 by our square-free hypothesis on r and dim(V ) = 2.
We found the exposition by Pacetti [Pa] particularly helpful for these calculations. For each
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p | q′′ we write P for the power of p dividing q′′. Now we have

ηP 2(f ⊗ χq′′) = χP (−1),

by Atkin-Li Theorem 4.1 [ALi], and where we have written χq′′ =
∏

p|q′ χP . Therefore we
have shown that

ηrq′′2(f ⊗ χq′′) = ηr(f)χq′′(r)χq′′(−1).

Now by Section 3 of Li [Li] or Proposition 14.20 of [IK] we have since χq/q′′ is real that

ηrq2(f ⊗ χq) = χq/q′′(−rq′′2)ηrq′′2(f ⊗ χq′′)

= χq/q′′(−rq′′2)χq′′(r)χq′′(−1)ηr(f)

= χq(−r)ηr(f).

Note ηr(f) is the eigenvalue of the Atkin-Lehner operatorWr on f . In our case, f is of trivial
central character and square-free conductor rq′. In this case one can compute for each p | rq′
that

(8.1) ηp(f) = −p1/2λf(p),

for which see the proof of Theorem 2.1 of [ALi].
In summary, if we let ǫg denote the root number of a newform g, this shows

ǫf⊗χq =i
κχq(−r)µ(r)r1/2λf(r)

=χq(−r)µ(q′)q′1/2λf(q′)ǫf ,
(8.2)

where recall λf(n) is normalized to be bounded by the divisor function of n.
Now let

(8.3) ωf := cκ
1

ν(q̃/q′)ρf(q̃/q′)〈f, f〉rq′
,

where ρf was defined in (3.3), and ωf in particular satisfies

ωf = (rq)−1+o(1),

since by [ILS, Lemma 2.5] [HL] [Iw1] we have

〈f, f〉rq′ = (rq′)1+o(1).

Note that with these weights we have

∑

f∈H∗

κ(rq
′)

q′|q̃

ωfλf (m)λf(n) = ∆̃r,q̃(m,n),
(8.4)

where recall ∆̃r,q(m,n) was defined in (5.1).
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8.2. Approximate functional equation. Recall that our goal is the bound (1.1), which
we write as

(8.5) M(r, q) :=
∑

f∈H∗

κ(rq
′)

q′|q̃

ωfL(1/2, f ⊗ χq)
3 ≪ (qr)ε.

We have for Re(s) > 1 that L(s, f ⊗ χq) =
∑

n≥1
χq(n)λf (n)

ns and

L(s, f ⊗ χq)
2 =

∑

m≥1

∑

n≥1

λf(m)λf (n)χq(mn)

(mn)s
=

∑

m≥1

∑

n≥1

χq(mn)

(mn)s

∑

d|m
d|n

λf

(mn
d2

)

=
∑

d≥1

1

d2s

∑

m≥1

∑

n≥1

λf (mn)χq(mn)

(mn)s
=

∑

d≥1

∑

n≥1

τ(n)χq(n)λf (n)

(d2n)s
.

Then we have by standard approximate functional equations that

L(1/2, f ⊗ χq) = (1 + ǫf⊗χq)
∑

n≥1

λf(n)χq(n)

n1/2
V1

(
n

q
√
r

)
,

and

L(1/2, f ⊗ χq)
2 = 2

∑

d≥1

∑

m≥1

λf (m)τ(m)χq(m)

d
√
m

V2

(
d2m

rq2

)
,

where V1 and V2 are certain smooth functions of rapid decay. Therefore,
(8.6)

M(r, q) = 2
∑

f∈H∗

κ(R)
r|R|rq̃

ωf(1 + ǫf⊗χq)
∑

d,m,n≥1

λf (m)τ(m)λf (n)χq(mn)

d
√
mn

V1

(
n

q
√
r

)
V2

(
d2m

q2r

)
.

In (8.6), we may replace (1 + ǫf⊗χq) by 2, because if ǫf⊗χq = −1, then the other factor
L(1/2, f ⊗ χq)

2 vanishes anyway. Using this, and the notation (5.1), we derive

(8.7) M(r, q) = 4
∑

d≥1

1

d

∑

n≥1

∑

m≥1

τ(m)χq(mn)√
nm

V1

(
n

q
√
r

)
V2

(
d2m

q2r

)
∆̃r,q̃(m,n).

The contribution from m≫ r1+ε(q/d)2+ε or n≫ r1/2+εq1+ε is very small by trivial bounds.

8.3. Exercises with arithmetical functions. Equation (8.7) gives

(8.8) M(r, q) = 4
∑

d≥1

1

d
Br,q(α, β) +O((qr)−A),

where

Br,q(α, β) =
∑

m,n≥1

αmβn∆̃r,q̃(m,n),

with

(8.9) αm =
τ(m)χq(m)√

m
V2

(d2m
rq2

)
, βn =

χq(n)√
n
V1

( n

q
√
r

)
.

Now we work in more generality than what is required.
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Proposition 8.1. Let α and β be two sequences of complex numbers of rapid decay, and let
Y be some large power of qr. Then

(8.10) Br,q(α, β) =
∑

LR=r

µ(L)

ν(L)

∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|L
v|L

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a| u
(u,v)

b| v
(u,v)

∑

e1|d1
e2|d2

B′

+O(‖αmmε‖1‖βnnε‖1(rq)−100),

where

(8.11) B′ =
∑

m≥1

∑

n≥1

αau e1
(e1,

u
a(u,v)

)
mβbv e2

(e2,
v

b(u,v)
)
n∆Rq̃

(d1
e1

u

(u, ae1(u, v))
m,

d2
e2

v

(v, be2(u, v))
n
)

Proof. Using (7.4), and pulling the sums over m and n to the inside, we obtain

Br,q(α, β) =
∑

LR=r

µ(L)

ν(L)

∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|L
v|L

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a| u
(u,v)

b| v
(u,v)

∑

e1|d1
e2|d2

∑

m≡0 (mod au
e1

(e1,
u

a(u,v)
)
)

n≡0 (mod bv
e2

(e2,
v

b(u,v)
)
)

αmβn∆Rq̃

( md1
a2e21(u, v)

,
nd2

b2e22(u, v)

)

+O(
∑

m≥1

∑

n≥1

|αmmε||βnnε|(rq)1+εY −2γ0+ε),

where we have used the following elementary observations: we have
{
u|m
a|m

u

⇔ m ≡ 0 (mod au)

and for any integers a, b, x we have ax ≡ 0 (mod b) if and only if x ≡ 0 (mod b
(a,b)

) so that

m

a2(u, v)
≡ 0 (mod e1) ⇔

m

au

u

a(u, v)
≡ 0 (mod e1)

⇔ m

au
≡ 0 (mod

e1
(e1,

u
a(u,v)

)
) ⇔ m ≡ 0 (mod au

e1
(e1,

u
a(u,v)

)
).

We now make the change of variables

m 7→ au
e1

(e1,
u

a(u,v)
)
m n 7→ bv

e2
(e2,

v
b(u,v)

)
n,

which gives the desired formula. �

Continuing with our more general set-up, let γ1, γ2, δ1, δ2 be positive integers that divide
L∞, and set

(8.12) B′
γ1,γ2,δ1,δ2 =

∑

m,n≥1

αγ1mβγ2n∆Rq̃(δ1m, δ2n).



24 IAN PETROW AND MATTHEW P. YOUNG

In our application of interest, we have

(8.13) γ1 = au
e1

(e1,
u

a(u,v)
)
, γ2 = bv

e2
(e2,

v
b(u,v)

)
,

and

(8.14) δ1 =
d1
e1

u

(u, ae1(u, v))
, δ2 =

d2
e2

v

(v, be2(u, v))
.

We now use the α and β specific to our situation. In anticipation of some future maneu-
vers, we shall use a Hecke relation on the divisor function implicit in α, namely τ(γm) =∑

h|(γ,m) τ(γ/h)τ(m/h)µ(h). This gives (for an arbitrary function f such that the sums

converge absolutely)

∑

m≥1

αγmf(m) =
∑

m≥1

τ(γm)χq(γm)√
γm

V2

(d2γm
q2r

)
f(m)

=
χq(γ)√

γ

∑

h|γ

τ(γ
h
)µ(h)χq(h)√

h

∑

m≥1

χq(m)τ(m)√
m

V2

(d2γhm
q2r

)
f(hm).

With this, and by inserting the definition of β, we have

(8.15) B′
γ1,γ2,δ1,δ2

=
χq(γ1γ2)√

γ1γ2

∑

γ3|γ1

τ(γ1
γ3
)µ(γ3)χq(γ3)
√
γ3

B′′,

where

(8.16) B′′ =
∑

m,n≥1

χq(mn)τ(m)√
mn

V1

(
γ2n

q
√
r

)
V2

(d2γ1γ3m
q2r

)
∆Rq̃(δ1γ3m, δ2n).

Applying the Petersson formula (1.12), we obtain

B′′ = D′′ + 2πi−κS,
where

(8.17) D′′ =
∑

δ1γ3m=δ2n

χq(mn)τ(m)√
mn

V1

(
γ2n

q
√
r

)
V2

(d2γ1γ3m
q2r

)
,

and

(8.18) S =
∑

m,n≥1

χq(mn)τ(m)√
mn

V1

(
γ2n

q
√
r

)
V2

(d2γ1γ3m
q2r

)

×
∑

c≡0 (mod q̃R)

S(Am,Bn; c)

c
Jκ−1

(4π
√
ABmn

c

)
,

with

A = δ1γ3, B = δ2.

According to this, we write B′ = D′ + B′
S , and similarly, B = D + BS . It may be helpful to

record that c ≡ 0 (mod q̃R), that (qR, L) = 1, and that AB|L∞, so that (AB, qR) = 1.
Our main technical result in the rest of the paper is the following
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Proposition 8.2. With α and β as above, we have

S ≪
(√AB√

R
+

r3/4√
qR

)
(qr)ε.

From Proposition 8.2, we deduce bounds on B′
S , then BS . We have

B′
S ≪ 1√

γ1γ2

∑

γ3|γ1

1√
γ3

(√δ1δ2γ3√
R

+
r3/4

q1/2R

)
(qr)ε ≪

(√δ1δ2√
R

+
r3/4

q1/2R

) (qr)ε√
γ1γ2

.

Therefore, we get the following bound on BS :

BS ≪ (qr)ε
∑

LR=r

1

ν(L)

∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

×
∑

u|L
v|L

uv

(u, v)

|µ( uv
(u,v)2

)|
ν( uv

(u,v)2
)

∑

a| u
(u,v)

b| v
(u,v)

∑

e1|d1
e2|d2

(√δ1δ2√
R

+
r3/4

q1/2R

) 1√
γ1γ2

.

Note that
δ1
γ1

=
d1
e1

u

(u, ae1(u, v))

(e1,
u

a(u,v)
)

aue1
=

d1
e21a

2(u, v)
,

and so by symmetry
δ2
γ2

=
d2

e22b
2(u, v)

,

and thus ( δ1δ2
γ1γ2

)1/2

=
(d1d2)

1/2

e1e2ab(u, v)
.

We shall also use 1√
γ1γ2

≤ 1√
uv

≤ 1
(u,v)

. With these observations, we have

∑

a| u
(u,v)

b| v
(u,v)

∑

e1|d1
e2|d2

(√δ1δ2√
R

+
r3/4

q1/2R

) 1√
γ1γ2

≪ (qr)ε

(u, v)

((d1d2)1/2
R1/2

+
r3/4

q1/2R

)
.

The inner sum over u and v gives a divisor bound, so now we get

BS ≪ (qr)ε
∑

LR=r

1

ν(L)

∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

((d1d2)1/2
R1/2

+
r3/4

q1/2R

)
.

By Lemma 6.3, we bound the second part of this sum by

(qr)ε
r3/4

q1/2

∑

LR=r

1

ν(L)R

∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

≪ (qr)ε
r3/4

q1/2

∑

LR=r

1

ν(L)R

∑

ℓ|L∞

ℓ≤Y

ℓ−2γ0 ≪ q−1/2+εr−1/4+ε.
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Recalling the definition (6.10) and using Lemma 6.2 we have

BS ≪ (qr)ε
( ∑

LR=r

S(L, Y )

ν(L)R1/2
+ r−1/4q−1/2

)
≪ (qr)ε(r−1/2 + r−1/4q−1/2).

Finally, we have from (8.8) that

M(r, q) = M0(r, q) +O((qr)ε(r−1/4q−1/2 + r−1/2)),

where M0(r, q) is the contribution to M(r, q) from the diagonal term D. It is easy to see
that M0(r, q) ≪ (rq)ε, following the proof of the bounds on BS.

We summarize this discussion with

Corollary 8.3. Proposition 8.2 implies Theorem 1.1.

This is appealing because it lets us reduce the number of variables to consider from this
point onward.

8.4. Diagonal terms. In this section, we evaluate M0(r, q) which along with Proposition
8.2 leads to (1.6).

Recall the functions V1 and V2 which we now write as

Vi(y) =
1

2πi

∫

(2)

Wi(ui)y
−ui dui,

where

W1(u) = (2π)−u
Γ(u+ κ

2
)

Γ(κ
2
)u

, W2(u) = (2π)−2uΓ(u+
κ
2
)2

Γ(κ
2
)2u

.

Then recalling (8.8), (8.10), (8.15), and (8.17) we have that

M0(r, q) =

∫

(1)

∫

(1)

W1(u1)W2(u2)(q
2r)

u1
2
+u2ζ(1 + 2u2)ζq(1 + u1 + u2)

2Fr,q,Y (u1, u2)
4du1du2
(2πi)2

,

where

(8.19) Fr,q,Y (u1, u2) =
∑

LR=r

µ(L)

ν(L)

∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2)

∑

u|L
v|L

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑

a| u
(u,v)

b| v
(u,v)

∑

e1|d1
e2|d2

χq(γ1γ2)

γ
1/2+u2
1 γ

1/2+u1
2

∑

γ3|γ1

τ(γ1
γ3
)µ(γ3)χq(γ3)

γ
1/2+u2
3

ζq(1 + u1 + u2)
−2

∑

δ1γ3m=δ2n

χq(mn)τ(m)

m1/2+u2n1/2+u1
,

and where recall (8.13) for the definition of γ1, γ2.
Our plan is to shift the contours past the poles. We claim Fr,q,Y (u1, u2) is holomorphic in

the region Re(ui) = σi ≥ −1/2, for i = 1, 2, and satisfies the bound

(8.20) |Fr,q,Y (u1, u2)| ≪ (qr)ε.

Proof. By a simple argument with Euler factors, it is not hard to see that we have the bound

(8.21) ζq(1 + u1 + u2)
−2

∑

δ1γ3m=δ2n

χq(mn)τ(m)

m1/2+u2n1/2+u1
≪ (qr)ε,

and that the left hand side of (8.21), and hence Fr,q,Y , is holomorphic in the desired region.



A GENERALIZED CUBIC MOMENT AND THE PETERSSON FORMULA FOR NEWFORMS 27

Using divisor-type bounds on the inner sums, we have

|Fr,q,Y (u1, u2)| ≪ (qr)ε
∑

LR=r

1

ν(L)

∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2).

By Lemma 6.3, we have
∑

ℓ|L∞

ℓ≤Y

ℓ

ν(ℓ)2

∑

d1,d2|ℓ
cℓ(d1)cℓ(d2) ≪ 1,

and hence (8.20) follows. �

The proof given above, combined with Corollary 6.4, shows that Fr,q,Y = limY→∞ Fr,q,Y +
O((qr)εY −2γ0+2ε), so for the rest of the calculation of M0(r, q) we take Y = ∞, and define
Fr,q = limY→∞ Fr,q,Y .

Rather than attempting to obtain the strongest error term, we take the easiest path that
gives some power saving. We begin by taking σ1 = 1/2 + ε, and σ2 = 1/2. Next we shift u2
to the line σ2 = −1/2, crossing a double pole at u2 = 0 only. On the new line, we have

∫

(σ1)

∫

(σ2)

|W1(u1)W2(u2)(q
2r)u1/2+u2ζq(1 + u1 + u2)

2ζ(1 + 2u2)Fr,q(u1, u2)||du1du2|

≪ (rq2)−1/4+ε.

Some thought shows that

(8.22) Resu2=0W2(u2)(q
2r)u2ζq(1 + u1 + u2)

2ζ(1 + 2u2)Fr,q(u1, u2)

= Fr,q(u1, 0)P1(log q
2r)ζ2(1+u1)+cζ

′(1+u1)ζ(1+u1)Fr,q(u1, 0)+c
′ζ2(1+u1)F

(0,1)
r,q (u1, 0),

where c, c′ are constants and P1 is a degree 1 polynomial.
The residue is now a single integral over u1, and we shift this contour to σ1 = −1/2 + ε.

The new integral is bounded by (q2r)−1/4+ε, again. The residue at u1 = 0 takes the form

(8.23) Rr,q :=
∑

0≤i≤2
0≤j≤1

Pi,j(log q
2r)F (2−i,1−j)

r,q (0, 0),

where Pi,j is a polynomial of degree ≤ i+ j.
Gathering this discussion together, we have shown

M0(r, q) = Rr,q +O((q2r)−1/4+ε).

It would be better to study the main terms in the style of [CFKRS] using shifts, which for
brevity we leave for another occasion.

8.5. Dyadic subdivisions. We return to estimating S defined by (8.18). Next, we open
the divisor function τ(m) =

∑
n1n2=m

1 and apply a dyadic partition of unity to the sums
over n1, n2, n = n3, and c. This gives

S ≪
∑

N1,N2,N3,C

1

(N1N2N3)1/2C
|SN1,N2,N3,C |+ (qr)−10,
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where N1, N2, N3, C run over dyadic numbers and where

(8.24) SN1,N2,N3,C =
∑

c≡0 (mod q̃R)

wC(c)

∑

n1,n2,n3≥1

χq(n1n2n3)S(An1n2, Bn3; c)Jκ−1

(4π
√
ABn1n2n3

c

)
wN1,N2,N3(n1, n2, n3).

Here the weight functions wC(x) and wN1,N2,N3(x1, x2, x3) satisfy

w
(j)
C (x) ≪ x−j , w

(j1,j2,j3)
N1,N2,N3

(x1, x2, x3) ≪ x−j11 x−j22 x−j33 ,

and are supported on x ≍ C, xi ≍ Ni, i = 1, 2, 3.
By the Weil bound, and using Jκ−1(x) ≪ x, the contribution to S from c ≥ C is

≪ (qr)ε√
N1N2N3C

(√ABN1N2N3

C

)C3/2

qR
N1N2N3 =

√
ABN1N2N3

C1/2qR
(qr)ε.

This is satisfactory for Proposition 8.2 for C ≫ (N1N2N3)2

q2R
. Thus we may restrict the variables

by

(8.25) qR≪ C ≪ (N1N2N3)
2

q2R
, N1N2 ≪

(q2r)1+ε

d2γ1γ3
, N3 ≪

(qr1/2)1+ε

γ2
.

Let us also write

(8.26) SN1,N2,N3,C =
∑

c≡0 (mod q̃R)

wC(c)S ′
N1,N2,N3,c

.

8.6. Poisson summation. Let [c, q] = lcm(c, q). We have

(8.27) S ′
N1,N2,N3,c =

∑

m1,m2,m3∈Z
GA,B(m1, m2, m3; c)K(m1, m2, m3; c),

where

(8.28) GA,B(m1, m2, m3; c)

=
1

[c, q]3

∑

x1,x2,x3 (mod [c,q])

χq(x1x2x3)S(Ax1x2, Bx3; c)e
(x1m1 + x2m2 + x3m3

[c, q]

)
,

and

(8.29) K(m1, m2, m3; c)

=

∫

R3

Jκ−1

(4π
√
ABt1t2t3
c

)
e
(−m1t1 −m2t2 −mt3

[c, q]

)
wN1,N2,N3(t1, t2, t3)dt1dt2dt3.

When A = B = 1 and q is odd and square-free, this is precisely as in [CI] (though the reader
should be aware of our slightly different scaling of G by [c, q]−3), so this appears at first
glance to be a fairly minor generalization of their work, however the calculations become
rather intricate.
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9. Arithmetic Part

Let (ǫ1, ǫ2, ǫ3) ∈ {±1}3, δ = 1, 2, 4, or 8, and write qe for the even part of q. Let
(9.1)

Z
(ǫ1,ǫ2,ǫ3)
δ,R,q (s1, s2, s3, s4) =

∑

ǫimi≥1
i=1,2,3

∑

c≡0 (mod Rq̃)
(c,qe)=δ

cqGA,B(m1, m2, m3; c)eAB[c,q]3/c2(−m1m2m3)

|m1|s1|m2|s2|m3|s3( c
Rq̃
)s4

.

One of the key ingredients of the Conrey-Iwaniec method (when A = B = 1 and q is odd)
is that the additive character eAB[c,q]3/c2(−m1m2m3) nicely combines with G(m1, m2, m3; c),
allowing for an efficient decomposition into multiplicative characters.

To avoid over-burdening the already burdened notation we only give proofs in the case
(ǫ1, ǫ2, ǫ3) = (1, 1, 1) and denote this case simply Zδ,R,q, the other cases being treated similarly.
We also assume (AB) ≪ (qr)L for some fixed but possibly large L > 0 so that (AB)ε ≪
(qr)ε

′

.
The main goal of this section is the following proposition.

Proposition 9.1. For each choice of (ǫ1, ǫ2, ǫ3) and δ there is a decomposition Zδ,R,q =

Z
(ǫ1,ǫ2,ǫ3)
δ,R,q (s1, s2, s3, s4) = Z0 + Z ′, where Z0 and Z ′ have the following properties. Here Z0 is

analytic in Re(si) ≥ 1 + σ for i = 1, 2, 3, 4, σ > 0 and in this region it satisfies the bound

(9.2) Z0 ≪σ,ε
(qr)ε

AB
.

The function Z ′ is analytic for Re(si) ≥ 1
2
+σ for i = 1, 2, 3, 4, any σ > 0, and in this region

satisfies the bound

(9.3) |Z ′| ≪σ,ε q
3/2(AB)1/2(qr)ε

4∏

j=1

(1 + |sj|)1/4+ε.

Moreover, if sj = 1/2 + ε+ i(yj + t) for j = 1, 2, 3, s4 = 1/2 + ε+ i(y4 − t), and yj ≪ (qr)ε

for j = 1, 2, 3, 4, then we have

(9.4)∫

|t|≤T
|Z ′(1/2 + ε+ i(y1 + t), 1/2 + ε+ i(y2 + t), 1/2 + ε+ i(y3 + t), 1/2 + ε+ i(y4 − t))|dt

≪ q3/2(AB)1/2T (qrT )ε.

We begin by reducing the evaluation of GAB into cases. First, write c = c1c2 with
c2|(AB)∞, and (c1, AB) = 1. As r = RL is square-free and (r, q) = 1 we have (qR,AB) = 1,
hence (qR, c2) = 1. By a calculation with the Chinese remainder theorem, we have
(9.5)

GA,B(m1, m2, m3; c1c2) = χq(AB)G1,1(m1, m2, ABc2m3; c1)GA,B(m1, m2, [c1, q]
3
c21m3; c2).

Write q = qoqe where qo is odd and qe ∈ {1, 4, 8}. We further decompose c1 by c1 = coce
where co is odd and ce is a power of 2. Another short calculation with the Chinese remainder
theorem shows

(9.6) G1,1(ℓ1, ℓ2, ℓ3; coce) = G1,1(ℓ1, ℓ2, ceℓ3; co)G1,1(ℓ1, ℓ2, coℓ3; ce).
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Next we evaluate the three types of GA,B sums in a form most relevant for our further
calculations. The case with modulus co was derived by [CI, §10]. Following the notation
found in [CI], write

co = qoso.

Lemma 9.2 (Conrey and Iwaniec). We have for qo, so ∈ N with (qo, 2) = 1 that

(9.7) coqoe
(−a1a2a3

co

)
G1,1(a1, a2, a3; co) =

∑

D1D2hk=qo
h=(qo,so)

k=(a1a2a3,qo)
(h,a2a3)=1

1

ϕ(D2)

∑

ψ (mod D2)

gD1,D2,h,k,ψψ(a1a2a3)ψ(so)Rk(a1)Rk(a2)Rk(a3),

where Rk(n) = S(n, 0; k) is the Ramanujan sum, and g is some function satisfying

(9.8) |gD1,D2,h,k,ψ| ≪ D
3/2+ε
2 ,

and where in addition we must have (a3, so) = 1, otherwise G vanishes. In case ψ is principal,
then |gD1,D2,h,k,ψ| ≪ Dε

2.

Conrey and Iwaniec in fact give a more precise formula that we describe within the proof.
Next we evaluate the case with modulus c2|(AB)∞.

Lemma 9.3. Suppose c2|(AB)∞. Suppose that a1a2a3 6= 0 and write ai = uivi where
(ui, AB) = 1 and vi|(AB)∞. Then

(9.9) c2e
(−a1a2a3

c2AB

)
GA,B(a1, a2, a3, c2) = δ((A, c2)|v1)δ((A, c2)|v2)δ((B, c2)|v3)

×
∑

g1g2| c2
(A,c2)

g1=(
v1

(A,c2)
,

c2
(A,c2)

)

g2=(
v2

(A,c2)
,

c2
g1(A,c2)

)

∑

D| c2AB

(c2,A)2(c2,B)

1

ϕ(D)

∑

η (mod D)

γv1,v2,g1,g2,c2,A,B,D,ηη(u1u2u3),

were γ is some function satisfying the bound

(9.10) |γv1,v2,g1,g2,c2,A,B,D,η| ≪ (A, c2)(B, c2)D
1/2.

In case η is principal then with A = (A, c2)A
′ and B = (B, c2)B

′, we have

(9.11)
|γ|
D

≪ (qr)ε(A, c2)(B, c2)
( v1v2v3
(A,c2)2(B,c2)

, A′B′)

A′B′ .

Again the point is that we get a short linear combination of multiplicative functions.
Finally, we consider the case of ce. For this, we have

Lemma 9.4. Suppose ce is a power of 2. Suppose a1a2a3 6= 0 and write each ai = eifi where
ei is a power of 2, and fi is odd. Then

(9.12) qecee
( −a1a2a3
[ce, qe]3/c2e

)
G1,1(a1, a2, a3, ce) =

∑

∆|64

1

ϕ(∆)

∑

χ (mod ∆)

ge1,e2,e3,qe,ce,χ,∆χ(f1f2f3),

where g is bounded by an absolute constant.
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As in the previous two cases, we have a much more precise formula for G1,1, which we
shall describe within the proof.

Proof of Lemma 9.2. First we note that our G1,1 is scaled differently from G defined by [CI],
precisely G1,1(a1, a2, a3; co) = c−3

o G(a1, a2, a3; co), as in [CI, (8.2)]. In the notation of [CI],
make the definitions co = qoso, h = (qo, so), k = (a1a2a3, q), D = qo

hk
. The sum G1,1 vanishes

unless (h, a2a3) = 1 and (s0, a1) = 1, in which case by [CI, Lemma 10.2], we have

(9.13) G1,1(a1, a2, a3; co) = e
(a1a2a3

co

)hχkD(−1)

coqoφ(k)
Rk(a1)Rk(a2)Rk(a3)H(sohka1a2a3;D).

We do not need the exact formula for H , but rather the fact that it essentially depends on
the variables as a block, and the decomposition into character sums. Specifically, Conrey
and Iwaniec [CI, (11.7), (11.9)] showed

(9.14) H(w;D) =
∑

D1D2=D

µ(D1)χD1(−1)H∗(D1w;D2),

and

(9.15) H∗(w;D2) =
1

ϕ(D2)

∑

ψ (mod D2)

τ(ψ)g(χD2, ψ)ψ(w).

The crucial fact about g(χD2, ψ) is that

(9.16) |g(χD2, ψ)| ≪ D1+ε
2 ,

which requires the Riemann Hypothesis for varieties, i.e., Deligne’s bound.
From here it is a matter of bookkeeping to derive (9.7).
In case ψ = ψ0 is the principal character, then |g(χD2, ψ0)| ≤ d(D2) (the divisor function)

and τ(ψ0) = µ(D2). Indeed, one may show that if ψ = ψ0 is the principal character modulo
an odd prime p, then g(χp, ψ0) = 2 if p ≡ 1 (mod 4), and = 0 if p ≡ 3 (mod 4). Furthermore,
g(χq, ψ0) is multiplicative in q.1 �

Proof of Lemma 9.3. We will evaluate GA,B in precise terms. Since c2|(AB)∞ and (q, AB) =
1, the quadratic character is not present in the sum, and specifically we have

GA,B(a1, a2, a3; c2) =
1

c32

∑∗

u (mod c2)

∑

x1,x2,x3 (mod c2)

e
(Ax1x2u+Bx3u+ x1a1 + x2a2 + x3a3

c2

)
.

Summing over x1, we detect the congruence Ax2u ≡ −a1 (mod c2), while the sum over x3
detects Bu ≡ −a3 (mod c2). Therefore,

GA,B(a1, a2, a3; c2) =
1

c2

∑∗

Bu≡−a3 (mod c2)

∑

Ax2u≡−a1 (mod c2)

e
(x2a2
c2

)
.

Note that Bu ≡ −a3 (mod c2) and Ax2u ≡ −a1 (mod c2) are solvable if and only if

(9.17) (B, c2) = (a3, c2), and (A, c2)|a1.
By symmetry, we expect that in addition that we will require (A, c2)|a2, and indeed we will
recover this condition later in the analysis. From now on, we assume the conditions (9.17)
hold, otherwise the sum is 0.

1This corrects a claimed formula for g(χq, ψ0) of [CI, p.1212].
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Next we make the definitions

A = (A, c2)A
′, B = (B, c2)B

′, c2 = (B, c2)c
′
2, a3 = (a3, c2)ã3.(9.18)

Now the congruence Bu ≡ −a3 (mod c2) is equivalent to u ≡ −B′ã3 (mod c′2). Next write
x2 = −A′ a1

(A,c2)
u+ c2

(A,c2)
t with t running mod (A, c2). Inserting this into the exponential sum,

we obtain

GA,B(a1, a2, a3; c2) =
1

c2

∑∗

u (mod c2)

u≡−B′ã3 (mod c′2)

∑

t (mod (A,c2))

e
(a2(−A′ a1

(A,c2)
u+ c2

(A,c2)
t)

c2

)
.

The sum over t vanishes unless (A, c2)|a2, in which case we obtain

GA,B(a1, a2, a3; c2) =
(A, c2)

c2

∑∗

u (mod c2)

u≡−B′ã3 (mod c′2)

e
(−A′ a1

(A,c2)
a2

(A,c2)
u

c2
(A,c2)

)
.

To proceed further, we make some additional definitions, namely

g1 =
( a1
(A, c2)

,
c2

(A, c2)

)
, a1 = g1(A, c2)ã1, g2 =

( a2
(A, c2)

,
c2

g1(A, c2)

)
,

a2 = g2(A, c2)ã2, c′′2 =
c2

(A, c2)g1g2
.

Thus (ã1,
c2

g1(A,c2)
) = 1, and (A′ã1ã2, c

′′
2) = 1, and with this notation the formula becomes

GA,B(a1, a2, a3; c2) =
(A, c2)

c2

∑∗

u (mod c2)

u≡−B′ã3 (mod c′2)

e
(−A′ã1ã2u

c′′2

)
.

The tricky part in the analysis is that there is no apparent divisibility relationship between
c′2 =

c2
(B,c2)

and c′′2 = c2
(A,c2)g1g2

, and so it is necessary to proceed by cases. Although it is not

globally true that c′2|c′′2, or vice versa, we may factor the moduli corresponding to which
prime power of c′2 or c′′2 is larger, which motivates the forthcoming factorization. For p a
prime and n a nonzero integer, define νp(n) = d if pd||n. Then we set c2 = czcfcg where

cz =
∏

pβ ||c2
1≤νp(c′2)<νp(c′′2 )

pβ, cf =
∏

pβ ||c2
νp(c′′2 )≤νp(c′2)

pβ, cg =
∏

pβ ||c2
νp(c′2)=0
νp(c′′2 )≥1

pβ.

According to this factorization, we also write c′2 = c′zc
′
fc

′
g and c

′′
2 = c′′zc

′′
fc

′′
g where c

′
∗ = (c∗, c

′
2)

and c′′∗ = (c∗, c
′′
2) with ∗ = z, f, g. Note from the definitions that cz, cf , cg are all pairwise

relatively prime, and also that c′′f |c′f , and c′g = 1.
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Using the Chinese remainder theorem, we factor GA,B as

GA,B(a1, a2, a3; c2) =
(A, c2)

c2

∑∗

ue (mod cz)

ue≡−B′ã3 (mod c′z)

e
(−A′ã1ã2ue(cfcg)cfcg

c′′zc
′′
fc

′′
g

)

∑∗

uf (mod cf )

uf≡−B′ã3 (mod c′f )

e
(−A′ã1ã2uf(czcg)czcg

c′′zc
′′
fc

′′
g

) ∑∗

ug (mod cg)

ug≡−B′ã3 (mod c′g)

e
(−A′ã1ã2ug(czcf)czcf

c′′zc
′′
fc

′′
g

)
.

Let us examine each of these three sums in turn. We begin by writing the sum over ue more
suggestively as follows:

∑∗

u (mod cz)

u≡−B′ã3 (mod c′z)

e
(−A′ã1ã2u(

cfcg
c′′f c

′′
g
)cfcg

c′′z

)
.

For each prime p dividing cz, we have p|c′z, and p| c
′′

z

c′z
. Therefore, we may write u = −B′ã3+c

′
zt,

where t runs over all residues classes modulo c′′z/c
′
z. But then the sum over t vanishes, because

the factor in the numerator is relatively prime to the denominator. Thus we obtain that G
vanishes unless cz = 1. We henceforth make this assumption in the next computations of
the cf and cg moduli sums.

For the sum over uf (mod cf), since c
′′
f |c′f , the congruence uniquely determines uf modulo

c′′f , so we get, using (cg/c
′′
g)cg = c′′g :

∑∗

u (mod cf )

u≡−B′ã3 (mod c′f )

e
(−A′ã1ã2ucgcg

c′′fc
′′
g

)
= e

(A′B′ã1ã2ã3c′′g
c′′f

) ∑∗

u (mod cf )

u≡−B′ã3 (mod c′f )

1.

We also have ∑∗

u (mod cf )

u≡−B′ã3 (mod c′f )

1 =
ϕ(cf )

ϕ(c′f )
,

as can be checked as follows. Firstly, we see that both sides of the purported identity are
multiplicative, so it suffices to check this on prime powers. If c′f = 1, then the identity follows

easily. If c′f = pβ
′

, and cf = pβ, and β ′ ≥ 1, then the left hand side is pβ−β
′

= ϕ(pβ)

ϕ(pβ′)
, as

desired.
Finally, we examine the sum modulo cg. We have c′g = 1 (directly from the definition,

as remarked earlier), so the congruence condition is vacuous. The sum then simplifies as
Rcg(

cg
c′′g
), using that cf and everything else in the numerator in the exponential is relatively

prime to cg.
Putting all these calculations together, we have shown that if c2 = cfcg, (B, c2) = (m3, c2),

and (A, c2) | (m1, m2), then

(9.19) GA,B(a1, a2, a3; c2) =
(A, c2)

c2
Rcg

(cg
c′′g

)ϕ(cf )
ϕ(c′f )

e
(A′B′ã1ã2ã3c′′g

c′′f

)
,

and otherwise GA,B vanishes.
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To estimate this expression for G, we have c′f = (c′2, cf ) = ( c2
(B,c2)

, c2
cg
) and cg | (B, c2), so

in fact c′f =
c2

(B,c2)
= c′2. Then

(9.20)
∣∣∣Rcg

(
cg
c′′g

) ∣∣∣ϕ(cf)
ϕ(c′f)

≤ ϕ(cg)
ϕ(cf)

ϕ(c′f)
=

ϕ(c2)

ϕ(c2/(c2, B))
≤ (B, c2).

Our goal now is to use Dirichlet characters to decompose ec2(−a1a2a3)GA,B(a1, a2, a3).
Switching to the new notation used in (9.19), we have

e
(−a1a2a3

ABc2

)
= e

(−ã1ã2ã3
A′B′c′′fc

′′
g

)
,

and by reciprocity, we have

c2e
(−a1a2a3

ABc2

)
GA,B(a1, a2, a3) = (A, c2)Rcg

(cg
c′′g

)ϕ(cf )
ϕ(c′f )

e
(−ã1ã2ã3c′′f

c′′gA
′B′

)
.

Let

g3 = (ã1ã2ã3, c
′′
gA

′B′).

Then we have

c2e
(−a1a2a3

ABc2

)
GA,B(a1, a2, a3)

= (A, c2)Rcg

(cg
c′′g

)ϕ(cf)
ϕ(c′f)

1

ϕ
(
c′′gA

′B′

g3

)
∑

η (mod
c′′gA′B′

g3
)

τ(η)η(−ã1ã2ã3c′′f).

Finally, we argue that this expression is of the desired form for Lemma 9.3. Recall we
write ai = uivi where (ui, AB) = 1 and vi|(AB)∞. As originally written, the gi depend on
the ai, but in fact they only depend on the vi since the gi are divisors of c2, and c2|(AB)∞.
By writing the dependence of the gi on the vi explicitly as summation conditions, we see the
presence of the first sum in (9.9). A careful scrutiny of the changes of variables throughout
the proof shows that the variables cg, c

′′
g , cf , c

′
f , A

′, B′, g3 are functions of c2, the vi and g1, g2,
and are independent of the ui. We may also extract from ã1ã2ã3 the factor u1u2u3. We
obtain the bound on γ by (9.20), and using the standard bound on the Gauss sum. We note
that

c′′gA
′B′

g3
|c′′2A′B′, and c′′2A

′B′| c2AB

(A, c2)2(B, c2)
,

which gives the divisibility condition on D.
The only remaining statement to prove is (9.11). In this case, the Gauss sum is bounded

by 1, and by (9.20) we have

(A, c2)
∣∣∣Rcg

(cg
c′′g

)∣∣∣ϕ(cf)
ϕ(c′f)

1

ϕ
(
c′′gA

′B′

g3

) ≪ (qr)ε(A, c2)(B, c2)
g3

c′′gA
′B′ .

By tracing back the definitions, we see that

g3 = (
v1v2v3

g1g2(A, c2)2(B, c2)
, c′′gA

′B′) ≤ c′′g(
v1v2v3

(A, c2)2(B, c2)
, A′B′),

which implies the bound (9.11). �
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Proof of Lemma 9.4. Now we evaluate G1,1(a1, a2, a3, ce). To do so we break into cases. First
assume that qe ∤ ce. Under the condition qe ∤ ce there are only finitely many possibilities for
qe, ce, a1, a2, a3. A brute force computation with SAGE then shows that if ce = 1, 2 then

G1,1(a1, a2, a3, ce) =
1

q2e
χqe(−1)τ(χqe)χqe(a1a2a3),(9.21)

and if qe = 8 and ce = 4 then

G1,1(a1, a2, a3, ce) =
1

32
χqe(−1)τ(χqeχ4)χqeχ4(a1a2a3).(9.22)

Now we assume that qe | ce. We write ce = qese where se is a power of 2. Following the same
steps as [CI, Section 10] we have that if qe | ce then

(9.23) G1,1(a1, a2, a3, ce) =
δ(a3,se)=1χqe(−1)

q2ese
e

(
a1a2a3
ce

)
Hse(a1, a2, a3, qe),

where Hs is defined in [CI, (10.2)]. Assume now both qe | ce and qe | se (so that in fact
q2e | ce). Following the proof of Lemma 10.1 of [CI] we find in this case that

Hse(a1, a2, a3, qe) = χqe(a1a2a3)
2τ(χqe)

2.(9.24)

Having dealt with this case, we may now assume that qe | ce and qe ∤ se. Now there are only
finitely many choices for qe, ce, a1, a2, a3 which permits us to conclude the following lemma
by another SAGE computation.

Lemma 9.5. Suppose that qe | ce and let se = ce/qe. If se = 1 we have

Hse(a1, a2, a3, qe) =





1
2
Rqe(a1)Rqe(a2)Rqe(a3) if qe = 4

1
4
Rqe(a1)Rqe(a2)Rqe(a3) if qe = 8 and 4|a1, a2, a3,

16iχ4

(
a1a2a3

8

)
if qe = 8 and 2||a1, a2, a3,

0 otherwise.

(9.25)

If 2 | se then

Hs(a1, a2, a3, qe) =





χqe(a1a2a3)
2τ(χqe)

2 if qe | se
−χqe(a1a2a3)2τ(χqe)2 if 2se = qe
iτ(χqe)

2χ4(a1a2a3) if se = 2 and qe = 8.

(9.26)

If qe | ce then the additive character on the left hand side of Lemma 9.4 cancels identically
with the additive character appearing in (9.23). On the other hand, if qe ∤ ce then the additive
character e[ce,qe]3/c2e(−a1a2a3) = eq3e/c2e(−a1a2a3) must be expressed in terms of multiplicative
characters. Recall, if a1a2a3 6= 0 we factor ai = eifi with ei a power of 2 and fi odd. We
have

(9.27) eq3e/c2e(−a1a2a3) =
1

ϕ(q3e/c
2
e(q

3
e/c

2
e, a1a2a3))

∑

θ (mod
q3e

c2e(q
3
e/c

2
e,a1a2a3)

)

τ(θ)θ(−f1f2f3),

where by convention we take θ (mod 1) to be identically 1.
Having computed G1,1(a1, a2, a3, ce) we now argue that the resulting expressions are of the

desired form for Lemma 9.4. In similar fashion to the proof of Lemma 9.3, note that for
each fixed qe, ce we have that ceqeG

′(a1, a2, a3, ce) is of the form (9.12) by inspecting (9.27),
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(9.21), (9.22), (9.25) and (9.26). Now allowing the function g to depend on qe, ce and seeing

that q3e
c2e(q

3
e/c

2
e,a1a2a3)

| 64 in all cases, we conclude the statement of Lemma 9.4. �

Proof of Proposition 9.1. Let

G′
A,B(m1, m2, m3; c) = GA,B(m1, m2, m3; c)e

(−m1m2m3

[c, q]3/c2

)
.

Then by (9.5) and (9.6) we have

cqG′
A,B(m1, m2, m3; c) = χq(AB)coqoG

′
1,1(m1, m2, ABc2cem3; co)

×c2G′
A,B(m1, m2, co[ce, qe]

3
c2em3, ; c2)ceqeG

′
1,1(m1, m2, ABc2com3, ce).

Now we factor mi = m′
im

′′
i , where (m′

i, AB) = 1 and m′′
i | (AB)∞, and then further factor

m′
i = mo

im
e
i where m

o
i is odd and me

i is a power of 2. By Lemmas 9.2, 9.3, and 9.4, we have

(9.28)

cqG′
A,B(m1, m2, m3; c) = δ((A, c2) | (m′′

1, m
′′
2))δ((B, c2) | m′′

3)
∑

g1g2| c2
(A,c2)

g1=(
m′′

1
(A,c2)

,
c2

(A,c2)
)

g2=(
m′′

2
(A,c2)

,
c2

g1(A,c2)
)

∑

D1D2hk=qo
h=(qo,so)

k=(mo
1m

o
2m

o
3,q)

(h,mo
1m

o
2)=1

(mo
3,co/qo)=1

× 1

ϕ(D2)

∑

ψ (mod D2)

∑

∆|64

1

ϕ(∆)

∑

χ (mod ∆)

∑

D| c2AB

(c2,A)2(c2,B)

1

ϕ(D)

∑

η (mod D)

G∗

× (ψχη)(mo
1m

o
2m

o
3so)Rk(m

o
1)Rk(m

o
2)Rk(m

o
3),

where G∗ is the product of the g, γ, and g arising in Lemmas 9.2, 9.3, and 9.4 along with
various miscellaneous factors of unit size, such as χq(AB). The exact form of G∗ is not
important. Rather, all that matters is a bound on its absolute value, and the fact that it
does not depend on mo

1, m
o
2, m

o
3, so, qo, co. Specifically, we have it is of size

G∗ ≪ D1/2(A, c2)(B, c2)D
3/2+ε
2(9.29)

and if ψ, χ, and η are all the principal character then with A = (A, c2)A
′ and B = (B, c2)B

′

G∗
D

≪ (qr)ε(A, c2)(B, c2)

(
m′′

1m
′′

2m
′′

3

(A,c2)2(B,c2)
, A′B′

)

A′B′ .
(9.30)

Now we are ready to sum G′
A,B over the mi and c. We must break into two cases to handle

the condition (c, qe) = δ.
First suppose that q is odd i.e., qe = 1. Then since (c, qe) = 1 we have that the sum over

c is empty unless δ = 1, and if δ = 1 the the condition (c, qe) = δ is true for all c. We factor
R = ReRo where Ro is odd and Re is a power of 2 and write co = toqRo and ce = teRe. Then
for any function f for which the sums converge absolutely we have

∑

c≡0 (mod q̃R)
(c,qe)=δ

f(c) = δ(δ = 1)
∑

c2|(AB)∞

∑

te|2∞
(te,AB)=1

∑

(to,2AB)=1

f(c2toqRoteRe).

Now we suppose that qe = 4 or 8. Then R must be odd as (R, q) = 1. Recall that
(AB, qR) = 1 so that (c2, Rq̃) = 1, and also that q̃/qo = 2. Then we write co = toqoR and
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ce = 2te. Then we have

∑

c≡0 (mod q̃R)
(c,qe)=δ

f(c) = δ(δ | qe)
∑

c2|(AB)∞

∑

te|2∞
(te,AB)=1

δ|2te
( 2te

δ
, qe
δ
)=1

∑

(to,2AB)=1

f(2c2toqoRte),

for any f for which the sums converge absolutely. We treat only this last case for the
remainder of the section, as the other cases are strictly simpler. Applying this decomposition
to G′

A,B we find if δ | qe that

(9.31) Zδ,R,q =
[ ∑

c2|(AB)∞

∑

te|2∞
(te,AB)=1
δ|2te

( 2te
δ
, qe
δ
)=1

∑

m′′

1 ,m
′′

2 ,m
′′

3 |(AB)∞

∑

me
1,m

e
2,m

e
3|2∞

(me
1m

e
2m

e
3,AB)=1

∑

(to,2AB)=1

∑

(mo
1m

o
2m

o
3,2AB)=1

cqG′
A,B(m1, m2, m3, c)

ms1
1 m

s2
2 m

s3
3 (c2teto)s4

]

=
[ ∑

c2,te,m′′

1 ,m
′′

2 ,m
′′

3 ,m
e
1,m

e
2,m

e
3

(A,c2)|(m′′

1 ,m
′′

2 ), (B,c2)|m′′

3 , (... )

∑

g1g2| c2
(A,c2)

g1=(
m′′

1
(A,c2)

,
c2

(A,c2)
)

g2=(
m′′

2
(A,c2)

,
c2

g1(A,c2)
)

∑

∆|64

1

ϕ(∆)

∑

χ (mod ∆)

×
∑

D1D2hk=qo

1

ϕ(D2)

∑

ψ (mod D2)

∑

D| c2AB

(c2,A)2(c2,B)

1

ϕ(D)

∑

η (mod D)

G′
∗Y

]
,

where G′
∗ satisfies (9.29) and (9.30), the conditions (. . . ) in the first (large) summand fol-

lowing the second equals sign are the same conditions as on the first line of (9.31), and

Y =
∑

(mo
1m

o
2m

o
3to,2AB)=1

h=(qo,Roto)
k=(mo

1m
o
2m

o
3,qo)

(h,mo
1m

o
2)=1

(mo
3,Roto)=1

(ψχη)(mo
1m

o
2m

o
3to)Rk(m

o
1)Rk(m

o
2)Rk(m

o
3)

(mo
1)
s1(mo

2)
s2(mo

3)
s3ts4o

.

Our next goal is to obtain meromorphic continuation of Y inside the critical strip, and a
bound on Y both slightly to the right of the critical lines, and slightly to the right of the
edge of absolute convergence. First we note the following formal combinatorial identity:

∑

(n1n2n3,qo)=k

f(n1, n2, n3) =
∑

k1k2k3=k

∑

(n1,
qo
k1

)=1

∑

(n2,
qo

k1k2
)=1

∑

(n3,
qo

k1k2k3
)=1

f(k1n1, k2n2, k3n3).
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With this, we have (with some minor simplifications arising from (qo, AB) = 1 which means
for instance that (k, AB) = 1)

(9.32) Y =
∑

k1k2k3=k

(ψχη)(k1k2k3)

ks11 k
s2
2 k

s3
3

∑

(to,k3AB)=1
(to,qo)=h

∑

(mo
1,hAB

qo
k1

)=1

(mo
2,hAB

qo
k1k2

)=1

(mo
3,RotoAB

qo
k
)=1

(ψχη)(mo
1m

o
2m

o
3to)

(mo
1)
s1(mo

2)
s2(mo

3)
s3ts4o

Rk(k1m
o
1)Rk(k2m

o
2)Rk(k3m

o
3).

The condition (k1k2, h) = 1 is automatic, because k1k2k3 = k, (so, qo) = h, hk | qo, and qo is
square-free, so (h, k) = 1.

Now let a, b ∈ N and suppose that a′′ | a′ | a, with a′ square-free, and χ is a Dirichlet
character mod a. Then for Re(w) > 1 we have

∑

(n,b)=1

Ra′(a
′′n)χ(n)

ns
= µ(a′/a′′)φ(a′)Lb(s, χ),(9.33)

where Lb(s, χ) is the Dirichlet L-function with Euler factors at primes dividing b omitted.
To see this, observe that if a′ is square-free then µ(a′)Ra′(n) is a multiplicative function of
n, and that the summand on the left side of (9.33) vanishes whenever (n, a′′) 6= 1 because
a′′ | a. One can then factor out a Ramanujan sum from the left hand side and use the fact
that µ(a′)Ra′(n) = 1 if (n, a′) = 1.

From this, we easily get the meromorphic continuation of Y to, say Re(si) > 1/2, i =
1, 2, 3, 4. Moreover, Y is analytic except for possible poles at si = 1 in case ηψχ is the
principal character (which then implies all of χ, η, and ψ are principal, since their respective
moduli are coprime). Assuming Re(si) = σ > 1/2 for all i = 1, 2, 3, 4, and σ 6= 1, we have

(9.34) |Y | ≪σ k
1−σh−σ(qr)ε|L(s1, ψχη)L(s2, ψχη)L(s3, ψχη)L(s4, ψχη)|.

Now let Zδ,R,q = Z0 + Z ′ where Z0 corresponds to the terms with ηχψ principal, and Z ′

corresponds to the terms with ηχψ nonprincipal.
Taking σ = 1 + ε, we bound Z0 as follows:

|Z0| ≪ (qr)ε
∑

m′′

1 ,m
′′

2 ,m
′′

3 ,c2|(AB)∞

(A,c2)|(m′′

1 ,m
′′

2 )
(B,c2)|m′′

3

1

(m′′
1m

′′
2m

′′
3c2)

σ

∑

D1D2hk=qo

∑

g1g2| c2
(A,c2)

g1=(
m′′

1
(A,c2)

,
c2

(A,c2)
)

g2=(
m′′

2
(A,c2)

,
c2

g1(A,c2)
)

× 1

ϕ(D2)

∑

D| c2AB

(c2,A)2(c2,B)

(A, c2)(B, c2)
(

m′′

1m
′′

2m
′′

3

(A,c2)2(B,c2)
, A′B′)

A′B′ k1−σh−σ.

Next we change variables m′′
i = ni(A, c2) for i = 1, 2 and m′′

3 = (B, c2)n3. We have

(9.35)
∑

n|(AB)∞

(n,Q)

n
=

∏

p|AB

∞∑

j=0

(pj , Q)

pj
≪ (ABQ)ε.



A GENERALIZED CUBIC MOMENT AND THE PETERSSON FORMULA FOR NEWFORMS 39

Using this successively on n1, n2, n3, and trivially summing over g1, g2, D, we obtain

|Z0| ≪ (qr)ε
∑

c2|(AB)∞

1

cσ2

∑

D1D2hk=qo

1

ϕ(D2)

(A, c2)(B, c2)

(A, c2)2(B, c2)

1

A′B′k
1−σh−σ.

We use the estimate (9.35) again on the sum over c2 to get

|Z0| ≪
(qr)ε

AB

∑

D1D2hk=qo

k1−σh−σD−1
2 ≪ (qr)ε

AB
.

This proves the bound (9.2), as desired.
Next we turn to Z ′. For this, we use the large sieve inequality to give a bound on the 4th

moment of Dirichlet L-functions. Following e.g. [Pet, Lemma 8] we find that for σ = 1/2+ε,
we have

(9.36)
1

φ(Q)

∑

χ (mod Q)

|L(s, χ)|4 ≪ Qε(1 + |s|)1+ε.

Using Hölder’s inequality, we have for σi = 1/2 + ε for i = 1, 2, 3, 4, that

|Z ′| ≪ (qr)ε
∑

m′′

1 ,m
′′

2 ,m
′′

3 ,c2|(AB)∞

(A,c2)|(m′′

1 ,m
′′

2 )
(B,c2)|m′′

3

1

(m′′
1m

′′
2m

′′
3c2)

1/2+ε

∑

D1D2hk=q

∑

g1g2| c2
(A,c2)

g1=(
m′′

1
(A,c2)

,
c2

(A,c2)
)

g2=(
m′′

2
(A,c2)

,
c2

g1(A,c2)
)

×
∑

D| c2AB

(c2,A)2(c2,B)

(A, c2)(B, c2)D
1/2D

3/2
2 k1−σh−σ

4∏

j=1

(1 + |sj|)1/4+ε.

Using similar methods to estimate the sums over the m′′
i and c2 as in the bound on Z0, we

obtain

|Z ′| ≪ (qr)εq3/2+ε(AB)1/2
4∏

j=1

(1 + |sj|)1/4+ε.

Finally, we show (9.4). The proof is essentially the same as before, except we use a hybrid
large sieve in place of (9.36), as in [Ga], namely

∫

|t|≤T

∑

χ (mod q)

|L(1/2 + it, χ)|4dt≪ (qT )1+ε. �

We conclude this section by studying GA,B(m1, m2, m3; c) when somemi = 0. The formulas
greatly simplify.

Lemma 9.6. Suppose some mi = 0. If mi 6= 0 write mi = uivi where vi | (AB)∞ and
(ui, AB) = 1, and if mi = 0 write ui = vi = 0. Then

cqGA,B(m1, m2, m3; c) = g(v1, v2, v3, g1, g2, c2, A, B, q, s)Rq(u1)Rq(u2)Rq(u3),

where g is a function satisfying the bound

|g| ≪ (A, c2)(B, c2).
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Proof. Recall (9.5), and note that this expression may be further factored according to
c1 = coce, as in (9.6).

In the co case, G1,1 is evaluated with (9.13), which did not require a1a2a3 6= 0. If a3 = 0,
we get s = 1, and hence h = 1. If a1a2 = 0, we get 1 = (0, qo, s) = (qo, s) = h, so a1a2a3 = 0
implies h = 1. In addition, D = 1, and we easily evaluate H(0;D) = 1. Therefore, if
a1a2a3 = 0, we have

coqoG1,1(a1, a2, a3; co) = χqo(−1)Rqo(a1)Rqo(a2)Rqo(a3),

which is of the desired form.
In the c2 case, inspecting the proof of Lemma 9.3 shows that the evaluation of c2GA,B in

(9.19) does not require the hypothesis a1a2a3 6= 0 where we interpret ãi as 0 if the corre-
sponding ai = 0. Hence, c2GA,B is a function of A,B, c2, v1, v2, v3, g1, g2, and is independent
of the ui, and is bounded by (A, c2)(B, c2).

For the modulus ce case, the proof of Lemma 9.4 does not use a1a2a3 6= 0 up though the
statement of Lemma 9.5. An examination of this proof shows that if some ai is zero then G1,1

vanishes unless se = 1 and in that case Hse is either
1
4
or 1

2
times Rqe(a1)Rqe(a2)Rqe(a3). �

10. Weight functions

10.1. Inert functions.

Definition 10.1. Suppose that X = Xq ≥ 1 is some function of q ≥ 1 and let Fq be a
set of indices for each q. Suppose that for each q ≥ 1, {wT}T∈Fq is a collection of smooth
functions on Rd

+ with support on a product of dyadic intervals. We say that the family of
functions {wT : q ≥ 1, T ∈ Fq} is X-inert if for all j1, . . . jd ≥ 0, there exists a constant
C(j1, . . . , jd) ∈ R+ so that

(10.1) X−j1−···−jd|w(j1,...,jd)
T (x1, . . . , xd)| ≤

C(j1, . . . , jd)

|x1|j1 . . . |xd|jd
.

By abuse of language, we will sometimes say that wT is inert, or that it is uniformly inert,
if the family is clear from context.

The purpose of this definition is to encode natural conditions on a weight function that lets
us separate variables efficiently. For instance, if wT satisfies (10.1), then by Mellin inversion,

(10.2) wT (x1, . . . , xd) =
1

(2π)d

∫

Rd

w̃T (it1, . . . itd)x
−it1
1 . . . x−itdd dt1 . . . dtd,

where

w̃T (s1, . . . , sd) =

∫

(0,∞)d
wT (x1, . . . , xd)x

s1
1 . . . xsdd

dx1
x1

. . .
dxd
xd

.

Integrating by parts shows for any choices of j1, . . . , jd = 0, 1, . . . , we have

w̃T (s1, . . . , sd) =
( d∏

a=1

ja−1∏

b=0

1

(sa + b)

)∫

(0,∞)d
w

(j1,...,jd)
T (x1, . . . , xd)x

s1+j1
1 . . . xsd+jdd

dx1
x1

. . .
dxd
xd

.

Therefore, by (10.1), we have

|w̃T (it1, . . . , itd)| ≤
( X
|t1|

)j1
. . .

( X
|td|

)jd
C(j1, . . . , jd)(log 2)

d.
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If |ti| ≥ X , then we take ji as unspecified, while if |ti| < X , we choose ji = 0. In this way,
we obtain

(10.3) |w̃T (it1, . . . , itd)| ≤
(
1 +

|t1|
X

)−j1
. . .

(
1 +

|td|
X

)−jd
C ′(j1, . . . , jd),

where C ′ is some other sequence depending only on C. Our interpretation of this estimate
combined with (10.2) is that wT can have its variables separated “at cost” Xd, meaning that
each integral has essential length ≪ X .

10.2. Stationary phase. Next we synthesize both Lemma 8.1 and Proposition 8.2 of [BKY]
using this language of inert functions, along with some simplified choices of parameters, with
the following

Lemma 10.2 ( [BKY]). Suppose that w = wT is a family of X = Xq-inert functions, with
compact support on [Z, 2Z], so that w(j)(t) ≪ (Z/X)−j. Also suppose that φ is smooth and
satisfies φ(j)(t) ≪ Y

Zj for some Y ≫ X2qε and all t in the support of w. Let

I =

∫ ∞

−∞
w(t)eiφ(t)dt.

(1) If φ′(t) ≫ Y
Z
for all t in the support of w, then I ≪A q

−A for A arbitrarily large.

(2) If φ′′(t) ≫ Y
Z2 for all t in the support of w, and there exists t0 ∈ R such that φ′(t0) = 0

(note t0 is necessarily unique), then

(10.4) I =
eiφ(t0)√
φ′′(t0)

FT (t0) +O(q−A),

where FT is a family of X-inert functions of t0 (depending on A) supported on t0 ≍ Z.

In case it is useful in other contexts, we mention that statement (1) only requires Y ≫ Xqε;
in our applications in this article we have 1 ≪ X ≪ qε, so this has no practical effect.

The part of the conclusion that FT is a family of X-inert functions of t0 is not explicitly
stated that way in [BKY], but is implicit in [BKY, (8.11)]. However, what is required in
this paper is a multi-variable version of inertness, which is not directly addressed in [BKY].
This more general result is the following.

Lemma 10.3. Suppose wT is X-inert in t1, . . . td, and φ satisfies

(10.5)
∂a1+a2+···+ad

∂ta11 . . . ∂tadd
φ(t1, t2, . . . , td) ≪

Y

Za1

Xa2+···+ad

Xa2
2 . . . Xad

d

,

for t1 ≍ Z, ti ≍ Xi for i = 2, . . . , d. Assume the conditions in Lemma 10.2 part (2) hold for
t = t1 (uniformly in t2, . . . , td), and that t0 satisfies

(10.6)
∂b2+···+bd

∂tb22 . . . ∂t
bd
d

t0 ≪b2,...,bd

t0

Xb2
2 . . .Xbd

d

,

for t0 ≍ Z (that is, 1
Z
t0 is 1-inert). Then FT is X-inert in t2, . . . , td.

A simple yet common situation is when t0 is monomial in the other variables, meaning

(10.7) t0 = ctα2
2 . . . tαd

d ,
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where the αi are fixed real numbers and c is some constant (depending on the tuple T ). It is
easy to check that if t0 satisfies (10.7), then it satisfies (10.6). All the applications of Lemma
10.2 in this paper will have the stationary point of the form (10.7).

The proof of Lemma 10.3 is elementary yet long and intricate, and can be found in [KY].

10.3. The integral transform. Here we obtain useful expressions for K, which was defined
in (8.29). The key is not an exact formula for K, but rather a Mellin formula with the
variables separated. Throughout the remainder of this section, wT will denote a 1-inert
function, which many change from line-to-line without explicit mention.

Lemma 10.4 (Oscillatory Case). Suppose that |mi| ≍Mi for i = 1, 2, 3, and c ≍ C. Suppose
that

(10.8)

√
ABN1N2N3

C
≫ (qr)ε.

Then

(10.9) K(m1, m2, m3, c) =
C3/2(N1N2N3)

1/2e(−m1m2m3c2

AB[c,q]3
)

(M1M2M3)1/2
L(m1, m2, m3, c)

+O((qr)−1/ε
3∏

i=1

(1 + |mi|)−2),

where L has the following properties. Firstly, L vanishes (meaning K is very small) unless

(10.10) Mi ≍
(ABN1N2N3)

1/2

Ni
, i = 1, 2, 3,

and all the mi have the same sign. Moreover, we have that

(10.11) L(m1, m2, m3, c) =
1

P 1/2

∫

|u|≪(qr)ε

∫

|y|≪(qr)ε
F (u; y)

( |m1m2m3|c2
[c, q]3

)iy

( M1

|m1|
)u1( M2

|m2|
)u2( M3

|m3|
)u3(C

c

)u4
dudy,

where F = FA,B,C,N1,N2,N3,M1,M2,M3 is entire in terms of u, satisfies F (u; y) ≪ 1, and where

(10.12) P =
M1M2M3

ABC
.

Here F additionally depends on the choice of signs of the mi.

Lemma 10.5 (Non-oscillatory case). Suppose that |mi| ≍Mi for i = 1, 2, 3, c ≍ C, and

(10.13)

√
ABN1N2N3

C
≪ (qr)ε.
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Then

(10.14) K(m1, m2, m3, c) = N1N2N3

(√ABN1N2N3

C

)κ−1

e
(−m1m2m3c

2

AB[c, q]3

)∫

|u|≪(qr)ε
F (u)

∫

|t|≪(qr)ε+P

f(t)
( |m1m2m3|c2

[c, q]3

)it( M1

|m1|
)u1( M2

|m2|
)u2( M3

|m3|
)u3(C

c

)u4
dtdu

+O((qr)−1/ε

3∏

i=1

(1 + |mi|)−2),

where P is given by (10.12), f(t) ≪ (1 + |t|)−1/2 and F (u) ≪ 1. Moreover, f vanishes
(meaning, K is small) unless

(10.15)
M1N1

C
≪ (qr)ε,

M2N2

C
≪ (qr)ε,

M3N3

C
≪ (qr)ε.

If P ≫ (qr)ε, the function f may be chosen to have support on |t| ≍ P .

Lemma 10.6 (Other cases). Suppose some mi = 0. If (10.8) holds, then K is small. If
(10.13) holds, then K is small unless |mj| ≪ C

Nj
(qr)ε for j = 1, 2, 3, in which case

(10.16) K(m1, m2, m3; c) ≪
(√ABN1N2N3

C

)κ−1

N1N2N3.

If say m3 = 0 but m1m2 6= 0, then we have a Mellin formula

(10.17) K(m1, m2, 0; c) = O((qr)−1/ε

3∏

i=1

(1 + |mi|)−2)

+
(√ABN

C

)κ−1

N

∫

|v1|≪(qr)ε

∫

|v2|≪(qr)ε

( C

N1|m1|
)v1( C

N2|m2|
)v2

R(v1, v2, c)dv1dv2,

where R(v1, v2, c) is analytic in Re(vi) > 0 for i = 1, 2, and satisfies the bound

R(v1, v2, c) ≪Re(v1),Re(v2) 1.

Here R depends on the choices of sign of the mi, but we suppress it from the notation. Similar
formulas hold when m1 = 0 or m2 = 0.

If two mi = 0 but the other mi is nonzero, then a formula similar to (10.17) holds, but
with one of the integrals omitted.

Proof. We prove all three lemmas.
Truncations. As our first step, we integrate by parts three times in each of the ti for

which mi 6= 0, allowing us to obtain a crude bound of the form

K(m1, m2, m3, c) ≪ P (q, r, N1, N2, N3, c)
3∏

i=1

(1 + |mi|)−3,

where P is some fixed polyomial. This bound is sufficient for the lemmas when some mi

is ≫ (qr)A
′

for some large A′ depending polynomially on 1/ε. For the rest of the proof,
suppose that |mi| ≪ qA

′

for some A′, and each i.
If (10.8) holds, then using the fact that Jκ−1(x) = eixW+(x) + e−ixW−(x) where W±(x)

have controlled derivatives (cf. Watson [W, Page 205]), we see that repeated integration by
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parts (Lemma 10.2) shows that K is very small unless (10.10) holds. Similarly, if (10.13)
holds, then repeated integration by parts shows that K is small unless (10.15) holds.

Proof of Lemma 10.4. Now we show the expression (10.9), with L given by (10.11).
Using the Fourier integral (valid for n an odd integer)

Jn(x) =
∑

±

±1

πi

∫ π/2

0

sin(nv)e±ix sin vdv,

we have

K = K(m1, m2, m3; c) =
∑

±

±1

πi

∫ π/2

0

sin((κ− 1)v)

∫

R3

e
(±2

√
ABt1t2t3
c

)
e
(−m1t1 −m2t2 −m3t3

[c, q]

)
wN1,N2,N3(t1, t2, t3)dt1dt2dt3dv.

Next we change variables t3 =
u
t1t2

, giving

K =
∑

±

±1

π

∫ π/2

0

sin((κ− 1)v)

∫ ∞

−∞
e
(±2

√
ABu

c
sin(v)

)

∫

R2

e
(−m1t1 −m2t2 −m3

u
t1t2

[c, q]

)
wN1,N2,N3

(
t1, t2,

u

t1t2

)dt1dt2
t1t2

dudv.

This inner integral is precisely I(u) defined in [Y, (8.12)]. The conditions (10.8) and (10.10)
imply that

MiNi

C
≍

√
ABN1N2N3

C
≫ (qr)ε,

which is equivalent to the assumption [Y, (8.13)]. Therefore, [Y, (8.14)] gives

(10.18) I(u) =
C

(N1N2M1M2)1/2
e
(−3(um1m2m3)

1/3

[c, q]

)
wT (u,m1, m2, m3, c)

+O((qr)−1/ε
3∏

i=1

(1 + |mi|)−2),

where wT is 1-inert in all variables (and T stands for the tuple (M1,M2,M3, N1, N2, N3, C))
and supported on u ≍ N1N2N3. As part of the support of the inert function, we see that
m1, m2, m3 must all have the same sign. If all three terms are negative, we naturally interpret
the expression (m1m2m3)

1/3 as −(|m1m2m3|)1/3. Therefore, if (10.8) holds, we have

(10.19) K =
[∑

±

±1

πi

C

(N1N2M1M2)1/2

∫ π/2

0

sin((κ− 1)v)

∫ ∞

−∞
e
(±2

√
ABu

c
sin(v)

)
e
(−3(um1m2m3)

1/3

[c, q]

)
wT (u, ·)dudv

]
+O((qr)−1/ε

3∏

i=1

(1+|mi|)−2).

Here we use the notation wT (u, ·) to denote a function where we are currently focusing on
the variable u only, and so do not display the other variables.
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Finally, we study

K0(v) :=
C

(N1N2M1M2)1/2

∫ ∞

−∞
e(
±2

√
ABu

c
sin(v))e

(−3(um1m2m3)
1/3

[c, q]

)
wT (u, ·)du.

We will presently show that
(10.20)

K0(v) =
C3/2(N1N2N3)

1/2

(M1M2M3)1/2
e
( −m1m2m3c

2

AB[c, q]3 sin2 v

)
wT (sin v, ·) +O((qr)−1/ε

3∏

i=1

(1 + |mi|)−2),

where wT (sin v, ·) is a 1-inert function of sin v,m1, m2, m3, c, with T as before but in addition
depending on the choice of ± sign.

This integral defining K0(v) is small unless there is a stationary point (by Lemma 10.2
again), which occurs at

u = u0 =
(m1m2m3)

2c6

(AB)3 sin6 v[c, q]6
,

under the additional assumption that the choice of ± sign matches the sign of m1m2m3

(which in turn has the same sign as each individual mi).
Thus we obtain, in both cases of ± sign, that

K0(v) = (scaling factor)e
( −m1m2m3c

2

AB sin2 v[c, q]3

)
wT (sin v, ·) +O((qr)−1/ε

3∏

i=1

(1 + |mi|)−2).

Next we work out the scaling factor. The second derivative of the phase, in terms of u, is of
size

(AB)1/2

c

sin v

u
3/2
0

≍ |m1m2m3|1/3

cu
5/3
0

.

Therefore, the scaling factor is

(10.21)
( cu

5/3
0

(m1m2m3)1/3

)1/2 c

(M1M2m1m2)1/2
≍ C3/2(N1N2N3)

1/2

(M1M2M3)1/2
.

Compare to [Y, (8.19)].
Thus we obtain

K =
C3/2(N1N2N3)

1/2

(M1M2M3)1/2

∫ π/2

0

sin((κ− 1)v)e
( −m1m2m3c

2

AB sin2 v[c, q]3

)
wT (sin v, ·)dv,

plus an error of size O((qr)−1/ε
∏

i(1 + |mi|)−2), where the inert function is supported on

sin v ≍ (M1M2M3)
1/3

(AB)1/2(N1N2N3)1/6
=: V.

Next we factor out the desired exponential, giving now

K = e
(−m1m2m3c

2

AB[c, q]3

)C3/2(N1N2N3)
1/2

(M1M2M3)1/2

×
∫ π/2

0

sin((κ− 1)v)e
(m1m2m3c

2

AB[c, q]3

(
1− 1

sin2 v

))
wT (sin v, ·)dv,
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plus a small error term. Define

(10.22) K00(x) :=

∫ π/2

0

sin((κ− 1)v)e
(
x(−1 +

1

sin2 v
)
)
wT (sin v, ·)dv.

Then for our particular values of the parameters, we have

x

V 2
≫ (qr)ε.

Now we asymptotically evaluateK00(x). First we dispense with the case where the support
of the inert function is such that v ≤ π

2
− π

100
(say). Thus cos(v) ≍ 1 and sin(v) ≍ V in the

support of the integrand. We claim that K00(x) ≪ (qr)−A in this case. To see this, we first
note that it suffices to bound

∫ ∞

−∞
wT (sin v, ·)e(φ(v))dv, where φ(v) = ±κ− 1

2π
v + x

cos2 v

sin2 v
.

We have

φ(v) = ±κ− 1

2πv
+
x

v2
(1 + c2v

2 + c4v
4 + . . . ),

for certain constants ci. Then we have

φ′(v) ≍ x/v2

v
, φ(j)(v) ≪ x/v2

vj
, j = 2, 3, . . . .

By Lemma 10.2 yet again, the integral is very small. If the inert function has support on an
interval containing π/2, then the above argument breaks down because of endpoint behavior
(essentially, the weight function is not smooth of compact support due to the truncation at
π/2). So now suppose that the inert function has support on v ≥ π/4, so in particular V ≍ 1
and x≫ (qr)ε. Change variables v = π/2− u, giving

(10.23) K00(x) = ±
∫ π/4

0

cos((κ− 1)u)e
(
x
sin2 u

cos2 u

)
wT (cosu, ·)du.

Next we argue that the main part of this integral comes from u ≪ x−1/2(qr)ε, provided we
use a smooth truncation. Let us apply a dyadic partition of unity, and consider a piece with
u ≍ U with U ≪ 1. Again by Lemma 10.2, if xU2 ≫ (qr)ε, then the integral is small. We
may also use that the integrand is even to extend to −π/4 to π/4, giving

K00(x) =

∫ π/4

−π/4
W (u)e(x tan2 u)du,

where W is inert and has support on |u| ≪ U with U = x−1/2+ε. From this we may
derive an asymptotic expansion of K00, with leading term c0W (0)x−1/2, where c0 is some
absolute constant. By developing this expansion carefully, we have that for x ≫ (qr)ε,

K
(j)
00 (x) ≪ x−1/2−j , and so by Mellin inversion, we have that

K00(x) = x−1/2

∫ ∞

−∞
f(t)xitdt,

where |f(t)| ≪A (1 + |t|)−A, with A > 0 arbitrarily large. In our application, we may thus
truncate at |t| ≪ (qr)ε.
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The previous discussion gives a formula for K of the form (10.9), where L takes the form

L(m1, m2, m3, c) =
1

P 1/2

∫

|t|≪(qr)ε
wT (t,m1, m2, m3, c)

( |m1m2m3|c2
[c, q]3

)it
dt,

where wT is 1-inert in the variables m1, m2, m3, c and has rapid decay in t, uniformly in all
other parameters. We may then write

wT (t,m1, m2, m3, c) =

∫
F (u; t)

( M1

|m1|
)u1( M2

|m2|
)u2( M3

|m3|
)u3(C

c

)u4
du,

where the integral is over four vertical lines in the complex plane, one for each of the ui,
i = 1, 2, 3, 4. By the rapid decay of F beyond (qr)ε, due to the fact that wT is inert, we may
truncate the integrals at |u| ≪ (qr)ε. This expression gives (10.11), and so completes the
proof of Lemma 10.4.

Proof of Lemma 10.5. Now suppose (10.13) holds. As previously mentioned, K is
small unless (10.15) holds, a condition that we assume henceforth. Assuming x ≪ X =

1 +
√
ABN1N2N3

C
, we have that Jκ−1(x) = xκ−1W (x) where W is X-inert with X ≪ (qr)ε.

Therefore,

K = N1N2N3

(√ABN1N2N3

C

)κ−1
∫

|y|≪(qr)ε
F (u)

( M1

|m1|
)u1( M2

|m2|
)u2( M3

|m3|
)u3(C

c

)u4
du

+O(q−A
3∏

i=1

(1 + |mi|)−3,

where F (u) ≪ 1.
We additionally want to artificially factor out the exponential term eAB[c,q]3/c2(−m1m2m3).

It is not clear whether

P :=
M1M2M3

ABC

is ≫ 1 or ≪ 1, so we treat both cases separately.
If P ≪ (qr)ε, then essentially the exponential term eAB[c,q]3/c2(m1m2m3) is not oscillatory,

so by Mellin inversion there exists a simple formula of the form
(10.24)

e
(m1m2m3c

2

AB[c, q]3

)
w(
m1m2m3c

2/(AB[c, q]3)

P
) =

∫

|t|≪(qr)ε

( |m1m2m3|c2
[c, q]3

)it
f(t)dt+O(q−1/ε),

where fA,B,C,M1,M2,M3(t) = f(t) ≪ 1 and w(t) is a smooth compactly supported function
identically 1 on [1/2, 2].

If P ≫ (qr)ε, then a formula like (10.24) holds, but with |t| ≍ P and f(t) ≪ |t|−1/2; this
follows from Mellin inversion, and uses integration by parts to restrict to |t| ≍ P , and uses
stationary phase for the bound f(t) ≪ |t|−1/2.

In either case, we obtain (10.14).
Proof of Lemma 10.6. The claims that if (10.8) holds, then K is small, and that if

(10.13) holds, K is small unless |mi| ≪ C
Ni
(qr)ε for i = 1, 2, 3 have already been shown in

the previous analysis. It remains to show the integral formula.
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Suppose that m3 = 0, m1, m2 6= 0, and (10.13) holds. Then by taking a Mellin transform
in the m1, m2 variables, we get

K(m1, m2, 0; c) =
(√ABN1N2N3

C

)κ−1

N1N2N3

∫

|v1|≪(qr)ε

∫

|v2|≪(qr)ε

( C

N1|m1|
)v1( C

N2|m2|
)v2

R(v1, v2, c)dv1dv2

+O(q−A
3∏

i=1

(1 + |mi|)−2),

where R(v1, v2, c) is analytic in Re(vi) > 0 for i = 1, 2, and satisfies the bound

R(v1, v2, c) ≪Re(v1),Re(v2) 1.

This is precisely what is claimed. �

11. Recombination

Now we prove Proposition 8.2. Recall formulas (8.24), (8.26), and (8.27). Let us write
S = S0 + S1 where S0 corresponds to the terms with some mi = 0, while S1 corresponds to
the terms with all mi 6= 0.

11.1. Bounding S0.

Lemma 11.1. If (8.25) holds, we have

(11.1) S0 ≪
√
AB

R
(qr)ε.

Proof. From Lemma 10.6, we see that K is small unless (10.13) holds.
Let us further decompose S0 = S00 + S01 + S02 where S02 corresponds to the terms with

exactly two of the mi 6= 0, S01 corresponds to the terms with precisely one of the mi 6= 0,
and S00 corresponds to the terms with m1 = m2 = m3 = 0.

We first bound S02. Suppose for the sake of argument that m3 = 0, and m1, m2 ≥ 1, the
other cases being similar, and let S+

02 denote these terms. Then we have from Lemma 9.6
that

|S+
02| ≪

∑

N1,N2,N3,C

(qr)ε√
NC

(√ABN
C

)κ−1

N

×
∑

c≡0 (mod q̃R)
c≍C

1

cq

∣∣∣
∞∑

m1,m2=1

g(m′′
1m

e
1, m

′′
2m

e
2, m

′′
3m

e
3, c2, q, s)Rqo(m

o
1)Rqo(m

o
2)

×
∫

|v1|≪(qr)ε

∫

|v2|≪(qr)ε

( C

N1m1

)v1( C

N2m2

)v2
R(v1, v2, c)dv1dv2

∣∣∣.
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Using the bound on g from Lemma 9.6, we get

(11.2) |S+
02| ≪

∑

N1,N2,N3,C

(qr)ε√
NC

(√ABN
C

)κ−1

N
∑

c≡0 (mod q̃R)
c≍C

(A, c2)(B, c2)

cq

∣∣∣
∑

(mo
1m

o
2,2AB)=1

Rqo(m
o
1)Rqo(m

o
2)

∫ ∫

|v1|≪(qr)ε

|v2|≪(qr)ε

( C

N1mo
1

)v1( C

N2mo
2

)v2
R(v1, v2, c)Q(v1, v2)dv1dv2

∣∣∣,

where Q(v1, v2) is an arithmetical factor arising from the sum over m′′
1, m

′′
2, m

e
1, m

e
2, which

satisfies a divisor-type bound Q(v1, v2) ≪ (qr)ε. Next we have, using (q, AB) = 1,

(11.3)
∑

(n,AB)=1

Rqo(n)

ns
= µ(qo)ζAB(s)

∏

p|qo

(1− p1−s).

Note that if qo 6= 1, then this function has no pole at s = 1. We begin with contours with
Re(vi) > 1 for i = 1, 2, and then shift the contours to Re(vi) = ε > 0, giving

(11.4) |S+
02| ≪

∑

N1,N2,N3,C

(qr)ε√
NC

(√ABN
C

)κ−1

N
∑

c≡0 (mod q̃R)
c≍C

(A, c)(B, c)

cq
q2.

Using (qR,AB) = 1, Cauchy’s inequality, and

(11.5)
∑

n≤x
(d, n)2 ≪ xτ(d)d,

we derive ∑

c≡0 (mod q̃R)
c≍C

(A, c)(B, c) ≪ C

qR
(AB)1/2(qr)ε.

Therefore,

(11.6) |S+
02| ≪

∑

N1,N2,N3,C

(qr)ε
NAB

C2R
≪ (qr)ε

R
,

which is sufficient for (11.1). By a symmetry argument, this shows the desired bound on
S02.

Similarly to the method used to bound S02, we have in analogy with (11.2), the bound

|S+
01| ≪

∑

N1,N2,N3,C

(qr)ε√
NC

(√ABN
C

)κ−1

N
∑

c≡0 (mod q̃R)
c≍C

(A, c2)(B, c2)

c

∣∣∣
∫

|v|≪(qr)ε

( C
N1

)v
Q(v)R(v, c)ζAB(v)

∏

p|q
(1− p1−v)dv

∣∣∣,

where Q(v)R(v, c) is analytic in Re(v) > 0, and satisfies the bound Q(v)R(v, c) ≪Re(v) (qr)
ε.

We move the contour to the line Re(v) = ε, giving

(11.7) |S+
01| ≪

∑

N1,N2,N3,C

(qr)ε√
NC

(√ABN
C

)κ−1

N
∑

c≡0 (mod q̃R)
c≍C

(A, c2)(B, c2)

c
q.
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This is precisely the same bound as (11.4), and so our final bound on S01 is identical to the
bound on S02.

Finally, we bound S00, which is the easiest case. Using only the upper bound (10.16) and
the upper bound from Lemma 9.6, we obtain a bound on S00 of the exact same shape as
(11.4), so the proof is complete. �

11.2. Bounding S1. Here we show the desired bound

(11.8) S1 ≪ (qr)ε
((AB)1/2

R1/2
+

r3/4

q1/2R

)
.

Let us write S1 =
∑

ǫ1,ǫ2,ǫ3∈{±} S
ǫ1,ǫ2,ǫ3
1 where this sum is restricted to ǫimi > 0 for i = 1, 2, 3.

The same method will apply to each of these terms, so for simplicity we estimate S+,+,+
1 ,

which we denote with shorthand by S+
1 .

We have

(11.9) S+
1 =

∑

M1,M2,M3
N1,N2,N3,C

1

N1/2C2q

∑

mi≍Mi

∑

c≍C

(
e
( −m1m2m3

AB[c, q]3/c2

)
cqGA,B(m1, m2, m3; c)

)

(
e
( m1m2m3

AB[c, q]3/c2

)
K(m1, m2, m3; c)

)
.

There are two main cases to consider, depending on if (10.8) holds, or if (10.13) holds, and
we correspondingly write S+

1 = T + U .
Case T . By Lemma 10.4, we have (with shorthand M =M1M2M3)

T ≪
∑

N1,N2,N3,C

∣∣∣ C
3/2N1/2

C2q
√
MN

∑

c≡0 (mod q̃R)

∑

m1,m2,m3

(
e
( −m1m2m3

AB[c, q]3/c2

)
cqGA,B(m1, m2, m3; c)

)

1

P 1/2

∫

|u|≪(qr)ε

∫

|y|≪(qr)ε
F (u; y)

(m1m2m3c
2

[c, q]3

)iy

(M1

m1

)u1(M2

m2

)u2(M3

m3

)u3(C
c

)u4
dudy

∣∣∣.

Assume that Re(ui) > 1 for all i = 1, 2, 3, 4. Then by (9.1), we have

T ≪
∑

N1,N2,N3,C

∣∣∣ C−1/2

q(PM)1/2

∫

|u|≪(qr)ε

∫

|y|≪(qr)ε
F (u; y)

∑

(ǫ1,ǫ2,ǫ3)∈{±1}3
δ∈1,2,4,8

(
δ3

q̃Rq3e

)iy

Z
(ǫ1,ǫ2,ǫ3)
δ,R,q (u1 − iy, u2 − iy, u3 − iy, u4 + iy)Mu1

1 Mu2
2 Mu3

3

( C

q̃R

)u4
dudy

∣∣∣.

Now we decompose further by Z = Z0 + Z ′, as in Proposition 9.1, and write T = T0 + T ′.
For the analysis of T0, we move the contours so Re(ui) = 1 + ε for i = 1, 2, 3, 4. Then we
have

T0 ≪
C1/2

(PM)1/2
M

q2RAB
(qr)ε.
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Then we recall P = M
ABC

, M = (AB)3/2N1/2, C ≪
√
NAB(qr)ε, and N ≪ (q2r)3/2+ε giving

(11.10) T0 ≪
C

q2R(AB)1/2
(qr)ε ≪ N1/2

q2R
(qr)ε ≪ 1√

q

r3/4

R
(qr)ε.

For T ′, we move the contours to Re(ui) = 1/2 + ε for i = 1, 2, 3, 4. Then we obtain

T ′ ≪ (qr)ε
∑

N1,N2,N3,C

C−1/2

q(PM)1/2
q3/2

√
ABM1/2

( C

qR

)1/2

≪ (qr)ε
∑

N1,N2,N3,C

√
AB

P 1/2R1/2
.

Since P ≫ 1, we have

T ′ ≪ (qr)ε
(AB)1/2

R1/2
,

as desired.
Case U . Here we obtain from Lemma 10.5 the bound

(11.11)

U ≪
∑

N1,N2,N3,C
M1,M2,M3

∣∣∣
N
(√

ABN
C

)κ−1

C2q
√
N

∫

|u|≪(qr)ε

∫

|y|≪(qr)ε+P

F (u)fP (y)
∑

(ǫ1,ǫ2,ǫ3)∈{±1}3
δ∈1,2,4,8

(
δ3

q̃Rq3e

)iy

Z
(ǫ1,ǫ2,ǫ3)
δ,R,q (u1 − iy, u2 − iy, u3 − iy, u4 + iy)Mu1

1 Mu2
2 Mu3

3

( C

q̃R

)u4
dudy

∣∣∣.

As in the case of T , write U = U0 + U ′. We take the same contours of integration as in case
T , and use (9.4), giving

U ′ ≪ (qr)ε
N
√
AB

C3q

√
ABq3/2M1/2

( C

qR

)1/2

(1 + P 1/2) ≪ (qr)ε
NABM1/2

R1/2C5/2

(
1 +

( M

ABC

)1/2)
.

Now M ≪ C3

N
(qr)ε, and (10.13) holds, so after simplification this leads to

U ′ ≪ (AB)1/2R−1/2(qr)ε,

as desired.
Finally, we turn to the case of U0. To start, we suppose that Re(ui) = 1+ε for i = 1, 2, 3, 4.
Consider the case where P ≫ (qr)ε. Then we shift contours to Re(ui) = 1/2 + ε, for all

i. By doing so, we cross poles that are at height P , but the support of the weight functions
are essentially not included here, so the contribution of the residues to U0 is very small.
Meanwhile, the contribution to U0 of the integral along the new lines is certainly bounded
by the same bound we obtained on U ′, since the bound on Z0 appearing in Proposition 9.1
is much stronger than the bound on Z ′. Therefore, U0 is bounded in a satisfactory way for
P ≫ (qr)ε.

Now suppose P ≪ (qr)ε. Then by (9.2), we have
(11.12)

U0 ≪ (qr)ε
∑

N1,N2,N3,C
M1,M2,M3

N
(√

ABN
C

)κ−1

C2q
√
N

MC

qRAB
≪ (qr)ε

∑

N1,N2,N3,C
M1,M2,M3

N1/2
(√ABN

C

) M

ABCq2R
.
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Since P = M
ABC

≪ (qr)ε now, and
√
ABN
C

≪ (qr)ε too, we obtain

U0 ≪ (qr)εN1/2q−2R−1 ≪ (qr)ε(q3r3/2)1/2q−2R−1 ≪ (qr)εq−1/2 r
3/4

R
.

This is the same bound as (11.10), which completes the proof of (11.8).
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