Minimal number of points on a grid forming patterns of blocks

Chai Wah Wu
IBM T. J. Watson Research Center
P. O. Box 218, Yorktown Heights, New York 10598, USA
e-mail: chaiwahwu@member.ams.org

July 18, 2017

Abstract

We consider the minimal number of points on a regular grid on the plane that generates n blocks of points of exactly length k. We illustrate how this is related to the n-queens problem on the toroidal chessboard and show that this number is upper bounded by $k n / 3$ and approaches $k n / 4$ as $n \rightarrow \infty$ when $k+1$ is coprime with 6 or when k is large.

1 Introduction

We consider points on a regular grid on the plane which form horizontal, vertical or diagonal blocks of exactly k points (which we will call patterns) ${ }^{1}$. For example, the set of points in Fig. 1 shows 12 points forming 3 patterns of length 5 . Note that since a pattern of length k has to have exactly k points flanked by empty grid locations, the set of points in Fig. 1 contains 4 patterns of length 2 and does not contain any patterns of length 4 or of length 3 . Our motivation for studying this problem is the Bingo-4 problem proposed by Sun et al. and described in OEIS [1] sequence A273916 where the case $k=4$ is considered. Let $a_{k}(n)$ denote the minimal number of points needed to form n patterns of length k, i.e. Fig. 1 shows that $a_{5}(3)=12$. Finding the exact value of $a_{k}(n)$ appears to be difficult and not feasible for large n. The purpose of this note is to provide an analysis on the asymptotic behavior of $a_{k}(n)$.

2 Bounds and asymptotic behavior of $a_{k}(n)$

It is easy to see that $a_{k}(1)=k, a_{k}(2)=2 k-1$ and $a_{k}(3)=3(k-1)$. Next, consider Fekete's subadditive Lemma [2] which is applicable to subadditive sequences.

[^0]

Figure 1: 12 points on a grid forming 3 patterns of length 5.

Lemma 1 (Fekete's subadditive Lemma). If the sequence $a(n)$ is subadditive, i.e. $a(n+m) \leq$ $a(n)+a(m)$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$ exists and is equal to $\inf \frac{a_{n}}{n}$.

Theorem 1. For all k, $a_{k}(n)$ is subadditive, and $f(k)=\lim _{n \rightarrow \infty} \frac{a_{k}(n)}{n}$ exists and satisfies $\frac{k}{4} \leq f(k) \leq \frac{k}{3}$.

Proof. Since each pattern takes k points and each point can be part of at most 4 patterns, $a_{k}(n) \geq \frac{k n}{4}$. It is clear that $a_{k}(n)$ is subadditive. Lemma 1 implies that $f(k)$ exists and is equal to $\inf _{n} \frac{a_{k}(n)}{n}$. Consider a k by m rectangular array of points with $k \leq m$. It is easy to see that there are $3 m-2 k+2$ length k patterns there. This shows that $a_{k}(3 m-2 k+2) \leq k m$ which implies that $\frac{k}{4} \leq f(k) \leq \frac{k}{3}$.

3 Constellations where each point is part of 4 different patterns

The upper bound $\frac{k}{3}$ on $f(k)$ in Theorem 1 shows that for large n we can construct a constellation of n points such that most points are part of 3 different patterns. Is it possible to construct a constellation such that most points are part of 4 different patterns (a horizontal, a vertical and two diagonal patterns) and thus achieve the lower bound $\frac{k}{4}$? The case $k=1$ is simple. Since $a_{1}(4 n)=n$ as exhibited by the constellation of n isolated points, this implies that $f(1)=\frac{1}{4}$.

Let σ be a permutation on the integers $\{0,1, \cdots, k\}$. Consider a $k+1$ by $k+1$ square grid and place a point on each position (i, j) except when it is of the form $(i, \sigma(i))$. It is clear that tiling this grid on the plane results in a constellation that have horizontal and vertical
patterns of length k. In order for the diagonals to also have a block of exactly k points, $\{i+\sigma(i) \bmod k+1\}$ and $\{i-\sigma(i) \bmod k+1\}$ need to be permutations of $\{0,1, \cdots, k\}$ as well. Consider a N by N subgrid of this tiling. Except for points near the edges which is on the order of $k N \propto k \sqrt{n}$, all points belong to 4 patterns of length k. Thus we have proved the following:
Theorem 2. If there is a permutation σ of the numbers $\{0,1, \cdots, k\}$ such that $\sigma_{1}=\{i+\sigma(i)$ $\bmod k+1\}$ and $\sigma_{2}=\{i-\sigma(i) \bmod k+1\}$ are both permutations, then $f(k)=\frac{k}{4}$. In particular, $\frac{a_{k}(n)}{n}$ converges to $f(k)$ on the order of $O\left(\frac{1}{\sqrt{n}}\right)$.

If σ satisfies the conditions of Theorem 22, then so does σ^{-1}. For a fixed integer m, the permutation $\sigma(i)+m \bmod k+1$ also satisfies these conditions. We will use this to partition the set of admissible permutations into equivalent classes. More specifically,
Definition 1. Let S_{k+1} be the set of permutations on $\{0,1, \cdots, k\} . T_{k+1} \subset S_{k+1}$ is defined as the set of permutations σ such that $\{i+\sigma(i) \bmod k+1\}$ and $\{i-\sigma(i) \bmod k+1\}$ are in S_{k+1}. The equivalence relation \sim is defined as follows. If $\sigma, \tau \in T_{k+1}$, then $\sigma \sim \tau$ if $\tau=\sigma^{-1}$ or there exist an integer m such that $\sigma(i)=\tau(i)+m \bmod k+1$ for all i.

Thus if $T_{k+1} \neq \emptyset$, then $f(k)=\frac{k}{4}$.

4 Modular n-queens problem

The n-queens problem asks whether n nonattacking queens can be placed on an n by n chessboard. The answer is yes and is first shown by Pauls [3, 4]. Next consider a toroidal n by n chessboard, where the top edge is connected to the bottom edge and the left edge is connected to the right edge. Polya [5] showed that a solution to the corresponding modular n-queens problem exists if and only if n is coprime with 6 . It is clear that a permutation in T_{k+1} corresponds to a solution of the modular $(k+1)$-queens problem. Thus Polya's result is equivalent to the following result:
Theorem 3. $T_{k+1} \neq \emptyset$ if and only if $k+1$ is coprime with 6 .
Corollary 1. If $k+1$ is coprime with 6 , then $f(k)=\frac{k}{4}$.
Monsky [6] shows that $n-2$ nonattacking queens can be placed on an n by n toroidal chess board and $n-1$ queens can be placed if n is not divisible by 3 or 4 . This implies the following which shows that for k large, $f(k)$ approaches the lower bound $\frac{k}{4}$:
Theorem 4. $f(k) \leq \frac{k(k+1)+2}{4(k-1)}$. If $k+1$ is not divisible by 3 or 4 , then $f(k) \leq \frac{k(k+1)+1}{4 k}$.
Proof. Consider a $k+1$ by $k+1$ array with $k+1-r$ nonattacking queens. By placing a point on the location where there are no queens we obtain a constellation with $(k+1)^{2}-(k+1-r)$ points. Each queen position corresponds to 4 patterns. Thus when this array is tiled, we get for a large number of points a ratio $\frac{a_{k}(n)}{n}$ approaching $\frac{(k+1)^{2}-(k+1-r)}{4(k+1-r)}=\frac{k(k+1)+r}{4(k+1-r)}$. The conclusion follows by setting $r=1$ or $r=2$.
Corollary 2. $\lim _{k \rightarrow \infty} \frac{f(k)}{k}=\frac{1}{4}$.

4.1 Lattice construction

As in the n-queens problem, we can construct permutations in T_{k+1} via a lattice construction. In particular, we construct a constellation of points by placing a point on the grid if and only if it is not a point on a lattice spanned by two vectors v_{1} and v_{2}. For instance with the lattice points generated by the vectors $(1,2)$ and $(2,-1)$, the set of points with $N=15$ is shown in Fig. 2. In particular, this configuration shows that $f(4)=1$.

Figure 2: A lattice constellation. Points in the center of the grid are part of 4 different patterns, showing that $\frac{a_{4}(n)}{n} \rightarrow 1$ as $n \rightarrow \infty$.

The following result appears to be well-known [4], but we include it here for completeness.

Theorem 5. If there exists $1<m<k$ such that $m-1, m$ and $m+1$ are all coprime with $k+1$, then the lattice construction with $v_{1}=(1, m)$ and $(k+1,0)$ generates a permutation σ in T_{k+1}.

Proof. Consider the lattice generated with the vectors $(1, m)$ and $(0, k+1)$. Clearly, if m is coprime with $k+1$, then we find in a $k+1$ by $k+1$ subarray locations which do not have a point of the form $(i, \sigma(i))$ with σ a permutation. The lattice points have coordinates $(a, m a+(k+1) b)$ which lie on the 2 main diagonals if $a=m a+(k+1) b$ or $-a=m a+(k+1) b$. In the first case $-(m-1) a=(k+1) b$. Since $m-1$ is coprime with $k+1$, this means that a is a multiple of $k+1$, i.e., a diagonal pattern must have length k. In the second case $-(m+1) a=(k+1) b$. Since $k+1$ is coprime with $m+1$, again this means that a is a multiple of $k+1$.

Theorem 5 also provides a proof of Corollary 1 since if $k+1$ is coprime with 6 , then 1,2 and 3 are all coprime with $k+1$. In particular the lattice construction with $v_{1}=(1,2)$ and $(k+1,0)$ generates a permutation σ in T_{k+1}. Fig. 3 shows the construction for $k=12$.

For $k=4$, there is only one equivalence class $(0,2,4,1,3)$ in T_{k+1} that satisfies the conditions of Theorem 2. For $k=6$, there are two equivalent classes ($0,2,4,6,1,3,5$) and $(0,3,6,2,5,1,4)$. For $k=10$, there are 4 equivalent classes. In particular, Theorem 5 shows that if $k+1>4$ is prime, then there are at least $\frac{k-2}{2}$ equivalent classes in T_{k+1}. This is because each $2 \leq m \leq k-1$ is coprime with $k+1$ and the permutation generated by m is the inverse of the permutation generated by $k-1-m$ which are equivalent ${ }^{2}$. It is possible to have more than $\frac{k-2}{2}$ equivalent classes as there are permutations in T_{k+1} not generated by a lattice. For $k+1$ coprime with 6 , if $k=4,6$ and 10 , all permutations in T_{k+1} are generated by a lattice. For $k=12$, there are permutations in T_{k+1} that are not generated by a lattice. One such example is shown in Fig. 4. Such solutions are referred to as nonlinear solutions [4].

5 Conclusions

We studied the asymptotic behavior of the minimal number of points needed to generate n patterns of length k using a construction based on permutations of $\{0,1, \cdots, k\}$ with certain properties. We showed that this construction allows us to create patterns where asympotically most points are part of 4 patterns. This construction is equivalent to the modular ($k+1$)-queens problem and thus $f(k)=\frac{k}{4}$ for $k+1$ coprime with 6 . If $k+1$ is even or $k+1$ is divisible by 3 , this construction fails to provide such a constellation. However, results in the modular n-queens problem can still provide an upper bound on $f(k)$ which shows that $\lim _{k \rightarrow \infty} \frac{f(k)}{k}=\frac{1}{4}$. Even though these constructions for the modular n-queens problem provide limiting value of $\frac{a_{k}(n)}{n}$ as $n \rightarrow \infty$, for a fixed n the optimal constellation to achieve $a_{k}(n)$ can be quite different (see for example https://oeis.org/A273916/a273916.png) .

[^1]

Figure 3: A lattice constellation for $k=12$ generated by vectors $(1,2)$ and $(0,13)$.

Figure 4: A constellation for $k=12$ not generated by a lattice corresponding to the permutation $(0,2,4,6,11,9,12,5,3,1,7,10,8)$.

6 Acknowledgements

We are indebted to Don Coppersmith for stimulating discussions and for providing his many insights during the preparation of this note.

References

[1] The OEIS Foundation Inc., "The on-line encyclopedia of integer sequences," 1996-present, founded in 1964 by N. J. A. Sloane. [Online]. Available: https://oeis.org/
[2] M. Fekete, "Über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten," Mathematische Zeitschrift, vol. 17, no. 1, pp. 228-249, 1923.
[3] E. Pauls, "Das maximalproblem der damen auf dem schachbrete, II, deutsche schachzeitung," Organ für das Gesammte Schachleben, vol. 29, no. 9, pp. 257-267, 1874.
[4] J. Bell and B. Stevens, "A survey of known results and research areas for n-queens," Discrete Mathematics, vol. 309, pp. 1-31, 2009.
[5] G. Pólya, "Über die "doppelt-periodischen" losüngen des n-damen-problems," in Mathematische Unterhaltungen und Spiele, 2nd ed., W. Ahrens, Ed. B. G. Teubner, 1918, vol. 2, pp. 364-374.
[6] P. Monsky, "E3162," American Mathematical Monthly, vol. 96, no. 3, pp. 258-259, 1989.
[7] A. Burger, C. Mynhardt, and E. Cockayne, "Regular solutions of the n-queens problem on the torus," Utilitas Mathematica, vol. 65, pp. 219-230, 2004.

[^0]: ${ }^{1}$ We use the convention that an isolated point corresponds to 4 patterns of length 1 ; a horizontal, a vertical and 2 diagonal patterns.

[^1]: ${ }^{2}$ For general k, see [7] for a formula of the number of such permutations.

