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Abstract
We consider the minimal number of points on a regular grid on the plane that
generates n blocks of points of exactly length k. We illustrate how this is related to
the n-queens problem on the toroidal chessboard and show that this number is upper
bounded by kn/3 and approaches kn/4 as n — oo when k + 1 is coprime with 6 or
when £ is large.

1 Introduction

We consider points on a regular grid on the plane which form horizontal, vertical or diagonal
blocks of exactly k points (which we will call pattems)ﬂ For example, the set of points in
Fig. [If shows 12 points forming 3 patterns of length 5. Note that since a pattern of length
k has to have exactly k£ points flanked by empty grid locations, the set of points in Fig.
contains 4 patterns of length 2 and does not contain any patterns of length 4 or of length 3.
Our motivation for studying this problem is the Bingo-4 problem proposed by Sun et al. and
described in OEIS[I] sequence A273916 where the case k = 4 is considered. Let ax(n) denote
the minimal number of points needed to form n patterns of length k, i.e. Fig. [1| shows that
as(3) = 12. Finding the exact value of a;(n) appears to be difficult and not feasible for large
n. The purpose of this note is to provide an analysis on the asymptotic behavior of ag(n).

2 Bounds and asymptotic behavior of a;(n)

It is easy to see that ax(1) = k, ax(2) = 2k — 1 and ax(3) = 3(k —1). Next, consider Fekete’s
subadditive Lemma [2] which is applicable to subadditive sequences.

'We use the convention that an isolated point corresponds to 4 patterns of length 1; a horizontal, a
vertical and 2 diagonal patterns.


http://oeis.org/A273916
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Figure 1: 12 points on a grid forming 3 patterns of length 5.

Lemma 1 (Fekete’s subadditive Lemma). If the sequence a(n) is subadditive, i.e. a(n+m) <
a(n) +a(m), then lim, . % ezists and is equal to inf 2=

Theorem 1. For all k, ax(n) is subadditive, and f(k) = lim, a‘“T(”) exists and satisfies
R f(k) <k

Proof. Since each pattern takes k£ points and each point can be part of at most 4 patterns,
ar(n) > B2 Tt is clear that aj(n) is subadditive. Lemma (1| implies that f(k) exists and is

equal to inf, “’“T(”) Consider a k by m rectangular array of points with £ < m. It is easy to
see that there are 3m —2k+2 length k patterns there. This shows that a,(3m —2k+2) < km
which implies that £ < f(k) < &. O

3 Constellations where each point is part of 4 different
patterns

The upper bound % on f(k) in Theorem (1| shows that for large n we can construct a con-
stellation of n points such that most points are part of 3 different patterns. Is it possible to
construct a constellation such that most points are part of 4 different patterns (a horizontal,
a vertical and two diagonal patterns) and thus achieve the lower bound %? The case k = 11is
simple. Since a;(4n) = n as exhibited by the constellation of n isolated points, this implies
that f(1) = 1.

Let o be a permutation on the integers {0,1,--- ,k}. Consider a k + 1 by k + 1 square
grid and place a point on each position (i, j) except when it is of the form (i,0(7)). It is clear
that tiling this grid on the plane results in a constellation that have horizontal and vertical
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patterns of length k. In order for the diagonals to also have a block of exactly k£ points,
{i+0(i) mod k+1} and {i — (i) mod k + 1} need to be permutations of {0,1,--- ,k} as
well. Consider a N by N subgrid of this tiling. Except for points near the edges which is on
the order of kN o< ky/n, all points belong to 4 patterns of length k. Thus we have proved
the following:

Theorem 2. If there is a permutation o of the numbers {0,1,--- , k} such that oy = {i+o(i)

mod k + 1} and 02 = {i — o(i) mod k + 1} are both permutations, then f(k) = %. In

particular, akfln) converges to f(k) on the order of O (\%)

If o satisfies the conditions of Theorem [2] then so does o~!. For a fixed integer m, the
permutation (i) +m mod k+ 1 also satisfies these conditions. We will use this to partition
the set of admissible permutations into equivalent classes. More specifically,

Definition 1. Let Sy be the set of permutations on {0,1,--- k}. Tpi1 C Sky1 is defined
as the set of permutations o such that {i+o(i) mod k+1} and {i—o(i) mod k+1} are in
Sy+1. The equivalence relation ~ is defined as follows. If 0,7 € Ty, then o ~ 7 if T = 01
or there exist an integer m such that o(i) = 7(i) + m mod k + 1 for all 1.

Thus if Ty+q # 0, then f(k) = £.

4 Modular n-queens problem

The n-queens problem asks whether n nonattacking queens can be placed on an n by n
chessboard. The answer is yes and is first shown by Pauls [3, 4]. Next consider a toroidal
n by n chessboard, where the top edge is connected to the bottom edge and the left edge is
connected to the right edge. Polya [5] showed that a solution to the corresponding modular
n-queens problem exists if and only if n is coprime with 6. It is clear that a permutation in
Ty+1 corresponds to a solution of the modular (k 4 1)-queens problem. Thus Polya’s result
is equivalent to the following result:

Theorem 3. Ty.1 # 0 if and only if k + 1 is coprime with 6.
Corollary 1. If k+ 1 is coprime with 6, then f(k) =5%.

Monsky [6] shows that n — 2 nonattacking queens can be placed on an n by n toroidal
chess board and n — 1 queens can be placed if n is not divisible by 3 or 4. This implies the
following which shows that for k large, f(k) approaches the lower bound %:

Theorem 4. f(k) < k(f(ﬁ)lﬁ. If k+ 1 is not divisible by 3 or 4, then f(k) < k(kL?H,

Proof. Consider a k+1 by k+1 array with £+ 1—r nonattacking queens. By placing a point
on the location where there are no queens we obtain a constellation with (k+1)*— (k+1—7)
points. Each queen position corresponds to 4 patterns. Thus when this array is tiled, we

) appronching S = K T

get for a large number of points a ratio
conclusion follows by setting r =1 or r = 2.
flk) 1

Corollary 2. limy .o =~ = ;.



4.1 Lattice construction

As in the n-queens problem, we can construct permutations in T}, via a lattice construction.
In particular, we construct a constellation of points by placing a point on the grid if and
only if it is not a point on a lattice spanned by two vectors v; and vy. For instance with the
lattice points generated by the vectors (1,2) and (2, —1), the set of points with N = 15 is
shown in Fig. . In particular, this configuration shows that f(4) = 1.

Figure 2: A lattice constellation. Points in the center of the grid are part of 4 different
as(n)

patterns, showing that == — 1 as n — oo.

The following result appears to be well-known [4], but we include it here for completeness.



Theorem 5. If there exists 1 < m < k such that m — 1, m and m + 1 are all coprime with
k + 1, then the lattice construction with vy = (1,m) and (k + 1,0) generates a permutation
o mn Tk+1.

Proof. Consider the lattice generated with the vectors (1, m) and (0, k + 1). Clearly, if m
is coprime with k£ + 1, then we find in a k + 1 by k& + 1 subarray locations which do not
have a point of the form (4,0 (7)) with ¢ a permutation. The lattice points have coordinates
(a, ma+ (k+1)b) which lie on the 2 main diagonals if a = ma+(k+1)b or —a = ma+ (k+1)b.
In the first case —(m — 1)a = (k + 1)b. Since m — 1 is coprime with k& + 1, this means that
a is a multiple of k + 1, i.e., a diagonal pattern must have length k. In the second case
—(m + 1)a = (k4 1)b. Since k + 1 is coprime with m + 1, again this means that a is a
multiple of k£ + 1. O]

Theorem [5| also provides a proof of Corollary (1] since if k£ + 1 is coprime with 6, then 1, 2
and 3 are all coprime with k£ + 1. In particular the lattice construction with v; = (1,2) and
(k +1,0) generates a permutation o in Tj. Fig. [3|shows the construction for k£ = 12.

For k = 4, there is only one equivalence class (0,2,4,1,3) in Ty, that satisfies the
conditions of Theorem [2] For k = 6, there are two equivalent classes (0,2,4,6,1,3,5) and
(0,3,6,2,5,1,4). For k = 10, there are 4 equivalent classes. In particular, Theorem |5 shows
that if £+ 1 > 4 is prime, then there are at least % equivalent classes in Tj,;. This is
because each 2 < m < k — 1 is coprime with k£ + 1 and the permutation generated by m is
the inverse of the permutation generated by k£ — 1 — m which are equivalentﬂ It is possible
to have more than % equivalent classes as there are permutations in 7}, not generated by
a lattice. For k41 coprime with 6, if £ = 4,6 and 10, all permutations in 7T}, are generated
by a lattice. For k = 12, there are permutations in 7T, that are not generated by a lattice.
One such example is shown in Fig. [l Such solutions are referred to as nonlinear solutions
[4].

5 Conclusions

We studied the asymptotic behavior of the minimal number of points needed to generate
n patterns of length k using a construction based on permutations of {0,1,--- &k} with
certain properties. We showed that this construction allows us to create patterns where
asympotically most points are part of 4 patterns. This construction is equivalent to the
modular (k+1)-queens problem and thus f(k) = £ for k+1 coprime with 6. If k-+1 is even or
k+1 is divisible by 3, this construction fails to provide such a constellation. However, results
in the modular n-queens problem can still provide an upper bound on f (k) which shows that
f(k)

limg o0 > = %. Even though these constructions for the modular n-queens problem provide

limiting value of “’“T(") as n — oo, for a fixed n the optimal constellation to achieve ax(n) can

be quite different (see for example https://oeis.org/A273916/a273916.png) .

2For general k, see [7] for a formula of the number of such permutations.
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Figure 3: A lattice constellation for k = 12 generated by vectors (1,2) and (0, 13).
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