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Abstract

We consider the minimal number of points on a regular grid on the plane that
generates n blocks of points of exactly length k. We illustrate how this is related to
the n-queens problem on the toroidal chessboard and show that this number is upper
bounded by kn/3 and approaches kn/4 as n → ∞ when k + 1 is coprime with 6 or
when k is large.

1 Introduction

We consider points on a regular grid on the plane which form horizontal, vertical or diagonal
blocks of exactly k points (which we will call patterns)1. For example, the set of points in
Fig. 1 shows 12 points forming 3 patterns of length 5. Note that since a pattern of length
k has to have exactly k points flanked by empty grid locations, the set of points in Fig. 1
contains 4 patterns of length 2 and does not contain any patterns of length 4 or of length 3.
Our motivation for studying this problem is the Bingo-4 problem proposed by Sun et al. and
described in OEIS[1] sequence A273916 where the case k = 4 is considered. Let ak(n) denote
the minimal number of points needed to form n patterns of length k, i.e. Fig. 1 shows that
a5(3) = 12. Finding the exact value of ak(n) appears to be difficult and not feasible for large
n. The purpose of this note is to provide an analysis on the asymptotic behavior of ak(n).

2 Bounds and asymptotic behavior of ak(n)

It is easy to see that ak(1) = k, ak(2) = 2k− 1 and ak(3) = 3(k− 1). Next, consider Fekete’s
subadditive Lemma [2] which is applicable to subadditive sequences.

1We use the convention that an isolated point corresponds to 4 patterns of length 1; a horizontal, a
vertical and 2 diagonal patterns.
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Figure 1: 12 points on a grid forming 3 patterns of length 5.

Lemma 1 (Fekete’s subadditive Lemma). If the sequence a(n) is subadditive, i.e. a(n+m) ≤
a(n) + a(m), then limn→∞

an
n

exists and is equal to inf an
n

.

Theorem 1. For all k, ak(n) is subadditive, and f(k) = limn→∞
ak(n)
n

exists and satisfies
k
4
≤ f(k) ≤ k

3
.

Proof. Since each pattern takes k points and each point can be part of at most 4 patterns,
ak(n) ≥ kn

4
. It is clear that ak(n) is subadditive. Lemma 1 implies that f(k) exists and is

equal to infn
ak(n)
n

. Consider a k by m rectangular array of points with k ≤ m. It is easy to
see that there are 3m−2k+2 length k patterns there. This shows that ak(3m−2k+2) ≤ km
which implies that k

4
≤ f(k) ≤ k

3
.

3 Constellations where each point is part of 4 different

patterns

The upper bound k
3

on f(k) in Theorem 1 shows that for large n we can construct a con-
stellation of n points such that most points are part of 3 different patterns. Is it possible to
construct a constellation such that most points are part of 4 different patterns (a horizontal,
a vertical and two diagonal patterns) and thus achieve the lower bound k

4
? The case k = 1 is

simple. Since a1(4n) = n as exhibited by the constellation of n isolated points, this implies
that f(1) = 1

4
.

Let σ be a permutation on the integers {0, 1, · · · , k}. Consider a k + 1 by k + 1 square
grid and place a point on each position (i, j) except when it is of the form (i, σ(i)). It is clear
that tiling this grid on the plane results in a constellation that have horizontal and vertical
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patterns of length k. In order for the diagonals to also have a block of exactly k points,
{i+ σ(i) mod k+ 1} and {i− σ(i) mod k+ 1} need to be permutations of {0, 1, · · · , k} as
well. Consider a N by N subgrid of this tiling. Except for points near the edges which is on
the order of kN ∝ k

√
n, all points belong to 4 patterns of length k. Thus we have proved

the following:

Theorem 2. If there is a permutation σ of the numbers {0, 1, · · · , k} such that σ1 = {i+σ(i)
mod k + 1} and σ2 = {i − σ(i) mod k + 1} are both permutations, then f(k) = k

4
. In

particular, ak(n)
n

converges to f(k) on the order of O
(

1√
n

)
.

If σ satisfies the conditions of Theorem 2, then so does σ−1. For a fixed integer m, the
permutation σ(i)+m mod k+1 also satisfies these conditions. We will use this to partition
the set of admissible permutations into equivalent classes. More specifically,

Definition 1. Let Sk+1 be the set of permutations on {0, 1, · · · , k}. Tk+1 ⊂ Sk+1 is defined
as the set of permutations σ such that {i+σ(i) mod k+1} and {i−σ(i) mod k+1} are in
Sk+1. The equivalence relation ∼ is defined as follows. If σ, τ ∈ Tk+1, then σ ∼ τ if τ = σ−1

or there exist an integer m such that σ(i) = τ(i) +m mod k + 1 for all i.

Thus if Tk+1 6= ∅, then f(k) = k
4
.

4 Modular n-queens problem

The n-queens problem asks whether n nonattacking queens can be placed on an n by n
chessboard. The answer is yes and is first shown by Pauls [3, 4]. Next consider a toroidal
n by n chessboard, where the top edge is connected to the bottom edge and the left edge is
connected to the right edge. Polya [5] showed that a solution to the corresponding modular
n-queens problem exists if and only if n is coprime with 6. It is clear that a permutation in
Tk+1 corresponds to a solution of the modular (k + 1)-queens problem. Thus Polya’s result
is equivalent to the following result:

Theorem 3. Tk+1 6= ∅ if and only if k + 1 is coprime with 6.

Corollary 1. If k + 1 is coprime with 6, then f(k) = k
4
.

Monsky [6] shows that n − 2 nonattacking queens can be placed on an n by n toroidal
chess board and n− 1 queens can be placed if n is not divisible by 3 or 4. This implies the
following which shows that for k large, f(k) approaches the lower bound k

4
:

Theorem 4. f(k) ≤ k(k+1)+2
4(k−1) . If k + 1 is not divisible by 3 or 4, then f(k) ≤ k(k+1)+1

4k
.

Proof. Consider a k+1 by k+1 array with k+1−r nonattacking queens. By placing a point
on the location where there are no queens we obtain a constellation with (k+1)2−(k+1−r)
points. Each queen position corresponds to 4 patterns. Thus when this array is tiled, we

get for a large number of points a ratio ak(n)
n

approaching (k+1)2−(k+1−r)
4(k+1−r) = k(k+1)+r

4(k+1−r) . The
conclusion follows by setting r = 1 or r = 2.

Corollary 2. limk→∞
f(k)
k

= 1
4
.
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4.1 Lattice construction

As in the n-queens problem, we can construct permutations in Tk+1 via a lattice construction.
In particular, we construct a constellation of points by placing a point on the grid if and
only if it is not a point on a lattice spanned by two vectors v1 and v2. For instance with the
lattice points generated by the vectors (1, 2) and (2,−1), the set of points with N = 15 is
shown in Fig. 2. In particular, this configuration shows that f(4) = 1.

Figure 2: A lattice constellation. Points in the center of the grid are part of 4 different
patterns, showing that a4(n)

n
→ 1 as n→∞.

The following result appears to be well-known [4], but we include it here for completeness.

4



Theorem 5. If there exists 1 < m < k such that m− 1, m and m+ 1 are all coprime with
k + 1, then the lattice construction with v1 = (1,m) and (k + 1, 0) generates a permutation
σ in Tk+1.

Proof. Consider the lattice generated with the vectors (1,m) and (0, k + 1). Clearly, if m
is coprime with k + 1, then we find in a k + 1 by k + 1 subarray locations which do not
have a point of the form (i, σ(i)) with σ a permutation. The lattice points have coordinates
(a,ma+(k+1)b) which lie on the 2 main diagonals if a = ma+(k+1)b or −a = ma+(k+1)b.
In the first case −(m− 1)a = (k + 1)b. Since m− 1 is coprime with k + 1, this means that
a is a multiple of k + 1, i.e., a diagonal pattern must have length k. In the second case
−(m + 1)a = (k + 1)b. Since k + 1 is coprime with m + 1, again this means that a is a
multiple of k + 1.

Theorem 5 also provides a proof of Corollary 1 since if k+ 1 is coprime with 6, then 1, 2
and 3 are all coprime with k + 1. In particular the lattice construction with v1 = (1, 2) and
(k + 1, 0) generates a permutation σ in Tk+1. Fig. 3 shows the construction for k = 12.

For k = 4, there is only one equivalence class (0, 2, 4, 1, 3) in Tk+1 that satisfies the
conditions of Theorem 2. For k = 6, there are two equivalent classes (0, 2, 4, 6, 1, 3, 5) and
(0, 3, 6, 2, 5, 1, 4). For k = 10, there are 4 equivalent classes. In particular, Theorem 5 shows
that if k + 1 > 4 is prime, then there are at least k−2

2
equivalent classes in Tk+1. This is

because each 2 ≤ m ≤ k − 1 is coprime with k + 1 and the permutation generated by m is
the inverse of the permutation generated by k − 1−m which are equivalent2. It is possible
to have more than k−2

2
equivalent classes as there are permutations in Tk+1 not generated by

a lattice. For k+1 coprime with 6, if k = 4, 6 and 10, all permutations in Tk+1 are generated
by a lattice. For k = 12, there are permutations in Tk+1 that are not generated by a lattice.
One such example is shown in Fig. 4. Such solutions are referred to as nonlinear solutions
[4].

5 Conclusions

We studied the asymptotic behavior of the minimal number of points needed to generate
n patterns of length k using a construction based on permutations of {0, 1, · · · , k} with
certain properties. We showed that this construction allows us to create patterns where
asympotically most points are part of 4 patterns. This construction is equivalent to the
modular (k+1)-queens problem and thus f(k) = k

4
for k+1 coprime with 6. If k+1 is even or

k+1 is divisible by 3, this construction fails to provide such a constellation. However, results
in the modular n-queens problem can still provide an upper bound on f(k) which shows that

limk→∞
f(k)
k

= 1
4
. Even though these constructions for the modular n-queens problem provide

limiting value of ak(n)
n

as n→∞, for a fixed n the optimal constellation to achieve ak(n) can
be quite different (see for example https://oeis.org/A273916/a273916.png) .

2For general k, see [7] for a formula of the number of such permutations.
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Figure 3: A lattice constellation for k = 12 generated by vectors (1, 2) and (0, 13).
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Figure 4: A constellation for k = 12 not generated by a lattice corresponding to the permu-
tation (0, 2, 4, 6, 11, 9, 12, 5, 3, 1, 7, 10, 8).
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