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Abstract. Colored tensor models (CTM) is a random geometrical approach to quantum
gravity. We scrutinize the structure of the connected correlation functions of general CTM-
interactions and organize them by boundaries of Feynman graphs. For rank-D interactions
including, but not restricted to, all melonic ϕ4-vertices—to wit, solely those quartic vertices
that can lead to dominant spherical contributions in the large-N expansion—the aforementioned
boundary graphs are shown to be precisely all (possibly disconnected) vertex-bipartite regu-
larly edge-D-colored graphs. The concept of CTM-compatible boundary-graph automorphism
is introduced and an auxiliary graph calculus is developed. With the aid of these constructs,
certain U(∞)-invariance of the path integral measure is fully exploited in order to derive a
strong Ward-Takahashi Identity for CTMs with a symmetry-breaking kinetic term. For the
rank-3 ϕ4-theory, we get the exact integral-like equation for the 2-point function. Similarly,
exact equations for higher multipoint functions can be readily obtained departing from this full
Ward-Takahashi identity. Our results hold for some Group Field Theories as well. Altogether,
our non-perturbative approach trades some graph theoretical methods for analytical ones. We
believe that these tools can be extended to tensorial SYK-models.
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1. Introduction

The term colored random tensor models is a collective for random geometries obtained from

quantum field theories for tensor fields. Aiming at a theory of quantum gravity in dimension

D ≥ 2, these models are machineries of weighted triangulations of piecewise linear manifolds,

the weights being defined by certain path integrals. In that probabilistic ambit, which we

shall leave soon, what we obtain here is, crudely, recursions for the connected correlation

function G(2k+2) in terms of G(2k)—the Ward-Takahashi Identities (WTI)— which are a

consequence of U(∞)-symmetries in the measure of their generating functional, that is to say

the free energy logZ[J , J̄ ] (see below). Here we do not specialize in the construction of those

measures, nor use the probability terminology, but we adhere to the physical one (e.g. we

tend to use propagator instead of correlation, etc.; this does not imply that their probabilistic

meaning could not be tracked back, though). Accordingly, we drop qualificative “random”

and stick to colored tensor models (CTM). These correlation functions reflect, as we shall

prove, some of the structure of the tensor fields. The tensors have forbidden symmetries,

which has been deemed color. In the arbitrary-dimensional setting the coloring is needed

in order for the Feynman expansion to restrict to exactly those graphs one can associate a

sensible Ψ-complex to [25, Lemma 1]1. As a byproduct of this coloring, these theories might

have several, say ak(D), independent correlation functions of the same number 2k of points:

G
(2k)
1 , . . . ,G

(2k)
ak(D).

This is not a feature exclusively of the complex tensor models that we analyze, but it will

also be present in the (real) tensorial SYK-models (after Sachdev-Ye-Kitaev [29, 42]) that

have been studied lately [6, 47] if one considers them not as a 0 + 1 field theory (as in [18]),

but allows spacial degrees of freedom, e.g. as in [4]. In this sense, the present article could

be useful if one wants to solve the (melonic sector of) that theories.

The initial idea in the primitive versions of random tensor models was to reproduce, in

higher dimensions, the success of random matrices in modelling 2D-quantum gravity [1, 11].

The consummation of this generalization had to wait long, however, until the analogue of the

large-N expansion, which, as in matrix models, is bedrock of most physical applications, was

found [26]. For these higher dimensional analogues of random matrices, what empowered the

1/N -expansion is an integer called Gurău’s degree, which for rank-2 tensor models (complex

matrix models), coincides with the genus (see Def. 4). Crucially, for dimensions greater that

two, the degree is not a topological invariant; in particular this integer has complementary

information to homology and is able to tell apart triangulations of homeomorphic spaces.

Being tensor models a theory of random geometry, the fact that their large-N expansion

relies on a non-topological quantity is a rather wished feature, by which the theory of random

tensors gains reliability as a properly geometric quantum gravity framework for dimensions

D ≥ 2.

The Tensor Track [39–41] encompasses several classes of tensor models as study objects and

synthesizes these random-geometry-foundations in a gravity-quantization program that has

as watermark to leave the core of quantum field theory intact—whenever possible. Rooting

itself in Wilson’s approach to renormalization and functional integrals, the novelty in the

tensor track is trading the locality of interactions for invariance under certain large unitary

groups (Sec. 2). The origins of the Tensor Track are also amends to the renormalization of

Group Field Theory (GFT). In [39], Rivasseau stated Osterwalder-Schrader-like rules that

1 Pseudosimpicial or Ψ-complexes allow simplices to have more than a common face. Moreover, ostensibly,
the coloring of GFTs is not absolutely necessary [44], but we stick in this paper to colors, as they more easily
permit a systematic identification of graphs as spaces. Later on, we discuss models which drop coloring or part
of.
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tensor models should satisfy. One of the principal frameworks in the Tensor Track is precisely

that of CTM. We provide in the next paragraph an encapsulated description of alike settings

sometimes evoked by the name “tensor model” and studied also in the Tensor Track.

Belonging to the clade of Group Field Theories [16], colored tensor models were propelled

by Gurău. Roughly, GFTs are scalar field theories on D-fold products of compact Lie groups

(see e.g. [33] for their relation to Loop Quantum Gravity, and [38] for the origin of the group

manifold in the context of spin foams). Their Feynman diagrams encode simplicial complexes:

fields (interpreted as D− 1 simplices) are paired by propagators (see Sec. 6.3). Monomials in

the interaction part of the action Sint, typically of degree D + 1 in the fields, are understood

as D-simplices, so Feynman graphs are gluigs of these. It was in that framework where

the idea of coloring, which facilitated the large-N expansion, emerged [25]. Ever since, the

auspicious tensor model family has dramatically grown: GFTs with other unitary groups like

SU(2) [7] and, recently, with orthogonal groups [8]. Another framework, not addressed here,

but which our results might be extended to, are multi-orientable tensor models [45], which

have some symmetry of the U(N) × O(N) × U(N)-hybrid type (assuming rank 3). They

retain still some of the graphs forbidden by coloring and are still treatable with the large-

N expansion [46]. Tensor Group Field Theories is another GFT-related setting to which

actually some of our results are extended (Section 6.3 for the U(1)D-group). Concerning

renormalization of TGFTs a good deal of results pertaining the classification of these models,

has been undertaken specially by Ben Geloun and Rivasseau [3] in D = 4, and Ousmane

Samary, Vignes-Tourneret in D = 3. The former model (BGR), a TGFT on U(1)4, is one of

the prominent 4-dimensional models which, moreover, as its authors themselves proved, is a

renormalizable field theory to all orders in perturbation theory. Among all its relatives, CTM

render the best-behaved spaces. We choose to temporarily constrain to this framework because

geometric notions become more transparent there. We also ought to show the surjectivity of

certain map having as domain the Feynman graphs of a fixed tensor model action. That set

is meagerer in the CTM-framework, where the result becomes then stronger.

Relying on it, the main result of the present work, the full Ward-Takahashi Identity (The-

orem 2), is non-perturbative QFT for tensor models, in essence. Historically, the WTI ap-

peared in matrix models in order to show the vanishing of the β-function of the Grosse-

Wulkenhaar model—which had been already accomplished by other methods at one [19] and

three loops [13]—to all orders in perturbation theory. The ultimate proof [12], by Disertori,

Gurău, Magnen and Rivasseau, still perturbatively, was based on a Ward Identity (WI) also

derived by them there [12, Sec. 3]. Later on, Grosse and Wulkenhaar [21] retook the WI

for their self-dual ϕ?44 -model (see (36) with Ω = 1) to give a non-perturbative proof that

any quartic matrix model has a vanishing β-function. We adapt the non-perturbative matrix

model approach of [21] to colored tensor models. The full WTI (Theorem 2) is proven for an

arbitrary rank and for absolutely general CTM-interactions. It holds for U(1)-Group Field

Theories (GFTs) as well, by Fourier-transforming them.

The strategy. We closely follow the treatment given in [21, Sec. 2] to the Grosse-Wulkenhaar

(Ω = 1)-model, a ϕ?4-theory in Moyal (R4, ?) which becomes, in the Moyal matrix basis, a

matrix model [20, Sec. 2]. In [21] the Ward identities are used to decouple the tower of

Schwinger-Dyson equations (SDE), which results in an integro-differential equation for the

two-point function, in terms of which, via algebraic recursions, the theory can be solved,

i.e. all 2k-point-functions (which are the non-vanishing ones) are thus determined. Simply

stated, the strategy can be split in two tasks. First, to expand the free energy W [J , J̄ ] =

logZ[J , J̄ ] ∼∑p

∑
∂F(1/σ(∂F))G∂F(p) · ∂F(J , J̄)(p) in boundaries ∂F of Feynman graphs
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F of a specific model, with source-variables J and J̄ and p being momenta and σ(∂F) a

symmetry factor. For matrix models this approach has an astonishing result and needs, in

our setting, mainly three steps:

• Finding the right symmetry factors σ(∂F), which in turn requires the CTM-compatible

concept of automorphism of colored graphs. This new concept, contrary to the existent

in the literature of graph encoded manifolds, precisely exhibits compatibility with the

CTM-structure (see Sec. 3.1). Automorphism groups are also computed.

• Non-triviality. Since W [J , J̄ ] = logZ[J , J̄ ] cancels out the disconnected Feynman

graphs, one has to construct connected Feynman graphs with possibly disconnected,

arbitrary boundary graph B. This would ensure that each introduced correlation

function G
(n)
B describes indeed a process in the model under study. We develop first,

in Section 3, an operation introduced in [35] for rank 2 and interpreted there as the

connected sum, and take it further to arbitrary rank D. This operation sends two

Feynman graphs of a fixed model to a Feynman graph of the same model (Prop.

1). Furthermore, the divergence degree that controls the large-N expansion behaves

additively with respect to it (Prop. 1).

• Completeness. The exact set of boundary graphs is expected to be model-dependent.

We determine it for quartic (for D ≥ 4 quartic melonic) interactions and show that it

is the whole set of D-colored graphs (see Section 4).

The second task is to actually derive the WTI from these constructs. In order to be able to

read off from W any correlation function, a graph calculus is developed in Section 5.3.

The results. For tensor models, a version of the WTI was obtained in [43], with emphasis

on ranks 3 and 4. Here we go a different, considerably longer way that has the following

advantages:

• it is a non-perturbative treatment. This approach shows a way out of treating single

Feynman graphs in tensor models and proposes analytic methods instead. We prove

that the correlation functions are indexed by boundary graphs, though, so graph

theory cannot be fully circumvented.

• it exhibits the intricate, so far unknown structure of the Green’s functions. That

the structure of the boundary sector of single models had not been studied underlies

this shortcoming. Green’s functions are indexed by all boundary graphs; for quartic

interactions, namely by all D-colored graphs. Using [2] (see eqs. (25) and (26) below)

there are then in rank-3, four 4-point functions, eight 6-point functions; for D = 4,

eight 4-point, forty nine 6-point functions and so on.

• it is the full WTI. Roughly speaking, the Ward-Takahashi identities contain a skew-

symmetric tensor Emn times a double derivative on the partition function. This double

derivative splits in a part proportional to δmn, which is annihilated by Emn, and the

rest. The existing WTI in [43] does not contain the former term. It was enough

for successfully treating a “melonic-approximation” [34] and writing down a closed

integro-differential equations for the lower-order correlation functions. Our aim, on

the other hand, is the full theory. Accordingly, we compute here all terms: non-

planar contributions, in the matrix case, and non-melonic terms —their tensor-model

counterpart— are all recovered.

After succinctly introducing the general setting of CTMs in next section, we recap in Section 3

the main graph theory of colored tensor models2 but adding some new definitions and results

2A much more thorough exposition is given in [35] (keeping a very similar notation).
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ϕ4-generated

4D-bulk

S3

L3,
1

S2 × S1

+
ϕ4-generated

4D-bulk

S3

L3,
1

S2 × S1

+
ϕ4-generated

4D-bulk

S3

L3,
1

S2 × S1

+ . . .

Fig. 1 Geometric picture of the expansion of a concrete Green’s function in
Gurău’s degree for a particular correlation function. Gurău’s degree is depicted
by a handle (it is not a topological invariant, though)

useful in order to find, in Section 4, the boundary sector of quartic theories. This has a twofold

application. On the one hand it is basis for the expansion of the free energy in boundary

graphs (Section 5) which we use in Section 6 to obtain the full WTI. On the other hand, it

is useful in finding the spectrum of manifolds that a specific CTM is able to generate. We

offer some non-sphere examples of prime factors graphs generated by boundaries of quartic

CTMs—here a lens space and S2 × S1. Section 4.3 serves to emphasize this and following

aspect about the results of Section 4: If B is a graph with n vertices representing a manifold

M , then the multi-point function G
(n)
B is expected to have geometrical information about all

compact, oriented 4-manifolds bounded by M . In this bordism picture—here including the

vacuum graphs to the picture, for which M is empty—some manifolds cannot be obtained

from tensor model Feynman graphs, independently of the particular model, e.g. from the

onset, Freedman’s E8 manifold cannot appear [15]. Notice that in dimension 4, the categories

of topological and PL-manifolds (PL4) are not equivalent, so manifolds with non-trivial Kirby-

Siebenmann class [28] cannot be tensor model graphs. Nevertheless3, the PL4 category is the

same as the category of smooth 4-manifolds [9]. Therefore, in dimension 4, tensor models

still can in principle access all smooth structures, and which of them are obtained, is model

dependent. (It is likely that the model given by the four “pillow-like” invariants in D = 4

colors, what we here call the ϕ4
4,m-theory, suffices to generate them all.)

Each Green’s function can be expanded in subsectors determined by common value of

Gurău’s degree ω, symbolically represented as in Figure 1 for M = L3,1t(S1×S2)tS3 (see ex.

9). That expansion, as in the matrix case, can lead to closed integro-differential equations for

sectors such sectors. In particular, this paper provides techniques to find integro-differential

equations that these Green’s functions obey.

2. Colored tensors models

The next setting describes a theory that works in certain high-energy scale Λ. With that
resolution, an ordinary scalar vertex shows more structure. For instance, this one:

ϕ4-interaction at the energy scale Λ0
Λ � Λ0

(1)

At the energy scale Λ there is a U(N1 · · ·ND)-symmetry that is broken into U(N1)×· · ·×U(ND)
giving rise to more invariants. One postulates tensor fields ϕ and ϕ̄ that transform independently

3I thank the referee for the comments concerning the 4-dimensional case

5



Stranded Bipartite Geometric
Objects representation representation realization

Field ϕa1a2...aD . . . a1
aD

a2

σϕa = k

1

2

D

Field ϕ̄p1p2...pD . . . p1
p2

pD

σϕ̄p = D

1

2

k

(k-th color strand) face identification

Delta δakpk
k

k

1

2

D
D

1

2

k

k

Propagator-attachment to ψ ∈ {ϕa, ϕ̄p}
.
.
.

0
σψ C(σψ)

TrV3(ϕ, ϕ̄) with ext. legs, D = 3 12

3

1 2

3

a ball D3

TrV3(ϕ, ϕ̄), D = 3 12

3

1 2

3

a sphere S2

1Table 1 A dictionary between two equivalent representations of graphs and
their associated geometric realization is shown. A more detailed construction is
exposed in Section 4.3. Here C denotes the cone of a simplex

under each unitary group factor. Concretely, being Hc Hilbert spaces, usually `2([1,N ]), but
also `2([−N ,N ]), our fields are tensors ϕ, ϕ̄ : H1 ⊗H2 ⊗ . . .⊗HD → C that transform like

ϕa1a2...aD 7→ ϕ′a1a2...aD =
∑

bk
W

(k)
akbk

ϕa1a2...bk...aD ,

ϕ̄p1p2...pD 7→ ϕ̄′p1p2...pD =
∑

qk
W

(k)
pkqk

ϕ̄p1p2...qk...pD ,

for every W (k) ∈ U(Nk) and for each one of the so-called colors k = 1, . . . ,D. Here, the rank of
the tensors, D ≥ 2, is the dimension of the random geometry we want to generate. For sake of
simplicity, one sets Nk = N , for each color k, but one insists in distinguishing each factor of the
group U(N)D. Each such factor acts independently on a single index of both ϕ and ϕ̄, which
is refereed to as tensor-coloring. The energy scale Λ can be seen as (a monotone increasing
function of) this large integer N . Symbolically we write the indices of each tensor in ZD, but
one should think of it as a cutoff-lattice (ZN )D.

The classical action functional is build from a selection of connected U(N)⊗D-invariants,
which are given by traces {TrBα(ϕ, ϕ̄)}α indexed by regularly D-edge colored, vertex-bipartite
graphs. We shorten this term simply to D-colored graphs (see Sec. 3 for details). There is, in any
rank, only one quadratic invariant, Tr2(ϕ, ϕ̄) =

∑
a∈ZD ϕ̄aϕa, which is, as always, understood

as the kinetic part. Higher order invariants as

TrKc(3,3)(ϕ, ϕ̄) =
∑

a,b,c,p,q,r
(ϕ̄r1r2r3ϕ̄q1q2q3ϕ̄p1p2p3)· (2)

(δa1p1δa2r2δa3q3δb1q1δb2p2δb3r3δc1r1δc2q2δc3p3) · (ϕa1a2a3ϕb1b2b3ϕc1c2c3) ,

are the interaction vertices4, in this rank-3 example TrKc(3,3)(ϕ, ϕ̄) being of sixth degree, and

the sum being carried over momenta a, . . . , r ∈ Z3. The D-colored graph B that indexes a
generic interaction vertex TrB is obtained by the prescription in Table 1. Thus, for instance in

4 Due to the common occurrence of the word vertex both by field theory and graph theory, we cannot opt,
unfortunately, for a concise terminology.
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=

1

2
3

1

2
3

3

1
2

3

1
2

0

0

0

0

= CTM-version of

1

1

Fig. 2 Change of notations. Forgetting the tensor structure these both are an
enriched version of the leftmost Feynman diagram in an ordinary scalar theory

D = 3 colors, the colored graph Kc(3, 3) that indexes the interaction vertex (2) is

33

3
1

1

1

2 33

3
1

1

1

2 33

3
1

1

1

2
ϕa1a2a3

ϕb1b2b3

ϕc1c2c3

ϕ̄q1q2q3

ϕ̄r1r2r3

ϕ̄p1p2p3

(3)

This somehow obsolete notation is the so-called stranded representation. We shall now use an
equivalent, simpler notation of these graphs: the bipartite representation. This transition is
summarized in Table 1 and allows a connection with the graph theoretical representation of
piecewise-linear manifolds [14], as we explain later in Section 4.3, which is the main link to the
geometry of CTMs. However, the graphs one actually associates a (pseudo)manifold-meaning
to arise in the Feynman expansion of

Z[J , J̄ ] =

∫
D[ϕ, ϕ̄] eTr(J̄ϕ)+Tr(ϕ̄J)−ND−1S[ϕ,ϕ̄]

∫
D[ϕ, ϕ̄] e−ND−1S[ϕ,ϕ̄]

, where D[ϕ, ϕ̄] :=
∏

a∈ZD
ND−1 dϕadϕ̄a

2πi
e−Tr2(ϕ,ϕ̄),

and have one extra edge between any pair of Wick-contracted fields. Associated to these Wick’s
contractions is the 0-color, drawn always dashed (or in the stranded representation, D parallel
lines as reads in Table 1) and the graph one remains with turns out to be (D+ 1)-colored (open
or closed) as explained in the next example.

Example 1. We will study a particular model: the (ϕ4
D=3)-theory. Its interaction vertices are

V1 = λ ·

2

3
1

2

3
1 , V2 = λ ·

3

1
2

3

1
2 , V3 = λ ·

1

2
3

1

2
3 . (4)

We have chosen directly the bipartite representation but, in order to clarify the switch of
notations explained in Table 1, we consider one of the O(λ2)-vacuum-graph contributions to the
integral

∫
D[ϕ, ϕ̄] exp (−S0)(TrV3(ϕ, ϕ̄)TrV1(ϕ, ϕ̄)), given in Figure 2. It will be seen thereafter

that this graph is a (pseudo)simplicial complex that triangulates the sphere S3 with eight 3-
simplices.

Remark 1. Tensor field theory also has propagators that break the invariance in the action, in
this case under the unitary groups. It is therefore sensible to consider a slightly modified trace
with a symmetry-breaking term E in the quadratic term: S[ϕ, ϕ̄] = Tr2(ϕ̄,Eϕ)+

∑
α TrBα(ϕ, ϕ̄),

with E : H1 ⊗H2 ⊗H3 → H1 ⊗H2 ⊗H3 self-adjoint, Tr2(ϕ̄,Eϕ) = Tr2(Eϕ,ϕ). The first term
is distinguished, and represents the kinetic part of the action, where E could be interpreted as
the Laplacian.
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3. Colored graph theory

In this section we intersperse examples aimed at explaining a series of definitions that

concern the CTM-graphs. Each Feynman graph will be taken connected, but boundary

graphs of these need not to be so, whence the occurrence of the disconnected graphs in our

definitions.

Definition 1. A D-colored graph is a finite graph G = (G(0),G(1)) that is vertex-bipartite

and regularly edge-D-colored in the following sense:

• the vertex-set of G, denoted by G(0), is composed by black G(0)
b and white vertices G(0)

w :

G(0) = G(0)
w ∪· G(0)

b ,

• any edge e ∈ G(1) is attached to precisely one white vertex a and one black one w,

which we denote by t(e) = a, s(e) = w or, alternatively, e = aw (thus the number of

white and black vertices is the same; loops are forbidden),

• the edge set is regularly D-colored, i.e. G(1) = ∪·Dk=1G
(1)
k , where G(1)

k are the color-k

edges. Moreover at each vertex there are D differently colored incident edges.

We write Grphc,D for the set of all connected D-colored graphs and qGrphc,D for the set of

(possibly) disconnected graphs with finite number of connected components. Each connected

component of the subgraph of G with edges colored by a subset I = {i1, . . . , iq} ⊂ {1, . . . ,D}
of cardinality q is called q-bubble. On top of the edge-color set I, one needs a vertex v or

edge e of G that specifies the connected component. The notation for a bubble is therefore

GIv , GIe or, if specifying the colors that do not appear is easier, I = {1, . . . ,D} \ {c1, . . . , cr},
say, G ĉ1,...,ĉr

v . We write G(q) for the set of q-bubbles of G; in particular, G(2) is the set of the

faces of G.

Graphs in either set Grphc,D or qGrphc,D are said to be closed, in contrast to:

Definition 2. A graph G is an open (D+ 1)-colored graph if, first, its vertex-set is bipartite

in the sense of (i) and (ii) below and if the edge set G(1) = ∪·Dc=0G(1)
c is quasi-regularly (up to

the 0 color) (D + 1)-colored in the sense of (a) and (b):

(i) the vertex-set is bipartite, G(0) = G(0)
w ∪· G(0)

b , where G(0)
w are the white, and G(0)

b the

black vertices, and any edge e is adjacent to precisely one vertex in G(0)
b and a vertex

in G(0)
w . Therefore one has the same number of black and white vertices,

(ii) any vertex is either internal or external, G(0) = G(0)
inn ∪· G

(0)
out; moreover, the set G(0)

inn of

internal vertices is regular with valence D + 1 and external vertices have valence 1,

and, denoting by G(1)
c the edge-set of color-c:

(a) for each color c and each inner vertex v ∈ G(0)
inn, there is exactly one color-c edge,

e ∈ G(1)
c , attached to v,

(b) external vertices v ∈ G(0)
out are attached only to color-0 edges. We call both a vertex in

G(0)
out and the edge attached to it an external leg.

As is common in QFT, we sometimes drop the external vertices and keep only the external (in

this case 0-colored) edge. Given an open graph G one can extract a (in general non-regularly)

colored graph inn(G) defined by inn(G)(0) = G(0)
inn and inn(G)(1) = G(1) \ {external legs of G}.

The graph inn(G) is called amputated graph. For any p ∈ Z≥0, we set

Grph
(2p)
c,D+1 :=

{
G open (D + 1)-colored

∣∣ #
(
G(0)

out

)
= 2p

}
. (5)

The factor 2 arises from vertex-bipartiteness. Here for p = 0, of course Grph
(0)
c,D+1 :=

Grphc,D+1.
8



Example 2. In this example Kc(3, 3) is the colored utility graph, which, tangentially, is the

“bipartite” version of the stranded representation of (3). One has:

Kc(3, 3) =
2

1
2

1
2

1

33
3

∈ Grphc,3 and
2

1
2

1
2

1

33
3

t 1 1

1

∈ qGrphc,3.

Example 3. The graph K below is open and lies in Grph
(6)
c,3+1. We depict also its amputation,

inn(K):

K = 2 2

1

12

2

1 1

2

2 1

1

inn(K) = 2 2

1

12

2

1 1

2

2 1

1

Definition 3. The boundary graph ∂G of a (D+ 1)-colored graph G ∈ Grph
(2k)
c,D+1 defined by:

• its vertex set is (∂G)(0) = Gout, inheriting the bipartiteness of the Gout.

• the edge set (∂G)(1) is partitioned by colors k ∈ {1, . . . ,D}. For each color k, one

sets (∂G)
(1)
k := {(0k)-colored paths in G}. The incidence relations are given by the

following rule: a white vertex a ∈ (∂G)
(0)
w is connected to a black vertex x ∈ (∂G)

(0)
b

by a k-colored edge ek ∈ ∂G(1)
k if and only if there is a (0k)-bicolored path in G between

the external vertices a and x.

One can easily see that ∂G ∈ qGrphc,D by identifying (0i)-bicolored edges with i-colored

edges, for i = 1, . . . ,D.

Example 4. The next graph is the cone of Kc(3, 3),

C(Kc(3, 3)) =

2
1

2

1
2

1

33
3

The boundary of C(Kc(3, 3)) is obviously Kc(3, 3) itself (ex. 2). In our construct, it will

be important to be able to generate arbitrary graphs B ∈ qGrphc,D as boundaries of a

certain theory with fixed interaction vertices. Then, generating them by coning B —that

is, by adding an external color-0 leg to each vertex of B— is not an option, for one would

need to add to the classical action the interaction vertex given by the connected components

of inn(CB) ∈ qGrphc,D (and thereby additional coupling constants should in principle be

measured). The boundary graph ∂K of K in example 3 is Kc(3, 3). This is the “right” type

of graph for us, e.g. obtained solely from a ϕ4-theory.

Definition 4. Given a graph G ∈ Grphc,D+1, each cycle σ ∈ SD+1 a ribbon graph Jσ called

jacket, which is specified by:

J (0)
σ = G(0), J (1)

σ = G(1), J (2)
σ = {f ∈ G(2) : f has colors σq(0) and σq+1(0), q ∈ Z}.

Here σq(0) is the q-fold application of σ to 0. Obviously σ and σ−1 lead to the same jacket.

Moreover each jacket, being a ribbon graph, has a genus [35] and the sum of the genera of the
9



D!/2 jackets of G is called Gurău’s degree and denoted by ω(G). If a graph has a vanishing

degree, it is called melon. For D = 2 then Gurău’s degree is the genus of the graph, as the

only jacket is the graph itself; melons in rank-2 are planar ribbon graphs. In any degree,

melons triangulate spheres [27].

Example 5. The necklace graph N defined by eq. (13) has two spherical jackets J(1234) and

J(1423) and a toric jacket J(1324) (see [35] for the full computation). Jackets are the graph-

version of surfaces corresponding to Heegaard splittings [27]. Hence the geometric realization

of N has a genus-0 Heegaard splitting and is therefore a sphere. Also J(1324) in G is the

“Clifford torus” T2 in S3.

One way to determine Gurău’s degree [5, App. A, Prop 1] of a graph G ∈ Grphc,D+1 is to

count its faces G(2) and to use the formula

|G(2)| = 1

2

(
D

2

)
· |G(0)|+D − 2ω(G)

(D − 1)!
. (6)

The relevance of this integer relies in the analytic control it gives to the theory of random

tensor models. Here, the amplitude A(G) of Feynman graphs G in CTMs has the following

behavior A(G) ∼ ND− 2ω(G)
(D−1)! .

Definition 5. A colored tensor model V (ϕ, ϕ̄)D is determined by three items. First, an integer

D ≥ 2, called dimension of the model. This integer D is the rank the tensors. Secondly, by

an action

V (ϕ, ϕ̄)D =
∑
B∈Ω

λB TrB(ϕ, ϕ̄) ,

where Ω ⊂ Grphc,D, |Ω| < ∞, and λB ∈ R. Finally, by a kinetic term E :
⊗D

c=1Hc →⊗D
c=1Hc that is self-adjoint in the sense of Tr2(Eϕ,ϕ) = Tr2(ϕ̄,Eϕ). Usually terms E 6= 1

are employed to make connection with GFTs and TGFTs, as the Laplacian boils down to

such a term. We will often obviate E and specify the model only by the potential. The set of

(connected) Feynman diagrams of the model V (ϕ, ϕ̄)D is denoted by FeynD(V ) and satisfies

FeynD(V ) =
{
G ∈ ∪·∞k=0Grph

(2k)
c,D+1

∣∣ inn(G)0̂ ∈ Ω and (inn(G))
(1)
0 6= ∅

}
.

The graphs in Grph
(0)
c,D+1 ∩ FeynD(V ) are called vacuum graphs of the model V . We are

interested in honest Feynman graphs, that is, those having internal propagators (in other

words, those that are not the cone of an interaction vertex). This explains the mysterious

restriction (inn(G))
(1)
0 6= ∅.

Definition 6. Let R and Q be connected (D + 1)-colored graphs, R ∈ Grph
(2k)
c,D+1 and Q ∈

Grph
(2l)
c,D+1. Let k be any color and let e and f be color-k edges in R and Q, respectively, i.e.

e ∈ R(1)
k and f ∈ Q(1)

k . We define the graph R #e fQ as follows:

(R #e fQ)(0) = R(0) ∪Q(0),

(R #e fQ)(1) = (R(1) \ {e}) ∪ (Q(1) \ {f}) ∪ {E,F},
being E and F new k-colored edges defined by s(E) = s(e), t(E) = t(f) and s(F ) = s(f),

t(F ) = t(e) (see Figure 3). Otherwise, the incidence relations and coloring are inherited from

those of R and Q. This implies that R #e fQ is a connected graph in Grph
(2l+2l)
c,D .

It is obvious that if one chooses only color-0 edges e and f , one can restrict # to a well-

defined binary operation on the set of Feynman graphs,

#e f : FeynD(V )× FeynD(V )→ FeynD(V ),
10



Q

R
s(e)

t(f)

t(e)

s(f)

e

f

#e f

R #e fQ
s(e)

t(f)

t(e)

s(f)

F

E

Fig. 3 On the definition of #. Here s and t are source and target, respectively

for arbitrary rank-D colored (complex) tensor model V (ϕ, ϕ̄).

This operation # was defined in [35] for 3-colored graphs that are Feynman diagrams of

rank-2 tensor models. It is straightforward to check that # is associative. The notation is

due to the fact that on Grphc,3 × Grphc,3, # is the graph-theoretical connected sum. We use

it now in higher dimensions, but for D ≥ 3, we (still) do not interpret # as connected sum.

We have, nevertheless the following result, which for D = 2 has been proven in [35, Lemma

3].

Proposition 1. For arbitrary edges e ∈ G(1)
c , f ∈ K(1)

c of any color c, the operation #e f

behaves additively with respect to Gurău’s degree i.e. ω(G #e fK) = ω(G) + ω(K), for any

graph G,K ∈ Grphc,D+1.

Proof. We use the face-counting formula (6) to calculate Gurău’s degree and compute how

it changes after #e f . First, notice that the vertices of G and K add up exactly to those of

G #e fK. Concerning faces, in G there are exactly D two-bubbles containing the edge e, namely

the connected component G(cd)
e , where d is any color but c itself. By the same token, there

are D faces of K whose boundary loop contains f . Erasing e and f in favor of the edges E

and F in G #e fK puts the bubbles G(cd)
e and K(cd)

f together in a single one. This happens

for each color d 6= c, whence |G(2)| + |K(2)| −D = |(G #e fK)(2)| =
(
D
2

)
|(G #e fK)(0)|/2 + D −

2ω(G #e fK)/(D − 1)! . Then using formula (6) for both G and K yields the result. �

Example 6. We consider two copies of the (D + 1)-colored graph with two vertices, M. It

has only planar jackets, whence its Gurău’s degree is zero. Therefore, if ei denotes the only

color-i edge of M, by Proposition 1, one has P = M #e1 e1M #e0 e0M #eD eDM is a melon,

for ω(P) = ω(M #e1 e1M) + ω(M #eD eDM) = 4ω(M) = 0. This graph will be handy in the

sequel (in Eq. (16), specifically) in order to separate boundary components (see Lemma 3).

By a similar argument one can see that the vacuum graph in example 1 is a melon. Since

melons triangulate spheres [27], our claim there is proven.

3.1. Colored graph automorphisms. The available concept of automorphism in the theory

of manifold crystallization [14, Sec. 1] and graph-encoded manifolds of the late 70s and early

80s cannot be used here, for boundary graphs ∂C have a bipartite-vertex set (which is moreover

labeled by the momenta corresponding to the ones carried by open legs of C; see Sec. 5.2);

here we introduce the concept that discloses the compatibility with the whole CTM-structure.

Definition 7. An automorphism Θ of a graph G ∈ Grphc,D is a couple of permutations

Θ = (θ, θ̃) of the set of vertices θ ∈ Sym(G(0)) and the set of edges θ̃ ∈ Sym(G(1)) that

respects

• bipartiteness: θ|G(0)
w

∈ Sym(G(0)
w ) and θ|G(0)

b

∈ Sym(G(0)
b ),

• edge-coloring : for any color c and ec ∈ G(1)
c , then θ̃(ec) ∈ G(1)

c ,
11



• adjacency: let s : G(1) → G(0)
w and t : G(1) → G(0)

b respectively denote the source and

target maps. Then the following diagrams are commutative:

G(1) G(1)

G(0)
w G(0)

w

θ̃

s s

θ|
and

G(1) G(1)

G(0)
b G(0)

b

θ̃

t t

θ|

1

We denote by Autc(G) the group of automorphisms of the colored graph G. Notice that

Θ ∈ Autc(G) has no more information than a permutation of white (or black) vertices plus

“preserving the structure of colored graph”. That is to say, let r = |G(0)|/2 and suppose that

τ ∈ Sr is such that there exists an automorphism Θ = (θ, θ̃) ∈ Autc(G) that restricts to τ ,

θ|G(0)
w

= τ . We construct the other pieces of Θ, beginning with θ̃. For an arbitrary color j,

let ej be an edge in G(1)
j . Set then

θ̃(ej) := the only j-colored edge in s−1(τ(s(ej))) .

In terms of θ̃, we define θ for black vertices: let p ∈ G(0)
b and let, for arbitrary color j,

fj ∈ G(1)
j be the edge with p = t(fj). Then set θ(p) := t(θ̃(fj)). That is, θ and θ̃ can be

constructed from τ . We conclude that for connected graphs G ∈ Grphc,D, if τ can be lifted

to a Θ ∈ Autc(G), then Θ is unique and (whenever it exists) it will be denoted by τ̂ . This

way we can see Autc(G) as a subgroup of Sr = Sym(G(0)
w ). In particular, the following bound

holds:

|Autc(G)| ≤ (|G(0)
w |)! =

(
|G(0)|/2

)
! . (7)

Example 7. By contrast with the ‘uncolored’ utility graph K(3, 3), for which |Aut(K(3, 3))| =
2(3!)2, one has for its color version Kc(3, 3) a quite modest Autc(Kc(3, 3)) ∼= Z3. The two

non trivial elements of Autc(Kc(3, 3)) are rotations by ±2π/3. The rotations by ±π/3,π are

forbidden by edge-coloring preservation. On the other hand, reflections about the depicted

axes do preserve edge-coloring but not the bipartiteness of the edges:

Kc(3, 3) =

2

1

2

1

2

1

33

3

1

The following lines complete the short list of automorphism groups of connected graphs in

≤ 6 vertices; there d = 1, 2, 3 and Rθ means anti-clockwise rotation by θ:

Autc

(

1

)
= {∗} , Autc

(
d

d

)
= 〈Rπ〉 ' Z2 ,

Autc

( d

d d

)
= 〈R2π/3〉 ' Z3 , Autc

(
d

)
= {∗} .

More extensive tables of automorphism groups of connected colored graphs, as well as their

Gurău’s degree, can be found in [36]. If G ∈ qGrphc,D is the disjoint union of mi copies of

pairwise distinct types of connected graphs {Γi}si=1 ⊂ Grphc,D, G = (Γ1 t . . . t Γ1) t . . . t
(Γs t . . . t Γs), then

Autc(G) = (Autc(Γ1) o Sm1)× (Autc(Γ2) o Sm2)× . . .× (Autc(Γs) o Sms) , (8)

where o is the wreath product of groups. Hence |Autc(G)| = ∏s
i=1(mi)! · |Autc(Γi)|mi .
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4. Completeness of the boundary sector for quartic interactions

Definition 8. The boundary sector of a rank-D colored tensor model V (ϕ, ϕ̄) is the image

of the map ∂ : FeynD(V )→ qGrphc,D.

In [35] it has been shown, constructively, that the geometric realization of the boundary

sector of the ϕ4
3-theory is enough to reconstruct all orientable, closed (possibly disconnected)

surfaces. Here we present, first, a stronger result in Section 4.1 for D = 3. A similar statement

with a similar proof for the rank D > 3 case follows in Section 4.2. Both results are needed

for the Ward-Takahashi Identity.

4.1. The boundary sector of the ϕ4
3-theory.

Lemma 1. Every connected 3-colored graph is the boundary of (at least) one Feynman dia-

gram of the ϕ4
3-theory. In other words, the boundary sector contains Grphc,3.

Proof. Let R be a connected 3-colored graph. If R = ∅ is the empty graph, trivially, one can

pick any closed (or vacuum) graph R̃ of the model. Assume then, that R is not the empty

graph. We construct R̃ so that ∂R̃ = R. To each white (resp. black) vertex d ∈ R(0)
w (resp.

x ∈ R(0)
b ) we associate the following contractions:

d̃(c1, q1, c3, c2, q2) =
1

1
3

3

q1

c1

c3

c2

q2

, x̃(b2, p2, p3, b1, p1) =
2

2
3

3

b2

p2

p3

p1

b1

The edges of any of the three colors are associated the following Wick-contractions. For

e1 ∈ R(1)
1

e1 7→ d̃(c1, q1, c3, c2, q2)x̃(b2, p2, p3, b1, p1) =
1

1
3

3

2

2
3

3

1
Similarly to given f2 ∈ R(1)

2 and g3 ∈ R(1)
3 , one associates, respectively, the following graphs:

f2 7→ d̃(c1, q1, c3, c2, q2)x̃(b2, p2, p3, b1, p1) =
1

1
3

3

2

2
3

3

g3 7→ d̃(c1, q1, c3, c2, q2)x̃(b2, p2, p3, b1, p1) =
1

1
3

3

2

2
3

3

Since each vertex v ∈ R is regularly 3-colored, the five Wick contractions added to ṽ saturate

all but one irregularly colored vertices in ṽ and make them regularly colored. The only one

that remains is a leaf and will be an open leg. Of course, connectedness of two vertices

d,x ∈ R(0) by an edge of color i (with i = 1, 2, 3) is transferred to the connectedness of the

(unmarked) external vertices of d̃ and x̃ in R̃ by a (0i)-colored path in that graph. Thus, by

construction, ∂R̃ = R. �
13



Remark 2. In the proof of Lemma 1 the vertex V3 has been used. We suspect, there is an

optimal construction, which it only uses V1 and V2. The optimization of this proof would

use the dipole contraction [3, Lemma 4] (in that setting for rank-4 TGFTs) but we defer this

proof.

4.2. The boundary sector of the ϕ4
D,m-theory. In two dimensions there is a single (com-

plex) quartic model; in three dimensions, there are three interaction vertices. Both in two and

three dimensions quartic vertices are all melonic. The situation changes from 4 dimensions

on. For instance, in D = 4, the interaction vertex N given by eq. (13) and S4 permutations

thereof are not melonic, for their Gurău’s degree is ω(N ) = 1 (see computation [35, Sec 2]).

For arbitrary rank, D ≥ 2, we use the following shortcut: the ϕ4
D,m-theory denotes the model

with the following D melonic vertices {TrVk(ϕ, ϕ̄)}k=1,...,D, being

TrVk(ϕ, ϕ̄) =
...k̂

...k̂

k k .

Here some of the edges with colors k̂ = {1, 2, . . . ,D} \ {k} are shortened by dots. We

also abbreviate the Feynman diagrams of the ϕ4
D,m-theory as FeynD(ϕ4

m). For D = 3 the

subindex m denoting melonicity is redundant. There, the ϕ4
3,m-theory is the ϕ4

3-theory and

Feyn3(ϕ4
m) = Feyn3(ϕ4), according to previous remarks.

Theorem 1. For arbitrary rank D, the boundary sector ∂FeynD(ϕ4
m) of the ϕ4

D,m-theory is

all of qGrphc,D.

We need first two lemmas. The first one is most of the work and concerns the connected

case. The second lemma tells how glue ϕ4
D,m-Feynman graphs into a connected ϕ4

D,m-Feynman

that has a custom (disconnected) boundary.

Lemma 2. The boundary sector of the ϕ4
D,m-theory contains Grphc,D.

The idea is to associate, to each vertex v of B, a partially Wick-contracted “raceme”, ṽ, of

interaction-vertices of the ϕ4
D,m-theory. Each raceme has a marked (graph-theoretical) vertex.

Among all the associated racemes, one contracts with a 0-color all but the marked vertex,

in such a way that one has a 0i-bicolored path in B̃ between two such preferred vertices at

racemes x̃ and d̃, whenever there is an i-colored edge in B between x and d.

Proof. Let B ∈ Grphc,D. We construct a graph B̃ ∈ FeynD(ϕ4
m) with ∂B̃ = B. Concretely, we

assemble B̃ from B as follows. Only after Step 2 we will have a well-defined Feynman graph.

Step 1: Replace any black vertex x ∈ B(0)
b and any white vertex d ∈ B(0)

w by x̃ and d̃,

respectively:

x 7→ x̃ =

. . .p1

p
D−1

b
D−1p

Db1 b3 p3 b2 p2

r

...

...

DD

...

...

D − 1

...

...

33

...

...

22

. . .

(9)

d 7→ d̃ =

..

.

..

.

1 1

..

.

..

.

3 3

..

.

..

.

D − 1

..

.

..

.

D D

. . .

q3c3q1c1 c
D−1

q
D−1 c

D q2

c2

a (10)

At this stage, B̃ consists of the following connected components {d̃}
d∈B(0)

w

∪{x̃}
x∈B(0)

b

, which,

altogether, have the following set of vertices that are not contracted with the 0-color:

{bx1 , px1 , . . . , bxD−1, pxD−1, pxD}x∈B(0)
b

∪ {cd1, qd1 , . . . , cdD−1, qdD−1, cdD}d∈B(0)
w

. (11)
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Step 2: We shall contract all open vertices (11) as follows: Whenever x = t(ei) and d = s(ei),

for ei an edge of color i 6= D, ei ∈ B(1)
i , one Wick-contracts bxi with qdi and pxi with cdi :

x̃(. . . , bxi , pxi , . . . , bxD−1, pxD−1, pxD, rx) d̃(. . . , cdi , q
d
i , cdD−1, qdD−1, cdD, ad) (12)

Whenever x = t(eD) and d = s(eD) for eD ∈ B(1)
D , contract pxD with cdD:

x̃(. . . , bxi , pxi , . . . , bxD−1, pxD−1, pxD, rx) d̃(. . . , cdi , q
d
i , cdD−1, qdD−1, cdD, ad)

The regularity and the bipartiteness of B imply the well-definedness of B̃ as open (D + 1)-

colored graph. We now see that ∂B̃ = B. Indeed, for each black vertex x (resp. white vertex

d) in B, there exactly is a black (resp. white) external leg, namely rx (resp. ad) which is

mapped by ∂ to a black vertex ∂rx (resp. white vertex ∂ad). Therefore, B and ∂B̃ have

the same bipartite vertex set. To conclude, we remark that for every k-colored edge ek in

B between x and d, there is indeed a (0k)-bicolored path in B̃ between rx and ad, and this

ensures that there is a k-colored edge between ∂ad and ∂rx, by the mere definition of the

boundary graph:

• k = 1: From right to left in the following graph, notice that since the vertex V1 does

not appear in x̃, there is (in the bottom part) there is a (01)-bicolored path between

r and p1. That path can be concatenated with p1c1a, which is also (01)-bicolored.

(Notice that from the two Wick-contractions, only one lies on such a path. The other

is secondary.)

..

.

..

.

1 1

..

.

..

.

3 3

..

.

..

.

D D

. . .

q3c3q1c1 c
D q2

c2

a d̃

. . .p1

p
D−1

b
D−1p

Db1 b2 p2

r

...

...

DD

...

...

D − 1

...

...

22

. . .

x̃

• k = 2: By a similar token, there is a (02)-colored path between a and c2.

..

.

..

.

1 1

..

.

..

.

3 3

..

.

..

.

D D

. . .

q3c3q1c1 c
D q2

c2

a d̃

. . .p1

p
D−1

b
D−1p

Db1 b2 p2

r

...

...

DD

...

...

D − 1

...

...

22

. . .

x̃

• k = 3, . . . ,D − 1: The Wick-contraction (12) connects ck and pk with a color-0 edge.

It is evident that from graphs (9) and (10), that there is a 0k-bicolored path through

it that connects r and a.

• k = D. There are VD-vertices neither to the left of cD nor to the right of pD, so there

is a (0D)-bicolored path acD, which can be concatenated with cDpD and subsequently

with pDr.

..

.

..

.

1 1

..

.

..

.

3 3

..

.

..

.

D D

. . .

q3c3q1c1 c
D q2

c2

a d̃

. . .p1

p
D−1

b
D−1p

Db1 b2 p2

r

...

...

DD

...

...

D − 1

...

...

22

. . .

x̃

�
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Example 8. In rank-4, the construction in Theorem 2 (Step 1) associates to each vertex

{f , d,x, z} of the necklace-graph

N =

1

2

4 3

1

2

43

f x

dz

(13)

“racemes” {f̃ , d̃, x̃, z̃}. According to Step 2, they are contracted by 0-colored edges to form

the following ϕ4
m-Feynman diagram Ñ , which obviously satisfies ∂Ñ = N .

Ñ =

af
1 1 3 3 4 4

f̃
rx

44 33 22

x̃

113344
ad

d̃

rz
4 43 32 2

z̃

Lemma 3. The ϕ4
m-graph S given by

S(g, v;h,w) :=

1

1

. . .. . .

D

D

. . .. . .

v h

g w
0

00 0

0 0

(14)

separates boundary components. More precisely: Given two open graphs G1,G2 ∈ FeynD(ϕ4
m),

with 2p1 and 2p2 external legs, respectively,

G1(c(1), c(2), . . . , c(p1); r(1), r(2), . . . , r(p1)) and G2(d(1), d(2), . . . , d(p2); s(1), s(2), . . . , s(p2)),

for any 1 ≤ i, j ≤ p1 and 1 ≤ k, l ≤ p2, being c(i) (resp. r(j)) any outer white (resp. black)

vertex of G1 and d(i) (resp. s(j)) any outer white (resp. black) vertex of G2, we claim that

C := G1(. . . , c(i), . . . ; . . . , r(j), . . .)S(g, v;h,w)G2(. . . , d(k), . . . ; . . . , s(l), . . .)

is a Feynman graph in FeynD(ϕ4
m), whose boundary is given by

∂(G1(c(1), . . . , c(i), . . . ; r(1) . . . , r(j), . . .)) t ∂(G2(d(1), . . . , d(k), . . . ; s(1), . . . , s(l), . . .)) . (15)

Thus, if C is given by

...
...S G2G1

the dots listing uncontracted external legs, Lemma 3 says that

∂C = ∂

(
... G1

)
t ∂

(
...G2

)

Proof. This is a restatement of [35, Lemma 6]. �
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One can restate a more general result by considering P = S(g, v;h,w) and taking (D+ 1)-

colored graphs K and G that might even be closed. By taking edges e ∈ K(1)
0 and f ∈ G(1)

0

and letting k = gw and l = hw one has

∂(K #e kP #l fG) = ∂K t ∂G . (16)

of theorem 1. Let B be an arbitrary graph in qGrphc,D. We decompose B in its connected

components {Rα}Bα=1 ⊂ Grphc,D, B = tBα=1Rα. For each connected component α, we consider

the graphs R̃α given by Lemma 1 if D = 3 or by Lemma 2 if D ≥ 4. Fix two arbitrary vertices

dα ∈ (Rα)
(0)
w and xα ∈ (Rα)

(0)
b and consider the vertices cα1 , qα1 and bα1 , pα1 that lie on the

racemes d̃α and x̃α of R̃α respectively. One considers also the 0-colored edges eα = cα1 p
α
1 and

fα = qα1 b
α
1 that connect the racemes d̃α with x̃α. Consider, B − 1 copies of P,

Pi = S(gi, vi;hi,wi) (i = 1, . . . ,B − 1) ,

and denote by ki = gi vi and li = hiwi the 0-edges arising from the Wick-contracting. Then

T = (R̃1) #e1 k1(P1) #l1 f2(R̃2) #e2 k2(P2) #l2 f3(R̃3) #e3 k3 · · · (PB−1) #lB−1 fB(R̃B)

implies, after repetitively using eq. (16),

∂T = ∂R̃1 t . . . t ∂R̃B = R1 t . . . tRB = B. �

4.3. Geometric interpretation. Graphs in qGrphc,D+1 serve to construct triangulations

∆(G) of D-(pseudo)manifolds, i.e. a (pseudo)complex as stated in [14]:

• for each vertex v ∈ G(0), add a D-simplex σv to ∆(G)

• one labels the vertices of σv by the colors {0, 1, . . . ,D}
• for each edge ec ∈ G(1)

c of arbitrary color c, one identifies the two (D − 1)-simplices

σs(ec) and σt(ec) that do not contain the color c.

Corollary 1. The boundary sector of the ϕ4
D,m-model generates all orientable, closed piecewise

linear manifolds. Thus, for D = 4, it generates all orientable, closed 3-manifolds.

Proof. By Pezzana’s theorem [14, 37], all compact, connected PL-(D − 1)-manifolds possess

a suitable crystallization. Crystallizations are, in particular, D-colored graphs, all of which

are generated by certain boundary ∂G ∈ ∂FeynD(ϕ4
m), by Theorem 1. The second statement

follows from Moise’s theorem [31] on equivalence of topological and PL 3-manifolds. �

Example 9. This result implies that there exist a 4-dimensional Ψ-manifold that is represented

by the ϕ4
m-theory, whose boundary is any closed, orientable (honest) 3-manifold. In particular,

for instance, the 3-manifold with the following, say, three connected components: a lens space,

L3,1; the 3-manifold with cyclic infinite fundamental group, S2×S1; and a more common prime

factor, S3. First one needs to crystallize them. The next three are crystallizations of said

manifolds, in which we represent the color 4 by a waved line and suppress redundant labels:

Γ =
323

2 3 2

2

3

2

3

2

3

C =

1

3

2

3

11

1
2

3
2 M = (17)

We compute the fundamental group of these crystallizations in Appendix A. Theorem 1 states

that G = Γ̃#P#M̃#P#C̃ has as boundary the disjoint union of these graphs. Therefore the

geometric realization |∆(G)| of G has as boundary L3,1 t (S2 × S1) t S3.
17



(n1, . . . ,n5) with Cycles Green Functions Symmetry factor∑
k k · nk = 5 JP1

1
· · ·JP5

n5
G|P1

1|...|P1
n1

|...|P5
n5

|
∏

k k
nk · nk!

(5, 0, 0, 0, 0) JppJqqJrrJssJtt G|p|q|r|s|t| 5!
(3, 1, 0, 0, 0) JppJqqJrrJstJts G|p|q|r|st| 3! · 2
(2, 0, 1, 0, 0) JppJqqJrsJstJtr G|p|q|rst| 2! · 3
(1, 2, 0, 0, 0) JppJqrJrqJstJts G|p|qr|st| 222!
(0, 1, 1, 0, 0) JpqJqpJrsJstJtr G|pq|rst| 2 · 3
(1, 0, 0, 1, 0) JppJqrJrsJstJtq G|p|qrst| 4
(0, 0, 0, 0, 1) JpqJqrJrsJstJtp G|pqrst| 5

1
Table 2 The boundary-graph–expansion’s fifth order

For further applications it might be important to modify Gurău’s degree of a graph while

simultaneously sparing its boundary. This is also due to the relevance of the difference

ω̃(G) − ω(∂G), where ω̃ is the degree for open graphs defined as the sum of the genera

of its pinched jackets [3]. On closed graphs ω̃ is the same as ω (closed jackets cannot be

“pinched”). The remark is that one can modify any graph G ∈ FeynD(ϕ4
m) into a graph G′ of

the same quartic model, so that ∂G′ = ∂G. The only ingredient one needs is a vacuum graph

L ∈ FeynD(ϕ4
m) with ω(L) > 0. (e.g. in D = 3, the necklace graph with the color 4 equal to

0, and being thus in Feyn3(ϕ4), cf. ex. 8). Then

G′ = G#P#L =
... S LG

has degree ω̃(G′) = ω̃(G) + ω(P) + ω̃(L) = ω̃(G) + ω̃(L) > ω̃(G), by Theorem 1, and ∂(G′) =

∂Gt∂L = ∂G by Theorem 3 and because L is a vacuum graph. Notice that the degree cannot

be increased by an arbitrary amount, but only by multiples of 2/(D − 1)! .

5. The expansion of the free energy in boundary graphs

Before tackling the main problem, it will be useful to recall the expansion of the free energy

for real matrix models. The reader in a hurry might accept eq. (23) and go to eq. (22) for

notation.

5.1. The free energy expansion for a general real matrix model. As background,

consider the following model, whose objects are compact operators M : H → H (“matrices”),

with H a separable Hilbert space. The interactions are described by a polynomial potential,

P (M). The partition function reads

Z[J ]

Z[0]
=

∫
DM eTr(JM)−Tr(EM2)−TrP (M)

∫
DM e−Tr(EM2)−TrP (M)

, (18)

where E is a Hermitian operator on H. The free energy, Wmatrix[J ] ∝ log(Z[J ]/Z[0]), gener-

ates the connected Green’s functions. To expand in terms of the combinatorics of the sources’

indices, we shall use a multi-index notation, with Pm having length m = |Pm|. This just

means that Pm is an m-tuple Pm = (p1p2 . . . pm) ∈ Im for given index set I. Im is often

the integer lattice, and m will not be a fixed integer, but we will deal with multi-indices

of arbitrary length. To enumerate multi-indices of the same length we use a subindex, so

Pm1 ,Pm2 , . . . ,Pmnm are all length-m cycles. Sums over multiple multi-indices are understood as

follows:
18



∑

Pk,...,Qm
=
∑

p1
· · ·
∑

pk
· · ·
∑

q1
· · ·
∑

qm
with Pk = (p1 . . . pk) and Qm = (q1 . . . qm) .

The J-cycles of size `, namely Jp1p2Jp2p3 · · · Jp`−1p`Jp`p1 , are here for sake of briefness denoted

by JP` :=
∏`
i=1 Jpipi+1

with P` = (p1 . . . p`) and p`+1 := p1 . With that notation, the free

energy can be expanded [21, Sec. 2.3] in length-` cycles, with ` variable, as follows:

∞∑

`=1

∞∑

n`≥1

∞∑

n1=0
...

n`−1=0


 ∏̀

j=1

1

nj !jnj


 ∑

P1
1,...,P1

n1...

P`1,...,P`n`

{
G

(Nmatrix)

|P1
1|...|P1

n1
|...|P`1|...|P`n` |

∏`

k=1
(JPk1 · · ·JPknk

)

}
. (19)

One word more on notation: Fixed the ` by the first sum, for 1 ≤ k ≤ `, the non-negative

integer nk stands for the number of boundary components with k sources (whence n` 6= 0

in the second sum is precisely a way to paraphrase the decomposition in the longest cycle).

The number of boundary components Bmatrix, and the number of sources, Nmatrix (i.e. the

order of the Green’s function) are Bmatrix =
∑`
j=1 nj and Nmatrix =

∑`
j=1 j · nj . Instead

of expanding by longest-cycles, we can also rephrase (19) as an explicit Taylor expansion to

O(J6),

W [J ] =
∑

p
G|p|Jpp +

1

2

∑
p,q

(
G|pq|JpqJqp +G|p|q|JppJqq

)

+
∑

p,q,r

(1

3
G|pqr|JpqJqrJrp +

1

2
G|pq|r|JpqJqpJrr +

1

3!
G|p|q|r|JppJqqJrr

)

+
∑

p,q,r,s

(1

4
G|pqrs|JpqJqrJrsJsp +

1

3
G|pqr|s|JpqJqrJrpJss

+
1

8
G|pq|rs|JpqJqpJrsJsr +

1

4
G|p|q|rs|JppJqqJrsJsr +

1

4!
G|p|q|r|s|JppJqqJrrJss

)

+
∑

p,q,r,s,t

(
1

5
G|pqrst|JpqJqrJrsJstJtp +

1

4
G|p|qrst|JppJqrJrsJstJtq

+
1

2 · 3G|pq|rst|JpqJqpJrsJstJtr +
1

222!
G|p|qr|st|JppJqrJrqJstJts

+
1

2!3
G|p|q|rst|JppJqqJrsJstJtr +

1

3!2
G|p|q|r|st|JppJqqJrrJstJts

+
1

5!
G|p|q|r|s|t|JppJqqJrrJssJtt

)
+O(J6).

Table 2 shows how to read off from (19), say, the fifth power in J . The Green’s function for

a fixed cycle can be furthermore expanded in genus-g sectors:

G
(Nmatrix)

|P1
1|...|P1

n1
|...|P`1|...|P`n` |

=
∑

g≥0
G

(Nmatrix, g)

|P1
1|...|P1

n1
|...|P`1|...|P`n` |

. (20)

For the 5-tuple (n1, . . . ,n5) = (3, 1, 0, 0, 0), here chosen only to exemplify the genus expan-

sion’s meaning, G
(5)
|p|q|r|st| =

∑
g≥0G

(5, g)
|p|q|r|st| reads

G|p|q|r|st|JppJqqJrrJstJts =

Jrr Jst Jts

Jqq Jpp

+

Jrr Jst Jts

+

Jqq Jpp

Jrr Jst Jts

Jqq Jpp

. . .
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5.2. The general expansion for rank-3 CTMs. The combinatorics of the matrix-sources

just shown in Section 5.1 gets modified for the rank-3 colored tensors because of the coloring;

moreover, because the theory is now complex the non vertex-bipartite graphs are forbidden.

The first implication of coloring is that the sources do not exhibit repeated indices in the same

source, e.g. none of the following terms is allowed in the expansion of W [J , J̄ ] = log(Z[J , J̄ ]):

J...a...a..., J̄...a...a..., J̄aaa, Jaaa, J̄aabJbcc, JaabJ̄bcc, . . . (terms forbidden by coloring).

Whilst for the lowest order correlation functions this seems to be quite restrictive, the expan-

sion shows intricacy as one goes to higher order ones.

We now consider a graph G ∈ Feyn3(ϕ4) and set the first convention. We fix the indices of

the J-sources (the external lines connected to the black vertices) and let G yield the indices

of the J̄-sources. For any i, both index types ai, pi ∈ Z3, are known as momenta.

G =

Ja1

Ja2

Jak

...
...

J̄p1

J̄p2

J̄pk

(21)

We let the notation for the 2k-point function G(2k)
... that describes the “process” G reflect this

combinatorics via another graph B to be constructed shortly. The resulting G
(2k)
B ought to

encompass all graphs in Feyn3(ϕ4) that lead to the same combination of indices in the J̄-

sources. From the J̄-sources, for each α = 1, . . . , k, pα = pα(a1, . . . , ak) is a triple index that

depends on a1, . . . , ak. The j-th color of pα will be denoted by pαj and to fix the enumeration

of pα, we will ask pα1 := aα1 , for each α = 1, . . . , k. Moreover, regularity and coloring of the

graph implies that {pαj }kα=1 and {a1
j , a

2
j , . . . , a

k
j } coincide as sets, also for the colors j = 2, 3.

A crucial step in order to find the generalization of the expansion (19), is to notice that5 that

very equation is a sum over boundaries of FeynR2 (ϕ4). In order to adapt (19) to Feyn3(ϕ4), we

take each monomial G
(2k)
B (a1, . . . , ak)Ja1 · · · Jak J̄p1 · · · J̄pk , which in all generality looks like

in eq. (21) and notice that the structure of the sources is, of course, encoded by the boundary

graph B = ∂G. Parenthetically, this is not an uncommon practice in (scalar) QFT, where the

boundary graph is just a graph without edges, i.e. a finite set whose cardinality gives the

number of points of the correlation function. The graph B and said monomial are uniquely,

mutually determined as follows:

• a source Jas determines a white vertex in B; a source J̄pj , a black vertex in B;

• two vertices are joined by a c-colored edge in B if and only if there exists a (0c)-

bicolored path in G between the (vertices associated to the) external lines Jas and

J̄pj . Then set

(
J(B)

)
(a1, . . . , ak) := Ja1 · · · Jak J̄p1 · · · J̄pk = Ja11a12a13 . . . Jak1ak2ak3 J̄a11p12p13 . . . J̄ak1pk2pk3 . (22)

Here the momenta pα are determined as in the graph (21) and the convention below it, and

J(B) is a function of the momenta {a} = (a1, . . . , ak) ∈ (Z3)k. Thus, the expansion can be

recast as

W [J , J̄ ] =
∞∑

k=1

∑

B∈∂(Feyn3(ϕ4))

k= 1
2 |B

(0)|

∑

{a}

1

|Autc(B)|G
(2k)
B ({a}) · J(B)({a}) .

5The author is indebted to Raimar Wulkenhaar for this valuable remark.
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It will be convenient to define a pairing ? of functions F : (Z3)k → C with boundary graphs

B ∈ ∂(Feyn3(ϕ4)):

F ? J(B) :=
∑

a1,...,ak

F (a1, . . . , ak)J(B(a1, . . . , ak)) .

With this notation, W takes the neater form:

W [J , J̄ ] =
∞∑

k=1

∑

B∈qGrphc,3
2k=|B(0)|

1

|Autc(B)|G
(2k)
B ? J(B) . (23)

The fact that all 3-colored graphs appear listed in eq. (23) is consequence of Theorem 1.

Remark 3. A conspicuous difference with matrix models’ expansion (19) —where the bound-

ary of each graph is topologically “uniform”, all being triangulations of tBS1— is that in

rank-3 tensor field theories, the analogous connected components of the boundary have a

non-trivial topology, since these are 3-colored graphs and therefore [35] define closed ori-

entable surfaces, ∆B ∼=
⊔B
β=1 Σgβ with gβ ∈ Z≥0 and Σg = #gT2 (being Σ0 := S2 for the

empty connected sum g = 0). As shown here, an analogous result holds for higher dimensions.

Details on the expansion of W in disconnected boundary graphs are presented in Appendix

B.

To illustrate the expansion, we derive the first terms in powers of the sources:

WD=3[J , J̄ ] = G
(2)

1

? J(
1

) +
1

2!
G

(4)
|

1

|
1

| ? J(
1

t
1

) +
1

2
G

(4)

1 1
1

? J
(

1

1
)

(24)

+
1

2
G

(4)

2 2
1

? J
(

2

2
)

+
1

2
G

(4)

3 3
1

? J
(

3

3
)

+
∑3

c=1

1

3
G

(6)
c

c c
1

? J
( c

c c
1

)

+
1

3
G

(6)
? J
(

1

)
+
∑3

c=1
G

(6)
c

1

? J
(

c

)
+

1

3!
G

(6)
|

1

|
1

|
1

| ? J(
1

t3
)

+
∑3

c=1

1

2
G

(6)
|

1

| c
1

| ? J
(

1

t c

1

)
+O(8) .

In this expansion, the monomial J(B) in the sources J and J̄ is defined by formula (22).

Thus, for instance the term in W [J , J̄ ] for the trace indexed by the colored complete graph

Kc(3, 3) is

1

3
G

(6)
? J
(

1

)
=

1

3

∑

a,b,c∈Z3

G
(6)

(a, b, c)Ja1a2a3 J̄a1b2c3Jb1b2b3 J̄a3b1c2Jc1c2c3 J̄a2b3c1 .

This monomial J(B) should not be confused with the trace TrB(J , J̄), which would imply sums

over all indices inside the graph. Actually TrB(ϕ, ϕ̄) = 1 ? J(B) holds, being 1 the constant

function Z|B(0)|/2 → C, a 7→ 1. Notice that formula (24) pairs the momenta indices6 of J(B)

with those of the corresponding Green’s function G
(2k)
B . This seemingly redundant notation

will pay off not before the WTI below. The next short section explains why those factors

have been chosen, and how to recover each Green’s functionsG
(2k)
B in the expansion ofW [J , J̄ ].

The number of correlation functions in rank D = 3, 4 theories are counted. In [2], Ben

Geloun and Ramgoolam found the generating function ZD,conn.(x) =
∑
p a

(D)
p,conn.xp of the

number a
(D)
p,conn. of connected graphs Grphc,D of a fixed number of vertices 2p. It has the

6Recall that we give the white indices and let the graph determine the black ones (see above eq. (21)).
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following behavior7:

Z3,conn.(x) =
∑

p
a(3)
p,conn.x

p = x+3x2+7x3+26x4+97x5+624x6+4163x7+34470x8+. . . (25)

The first three terms of this series are evident in eq. (24). For D = 4, they also computed

Z4,conn.(x) = x+ 7x2 + 41x3 + 604x4 + 13753x5 (26)

+ 504243x6 + 24824785x7 + 1598346352x8 + . . .

From those expressions one can readily compute the number ap(D) of disconnected D-colored

graphs in 2p vertices. That integer is the number of correlation 2p-point functions.

5.3. Graph calculus. Let R,Q ∈ Grphc,3 and a1, . . . , ar, c1, . . . , cq ∈ Z3. In view of the dis-

cussion above, we associate to those graphs, respectively, the monomials J(R)(a1, . . . , ar) and

J(Q)(c1, . . . , cq). Here, the white vertices of the graph R have incoming momenta a1, . . . , ar

and similarly for Q. So we can derive one with respect to the other:

∂R(c1, . . . , cp)

∂Q(a1, . . . , aq)
:=

∂J(R)(a1, . . . , ap)

∂J(Q)(c1, . . . , cq)

∣∣∣∣
J=0=J̄

.

This can be straightforwardly computed. First notice that trivially, if p 6= q, automatically

∂R/∂Q ≡ 0. Otherwise we have:

Lemma 4. Let a1, . . . , ar ∈ Z3 be colorwise, pairwise different, i.e. such that for each

α,β = 1, . . . , r, and for each color c = 1, 2, 3, aαc 6= aβc holds whenever α 6= β. Then for

connected graphs R,Q ∈ Grphc,3,

∂R(c1, . . . , cr)

∂Q(a1, . . . , ar)
=





∑
σ̂∈Autc(R)

δc
σ(1),...,cσ(r)

a1,a2,...,ar if R ∼= Q ,

0 if R � Q .
(27)

Here σ̂ ∈ Autc(R) means the automorphism σ̂ : R → Q whose restriction to white vertices

satisfies σ̂|R(0)
w

= σ ∈ Sym(R(0)
w ) = Sr. Also “∼=” denotes isomorphism in the sense of colored

graphs, and the δ-function is shorthand for the following product of 3r Kronecker-deltas:

δa1,a2,a3,...,b1,b2,b3
c1,c2,c3,...,d1,d2,d3

= δa1c1 δ
a2
c2 δ

a3
c3 · · · δ

b1
d1
δb2d2δ

b3
d3

.

Proof. If we compute directly using

∂J]u

∂J\w
= δ\]δ

u1
w1
δu2
w2
δu3
w3

where J], J\ ∈ {J , J̄}, (28)

then one splits this in the J-derivatives and the J̄-terms

∂R(c1, . . . , cr)

∂Q(a1, . . . , ar)
=
∂r(Jc1 . . . Jcr)

∂Jp1 . . . ∂Jpr

∣∣∣∣
J=0

∂r(J̄q1 . . . J̄qr)

∂J̄p1 . . . ∂J̄pr

∣∣∣∣
J̄=0

,

being the labels of the sources fully determined by

pα1 = aα1 and qα1 = cα1 for all α = 1, . . . , r. (29)

One can again use eq. (28) and compute each of these terms:

∂r(Jc1 . . . Jcr)

∂Ja1 . . . ∂Jar

∣∣∣∣
J=0

=
∑

σ∈Sp

δc
σ(1)

a1 δc
σ(2)

a2 · · · δcσ(r)ar ,

and

∂r(J̄q1 . . . J̄qr)

∂J̄p1 . . . ∂J̄pr

∣∣∣∣
J̄=0

=
∑

σ∈Sp

δq
σ(1)

p1 δq
σ(2)

p2 · · · δq
σ(r)

pr .

7The OEIS series numbers [32] for Z3,conn. and Z4,conn. are A057005 and A057006, respectively.
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Then

∂R(c1, . . . , cr)

∂Q(a1, . . . , ar)
=
∑

σ∈Sp

∑

τ∈Sp

δc
σ(1)

a1 δq
τ(1)

p1 δc
σ(2)

a2 δq
τ(2)

p2 · · · δcσ(r)ar δq
τ(r)

pr

=
∑

σ,τ∈Sr
σ=τ

δc
σ(1)

a1 δq
τ(1)

p1 δc
σ(2)

a2 δq
τ(2)

p2 · · · δcσ(r)ar δq
τ(r)

pr (30)

where the restriction to sum only over the diagonal τ = σ is derived from the color-1 deltas by

using the index-definition (29): δ
c
σ(α)
1
aα1

δ
q
τ(α)
1
pα1

= δ
c
σ(α)
1
aα1

δ
c
τ(α)
1
aα1

= δ
τ(α)
σ(α) for arbitrary α = 1, . . . , r.

The second equality follows from the condition cαj 6= cγj if α 6= γ, for each color j = 1, 2, 3.

Now suppose that R � Q and consider, for an arbitrary σ ∈ Sr, the following term in the

sum:

δc
σ(1)

a1 δq
σ(1)

p1 δc
σ(2)

a2 δq
σ(2)

p2 · · · δcσ(r)ar δq
σ(r)

pr (31)

By assumption Q 6= σ̂(R). That is, there is a white vertex (marked by) aα, and a color j 6= 1,

with the following property:

- if pν ∈ Q(0)
b denotes the black vertex where the j-colored edge ej beginning at aα ends

(i.e. t(ej) = pν); and, moreover, if qγ ∈ R(0)
b denotes the vertex where the j-colored

edge at cσ(α) ends; then σ̂−1(qγ) 6= pν .

This means that the following deltas are contained in the term (31):

δ
aαj
pνj
δa
α

cσ(α)δ
c
σ(α)
j

qγj
δ
σ̂−1(qγ)
qγ (32)

On the other hand, consider the j-colored edge gj with t(gj) = σ̂−1(qγ) and the vertex aµ

with s(gj) = aµ. Because of σ̂−1(qγ) 6= pν and as consequence of the regularity of the coloring

of the graph one has µ 6= α. Thus, the term (31) contains, on top of (32), δa
µ

σ̂−1(qγ). By using

the assumption, aαj 6= aµj one gets δ
aαj
pνj
δa
α

cσ(α)δ
c
σ(α)
j

qγj
δ
σ̂−1(qγ)
qγ δa

µ

σ̂−1(qγ) = 0. Since this holds for

arbitrary σ, then R � Q implies that ∂R/∂Q ≡ 0. Hence

∂R(c1, . . . , cr)

∂Q(a1, . . . , ar)
=
∑

σ∈Sr

δ(σ̂(R),Q)δc
σ(1),...,cσ(r)

a1,a2,...,ar , with δ(σ̂(R),Q) :=

{
1 if σ̂(R) = Q ,

0 if σ̂(R) 6= Q .

The sole non-vanishing terms are precisely the automorphisms of R and the result follows. �

To better comprehend this formula, notice that the derivative ∂/∂Q still has momentum

dependence, for Q has external lines as vertices. For instance,

∂

∂ c

a

b
1

=
∂6

∂Ja1a2a3∂J̄a1b2c3∂Jb1b2b3∂J̄a3b1c2∂Jc1c2c3∂J̄a2b3c1
.

For {a, b, c} and {e, f , g} subsets of Z3 satisfying the hypothesis of Lemma 4,

∂

∂ c

a

b
1

(
g

e

f

1

)
= δeaδ

f
bδ

g
c + δgaδ

e
bδ

f
c + δfaδ

g
bδ

e
c ,

holds for {ad 6= bd 6= cd 6= ad}d=1,2,3 and has the same information as Autc( ) ' Z3.

Formula (27) can be directly generalized to non-connected graphs. Any graphR ∈ qGrphc,3

that has s different connected components, each of multiplicity mi, i = 1, . . . , s, can be split

according to

R = R1
1 tR1

2 t . . . tR1
m1
t · · · t Rs1 tRs2 t . . . tRsms , (33)
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where the subindices only label copies of the same graph Rk∗ . Using a similar expression for

Q ∈ qGrphc,3, one finds,

∂R(c(1), . . . , c(r))

∂Q(a(1), . . . , a(r))
=
∂|Q

(0)|

∂J(Q)
J(R)

∣∣∣∣∣
J=0
J̄=0

=





∑
σ∈Autc(R)

δ
σ(c(1)),...,σ(c(r))

a(1),a(2),...,a(r) if R 6= Q ,

0 if R 6= Q ,

(34)

which we again denote by ∂R/∂Q. For R of the type (33), this derivative contains cer-

tain number σ(R) Kronecker deltas, being σ(R) := m1! . . .ms!|Autc(R1
• )|m1 · · · |Autc(Rs• )|ms .

This explains the factors accompanying the Green’s functions in the expansion (53).

Lemma 5. For B ∈ qGrphc,3, let N be the number of vertices of B. Then the N -point

function corresponding to B is non-trivial and can be recovered from the free energy W as

follows:

G
(N )
B =

∂

∂BW [J , J̄ ]

∣∣∣∣
J=0=J̄

:=
∂|B

(0)|

∂J(B)
W [J , J̄ ]

∣∣∣∣∣
J=0=J̄

.

Proof. In the expansion (23), we single out B and derive with respect to B:

∂|B
(0)|

∂J(B)
W [J , J̄ ]

∣∣∣∣∣
J=0=J̄

=
∂

∂B

(
W [J , J̄ ]− 1

σ(B)
G

(N )
B J(B)

)
+

1

σ(B)

∂

∂BG
(N )
B B .

The first summand vanishes, since B does not appear in that sum of terms. The second

term yields, after equation (34), precisely G
(N )
B . In the ϕ4

3-theory, this Green’s function is

non-trivial, for there exists at least one graph, whose boundary is B, as stated by Lemma

1. �

For instance, the 6-point function G
(6)

reads in full notation

G
(6)

(a, b, c) =
∂6W [J , J̄ ]

∂Ja1a2a3∂J̄a1b2c3∂Jb1b2b3∂J̄a3b1c2∂Jc1c2c3∂J̄a2b3c1

∣∣∣∣
J=0=J̄

.

5.4. Arbitrary-rank graph calculus. As is it obvious from the proofs, the results in previ-

ous section do not rely on the number of colors. In fact, we claim that for any rank-D model

V (ϕ, ϕ̄), the following expansion in boundary-graphs holds:

W [J , J̄ ] =
∞∑

k=1

∑

B∈∂FeynD(V (ϕ,ϕ̄))

k= 1
2#(B(0))

1

|Autc(B)|G
(2k)
B ? J(B) . (35)

Here, we have set N = 1, which can be reverted by a rescaling of the kinetic term and of

each of the correlation functions G
(2k)
B → Nγ(B)G

(2k)
B , and γ(B) should be determined. We

postpone this task and depart from the simplified version, eq. (35). For the ϕ4
m-theory, the

sum is over all ∂FeynD(ϕ4
m) = qGrphc,D, as consequence of Theorem 1. For that model the

free energy WD=4[J , J̄ ] to O(6) is then given by

WD=4[J , J̄ ] = G
(2)

1

? J
(

1

)
+

1

2!
G

(4)

|
1

|
1

|
? J
(

1

t 2)

+
∑4

k=1

1

2
G

(4)

k

? J
(

k

)
+
∑4

k=2

1

2
G

(4)

1k1 k

? J
(

1k1 k

)
.

We omit the next 49 = 41conn. boundary+8disconn. boundary connected O(6)-multipoint functions.

The way to recover the correlation function GB from the free energy, in arbitrary rank is

described by an obvious generalization of Lemma 5.
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6. The full Ward-Takahashi Identity

The Ward-Takahashi Identities for tensor models are inspired by those found for the Grosse-

Wulkenhaar model given by the action

∫
d4x

(
1

2
(∂µϕ) ? (∂µϕ) +

Ω2

2
(x̃µϕ) ? (x̃µϕ) +

µ2

2
ϕ ? ϕ+

λ

4!
ϕ ? ϕ ? ϕ ? ϕ

)
(x) , (36)

on Moyal R4. Here xµ = 2Θ−1
µν x

ν , being Θ a 4 × 4 skew-symmetric matrix, that also

parametrizes the Moyal product (f ? g)(x) =
∫

d4k
(2π)4

∫
d4yf(x+1

2Θ·k) g(x+y) eik·y on the

Schwartz space, f , g ∈ S(R4,C). The modification by a harmonic oscillator term makes the

theory dual under certain “position-momentum”-duality, also known as Langmann-Szabo-

duality [30]. The authors of the model have shown that their action (36) with Ω = 1 can be

grasped as a matrix model in such a way that it fits in the setting of (18) by using the Moyal

matrix base [20]. We generalize the existent WTI in [43] by following the non-perturbative

strategy by [21, Sec. 2-3].

6.1. Derivation of the Ward-Takahashi Identity. We set N = 1 from now on, which

does not affect our analysis. We consider an arbitrary colored tensor model in D colors

V (ϕ, ϕ̄) =
∑
B λBTrB(ϕ, ϕ̄), as pointed out in Definition 5, with non-trivial kinetic form

S0(ϕ, ϕ̄) =
∑
p∈ZD ϕ̄p1...pDEp1...pDϕp1...pD , E 6= id, with E self-adjoint. The measure D[ϕ, ϕ̄]

in the path integral of such a model is invariant under the action of each factor of the group

U(N)× . . .×U(N). We take an infinitesimal transformation in its a-th factor

Wa ∈ U(N), Wa = 1 + iαTa +O(α2), T †a = T a,

for any a = 1, . . . ,D and recast the invariance of the partition function with respect to this

group action as the following matrix equation:

δ logZ[J , J̄ ]

δTa
= 0. (37)

In the sequel, we drop the ND−1 prefactors, which can be restored by rescaling E and the

coupling constant(s). Denote by F the source term Tr2(ϕ̄, J) + Tr2(J̄ ,ϕ). One finds by using

δF (J , J̄)

δ(Ta)mana
=
∑

pi∈Z

[
J̄p1...pa−1ma...pDϕp1...pa−1na...pD − ϕ̄p1...pa−1na...pDJp1...pa−1mapa+1...pD

]

and

δS(ϕ, ϕ̄)

δ(Ta)mana
=

δS0(ϕ, ϕ̄)

δ(Ta)mana
=
∑

pi∈Z

[
ϕ̄p1...pa−1mapa+1...pDEp1...pa−1napa+1...pDϕp1...pa−1napa+1...pD

− ϕp1...pa−1napa+1...pDEp1...pa−1mapa+1...pD ϕ̄p1...pa−1mapa+1...pD

]
,

that eq. (37) implies

∫
D[ϕ, ϕ̄]e−S+F

∑

pi∈Z

[
(Ep1...ma...pD − Ep1...na...pD) ϕ̄p1...pa−1mapa+1...pDϕp1...pa−1napa+1...pD

]

=

∫
D[ϕ, ϕ̄]e−S+F

∑

pi∈Z

(
J̄p1...ma...pDϕp1...na...pD − ϕ̄p1...ma...pDJp1...na...pD

)
.
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Hence, after functional integration, one gets
∑

pi∈Z

(
Ep1...pa−1mapa+1...pD − Ep1...pa−1napa+1...pD

)
×

δ

δJ p1...pa−1mapa+1...pD

δ

δJ̄ p1...pa−1napa+1...pD
exp

(
−Sint(δ/δJ̄ , δ/δJ)

)
e
∑

q J̄qE
−1
q Jq

=
∑

pi∈Z

(
J̄p1...pa−1mapa+1...pD

δ

δJ̄ p1...pa−1napa+1...pD

− Jp1...pa−1napa+1...pD

δ

δJ p1...pa−1mapa+1...pD

)
exp

(
−Sint(δ/δJ̄ , δ/δJ)

)
e
∑

q J̄qE
−1
q Jq .

We have identified δ/δJp with ϕ̄p and δ/δJ̄p with ϕp. Thus, the preliminary WTI reads

∑

pi∈Z

(
Ep1...pa−1mapa+1...pD − Ep1...pa−1napa+1...pD

) δ2Z[J , J̄ ]

δJp1...pa−1mapa+1...pD J̄p1...pa−1napa+1...pD

=
∑

pi∈Z

{
J̄p1...pa−1mapa+1...pD

δ

δJ̄ p1...pa−1na...pD
− Jp1...pa−1napa+1...pD

δ

δJ p1...pa−1ma...pD

}
Z[J , J̄ ] .

(38)

As mentioned in the introduction, a Ward-Takahashi Identity was obtained already in [34,43].

Namely, if we derive eq. (38) with respect to

δ

δJ q1...qa−1naqa+1...qD

δ

δJ̄ q1...qa−1maqa+1...qD
,

we obtain a relation between “the 4-point function” and the following difference of 2-point

functions (here also expressed in graphical notation, which we wish to surrogate by G
(2k)
B ’s):

J̄q1...qa−1maqa+1...qD

Jq1...qa−1naqa+1...qD

1

=

J̄q1...qa−1naqa+1...qD

Jq1...qa−1naqa+1...qD

1

−

J̄q1...qa−1maqa+1...qD

Jq1...qa−1maqa+1...qD

1

(39)

The term in the LHS is defined as follows:

∑

pi∈Z
(Ep1...pa−1mapa+1...pD − Ep1...pa−1napa+1...pD) ·

J̄q1...qa−1ma...qD

Jq1...qa−1na...qD

Jp1...pa−1ma...pD

J̄p1...pa−1na...pD

1
The issue is that for arbitrary degree D, there exist not only those 4-point functions. For

instance, for D = 3 there are four 4-point functions and for D = 4 there are eight 4-

point functions. So we opt for an analytical method that shows this missing structure.

With that aim, we need to solve eq. (38) for the double derivative of Z. One can split

δ2Z/δJp1...ma...pDδJ̄p1...na...pD as a sum of a singular part, denoted by Y
(a)
ma and defined by

being all the terms in there proportional to δmana , and the “regular contribution”. While the

latter can be read off, no vestige from Y
(a)
ma remains, for it is annihilated by Ep1...ma...pD −

Ep1...na...pD in eq. (38). A direct approach with graphs does not consider those contributions.
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Fig. 4 On the definition of the graph B 	 era in an arbitrary number of colors,
being a one of them. The graph on the left locally represents the a-colored edge
era and the vertices s(era) and t(era). The dipole that they form is removed and
broken edges are colorwise glued (right graph)

Of course, our method reduces to the result to (39) when ma 6= na. In order to find the

singular contributions, we need to introduce some terminology.

Definition 9. Let B ∈ qGrphc,D and e ∈ B(1). The graph B 	 e is defined as the graph that

is formed after removal of all the edges between the two vertices e is attached at, and by

subsequently colorwise gluing the remaining edges. More formally, we let

s−1(s(e)) =: (s−1(s(e)) ∩ t−1(t(e))) ∪· As(e), t−1(t(e)) =: (s−1(s(e)) ∩ t−1(t(e))) ∪· At(e) .

We let I(e) be the set of colors in of the edges s−1(s(e)) ∩ t−1(t(e)). Then the coloring of

As(e) and of At(e) agrees, both being equal to {1, . . . ,D} \ I(e). We define B 	 e by

(B 	 e)(0) = B(0) \ {s(e), t(e)} ,

(B 	 e)(1) = B(1) \ (s−1(s(e)) ∩ t−1(t(e)))/(As(e) ∼c At(e)) ,

where f ∼c g iff f ∈ As(e) and g ∈ At(e) have the same color; see Figure 4. By definition

J(∅) = 1, so J((
1

)	 e) = 1 for any edge e of
1

.

Keeping in mind the Ward-Takahashi Identity for a fixed color a and fixing the entries

(mana) of the generator Ta, we shall define an operator ∆Bma,r : C((ZD)k) → C((ZD)k−1). In

order to do so, we need first to introduce more notation concerning the edge removal B 	 era
as in Definition 9. Let B ∈ ∂FeynD(V ) with |B(0)| ≥ 4. To stress the essence of the discussion

we assume that the boundary graph B is connected and leave the extension of this discussion

of the full disconnected boundary sector to Appendix B. We label the (say) white vertices of

a boundary graph, B, and of B 	 ejc by momenta xi ∈ ZD and denote by ejc the edge of color

c at the vertex xj ∈ ZD:

B(0)
w = (x1, . . . , xk), (B 	 era)(0)

w = (x1, . . . , x̂r, . . .xk) = (y1, . . . , yk−1), (yl ∈ ZD) . (40)

When B 	 era is formed out of B, one removes, in particular, a single black vertex t(era).

By regularity, certain edge e
ξ(r,i,a)
i of color i is in At(era), and this edge determines again a

unique white vertex xξ(r,i,a), 1 ≤ ξ(r, i, a) ≤ k, by the relation s(e
ξ(r,i,a)
i ) = xξ(r,i,a) ∈ B(0).

If we pick i ∈ {1, . . . ,D} \ I(era), which is the color-set of At(era), one has ξ(r, i, a) 6= r and,

furthermore, xξ(r,i,a) remains in B	era. This vertex is renamed yκ(r,i,a) ∈ (B	era)(0) following

(40), whence

κ(r, i, a) =

{
ξ(r, i, a) if ξ(r, i, a) < r ,

ξ(r, i, a)− 1 if ξ(r, i, a) > r .
(41)

Definition 10. Keeping fixed the color a and entries (mana) of a generator of the a-th

summand u(N) in the Lie algebra Lie(U(N)× . . .×U(N)), we consider the Green’s function

G
(2k)
B : (ZD)k → C associated to a boundary-graph B ∈ ∂(FeynD(V )). For any integer r,
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xr

xξ(r,i,a)

e
ξ(r,i,a)
i

era eri

(a) Locally, edge and vertex labeling in B prior to collapse
into B 	 era

yκ(r,i,a)

i

1
(b) Locally B 	 era

Fig. 5 On the notation for the definition of ∆Bma,r. All gray edges in the
leftmost figure disappear and merge into a single color-i edge. The two vertices
t(era) and xr disappear as well

1 ≤ r ≤ k, we define the function ∆Bma,rG
(2k)
B : (ZD)k−1 → C by

(∆Bma,rG
(2k)
B )(y1, . . . , yk) =





∑
qh
G

(2k)
B (y1, . . . , yr−1, zr(ma, q), yr, . . . , yk) if I(era) 6= {a} ,

G
(2k)
B (y1, . . . , yr−1, zr(ma, q), yr, . . . , yk) if I(era) = {a} ,

where I(era) is the set of colors of the edges s−1(s(era)) ∩ t−1(t(era)) and qh, for any h ∈
I(era) \ {a}, is a dummy variable to be summed over. The momentum zr ∈ ZD has entries

defined by:

zri =





ma if i = a ,

qi if i ∈ I(era) \ {a} ,

y
κ(r,i,a)
i if i ∈ colors of At(era) = {1, . . . ,D} \ I(era) ,

where yκ(r,i,a) (1 ≤ κ(r, i, a) < k) is the white vertex B 	 era defined in (41) (see also Fig. 5).

This definition depends on the labeling of the vertices. However, the pairing 〈〈G(2k)
B ,B〉〉ma

defined as follows does not:

〈〈G(2k)
B ,B〉〉ma :=

k∑

r=1

(
∆Bma,rG

(2k)
B

)
? J(B 	 era) . (42)

Example 10. We consider the empty graph ∅ as colored. According to Definition 9

〈〈
G

(2)

1

,
1

〉〉
ma

=
(
∆a,1G

(2)

1

)
?
(

1

	 (ea1)
)

=
∑

qb,qc∈Z,
b6=a6=c

G
(2)

1

(color-ordering of (ma, qb, qc))J(∅) ,

so, for instance if a = 2, one has:

〈〈
G

(2)

1

,
1

〉〉
m2

=
∑

q1,q3∈Z
G

(2)

1

(q1,m2, q3) .

To clear up the notation in ∆Kma,r, consider the graph K in Figure 6 and examples concerning

the edge removal, here for, say, e1
1 and e3

2. One has then ξ(1, 3, 1) = 2, ξ(3, 1, 2) = 5 and

ξ(3, 3, 2) = 1. Therefore κ(1, 3, 1) = 1,κ(3, 1, 2) = 4 and κ(3, 3, 2) = 1. Accordingly:

(∆Km1,r=1G
(10)
K )(y1, . . . , y4) =

∑

q2

G
(10)
K (z1, y1, . . . , y4) =

∑

q2

G
(10)
K (m1, q2, y1

3, y1, . . . , y4) ,

(∆Km2,r=3G
(10)
K )(y1, . . . , y4) = G

(10)
K (y1, y2, z3, y3, y4) = G

(10)
K (y1, y2, y4

1,m2, y1
3, y3, y4) .

The usefulness of this operation shall be clear in the proof of the next result.
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Fig. 6 Concerning example 10, from left to right: K, K 	 e1
1 and K 	 e3

2

Theorem 2 (Full Ward-Takahashi Identity). Consider an arbitrary rank-D tensor model

whose kinetic form E in Tr2(ϕ̄,Eϕ) (see Def. 5) obeys

Ep1...pa−1mapa+1...pD − Ep1...pa−1napa+1...pD = E(ma,na) for each a = 1, . . . ,D

i.e. this difference does not depend on the momenta p1, . . . , p̂a, . . . , pD. Then the partition

function Z[J , J̄ ] of that model satisfies

∑

pi∈Z

δ2Z[J , J̄ ]

δJp1...pa−1mapa+1...pDδJ̄p1...pa−1napa+1...pD

−
(
δmanaY

(a)
ma [J , J̄ ]

)
· Z[J , J̄ ] (43)

=
∑

pi∈Z

1

Ep1...ma...pD − Ep1...na...pD

(
J̄p1...ma...pD

δ

δJ̄ p1...na...pD
− Jp1...na...pD

δ

δJ p1...ma...pD

)
Z[J , J̄ ]

where

Y (a)
ma [J , J̄ ] :=

∞∑

k=1

∑

B∈∂FeynD(V )

2k=#(B(0))

1

|Autc(B)| 〈〈G
(2k)
B ,B〉〉ma (44)

=
∞∑

k=1

∑

B∈∂FeynD(V )

2k=#(B(0))

1

|Autc(B)|
k∑

r=1

(
∆Bma,rG

(2k)
B

)
? J(B 	 era) .

Proof. In the next equation

1

Z[J , J̄ ]

δ2Z[J , J̄ ]

δJp1...ma...pDδJ̄p1...na...pD
=

δ2W [J , J̄ ]

δJp1...ma...pDδJ̄p1...na...pD
+

δW [J , J̄ ]

δJp1...ma...pD

δW [J , J̄ ]

δJ̄p1...na...pD
(45)

we want to detect the terms that provide a singular contribution δmana to the double derivative

in the LHS. We group them in Y(a)
p1,...,ma,...,pD [J , J̄ ]. Notice that in the RHS, the product of

derivatives cannot yield terms proportional to δmana . Hence, all terms in Y
(a)
ma [J , J̄ ] come

from the sum over the momenta (p1, . . . , p̂a, . . . , pD) ∈ ZD−1 of the term Y(a)
p1,...,ma,...,pD in the

double derivative of W [J , J̄ ]. By definition of Y(a)
p1,...,ma,...,pD , we can then write

δ2W [J , J̄ ]

δJp1...ma...pDδJ̄p1...na...pD
= δmanaY(a)

p1,...,ma,...,pD [J , J̄ ] · Z[J , J̄ ] + X (a)
p1,...,[mana],...,pD

[J , J̄ ] ,

where X (a)
p1,...,[mana],...,pD

[J , J̄ ] contains only regular terms. We could compute them, but we

are only interested in the term proportional to δmana . We let the two derivatives act on the

expansion of the free energy in boundary graphs, eq. (35). Ignoring the symmetry factor, the
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derivatives acting on a single term G
(2k)
B ? J(B) lead to

∑

pi∈Z

∑

x1,...,xk

G
(2k)
B (x1, . . . , xk)

δ2J(B{x1, . . . , xk})
δJp1...ma...pDδJ̄p1...na...pD

=
∑

pi∈Z

∑

x1,...,xk

G
(2k)
B (x1, . . . , xk)

δ

δJp1...ma...pD

(
Jx1 · · · Jxk

) δ

δJ̄p1...na...pD

(
J̄w1 · · · J̄wk

)
. (46)

Here, we have the freedom to choose the order of the labels of the black vertices by the

momenta wi in such a way that wra = xra. Hence t(era) has the label wr, whereas s(era) is

labeled8 by xr. We now focus on the product of the two derivative terms:

( k∑

r=1

{
δ
xr1
p1 · · · δ

xra−1
pa−1 δ

xra
maδ

xra+1
pa+1 · · · δx

r
D
pD

}
Jx1 · · · Ĵxr · · · Jxk

)

( k∑

l=1

{
δ
wl1
p1 · · · δ

wla−1
pa−1 δ

wla
na δ

wla+1
pa+1 · · · δw

l
D

pD

}
J̄w1 · · · ̂̄Jwl · · · J̄wk

)
. (47)

For the term
(
δ
xr1
p1 · · · δx

r
a
ma · · · δx

r
D
pD Jx1 · · · Ĵxr · · · Jxk

)(
δ
wl1
p1 · · · δw

l
a

na · · · δw
l
D

pD . . . J̄w1 · · · ̂̄Jwl · · · J̄wk
)

to contribute to Y(a)
... one requires xra = wla. But by definition of wl, wla = xla. Then

from (47), the terms that contribute to Y(a)
... are

k∑

r=1

({
δ
xr1
p1 · · · δx

r
a
ma · · · δx

r
D
pD

}
Jx1 · · · Ĵxr · · · Jxk

)({
δ
wr1
p1 · · · δw

r
a

na · · · δw
r
D

pD

}
J̄w1 · · · ̂̄Jwr · · · J̄wk

)

We rewrite the δ in the r-th term of this sum as

δnama ·
∏

j∈At(era)

δ
xrj
pj δ

wrj
pj

∏
i∈I

δ
xri
pi δ

wri
pi = δnama ·

∏
j∈At(era)

δ
xrj
pj δ

x
ξ(r,j,a)
j
pj

∏
i∈I

δ
xri
pi δ

wri
pi

(see Def. 10). Then

Y (a)
ma [J , J̄ ] =

∑
p1,...,p̂a,...,pD∈Z

Y(a)
p1,...,ma,...,pD

=
∞∑

k=1

∑

B∈∂(Feyn(V ))

1

|Autc(B)|
∑

p1,...,p̂a,...,pD

k∑

r=1

∑

x1,...,x̂r,...,xk

∏
j∈At(era)

δ
xrj
pj δ

x
ξ(r,j,a)
j
pj

∏
i∈I

δ
xri
pi δ

wri
pi G

(2k)
B (x1, . . . , x̂r, . . . , xD)

×
(
Jx1 · · · Ĵxr · · · Jxk

)
·
(
J̄w1 · · · ̂̄Jwr · · · J̄wk

)

and by renaming the indices and using Definitions 9 and 10 one finally gets

Y (a)
ma [J , J̄ ] =

∞∑

k=1

∑

B∈∂(Feyn(V ))

1

|Autc(B)|
k∑

r=1

∑

y1,...,yk−1

G
(2k)
B (y1, . . . , zr, . . . , yk−1)

· J
(
B 	 ear

)
(y1, . . . , yk−1)

=
∞∑

k=1

∑

B∈∂(Feyn(V ))

1

|Autc(B)|
k∑

r=1

(∆r,maG
(2k)
B )(y1, . . . , yk−1)

· J
(
(B 	 ear)

)
{y1, . . . , yk−1}

8The condition s(erc) = xr is actually redundant, since by definition erc is the edge of color c attached at xr,
but we write this down for sake of clarity.
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=
∞∑

k=1

∑

B∈∂(Feyn(V ))

1

|Autc(B)|
k∑

r=1

(∆r,maG
(2k)
B ) ? (B 	 era)

=
∞∑

k=1

∑

B∈∂(Feyn(V ))

1

|Autc(B)| 〈〈G
(2k)
B ,B〉〉ma . �

An explicit expansion of Y
(a)
ma [J , J̄ ] is, of course, also more useful. We derive it for D = 3

and assume throughout that {a, c, d} = {1, 2, 3} as sets; also for sake of notation, we drop B
in ∆Bma,r when this operator acts on the correlation function that already shows dependence

on B. The expansion9 reads

Y (a)
ma [J , J̄ ] = ∆ma,1G

(2)

1

? 1

+
1

2

2∑

r=1

(
∆ma,rG

(4)
|

1

|
1

| + ∆ma,rG
(4)

1 1
1

+ ∆ma,rG
(4)

2 2
1

+ ∆ma,rG
(4)

3 3
1

)
? J
(

1

)

+
1

3

3∑

r=1

3∑

i=1

(
∆ma,rG

(6)
i

)
? J
(

i

1

)
+

1

3

∑3

r=1
(∆ma,rG

(6)
) ? J

(
a

1

)

+
∑

c6=a

(
∆ma,1G

(6)
ac

1

)
? J
(

d

1

)
+
(
∆ma,2G

(6)
ac

1

)
? J
(

d

1

)
(48)

+
(
∆ma,3G

(6)
ac

1

)
? J
(

a

1

)
+
(
∆ma,1G

(6)
ac

)
? J
(

c

1

)
+
(
∆ma,2G

(6)
ac

)
? J
(

1

t
1

)

+
(
∆ma,3G

(6)
ac

)
? J
(

d

1

)
+

1

3!

3∑

r=1

(
∆ma,rG

(6)
|

1

|
1

|
1

|
)
? J
(

1

t
1

)

+
1

2

(
∆ma,1G

(6)
|

1

| c
1

|
)
? J
(

c

1

)
+

1

2

∑

r=2,3

(
∆ma,rG

(6)
|

1

| c
1

|
)
? J
(

1

t
1

)
+O(6) .

In this expression, for any two white vertices of a boundary graph B that are not connected

by an element τ ∈ Sk that can be lifted to τ̂ ∈ Autc(B), a convention regarding their ordering

should be set. The ordering of the arguments (x1, . . . , xk) ofG
(2k)
B (x1, . . . , xk) and the labeling

of B(0)
w by these obeys in eq. (48) following convention:

if a vertex vi ∈ B(0)
w is labeled by the momentum xi and appears to the left of

the vertex vj ∈ B(0)
w labeled by xj , then i < j .

Hence ac and ca are decidedly different and attention should be paid in the order of the

arguments. For boundary graphs like
c

c c
1

or (whose drawing would lead to an ambiguous

rule) we can dispense with that convention, Autc(B) ensures the well-definedness of G
(2k)
B .

6.2. Two-Point function Schwinger-Dyson equations. One gets the Schwinger-Dyson

equation10 for the two-point function from G
(2)

1

(a) = Z−1
0 δ2(Z[J , J̄ ])/δJ̄aδJa

∣∣
J=J̄=0

and by

using eq. (45) with ma = na and J = J̄ = 0. Here Z0 = Z[0, 0]. If one formally performs the

9In [36] we found the O(6) terms and treated also rank D = 4, 5 theories.
10 Our approach to SDEs differs from that by Gurău [23]. He found constrictions in form of differential

operators acting on Z[J , J̄ ] and showed that they satisfy a Lie algebra that generalizes Virasoro algebra [22] and
is indexed by rooted colored trees. We here work with logZ[J , J̄ ] and our approach is not that general but we
have those concrete operators derived from Theorem 2.
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functional integral, one gets for a 6= 0 ∈ ZD

G
(2)

1

(a) =
1

Z0

{
δ

δJa

[
exp

(
−Sint(δ/δJ̄ , δ/δJ)

) 1

Ea
Jae

∑
q J̄qE

−1
q Jq

]}

J=J̄=0

=
1

Z0Ea

[
exp

(
−Sint(δ/δJ̄ , δ/δJ)

)
e
∑

q J̄qE
−1
q Jq

]
J=J̄=0

(49)

+
1

Z0Ea

(
exp

(
−Sint(δ/δJ̄ , δ/δJ)

)
Ja

δ

δJa
e
∑

q J̄qE
−1
q Jq

)

J=J̄=0

=
1

Ea
+

1

Z0

1

Ea

(
ϕ̄a

∂

∂ϕ̄a
(Sint(ϕ, ϕ̄))

)

ϕ[→ δ/δJ]
Z[J , J̄ ] ,

being {x[, y]} = {x̄, y} or {x, ȳ}. Here we make a crucial assumption, which is not needed

in the rank-2 theory (matrix models [21, Sec. 2]). We suppose that the interaction Sint

satisfies the following condition: each (graph-)vertex of each single interaction vertex lies, for

certain color a = 1, . . . ,D, on a subgraph of the following type (in the tensor models parlance,

“melonic insertion”):

1

D

2

a a... (50)

Such is the case for the melonic ϕ4
m-model in arbitrary rank. Then, whatever Sint(ϕ, ϕ̄)

is, in eq. (49) the term
(
ϕ̄a

∂
∂ϕ̄a

Sint(ϕ, ϕ̄)
)
ϕ[→ δ/δJ]

contains, for each order-2r monomial,

derivatives of Z[J , J̄ ] of the form

δ2r−2

δJ(B×)(a1, . . . , ar−1)

(∑
pi∈Z,i6=a

δ2Z[J , J̄ ]

δJp1...pa−1mapa+1...pDδJ̄p1...pa−1napa+1...pD

)
,

where J(B×) is a generic broken graph, for the moment irrelevant. Here the WTI for the color

a is handy.

6.3. Schwinger-Dyson equations for the ϕ4
3-model. We give an example with a concrete

theory, which can be connected with Tensor Group Field Theory (TGFT). CTMs with non-

trivial kinetic term usually are originated by TGFT-actions

S[ϕ, ϕ̄] =
1

2

∫

T3×T3

dgdg′ ϕ̄(g1, g2, g3)K(g, g′)ϕ(g′1, g′2, g′3)

+
λ

4

∫

T12

∏
α

dg(α) V (g(0), . . . , g(3))ϕ(g(0))ϕ̄(g(1))ϕ(g(2))ϕ̄(g(3)) ,

by Fourier-transforming the fields ϕ and ϕ̄ there. Here we will set K to be the Laplacian

on T3 = S1 × S1 × S1, but following analysis an can be with little effort carried on by

picking a generic diagonal operator K. The action in terms of the Fourier-modes is of the

form S[ϕ, ϕ̄] = Tr2(ϕ,Eϕ̄) + λ(TrV1(ϕ, ϕ̄) + TrV2(ϕ, ϕ̄) + TrV3(ϕ, ϕ̄)), with Tr2(ϕ̄,Eϕ) =∑
x1,x2,x3

ϕ̄x1x2x3(x2
1 +x2

2 +x2
3 +m2

0)ϕx1x2x3 , being E thus diagonal. For this concrete theory

ϕ̄x
∂Sint

∂ϕ̄x

∣∣∣∣
ϕ[→ δ/δJ]

= 2λ

{
δ

δJx1x2x3

∑

b1

δ

δJ̄b1x2x3

∑

b2,b3

δ

δJb1b2b3

δ

δJ̄x1b2b3

+
δ

δJx1x2x3

∑

b2

δ

δJ̄x1b2x3

∑

b1,b3

δ

δJb1b2b3

δ

δJ̄b1x2b3

+
δ

δJx1x2x3

∑

b3

δ

δJ̄x1x2b3

∑

b1,b3

δ

δJb1b2b3

δ

δJ̄b1b2x3

}
Z[J , J̄ ]

∣∣∣∣∣
J=J̄=0

.
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One uses for each line the WTI for the color in question. For the first line, a = 1, this reads

2λ

{
δ

δJx1x2x3

∑

b1

δ

δJ̄b1x2x3

[
δx1b1Y

(1)
x1

[J , J̄ ] ·

+
∑

b2,b3

1

|b1|2 − |x1|2
(
J̄b1b2b3

δ

δJ̄x1b2b3

− Jx1b2b3

δ

δJb1b2b3

)]
Z[J , J̄ ]

} ∣∣∣∣
J=J̄=0

.

The derivatives on the Y
(1)
x1 yield

δ2Y
(1)
x1 [J , J̄ ]

δJx1x2x3δJ̄x1x2x3

∣∣∣∣
J=J̄=0

=
∂Y

(1)
x1 [J , J̄ ]

∂
1

(x)

=
(
∆x1,1G

(4)

1

|
1

+ ∆x1,1G
(4)

1 1
1

+ ∆x1,1G
(4)

2 2
1

+ ∆x1,1G
(4)

3 3
1

)
(x)

=
∑

q2,q3

G
(4)

1

|
1

(x1, q2, q3; x) +G
(4)

1 1
1

(x, x)

+
∑

q3
G

(4)

2 2
1

(x1,x2, q3; x) +
∑

q2
G

(4)

3 3
1

(x1, q2,x3; x) ,

and one obtains in similar way the terms concerning the two other colors. Straightforwardly

one gets that for each x = (x1,x2,x3) ∈ Z3,

G
(2)

1

(x) =
1

m2 + |x|2

+
(−2λ)

m2 + |x|2



G

(2)

1

(x) ·
[ ∑

q,r∈Z
G

(2)

1

(x1, q, r) +G
(2)

1

(q,x2, r) +G
(2)

1

(q, r,x3)

]

+
∑

q∈Z

(
G

(4)

1 1
1

(x1, q,x3; x) +G
(4)

1 1
1

(x1,x2, q; x) +G
(4)

2 2
1

(q,x2,x3; x)

+G
(4)

2 2
1

(x1,x2, q; x) +G
(4)

3 3
1

(q,x2,x3; x) +G
(4)

3 3
1

(x1, q,x3; x)

)

+
∑

q,r∈Z

[
G

(4)

1

|
1

(x1, q, r; x) +G
(4)

1

|
1

(q,x2, r; x) +G
(4)

1

|
1

(q, r,x3; x)

]
(51)

−
∑

q1∈Z

[
1

q2
1 − x2

1

·
(
G

(2)

1

(q1,x2,x3)−G(2)

1

(x)
)]

−
∑

q2∈Z

[
1

q2
2 − x2

2

·
(
G

(2)

1

(x1, q2,x3)−G(2)

1

(x)
)]

−
∑

q3∈Z

[
1

q2
3 − x2

3

·
(
G

(2)

1

(x1,x2, q3)−G(2)

1

(x)
)]

+
∑

c=1,2,3

G
(4)
c c (x, x)

}
.

One can conveniently simplify the notation according to

G(2) = G
(2)

1

=
∂ logZ

∂
1

, G
(4)
Vc

= G
(4)
c c =

∂ logZ

∂ c c
, G

(4)
m|m = G

(4)

1

|
1

=
∂ logZ

∂
(

1
|

1

) , (52)
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and write the 2-point SDE in compact form:

G(x) =
1

m2 + |x|2 +
(−2λ)

m2 + |x|2
3∑

c=1

{∑

qa,qb

G(qa, qb,xc)×G(x)

+
∑

d=a,b

∑

qc

G
(4)
Vd

(xa,xb, qc, x) +
∑

qa,qb

G
(4)
m|m(qa, qb,xc, x) (51′)

−
∑

qc

1

q2
c − x2

c

[
G(xa,xb, qc)−G(x)

]
+G

(4)
Vc

(x, x)

}
,

assuming set-equality {a, b, c} = {1, 2, 3}. This 2-point SDE can be formally taken to a

(diffeo-)integral equation, as in [34], by taking the continuum limit.

7. Conclusions

In the quest for the full Ward Takahashi Identity, we have shown that the correlation

functions of rank-D CTMs are classified by boundary (D-colored) graphs. For quartic melonic

models the boundary sector is the set of all D-colored graphs and correlation functions indexed

by this set are, in their entirety, non-trivial. Concerning combinatorics, it would be also

interesting to grasp, perhaps in terms of covering spaces, the counting itself of the connected

D-colored graphs in 2k vertices, which, as one can extrapolate from [2, 32], gives also the

number of conjugacy classes of subgroups of index k in free group FD−1.

A similar, more intricate organization by boundary graphs is very likely to hold for multi-

orientable tensor models; this is worth exploring, in particular if one is interested in allowing

non-orientable manifolds.

The full WTI works also for U(1)-TGFT and it would be interesting to derive a Ward

Takahashi Identity for the SU(2)-TGFT models, or SU(2)-related models like Boulatov’s and

Ooguri’s.

The culmination of this work would be the construction of the ϕ4
3-theory in an Osterwalder-

Schrader manner, properly along the lines of the Tensor Track. The ϕ4
3-theory is superrenor-

malizable and its renormalization has been studied constructively [10] using the multiscale

loop vertex expansion [24]. The addition of ϕ6-interaction vertices can make the theory from

the renormalization viewpoint even more interesting. In rank-4 such theory would very likely

convey the interesting properties of the Ben Geloun-Rivasseau model. The new theory would

have, of course, the same boundary sector and therefore the same expansion of the free energy

(obviously with different solutions for the correlation functions indexed by the same boundary

graph). Hence for melonic (ϕ4 + ϕ6)-theories the present results hold.

The next obvious step is to solve the equation for the 2-point function derived here. We

shall begin by studying in depth, for general theories, the discrete permutational symmetry

axiom [39, Sec. 5, Rule 2] stated by Rivasseau. Although all the models treated here are

in fact SD-invariant, there are elements of CTMs that are not manifestly SD-invariant (e.g.

the homology of graphs defined in [25]). After showing their invariance one would be entitled

to state an equivalence of the form

G
(4)

1 1
1

∼ G(4)

2 2
1

∼ G(4)

3 3
1

, G
(6)
c

c c
1

∼ G(6)
a

a a

for a 6= c ,

and similar rules for higher multi-point functions indexed by graphs lying on the same SD-

orbit of the action τ : G
(2k)
B 7→ (∆τ)∗G

(2k)
τ(B) where ∆τ is the diagonal action on (ZD)k,

τ ∈ SD, and the action of SD on ZD and qGrphc,D is in both cases permutation of colors.

This equalities will noticeably simplify the SDEs, as is evident in eq. (51′). Based on the WTI
34



exposed here, the full11 tower of Schwinger-Dyson equations for quartic theories in arbitrary

rank was obtained in [36]. Their renormalized version should also be derived and we can

proceed as in [34].

Nonetheless, in order to solve the equations, this approach might still not be enough and,

in order to obtain a closed equation, it can be complemented as follows. Fixed a correlation

function G
(2p)
B , Gurău’s degree’s range of graphs contributing to G

(2p)
B is ρ(B) = {t(B) +

n · (D − 1)!/2 |n ∈ Z≥0} being t(B) ∈ Z≥0 a lower bound depending on B. As done in

[21] for matrix models, one can further possibly decouple the equation (51′) for the 2-point

function by expanding any correlation function occurring there in subsectors that share the

same value α of the degree, G
(2p)
B =

∑
α∈ρ(B)G

(2p,α)
B , in order to obtain a closed equation.

Furthermore, since mainly the degree conveys the geometrical information, this is a sum over

all the geometries bounded by |∆(B)| that a fixed model (here a quartic) triangulates. These

subsectors generalize the matrix models’ genus-expansion (20) and in turn justify Figure 1.

Lemmas 1 and 2, intended here first as auxiliary results, are important on their own, if

one wants to understand the geometry of the spaces generated by the ϕ4
m-theories. In rank

3 and 4, for instance, they realize the triviality of ΩSO
2 and ΩSO

3 , respectively, the orientable

bordism groups. This could be an accident due to the equivalence of the topological, PL and

smooth categories in low dimensions. For higher dimensions one should rather compare with

the piecewise linear bordism groups ΩPL
∗ , which is beyond the scope of this study but worth

analyzing.

The graph-operation # introduced in Definition 6 turned out to be optimally-behaved

(additive) with respect to Gurău’s degree. The fact that melonic graphs are spheres leads us

to conjecture that # should be indeed the QFT-compatible graph-realization of the connected

sum in arbitrary rank (a direct proof of which is found in [35]), when the colored graphs

represent manifolds.
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Appendix A. The fundamental group of crystallizations

We expose the computation of the fundamental group of two crystallizations, i.e. colored

graphs whose number of (D − 1)-bubbles is exactly D (for non-crystallizations, Gurău has

found a representation of the fundamental group of general colored graphs [25, Eq. 40]).

The next algorithm by Gagliardi [17] works only for crystallizations. Namely, let B be a

crystallization, for simplicity, of a manifold of dimension at least 3 (hence B has D > 3 colors).

The fundamental group of B, π1(B), is isomorphic to the fundamental group π1(|∆(B)|) of

the (path connected) space B represents. The former group is constructed from generators X

and relations R dictated by certain bubbles of B as follows. Choose two arbitrary different

colors i, j and consider all D − 1 bubbles {Bîjα }nα=1 without the two colors i, j. Let

X = {x1, . . . ,xn}, xα = generator associated to Bîjα .

11As a technicality, the SDE tower was obtained for connected correlation functions indexed by connected
boundary graphs. The SDE obtained there were actually works any model having (50) as subgraph in the
interaction vertices.
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Consider the set {Bijγ }mγ=1 of the ij-bicolored 2-bubbles of B. For each γ, each vertex of the

loop Bijγ intersects certain Bîjα , and in that case write xεα according to the following rule: set

ε = 1 if the vertex at which Bijγ intersect Bîjα is black and ε = −1 if it is white. For each γ let

R(Bijγ ) be the word on X defined by juxtaposing all such elements xεα for each vertex of Bijγ ,

in order of occurrence. Then

π1(B) ∼= 〈x1, . . . ,xn−1,xn |xn, {R(Bijγ ) : γ = 1, . . . ,m− 1}〉
Gagliardi’s algorithm [17] states that neither the choice of the D− 1 bubble xn that one sets

to the identity is important, nor the relation R(Bijm) that does not appear is, nor the two

colors i, j are.

Example 11. We put Gagliardi’s algorithm to work for the crystallization. Here we come

back to the color-set {0, 1, 2, 3}, instead of {1, 2, 3, 4} and consider Γ ∈ Grphc,3+1 given in

Figure 7 lens space L3,1, already mentioned in Section 4.3. We choose first the two col-

ors i = 2, j = 3, whose corresponding {2, 3}c-colored (D − 1)-bubbles are Γ01
1 and Γ01

2 de-

picted below. One associates to all but one of the 2-bubbles with chosen colors {2, 3}, a

relation. There are two such 2-bubbles and we drop the inner bubble and pick the outer

one Γ23
1 , as shown in Figure 7. The rule says that the (only non-trivial) relation R(Γ23

1 )

corresponds to Γ23
1 and is given by R(Γ23

1 ) = x+1
1 x−1

2 x+1
1 x−1

2 x+1
1 x−1

2 . Notice, incidentally,

that if we had instead chosen to derive a relation for the inner bubble the correspond-

ing relation would be R(Γ23
2 ) = x+1

2 x−1
1 x+1

2 x−1
1 x+1

2 x−1
1 which is just (R(Γ23

1 ))−1. Thus

π1(Γ) ∼= 〈x1,x2 |x2,R(Γ23
1 )〉 = 〈x1 |x3

1〉 ∼= Z3
∼= π1(L3,1) .
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Fig. 7 From left to right: Γ and three of its bubbles Γ23
1 , Γ01

1 and Γ01
2 , used

to compute its fundamental group. For the last two bubbles the generators x1

and x2 are depicted

Example 12. The same algorithm applied to the graph C of example 9:

C = 1

3

2

3

1

1

1
2

3
2

Namely, one has for the chosen colors i = 2, j = 3 that the relation R(C23
outer) corresponding

to the outer 23-bicolored bubble is given by x2x
−1
2 x1x

−1
1 and therefore is trivial. Here x1 (resp.

x2) is the leftmost (resp. rightmost) 01-bicolored bubble. Thus π1(C) = 〈x1,x2 |x2,R(C23
outer)〉 =

〈x1| ∅〉 = Z.

Appendix B. The term Y
(a)
ma for disconnected graphs

A useful formula in order to compute higher order terms in Y
(a)
ma is presented in this last

appendix. We also obtain an expression that shows that our expansion of W in boundary
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graphs, eq. (23), is genuinely the generalization of the longest-cycle expansion for matrix

models of Section 5.1.

We now split an arbitrary boundary graph B in its (say B) connected components Rβ ∈
Grphc,D, B =

∐B
β=1Rβ. Then there exist a non-negative integer partition {ni}i≥0 of B, i.e.

B =
∑`
j=1 nj , with k =

∑`
j=1 j · nj and N = 2k, where k is the number of J-sources (and

therefore also the number of J̄-sources) and N the order of the correlation function, and

nk, as before, is number of boundary components with exactly k J-sources (or, equivalently,

k J̄-sources). We can associate to Rβ a product of sources, J(Rβ), as above. Of course

J(B) =
∏
β J(Rβ). In that case

G
(2k)
B ?J(B) =

∑

a,b,...,c

G
(2k)

|R1|R2|...|RB|({a}, {b}, . . . , {c})·J(R1)({a})J(R2)({b}) · · · J(RB)({c}).

Now, some of the Rβ’s might be repeated. Let s be the number of different graphs at the

disconnected components of the boundary {Rβ}Bβ=1 = ∪sb=1{Rb1, . . . ,Rbmb}, where mb is the

number of copies of Rb. Moreover, we order Rb• ascending: Rb ≤ Rb′ , if (Rb)(0) ≤ (Rb′)(0)

(which is equivalent to say, that the boundary component of type Rb′ has the same number

of external lines or more than Rb). Then, of course
∑
bmb = B. We rewrite then W as

W [J , J̄ ] =
∞∑

`=1

∑

ms≥1
m1,...,m`−1≥0

′
(

1

m1! . . .ms!(|Autc(R1)|)m1 . . . (|Autc(Rs)|)ms
)

(53)

·G(2k)

|R1
1|R1

2|...|R1
m1
|···|Rs1|...|Rsms |

? J
(
(R1

1 tR1
2 · · · t R1

m1
) t · · · t (Rs1 t · · · t Rsms)

)
.

The symmetry factors are consequence of eq. (8). The prime in the sum denotes the following

two restrictions:

2k =
∑s

p=1
mp · |(Rp)(0)| and 2` = |(Rs)(0)| , (54)

so ` is the half of the “largest number of vertices” of the components of the boundary graph.

The sum in eq. (44) is over all possible disconnected graphs. We now obtain the expression

for Y
(a)
ma in terms of the connected components of the graphs. For the boundary graph B =

(R1
1tR1

2 · · ·tR1
m1

)t· · ·t (Rs1t· · ·tRsms), where Rb1, . . . ,Rbmb are copies of the same graph,

having ki white vertices. Now, the operators ∆r,ma select the r-th white vertex. We give the

white vertices of B the order according to the occurrence of these copies of the connected parts

of B, i.e. the first k1 white vertices are in R1
1; the next vertices, from the (k1 + 1)-th until the

(2k1)-th in R1
2 and so on. The last ks vertices are in Rsms .) For sake of notation N = N ({ki}),

the order of the Green’s function, is not made explicit, given by N = 2 · (∑s
i=1miki) one

derives the following expression for Y
(a)
ma [J , J̄ ]:

∞∑

`=1

∑

ms≥1
m1,...,m`−1≥0

′
(

1

m1! . . .ms!(|Autc(R1)|)m1 . . . (|Autc(Rs)|)ms
)

(55)

×
[∑k1

r=1
(∆r,maG

(N )

|R1
1|R1

2|...|R1
m1
|···|Rs1|...|Rsms |

) ?
(
R1

1 	 era tR1
2 t . . . tRs1 t · · · t Rsms

)

+
∑k1

r=1
(∆k1+r,aG

(N )

|R1
1|R1

2|...|R1
m1
|···|Rs1|...|Rsms |

) ?
(
R1

1 tR1
2 	 era t . . . tRs1 t · · · t Rsms

)
+ . . .

+
∑k1

r=1
(∆m1·k1+r,aG

(N )

|R1
1|...|R1

m1
|···|Rs1|...|Rsms |

) ?
(
R1

1 t . . . tR1
m1
	 era t · · · t Rs1 · · · t Rsms

)

+
∑ks

r=1
(∆m1·k1+m2·k2+...+ms−1ks−1+r,aG

(N )

|R1
1|...|R1

m1
|···|Rs1|...|Rsms |

)
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?
(
R1

1 t . . . tR1
m1
t · · · t Rs1 	 era t · · · t Rsms

)

+ . . .+
∑ks

r=1
(∆m1k1+m2k2...+ms−1ks−1+(ms−1)ks+r,aG

(N )

|R1
1|R1

2|...|R1
m1
|···|Rs1|...|Rsms |

)

?
(
R1

1 t . . . tRs1 t · · · t Rsms 	 era
) ]

,

with the prime, as before, meaning the restrictions of the sum by eqs. (54).
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[26] Răzvan Gurău. The complete 1/N expansion of colored tensor models in arbitrary dimension. Annales Henri

Poincare, 13:399–423, 2012. arXiv:1102.5759.
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[35] Carlos I. Pérez-Sánchez. Surgery in colored tensor models. J. Geom. Phys., 120:262–289, 2017.
arXiv:1608.00246.
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23(1):269–277 (1975).

[38] Michael P. Reisenberger and Carlo Rovelli. Space-time as a Feynman diagram: The Connection formulation.
Class. Quant. Grav., 18:121–140, 2001. arXiv:gr-qc/0002095.

[39] Vincent Rivasseau. The Tensor Track: an Update. In 29th International Colloquium on Group-Theoretical
Methods in Physics (GROUP 29) Tianjin, China, August 20-26, 2012, 2012. arXiv:1209.5284 [hep-th].

[40] Vincent Rivasseau. The Tensor Track, III. Fortsch. Phys., 62:81–107, 2014.
[41] Vincent Rivasseau. The Tensor Track, IV. In Proceedings, 15th Hellenic School and Workshops on Elementary

Particle Physics and Gravity (CORFU2015): Corfu, Greece, September 1-25, 2015, 2016.
[42] Subir Sachdev and Jinwu Ye. Gapless spin fluid ground state in a random, quantum Heisenberg magnet.

Phys. Rev. Lett., 70:3339, 1993.
[43] Dine Ousmane Samary. Closed equations of the two-point functions for tensorial group field theory. Class.

Quant. Grav., 31:185005, 2014. arXiv:1401.2096.
[44] Matteo Smerlak. Comment on ‘Lost in Translation: Topological Singularities in Group Field Theory’. Class.

Quant. Grav., 28:178001, 2011. arXiv:1102.1844.
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