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Abstract: We study 1D quasilattices, especially self-similar ones that can be used to gen-
erate two-, three- and higher-dimensional quasicrystalline tesselations that have matching
rules and invertible self-similar substitution rules (also known as inflation rules) analogous
to the rules for generating Penrose tilings. The lattice positions can be expressed in a
closed-form expression we call floor form: xn = S(n − α) + (L − S)bκ(n − β)c, where
L > S > 0 and 0 < κ < 1 is an irrational number. We describe three equivalent geometric
constructions of these quasilattices and show how they can be subdivided into various types
of equivalence classes: (i) lattice equivalent, where any two quasilattices in the same lattice
equivalence class may be derived from one another by a local decoration/gluing rule; (ii)
self-similar, a proper subset of lattice equivalent where, in addition, the two quasilattices
are locally isomorphic; and (iii) self-same, a proper subset of self-similar where, in addition,
the two quasilattices are globally isomorphic (i.e. identical up to rescaling). For all three
types of equivalence class, we obtain the explicit transformation law between the floor form
expression for two quasilattices in the same class. We tabulate (in Table 1 and Figure 5)
the ten special self-similar 1D quasilattices relevant for constructing Ammann patterns and
Penrose-like tilings in two dimensions and higher, and we explicitly construct and catalog
the corresponding self-same quasilattices. Finally, we sketch the extension of our results
from degree two to degree N (i.e to 1D quasilattices built from N different intervals).ar
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1 Introduction

Penrose tilings [1–3] were the inspiration for introducing the concept of quasicrystals [4] and
have stimulated enormous progress in our understanding of aperiodic order in mathematics
and physics [5–10]. These tilings exhibit a fascinating set of interrelated properties, includ-
ing: (i) quasiperiodic translational order; (ii) crystallographically-forbidden 10-fold orien-
tational order; (iii) discrete scale invariance (as embodied in so-called "inflation/deflation"
rules [2]); (iv) "matching" rules that constrain the way two tiles can join edge-to-edge such
that the tiles can only fill the plane by forming perfect Penrose tilings; and (v) a distinctive
class of topological ("decapod") defects. The Penrose tiles also have another important fea-
ture: the two tiles can each be decorated with a certain pattern of line segments that join
together in a perfect Penrose tiling to form five infinite sets of parallel lines oriented along
the five edges of a pentagon. The lines are spaced according to a 1D quasiperiodic sequence
of long and short intervals called a "Fibonacci quasilattice" (see Fig. 1). The five sets of
1D quasilattices collectively form an Ammann pattern, named after Robert Ammann, who
first noted this decoration [5, 11].

In this paper we lay the 1D foundation for a new approach to Penrose tilings (and
other objects like them, but with different symmetries and in higher dimensions) [12]. The
perspective developed and applied in [12] is that a Penrose-like tiling should be regarded
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Figure 1. The red lines show a portion of a Penrose tiling (constructed from two tiles – a thin
rhomb and a fat rhomb), while the blue lines show the corresponding Ammann pattern.

as the dual of a more fundamental object: an Ammann pattern; and this Ammann pat-
tern, in turn, can be derived from the relationship between two naturally-paired irreducible
reflection groups (which we call a "Coxeter pair").

Our focus in this paper is the analysis of the 1D quasilattices that serve as the building
blocks for the Ammann patterns in higher dimensions. Although our ultimate purpose
is higher-dimensional quasicrystal tilings as described in [12], the 1D quasilattices studied
here are important objects in their own right (see e.g. [7, 10, 13–19]), and a number of the
new results about them that we present here are of independent interest. Let us sketch the
outline of this paper and highlight a few of the key results:

We begin, in Section 2, by constructing the simplest class of 1D quasilattices: we will
call them "1D quasilattices of degree two" or "quadratic 1D quasilattices". These are 1D
quasiperiodic lattices constructed from just two intervals or “tiles” (call them L and S,
for "long" and "short"), with just two different separations between successive L’s, and
just two different separations between successive S’s (the simplest possibility compatible
with quasiperiodicity). The quasilattice point positions can be specified by a closed-form
analytic expression which has the basic "floor form" xn = S(n − α) + (L − S)bκ(n − β)c
where bxc denotes the "floor of x" (i.e. the largest integer ≤ x) and L > S > 0, α, β and
0 < κ < 1 are constants.

The quasilattices can be constructed geometrically by first picking some input data:
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an arbitrary 2D lattice Λ, an integral basis {~m1, ~m2} for Λ, and an arbitrary line ~q(t) that
slices through the lattice with irrational slope. We describe three equivalent constructions
that produce the natural 1D quasilattice corresponding to this input data: (i) the first
construction involves dualizing the "1D bi-grid" obtained by intersecting the {~m1, ~m2}
integer grid lines with the line ~q(t); (ii) the second construction is based on a cut-and-
project scheme using Λ as the lattice, ~q(t) as the "cut" surface, and a parallelogram with
sides ~m1 and ~m2 as the acceptance window; and (iii) the third construction is based on
thinking about the 2-torus T defined by considering the 2D Euclidean plane modulo Λ: ~q(t)
then becomes a geodesic which wraps around and around T, densely covering its surface, and
the quasilattice corresponds to the intersection of ~q(t) with an appropriate perpendicular
cross-cut of T. At first glance, it might seem like the first (dualization) construction only
defines the 1D quasilattice up to an overall (unfixed) translational phase ambiguity; but it
will be important for later applications [12] to remove this phase ambiguity by imposing
the condition that the 1D bi-grid is reflection symmetric if and only if the corresponding
1D quasilattice is reflection symmetric. We then observe that this condition has a natural
geometric interpretation in the second (cut-and-project) construction: it amounts to the
requirement that, whenever the line ~q(t) intersects one of the {~m1, ~m2} parallelograms in the
lattice Λ, it is the midpoint of that parallogram that should be projected onto ~q(t) to define
a point in the 1D quasilattice. We show [see (2.11) or (2.14)] that these three geometric
constructions yield 1D quasilattices captured by the floor-form expression described above;
and, conversely, that any 1D quasilattice in floor-form (for any values of the parameters S,
L, α, β and κ) can be obtained via these geometric constructions.

Section 3 is about the following simple observation. In Section 2, we began by choosing a
line ~q(t), a lattice Λ, and an integral basis {~m1, ~m2} for Λ; and we obtained a corresponding
1D quasilattice xn. But the choice of integral basis {~m1, ~m2} for Λ was not unique, and if
we had instead chosen a different integral basis {~m′1, ~m′2} and otherwise followed the same
construction, we would have obtained a different quasilattice x′n. We will say that two
such quasilattices are "lattice equivalent": xn and x′n might look quite dissimilar from one
another, in terms of their tile sizes and orderings, but (as we explain in Section 3) they
are secretly equivalent to one another in the sense that each one may be obtained from
the other by a local "substitution/gluing" rule – in particular, one may be obtained as
a local decoration of the other in the sense that the first can be obtained by subdividing
each type interval of the second into a specific sequence of smaller intervals, with this
substitution/decoration rule precisely corresponding to the invertible integer 2 × 2 matrix
τ which relates the old basis {~m1, ~m2} to the new basis {~m′1, ~m′2}. In this way, the set
of quadratic 1D quasilattices is partitioned into “lattice equivalence classes” with a simple
geometric interpretation: the members of a given class correspond to the same line ~q(t)
and the same lattice Λ, but different choices for the basis {~m1, ~m2}.

In Section 4, we identify the subset of quadratic 1D quasilattices that are self-similar.
For these lattices, there is a change of basis {~m1, ~m2} → {~m′1, ~m′2} that maps the quasilat-
tice xn into a new quasilattice x′n that is not only lattice equivalent, but also locally isomor-
phic up to rescaling of the intervals between points. For each self-similar 1D quasilattice,
our construction identifies a canonical self-similar substitution/decoration rule, specifying
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not just the number of "new" tiles which decorate each of the "old" tiles, but also the par-
ticular order and phase of the new tiles in decorating the old. This canonical substitution
rule is always reflection symmetric. We also obtain a simple and useful analytic expression
for how the parameters in the floor-form expression for the "old" quasilattice are related
to the parameters in the floor-form expression for the "new" quasilattice obtained from it
by this canonical substitution rule. In a generic (non-singular) self-similar quasilattice, the
line ~q(t) does not intersect any of the points in the lattice Λ; but we also carefully treat the
special (singular) case where ~q(t) does intersect a point in Λ, because the corresponding
special quasilattices play an important role in the analysis of topological defects in Penrose-
like tilings in two dimensions and higher [20]. Finally, since we are dealing with quadratic
1D quasilattices, the corresponding self-similar quasilattices are characterized by quadratic
irrationalities. In fact, only a small subset of these self-similar quadratic 1D quasilattices
play a role as the building blocks for the Ammann patterns in two dimensions and higher
[12]: the parameters and canonical substitution rules for these ten special quasilattices are
presented in Table 1 and Figure 5.

In Section 5, we identify the subset of quadratic 1D quasilattices that are not only
self-similar under some 2× 2 transformation τ , but are exactly s-fold self-same; that is, τ s

maps the quasilattice xn to a new quasilattice x′n that is not merely locally-isomorphic, but
actually identical to the original quasilattice (up to an overall rescaling). We obtain a simple
explicit formula for these s-fold self-same quasilattices, and also for the number of distinct
s-fold self-same quasilattices. These s-fold self-same quasilattices are naturally grouped
into irreducible s-cycles: for each of the special quasi-lattices listed in Table 1, we count the
number of irreducible s-cycles, and list the results in Table 2. In comparing the results to
the Online Encyclopedia of Integer Sequences (OEIS), some interesting connections appear.
These s-fold self-same 1D quasilattices, and irreducible s-cycles thereof, are the building
blocks for s-fold self-same Ammann patterns and Penrose-like tilings in two dimensions and
higher; and these, in turn, underlie a new scheme for discretizing scale invariant systems.

Finally, in Section 6, we briefly discuss the generalization of our results from quadratic
1D quasilattices (which are produced by a 2D→1D cut-and-project algorithm, and contain
two different intervals) to 1D quasilattices of degree N (which are produced by an ND→1D
cut-and project algorithm, and contain N different intervals).

2 Quadratic 1D quasilattices: three geometric perspectives

We will say that a 1D quasilattice is "of degree two" or "quadratic" if it can be described
by the following "floor form" expression:

xn = S(n− α) + (L− S)bκ(n− β)c. (2.1)

Here {L, S, κ, α, β} are real-valued constants (with L > S > 0 and 0 < κ < 1 irrational), n
is an integer that runs from −∞ to +∞, and bxc is the "floor" of x (i.e. the greatest integer
≤ x). Thus, as n increases (from N to N + 1), xn correspondingly increases (from xN to
either xN+1 = xN + L or xN+1 = xN + S); in other words, Eq. (2.1) describes a sequence
of isolated points along the real line, with just two different intervals between neighboring
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points: L and S ("long" and "short"). The L’s and S’s form an infinite non-repeating
sequence: the relative frequency with which L and S occur in the sequence is determined
by κ and the particular order in which they occur is determined by β, while α is an overall
translation phase that determines where exactly the sequance is situated along the real line.

Note that quadratic 1D quasilattices are "as simple as possible" in the sense that they
are built from just two different intervals (L and S); and, in addition, there are just two
different separations between consecutive S’s, and just two different separations between
consecutive L’s. Anything simpler that this would be incompatible with quasiperiodicity.

In this section, we present three equivalent geometric constructions of all such quadratic
1D quasilattices. Our formulation is designed to clarify the relationship between cut-and-
project sequences, on the one hand, and lattice equivalence, self-similarity and self-sameness,
on the other. In the process, we obtain a number of explicit expressions that will be needed
in subsequent sections, and in our construction of higher-dimensional Ammann patterns in
[12].

The starting point for all three constructions is the same: an arbitrary Bravais lattice
Λ in 2D Euclidean space sliced by an arbitrary line ~q(t); and a choice of a "positive" integer
basis {~m1, ~m2} for Λ. We begin, then, by introducing these three ingredients.

2.1 Geometric preliminaries: the lattice Λ, the line ~q(t), and the basis {~m1, ~m2}

Let Λ be an arbitrary lattice in 2D Euclidean space, and let {~m1, ~m2} be a (not necessarily
orthonormal) integer basis for the lattice: i.e. every point in Λ may be written as a unique
integer linear combination of the vectors ~m1 and ~m2. If we regard ~m1 and ~m2 as column
vectors, then the corresponding dual basis {m̃1, m̃2} consists of the row vectors m̃1 and m̃2

defined by the matrix equation[
m̃1

m̃2

]
= [ ~m1 ~m2 ]−1 ⇒ m̃i ~mj = δij . (2.2)

Let ~q(t) be an arbitrary line slicing through this space, and let {ê‖, ê⊥} be an orthonormal
basis adapted to it: ê‖ points along the line, ê⊥ points perpendicular to it, and we write:

~q(t) = ~q0 + ê‖t. (2.3)

We will always assume that ~q(t) has irrational slope with respect to the {~m1, ~m2} basis. It
will be convenient to split ~q0, ~m1 and ~m2 into their ê‖ and ê⊥ components:

~q0 = q
‖
0 ê‖ + q⊥0 ê⊥, (2.4a)

~m1 = m
‖
1ê‖ +m⊥1 ê⊥. (2.4b)

~m2 = m
‖
2ê‖ +m⊥2 ê⊥. (2.4c)

In this paper, we will usually focus on the case where {~m1, ~m2} is a "positive basis," meaning
that (for i = 1, 2) it satisfies the following conditions

m̃iê‖ > 0, (2.5a)

~mi · ê‖ > 0. (2.5b)
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Figure 2. Illustrates the geometric objects discussed in Sections 2 and 3. The black dots are the
lattice Λ. The thick black line is ~q(t), with its own origin displaced from the origin of Λ by the
vector ~q0. The solid red arrows show an integer basis {~m1, ~m2} for Λ, while the dashed red lines
show the corresponding integer grid; and the figure illustrates the corresponding cut-and-project
construction: every time the solid black line ~q(t) intersects one of the red dashed parallelograms,
the midpoint of that paralleogram (a red dot) is orthogonally projected onto ~q(t) to obtain the
1D quasilattice xn. The solid turquoise arrows then show an alternative integer basis {~m′1, ~m′2}
for Λ, while the dotted turquoise lines show the corresponding integer grid; and this alternative
basis could be used in an exactly analogous way to obtain a second quasilattice x′n which would be
in the same equivalance class as the first: either one could be obtained from the other by a local
decoration/gluing rule.

In other words, Eq. (2.5a) says that the vector ê‖ lies in the "first quadrant" with respect
to the {~m1, ~m2} basis (i.e. if we expand ê‖ = α1 ~m1 +α2 ~m2 in the {~m1, ~m2} basis, then the
coordinates α1 and α2 are both positive); and Eq. (2.5b) says that ~m1 and ~m2 both have
positive projections onto ê‖ (i.e. m

‖
1 and m‖2 are both positive). Note that, since ~m1 and

~m2 are not assumed to be orthogonal, conditions (2.5a) and (2.5b) are not redundant.

2.2 Perspective 1: the 1D quasilattice from dualizing a 1D bi-grid

The {~m1, ~m2} basis defines an "integer grid": this is the set of all lines that (in the {~m1, ~m2}
basis) have a constant integer value for either their first or second coordinate (like the grid
of lines on an ordinary sheet of graph paper). The intersection of this integer grid with the
line ~q(t) defines a natural 1D "bi-grid." In particular, the grid line whose first coordinate
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(in the {~m1, ~m2} basis) is the integer n ∈ Z intersects ~q(t) at t = t
(1)
n , where

m̃1~q(t(1)n ) = n ⇒ t(1)n =
n− m̃1~q0
m̃1ê‖

, (2.6a)

while the grid line whose second coordinate (in the {~m1, ~m2} basis) is the integer n ∈ Z
intersects ~q(t) at t = t

(2)
n , where

m̃2~q(t(2)n ) = n ⇒ t(2)n =
n− m̃2~q0
m̃2ê‖

. (2.6b)

The points t(1)n form a periodic 1D lattice of spacing 1/(m̃1ê‖), while the points t(2)n form
another periodic 1D lattice of spacing 1/(m̃2ê‖). The superposition of these two periodic
lattices (with incommensurate spacings) is the 1D bi-grid.

From this 1D bi-grid, we obtain the corresponding 1D quasilattice by a standard "dual-
ization" procedure []: to each space between two consecutive points in the bi-grid, we assign
a point x in the dual quasilattice, so that (i) whenever we cross a point t(1)n in the bi-grid
(from the t(1)n−1 side to the t(1)n+1 side), we correspondingly jump x → x + m

‖
1 in the dual

quasi-lattice, and (ii) whenever we cross a point t(2)n in the bi-grid (from the t(2)n−1 side to the
t
(2)
n+1 side), we correspondingly jump x→ x+m

‖
2 in the dual quasi-lattice. Stated another

way, as the bi-grid parameter t continuously sweeps from −∞ to +∞, the quasilattice point
x changes discretely, according to the formula

x =
⌊
m̃1~q(t)

⌋
m
‖
1 +

⌊
m̃2~q(t)

⌋
m
‖
2 + C (2.7)

where C is a constant.
We can canonically fix C by demanding that the quasilattice dual to a reflection-

symmetric bi-grid is also reflection-symmetric, which fixes C to be:

C =
1

2
m
‖
1 +

1

2
m
‖
2 − q

‖
0. (2.8)

Fixing this phase relationship is unimportant in 1D, but plays an important role when
we construct higher-dimensional Ammann patterns in [12], since these higher-dimensional
Ammann patterns are built from a collection of multiple 1D quasilattices whose phases
must be carefully coordinated with one another.

2.3 Perspective 2: the 1D quasilattice from a cut-and-project algorithm

Eqs. (2.7) and (2.8) also have another geometric interpretation. We can think of the
{~m1, ~m2} integer grid described in Subsection 2.2 as slicing up the plane into parallel-
grams whose edges are the vectors ~m1 and ~m2, and whose vertices coincide with the points
of Λ. Now we can construct our 1D quasilattice by the following "cut-and-project" algo-
rithm: whenever the "cut" line ~q(t) intersects one of these parallelograms, we orthogonally
project the midpoint of that parallelogram onto the cut line to obtain the point ~q(x) (see
Fig. 1). This mapping from t to x is precisely the one described by Eqs. (2.7) and (2.8).
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In particular, fixing C according to (2.8) corresponds to projecting the parallelogram’s
midpoint.

This cut-and-project perspective leads to a convenient way of re-expressing Eqs. (2.7)
and (2.8). For the rest of this section, let us assume that {~m1, ~m2} are a positive basis (see
Subsection 2.1). As t runs from −∞ to +∞, the line ~q(t) passes from one parallelogram to
the next, thereby placing the parallelograms that it intersects in a specific order, which can
be indexed by the integer n. In particular, when ~q(t) passes through the nth parallelogram,
it intersects that parallelogram’s transverse diagonal at a time tn given by:

m̃~q(tn) = n ⇒ tn =
n− m̃~q0
m̃ê‖

(2.9)

where
m̃ = m̃1 + m̃2. (2.10)

We can use Eqs. (2.7) and (2.8) to map this nth intersection time, tn, to a corresponding
nth point in the quasilattice, xn. Following this procedure and massaging the result a bit,
we obtain the useful formula:

xn =

(⌊
nm⊥2 − q⊥0
m⊥2 −m⊥1

⌋
+

1

2

)
m
‖
1 +

(⌊
nm⊥1 − q⊥0
m⊥1 −m⊥2

⌋
+

1

2

)
m
‖
2 − q

‖
0. (2.11)

Let us make three remarks about Eq. (2.11):

1. Eq. (2.11) defines the same 1D quasilattice as Eqs. (2.7, 2.8); the difference is that,
whereas Eqs. (2.7, 2.8) expressed this quasilattice as the range of a many-to-one map
with a continuous domain (t ∈ R), Eq. (2.11) expresses the same quasilattice as the
range of a one-to-one map from a discrete domain (n ∈ Z).

2. Imagine replacing the line ~q = ~q0+ ê‖t by a new line ~q ′ = ~q0
′+ ê‖t which is parallel to

the original line, and has just been translated by a vector in Λ: ~q0′ = ~q0+n1 ~m1+n2 ~m2

(for some integers n1 and n2). Then, via Eq. (2.11), we obtain a new quasilattice x′n
with correspondingly shifted parameters:

q
‖
0
′ = q

‖
0 + n1m

‖
1 + n2m

‖
2 ,

q⊥0
′ = q⊥0 + n1m

⊥
1 + n2m

⊥
2 .

(2.12)

But, as may be checked from Eq. (2.11), the two quasilattices xn and x′n are actually
identical up to reindexing: x′n = xn−n1−n2 . This is called an umklaap transformation
[21] and reflects the fact that, when we consider the family of 1D quasilattices obtained
by varying ~q0, we can really think of ~q0 as living on a torus [22, 23].

3. Since {~m1, ~m2} is a positive basis, Eq. (2.5a) requires m⊥2 /m⊥1 < 0, and Eq. (2.5b)
requires m‖1 > 0 and m

‖
2 > 0. Together these conditions imply that, as the integer

index n increments (from n′ to n′ + 1), the corresponding quasilattice position xn
(2.11) increases by one of the two positive lengths: m‖1 or m‖2. Furthermore,

(f1/f2) = −(m⊥2 /m
⊥
1 ), (2.13)
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where f1/f2 is the relative frequency of steps of length m‖1 and steps of length m‖2. If
f1/f2 < 1, the quasilattice consists of single (isolated) steps of length m‖1, separated
by either bf2/f1c or (bf2/f1c + 1) steps of length m

‖
2; and if f2/f1 < 1, the quasi-

lattice consists of single (isolated) steps of length m‖2, separated by either bf1/f2c or
(bf1/f2c+ 1) steps of length m‖1.

Although Eq. (2.11) has the advantage of being manifestly symmetric under interchange
of 1 ↔ 2 subscripts, it is sometimes convenient to rewrite it in one of the following two
forms, which each only involve one floor function b. . .c, and are swapped by swapping 1↔ 2:

xn = m
‖
1(n− χ

‖
1) + (m

‖
2 −m

‖
1)

(⌊
κ1(n− χ⊥1 )

⌋
+

1

2

)
(2.14a)

= m
‖
2(n− χ

‖
2) + (m

‖
1 −m

‖
2)

(⌊
κ2(n− χ⊥2 )

⌋
+

1

2

)
(2.14b)

where we have defined the constants

χ
‖
1 ≡ q

‖
0/m

‖
1, χ⊥1 ≡ q⊥0 /m⊥1 , κ1 ≡

m⊥1
m⊥1 −m⊥2

, (2.15a)

χ
‖
2 ≡ q

‖
0/m

‖
2, χ⊥2 ≡ q⊥0 /m⊥2 , κ2 ≡

m⊥2
m⊥2 −m⊥1

. (2.15b)

Let us add three more remarks:

1. When we re-express the quasilattice (2.11) in the form (2.14), we correspondingly
re-express the umklaap transformation (2.12) in the form

χ
‖
1
′ = χ

‖
1 + n1 + n2(m

‖
2/m

‖
1), χ⊥1

′ = χ⊥1 + n1 + n2(m
⊥
2 /m

⊥
1 ), (2.16a)

χ
‖
2
′ = χ

‖
2 + n2 + n1(m

‖
1/m

‖
2), χ⊥2

′ = χ⊥2 + n2 + n1(m
⊥
1 /m

⊥
2 ). (2.16b)

2. In the generic (non-singular) case where the line ~q(t) does not intersect any of the
points in Λ, the three expressions (2.11, 2.14a, 2.14b) are all equivalent. In the
special (singular) case where the line ~q(t) intersects a point in Λ, the three expressions
(2.11, 2.14a, 2.14b) are almost equivalent, but they differ at one point xn∗ (where the
argument of the floor function b. . .c is precisely an integer). This may seem like
a minor detail, but in fact (as we shall explain in a subsequent paper [20]) these
special cases are not only the 1D analogues of, but also the 1D building blocks for, a
fascinating set of topological defects which are intrinsic to two- and higher-dimensional
Penrose-like tilings (and are known as "decapod defects" in the case of the standard
2D Penrose tiling [2, 5]). For this reason, we will continue to keep track of this detail
at later points in this paper (see Section 4 and Appendix B).

3. Comparing Eqs. (2.1) and (2.14), we see that given a line ~q(t), a lattice Λ, and
a positive basis {~m1, ~m2}, the cut-and-project algorithm described above produces a
quadratic 1D quasilattice xn. Conversely, it is easy to check that any quadratic 1D
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quasilattice xn may be obtained from such a cut-and-project algorithm: the “‖" com-
ponents of ~m1 and ~m2 can be chosen to obtain the desired parameters S and L, the
“⊥" components of ~m1 and ~m2 can be chosen to obtain the desired κ, and the "‖"
and "⊥" components of ~q0 can be chosen to obtain the desired {α, β}.

2.4 Perspective 3: the 1D quasilattice from slicing a 2-torus

The lattice Λ defines a 2-torus (obtained by identifying the opposite edges of the {~m1, ~m2}
parallelogram described above). Then ~q(t) is a geodesic with irrational slope that wraps
around and around the torus forever, densely covering its surface without ever intersecting
itself. The midpoints of the {~m1, ~m2} parallelograms are mapped to a single marked point
P on the torus. Now, let us imagine drawing a second geodesic segment on the torus:
perpendicular to ~q(t), of length |m⊥2 −m⊥1 |, and centered on the point P . This segment
intersects the original geodesic ~q(x) at an infinite number of points, and the intersection
times are precisely the quasilattice positions xn described by Eqs. (2.7, 2.8) or, equivalently,
by Eqs. (2.11) or (2.14).

3 Lattice-equivalent quasilattices

In Section 2, we constructed the quadratic 1D quasilattice xn (2.11) by first choosing: (i) a
line ~q(t), (ii) a lattice Λ, and (iii) a "positive" integer basis {~m1, ~m2} for Λ. If, instead, we
had chosen the same line ~q(t) and the same lattice Λ, but a different positive integer basis
{~m′1, ~m′2}, we would have obtained a different quadratic quasilattice:

x′n =

(⌊
nm⊥2

′ − q⊥0
m⊥2
′ −m⊥1 ′

⌋
+

1

2

)
m
‖
1
′ +

(⌊
nm⊥1

′ − q⊥0
m⊥1
′ −m⊥2 ′

⌋
+

1

2

)
m
‖
2
′ − q‖0. (3.1)

We will call two quasilattices xn and x′n that are related in this way "lattice equivalent."
To understand lattice equivalence in more detail, let us write the relationship between

the two bases as

~m′1 = a~m1 + b~m2, (3.2a)

~m′2 = c~m1 + d~m2. (3.2b)

Since {~m1, ~m2} and {~m′1, ~m′2} are both integer bases for Λ,

τ =

(
a b

c d

)
(3.3)

must be an integer matrix with determinant±1. And since {~m1, ~m2} and {~m′1, ~m′2} are both
positive integer bases for Λ and, without loss of generality, we take the unprimed {~m1, ~m2}
parallelogram to be the one that is wider in the ê⊥ direction (|m⊥2 −m⊥1 | > |m⊥2 ′ −m⊥1 ′|),
the components {a, b, c, d} of τ must also all be non-negative (see Appendix A for a proof).

The two lattice-equivalent quasilattices xn (2.11) and x′n (3.1) are intimately related to
one another: the denser quasilattice xn may be obtained from the sparser quasilattice x′n
by applying a local "substitution" or "decoration" rule that replaces each type of interval
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Figure 3. Illustrates why two lattice equivalent quasilattices are related by a fixed decoration rule,
as explained in Section 3.

between points in the sparser quasilattice by a specific, fixed sequence of intervals in the
denser quasilattice; and in the other direction, the sparser quasilattice may be recovered
from the denser one by a local rule for gluing together a certain specific, fixed sequence of
intervals in the denser lattice to obtain each type of interval in the sparser one.

To understand this assertion, consider Fig. 3: it shows the set of (red, elongated, dot-
ted) {~m′1, ~m′2} parallelograms and the set of (blue, square, solid) {~m1, ~m2} parallelograms
that are intersected by the diagonal black dotted line ~q(t). Note that the set of {~m1, ~m2}
parallelograms is precisely the minimal set needed to cover the set of {~m′1, ~m′2} parallel-
ograms completely. (For clarity, in the top panel of Fig. 4 we show a single {~m′1, ~m′2}
parallelogram and its minimal covering by {~m1, ~m2} parallelograms; and in the bottom
panel of Fig. 4, we show the minimal covering of two adjacent {~m′1, ~m′2} parallelograms,
depending on whether they share a common long edge or a common short edge.) From
Figs. 3 and 4, we can see the simple geometric reason why (as asserted above) the denser
quasilattice xn may be obtained from the sparser quasilattice x′n by applying a fixed "sub-
stitution" or "decoration" rule to each of the two intervals (S′ and L′) in the x′n quasilattice
– it is because: (i) whenever two adjacent {~m′1, ~m′2} parallelograms share a common short
edge (giving rise to an L′ interval in this example), they are always covered by the same
arrangement of {~m1, ~m2} parallelograms, which yields a fixed decoration of L′ by S and
L; and (ii) similarly, whenever two adjacent {~m′1, ~m′2} parallelograms share a common long
edge (giving rise to an S′ interval in this example), they are always covered by the same
arrangement of {~m1, ~m2} parallelograms, which yields a fixed decoration of S′ by S and L.

Lattice equivalence thus organizes the various quadratic 1D quasilattices xn obtained
the previous section into lattice equivalence classes (with an uncountable infinity of different
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Figure 4. More about the relationship between the parallelograms in Fig. 3: the top panel shows
the minimal covering of one (red, elongated, dotted) {~m′1, ~m′2} parallelogram by (blue, square,
solid) {~m1, ~m2} parallelograms; and the bottom panel shows the minimal covering of two adjacent
{~m′1, ~m′2}, which just depends on whether they share a common short edge, or a common long edge.

lattice equivalence classes, and a countable infinity of different quasilattices in any particular
lattice equivalence class). Given a fixed line ~q(t) and a fixed lattice Λ, the various members
of the corresponding lattice equivalence class come from all the different ways of choosing a
positive integer basis {~m1, ~m2} for Λ; and any two members of the family may be derived
from one another by a local substitution/gluing rule corresponding to the integer matrix τ .

The notion of lattice equivalence elucidates the precise connection between substitution
sequences, on the one hand, and cut-and-project sequences, on the other. On the one hand,
if the quasilattices xn and x′n are lattice equivalent, the sequence xn (regarded as an infinite
string of unprimed letters S and L) may be algebraically obtained from the sequence x′n
(regarded as an infinite string of primed letters S′ and L′) by a formal substitution rule in
which each primed letter (S′ or L′) is replaced by a fixed finite string of unprimed letters (S
and L). This substitution rule may be summarized by a 2×2 integer matrix τ in a standard
way. On the other hand, we see that this same matrix τ has a simple geometric meaning:
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it is precisely the matrix that connects the unprimed basis {~m1, ~m2} (that produces xn via
cut-and-project) to the primed basis {~m′1, ~m′2} (that produces x′n via cut-and-project).

Furthermore, from the algebraic perspective, the matrix τ is not enough to specify the
substitution rule, since it doesn’t fix the particular ordering or overall translational phase
of the substitution rule. For example, the matrix

τ =

(
1 1

2 3

)
(3.4)

might correspond to any of the following three substitution rules:

{S′, L′} → {L
2
S
L

2
,
L

2
SLLS

L

2
} (3.5a)

{S′, L′} → {L
2
S
L

2
,
L

2
LSSL

L

2
} (3.5b)

{S′, L′} → {SL, SLLSL}. (3.5c)

Note that, (3.5a) and (3.5b) correspond to different orderings, while (3.5a) and (3.5c) cor-
respond to different phases – i.e. if we start from the same parent sequence and apply
these substitutions, then (3.5a) and (3.5b) will produce two genuinely distinct daughter
sequences, while (3.5a) and (3.5c) will produce two sequences that only differ by an over-
all translation by L/2. By contrast, from the geometrical perspective, the matrix τ also
determines an ordering and a phase – i.e. it is associated with a canonical substitution
rule and, in particular, one that is x→ −x reflection symmetric. For example, for τ given
by Eq. (3.4), the canonical substitution rule is given by (3.5a) – see Row 3b in Table 1.
These canonical substitution rules (including ordering and phase) will be important in our
analysis of higher-dimensional Ammann patterns in [12].

4 Self-similar quasilattices

Two 1D quasilattices are locally isomorphic if any finite segment which occurs in one quasi-
lattice also occurs somewhere in the other quasilattice, and vice versa, so that it is impos-
sible, by inspecting any finite segment, to determine which of the two quasilattices one is
looking at (see e.g. [2, 10, 21] for more). Two lattice-equivalent quasilattices xn and x′n,
related by the matrix τ , may look very different from one another and, in general, will not
be locally isomorphic, even after an overall rescaling. If xn and x′n are also locally isomophic
(up to overall rescaling), then we say they are self-similar (under the transformation τ).
In this section, we give the general closed-form expression for a self-similar quadratic 1D
quasilattice, and a simple rule for how its parameters transform under a self-similarity (in-
flation/deflation) transformation. Then, in Table 1, we collect the ten special self-similar
sequences that are relevant for constructing higher-dimensional Ammann patterns [12]; and
in Figure 5, we depict the corresponding substitution rules.

To start, let us pick a particular transformation matrix

τ =

(
a b

c d

)
(4.1)
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(with non-negative integer components and determinant ±1). In the self-similar case, the
new quasilattice x′n (3.1) is related to the original one xn (2.11) by

m
‖
1
′

m
‖
2
′

=
m
‖
1

m
‖
2

and
m⊥1
′

m⊥2
′ =

m⊥1
m⊥2

; (4.2)

or, equivalently, (
m
‖
1

m
‖
2

)
and

(
m⊥1
m⊥2

)
(4.3)

must be two different eigenvectors of τ with corresponding eigenvalues

λ‖ =
1

2

[
a+ d+

√
(a+ d)2 − 4(ad− bc)

]
(4.4a)

λ⊥ =
1

2

[
a+ d−

√
(a+ d)2 − 4(ad− bc)

]
(4.4b)

where λ‖ > 1, while |λ⊥| < 1 and sign(λ⊥) = det(τ).
If the quasilattice xn (2.11, 2.14a, 2.14b) is self-similar with respect to the transforma-

tion τ , then after s successive transformations, the resulting sequence xn,s is:

xn,s
λs‖

=

(⌊
nm⊥2 − q⊥0,s
m⊥2 −m⊥1

⌋
+

1

2

)
m
‖
1 +

(⌊
nm⊥1 − q⊥0,s
m⊥1 −m⊥2

⌋
+

1

2

)
m
‖
2 − q

‖
0,s (4.5a)

= m
‖
1(n− χ

‖
1,s) + (m

‖
2 −m

‖
1)

(⌊
κ1(n− χ⊥1,s)

⌋
+

1

2

)
(4.5b)

= m
‖
2(n− χ

‖
2,s) + (m

‖
1 −m

‖
2)

(⌊
κ2(n− χ⊥2,s)

⌋
+

1

2

)
(4.5c)

with new parameters {q‖0,s, q⊥0,s} (or {χ‖1,s, χ⊥1,s} or {χ‖2,s, χ⊥2,s}) which are related to the

original parameters {q‖0, q⊥0 } (or {χ
‖
1, χ
⊥
1 } or {χ

‖
2, χ
⊥
2 }) as follows

q
‖
0,s ≡

q
‖
0

λs‖
, q⊥0,s ≡

q⊥0
λs⊥

, (4.6a)

χ
‖
1,s ≡

χ
‖
1

λs‖
, χ⊥1,s ≡

χ⊥1
λs⊥

, (4.6b)

χ
‖
2,s ≡

χ
‖
2

λs‖
, χ⊥2,s ≡

χ⊥2
λs⊥

. (4.6c)

More precisely, Eqs. (4.5) and (4.6) are correct in the generic (non-singular) case where
~q(t) doesn’t intersect any points in Λ; and in the special (singular) case where ~q(t) intersects
one point in Λ they are almost correct – i.e. they are correct everywhere except at the one
(singular) point in the quasilattice where the argument of the floor function b. . .c is equal
to an integer. As mentioned in Section 2, this apparently minor detail is important because
(as we shall see in a subsequent paper [20]) these special 1D quasilattices play an important
role in describing and understanding the intrinsic "topological" defects which can arise
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Case λ± τ m±2 /m
±
1 S′ L′

1 1
2(1±

√
5)

(
0 1

1 1

)
1
2(1±

√
5) L

2
L
2

L
2S

L
2

2a 1±
√

2

(
1 1

2 1

)
±
√

2 L
2S

L
2

L
2SS

L
2

2b 1±
√

2

(
0 1

1 2

)
1±
√

2 L LSL

3a 2±
√

3

(
1 2

1 3

)
1
2(1±

√
3) S

2LL
S
2

S
2LLL

S
2

3b 2±
√

3

(
2 1

3 2

)
±
√

3 SLS SLSLS

3c 2±
√

3

(
1 1

2 3

)
1±
√

3 L
2S

L
2

L
2SLLS

L
2

4a 2±
√

5

(
3 1

4 1

)
−1±

√
5 L

2SSS
L
2

L
2SSSS

L
2

4b 2±
√

5

(
2 1

5 2

)
0±
√

5 SLS SLSSSLS

4c 2±
√

5

(
1 1

4 3

)
1±
√

5 L
2S

L
2

L
2SLSSLS

L
2

4d 2±
√

5

(
0 1

1 4

)
2±
√

5 L LLSLL

Table 1. Catalog of the ten 1D self-similar quasilattices relevant to constructing higher-dimensional
Ammann patterns and Penrose-like tilings in [12]. In this table, we use the convenient notation λ±
and m±i where here the superscript/subscript "+" stands for the former subscript/superscript "‖",
while the "−" stands for "⊥". Within each case, the subcases are in order of increasing L/S.

in Penrose-like tilings in two and higher dimensions (like the so-called "decapod" defects
in the ordinary Penrose tiling [2, 5]). If we want to describe 1D quasilattices and their
self-similarity transformations in a way that continues to be precisely correct, even in the
singular case, we have to replace Eqs. (4.5a, 4.5b, 4.5c) by the corresponding Eqs. (4.5a′,
4.5b′, 4.5c′) presented in Appendix B.

In our subsequent paper [12], where these self-similar 1D quasilattices are used as the
building blocks for higher dimensional Ammann patterns and Penrose-like tilings, four cases
are relevant (see Table 1 in [24]): Case 1, where the scaling factor is the "golden ratio",
λ‖ = φ = (1 +

√
5)/2, which is the relevant case for describing systems with 5-fold or

10-fold order in 2D, some systems with icosahedral (H3) order in 3D, and systems with
"hyper-icosahedral" (H4) order in 4D; Case 2, where the scale factor is the "silver ratio"
λ‖ = (1+

√
2), which is the relevant case for describing systems with 8-fold order in 2D; Case

3, where the scale factor is λ‖ = (2 +
√

3), which is the relevant case for describing systems
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Figure 5. Illustrations of the ten 1D self-similar substitution rules relevant to constructing higher-
dimensional Ammann patterns and Penrose-like tilings (as catalogued in the last column of Table
1). In each row of this figure, the short (solid, purple) and long (dashed, turqoise) prototiles are
on the bottom, with their corresponding self-similar decimations into smaller tiles directly above.
Open circles indicate the endpoints of tiles. Complete tiles have have circles at both ends; half tiles
have a circle at one end but none at the half-way point. For example, Row 1 shows how a short
prototile S′ (bottom left) is subdivided into two halves of a long prototile: S′ = (L/2)(L/2) (top
left); and a long prototile L′ (bottom right) is subdivided into L′ = (L/2)S(L/2) (top right).
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with 12-fold order in 2D; and Case 4, where the scale factor is λ‖ = φ3 = 2 +
√

5, which is
the relevant case for describing some systems with icosahedral (H3) order in 3D. In Table
1 we list all ten of the 1D self-similar quasilattices corresponding to these four cases, and
provide the relevant parameters needed to describe them explicitly.1 Note that in this table
we have used the convenient notation λ± and m±i where here the "+" superscript/subscript
stands for the former superscript/subscript "‖", and similarly the "−" stands for "⊥".

5 Self-same quasilattices

In the previous section, we restricted our attention to 1D quasilattices that were self-similar
(i.e. both lattice equivalent and locally isomorphic) under the transformation τ . In this
section, we restrict our attention further to 1D quasilattices xn that are s-fold self-same
with respect to τ – meaning that xn is self-similar with respect to τ and, moreover, xn,s
(the quasilattice obtained by performing s successive τ -transformations) is identical to xn
(after an appropriate rescaling).

In the previous section, we found that after s successive τ transformations, the original
quasilattice xn (2.11, 2.14a, 2.14b) characterized by parameters {q‖0, q⊥0 } (or {χ‖1, χ⊥1 } or
{χ‖2, χ⊥2 }) was transformed to a new quasilattice xn,s (4.5a, 4.5b, 4.5c) characterized by new
parameters {q‖0,s, q⊥0,s} (or {χ

‖
1,s, χ

⊥
1,s} or {χ

‖
2,s, χ

⊥
2,s}). In order for xn to be s-fold self-same,

these transformed parameters must be related to the original parameters by an umklaap
transformation (2.12, 2.16a, 2.16b). This implies that a quasilattice will be s-fold self-same
with respect to τ if it is self-similar with respect to τ and, in addition, its parameters are
given by

q±0 =
λs±(n1m

±
1 + n2m

±
2 )

1− λs±
, (5.1a)

χ±1 =
λs±(n1m

±
1 + n2m

±
2 )

(1− λs±)m±1
, (5.1b)

χ±2 =
λs±(n2m

±
2 + n1m

±
1 )

(1− λs±)m±2
, (5.1c)

for any integers n1 and n2 (where, again in this section, we are using the notation that
superscripts/subscripts + and − stand for ‖ and ⊥, respectively).

As it stands, this answer is redundant, because there can be different ordered pairs
{n1, n2} and {n′1, n′2} of integers for which the above parameters secretly describe the same
quasilattice (up to umklaap). In order to count the non-redundant self-same crystals, first

1Note that some of these were already fully or partially described in the literature, and others seem not
to have been. Case 1 (the Fibonacci lattice) and its canonical substitution rule were known in one form or
another at least since Ammann came across them in the 1970’s, and an early instance of its explicit floor-
form expression and the corresponding canonical inflation/deflation rule may be found in [21]. Case 2a was
the subject of [13] and is also in [25], along with Case 3a. In addition, all three of the 2× 2 transformation
matrices corresponding to the ratio (2 +

√
3) may be found in [10] (but not the corresponding closed-form

expressions for the quasilattice and its self-similarity transformation, or the canonical substitution rule,
including ordering and phase).
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note that matrix τ has eigenvalues

λ± =
1

2
[(a+ d)±

√
(a+ d)2 − 4 det(τ)] (5.2)

which satisfy
λs± = Fsλ± − Fs−1det(τ) (5.3)

where the coefficients Fs are determined by the recursion relation

Fs+1 = (a+ d)Fs − det(τ)Fs−1, (5.4)

with initial conditions F0 = 0 and F1 = 1. Next note that, from (5.3) together with the
fact that λ+λ− = det(τ), we obtain the useful identities

(1− λs+)(1− λs−) = 1 + det(τ)Fs−1 − Fs+1 + (det τ)s (5.5)

and
(det τ)s−1 = F 2

s − Fs−1Fs+2. (5.6)

Putting these results together, we find that the number of quasilattices that are s-fold
self-same with respect to τ is given by

Ns = Fs+1 − det(τ)Fs−1 −
3 + det(τ)

2
. (5.7)

But this result is not yet what we want, since it includes quasilattices that are self-same
after s inflations, but were already self same after r inflations, where r is a divisor of s.
After we remove these "reducible" cases, we are left with the number 〈Ns〉 of irreducible
s-fold self-same quasilattices. The number 〈Ns〉 is divisible by s, since the irreducible s-
fold self-same quasilattices are grouped into families of size s which cycle into one another
under τ -transformation, and which we will call "s-cycles." So the most natural thing to
count is the number of s-cycles, 〈Ns〉/s: in Table 2, we tabulate the number of s-cycles for
the four important scale factors catalogued in Table 1. Note that self-same quasilattices
are examples of fixed points in the torus parameterization; in this context, the number of
irreducible s-cycles in the golden ratio case (Case 1) was previously computed in [22, 23].

It is interesting to note that the sequences of numbers in some of the columns in Table
2 already appear as entries in the Online Encyclopedia of Integer Sequences (OEIS) for
various different reasons. Here we mention those entries for completeness and in the hope
that, by tracking down the relationships, some interesting insights might be uncovered.
The first column is OEIS sequence A000045 ("Fibonacci numbers"); the second column
is A006206 ("Number of aperiodic binary necklaces of length n with no subsequence 00,
excluding the necklace "0"); the third column is A000129 ("Pell numbers"); the fourth
column is A215335 ("Cyclically smooth Lyndon words with 3 colors"); the fifth column is
A001353; the sixth column is A072279 ("Dimension of n-th graded section of a certain Lie
algebra"); the seventh column is A001076 ("Denominators of continued fraction convergents
to sqrt(5)"); and the eighth column is not yet an OEIS sequence.
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s Fs
2 〈Ns〉/s Fs 〈Ns〉/s Fs 〈Ns〉/s Fs 〈Ns〉/s

1 1 0 1 1 1 2 1 3
2 1 1 2 2 4 5 4 7
3 2 1 5 4 15 16 17 24
4 3 1 12 7 56 45 72 76
5 5 2 29 16 209 144 305 272
6 8 2 70 30 780 440 1292 948
7 13 4 169 68 2911 1440 5473 3496
8 21 5 408 140 10864 4680 23184 12920
9 34 8 985 308 40545 15600 98209 48792
10 55 11 2378 664 151316 52344 416020 185912
11 89 18 5741 1476 564719 177840 1762289 716472
12 144 25 13860 3248 2107560 608160 7465176 2781600

Table 2. Here we list tabulate the first 12 terms in the sequence Fs and the sequence 〈Ns〉/s, for
each of the four important scale factors catalogued in Table 1: φ = (1 +

√
5)/2 (columns 1 and 2);

(1 +
√

2) (columns 3 and 4); (2 +
√

3) (columns 5 and 6); and (2 +
√

5) (columns 7 and 8).

6 Higher quasilattices

In this paper, we have so far focused on quadratic 1D quasilattices – these form the simplest
class of 1D quasilattices, and include the 1D quasilattices needed to build Ammann patterns
in two dimensions and higher [12]. Nevertheless, there are also good reasons to think about
"higher" 1D quasilattices – i.e. 1D quasilattices of degree N (with N > 2), and so we briefly
consider them in this final section.

We leave a more complete discussion of the degree-N generalization to future work, and
here just mention the first few steps. Generalizing Subsection 2.1, we begin by choosing
a line ~q(t), an N -dimensional lattice Λ, and an integer basis {~m1, . . . , ~mN} for Λ (with
dual basis {m̃1, . . . , m̃N}). We take the basis to be "positive" in the sense that it satisfies
conditions (2.5a) and (2.5b) for i = 1, . . . , N . Generalizing Subsection 2.2, we see that
the intersection of the line ~q(t) with the integer grid of hyperplanes defined by the basis
{~m1, . . . ~mN} defines a natural 1D N -grid. In particular, the grid hyperplane whose kth
coordinate (in the {~m1, . . . , ~mN} basis) is the integer n ∈ Z intersects ~q(t) at t = t

(k)
n where

t(k)n =
n− m̃k~q(t)

m̃kê‖
. (6.1)

[Compare with Eqs. (2.6a, 2.6b).] Dualizing this N -grid leads to the quasilattice

x =
⌊
m̃1~q(t)

⌋
m
‖
1 + . . .+

⌊
m̃N~q(t)

⌋
m
‖
N + C (6.2)

where
C =

1

2
m
‖
1 + . . .+

1

2
m
‖
N − q

‖
0. (6.3)

[Compare with Eqs. (2.7, 2.8).] Generalizing Subsection 2.3, we note that this quasilattice
may be reinterpreted as coming from a cut-and-project algorithm, where the integer grid
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of hyperplanes defined by the basis {~m1, . . . , ~mN} slices up N -dimensional Euclidean space
into N -dimensional parallelopipeds with edges {~m1, . . . , ~mN}; and whenever the "cut" line
~q(t) intersects one of these parallelopipeds, we orthogonally project the midpoint of that
parallelopiped onto the cut line to obtain the point ~q(x).

It seems particularly interesting to study the subset of these degree-N 1D quasilattices
that are self-similar or self-same. Moreover, in our forthcoming paper [12], we will see that
a certain subset of these higher 1D quasilattices may be of particular interest as building
blocks for novel "higher Ammann patterns" in 2D.

A Non-negativity of τ

In this Appendix, we prove the assertion from Section 3: that if {~m1, ~m2} and {~m′1, ~m′2}
are both positive integer bases for Λ and, without loss of generality, we take the {~m1, ~m2}
parallelogram to be wider than the {~m′1, ~m′2} parallelogram in the ê⊥ direction, then the
components {a, b, c, d} of the 2× 2 integer matrix τ are non-negative.

We can prove this as follows. The positivity of the basis {~m1, ~m2} implies that m‖1
and m‖2 are both positive, while m⊥1 and m⊥2 have opposite signs from one another; and,
similarly, the positivity of the basis {~m′1, ~m′2} implies that m‖1

′ and m‖2
′ are both positive,

while m⊥1 ′ and m⊥2 ′ have opposite signs from one another. Furthermore, for the purposes
of this proof, we can restrict to the case m⊥1 < 0 and m⊥2 > 0 (since the other possibility
corresponds to swapping 1↔ 2, which just swaps the columns of τ , and does not affect the
question of whether its components are all non-negative); and, similarly, we can restrict to
the case m⊥1 ′ < 0 and m⊥2 ′ > 0 (since the other possibility corresponds to swapping 1′ ↔ 2′,
which corresponds to swapping the rows of τ , which again does not affect the question
of whether its components are all non-negative). With these restrictions, the requirement
det(τ) = ±1 reduces to the condition

det(τ) = 1, (A.1a)

and the requirement that the {~m1, ~m2} parallogram is wider than the {~m′1, ~m′2} parallelo-
gram in the ê⊥ direction reduces to the condition

m⊥2 −m⊥1 > m⊥2
′ −m⊥1 ′. (A.1b)

Now, using ~m′1 = a~m1 + b~m2, we see that the conditions m‖1
′ > 0 and m⊥1 ′ < 0 become

a > −(m
‖
2/m

‖
1)b and a > −(m⊥2 /m

⊥
1 )b. (A.2a)

In other words, a is greater than both (negative)×b and (positive)×b, which is only possible
if a > 0. Similarly, using ~m′2 = c~m1 + d~m2, the conditions m‖2

′ > 0 and m⊥2 ′ > 0 become

d > −(m
‖
1/m

‖
2)c and d > −(m⊥1 /m

⊥
2 )c, (A.2b)

which together imply d > 0.
Next, conditions (A.1a) and (A.1b) may be rewritten, respectively, as

bc = ad− 1 (A.3a)
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and
bm⊥2 − cm⊥1 > (d− 1)m⊥2 − (a− 1)m⊥1 (A.3b)

Using the fact that m⊥2 is positive, m⊥1 is negative, while a and d are both positive integers,
we see that Eqs. (A.3a) and (A.3b) together imply that b and c are both non-negative.

This completes the proof.

B Singular quasilattices

To describe quasilattices and their self-similarity transformations by a formula that contin-
ues to be precisely correct even in the singular case (see Sections 2 and 4), we must replace
Eqs. (4.5a, 4.5b, 4.5c) by

xn,s
λ2‖

=

[nm⊥2 − q⊥0,s
m⊥2 −m⊥1

]
σ1,s

+
σ1,s
2

m
‖
1 +

[nm⊥1 − q⊥0,s
m⊥1 −m⊥2

]
σ2,s

+
σ2,s
2

m
‖
2 − q

‖
0,s (4.5a′)

= m
‖
1(n− χ

‖
1,s) + (m

‖
2 −m

‖
1)

([
κ1(n− χ⊥1,s)

]
σ2,s

+
σ2,s
2

)
(4.5b′)

= m
‖
2(n− χ

‖
2,s) + (m

‖
1 −m

‖
2)

([
κ2(n− χ⊥2,s)

]
σ1,s

+
σ1,s
2

)
(4.5c′)

where
σ1,s ≡ (det τ)sσ1 and σ2,s ≡ (det τ)sσ2. (B.1)

Here σ1 and σ2 are ± signs which may be regarded as independent in Eq. (4.5a′), but
are assumed to obey σ1 = −σ2 in passing to Eqs. (4.5b′, 4.5b′). Also note that we have
introduced the notation

[x]σ =

{
bxc (σ = +)

dxe (σ = −)
(B.2)

where bxc is the "floor" of x (i.e. the greatest integer ≤ x) and dxe is the "roof" of x (i.e.
the least integer ≥ x).

In particular, note that the "old" self-similarity transformation (4.5b, 4.5c) corresponds
to a fixed decoration/gluing rule except in the singular case (where the gluing/decoration
rule hold almost everywhere, but is violated near the singular point in the quasilattice).
By contrast, the "new" self-similarity transformation (4.5b′, 4.5c′) corresponds to a fixed
decoration/gluing rule that applies everywhere, even in the singular case.
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