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POLYTOPES AND HOPF ALGEBRAS OF PAINTED TREES: FAN
GRAPHS AND STELLOHEDRA.

LISA BERRY, STEFAN FORCEY, MARIA RONCO, AND PATRICK SHOWERS

Abstract.  Combinatorial Hopf algebras of painted trees exemplify theconnections
between operads and bialgebras. These trees were introduteecently as examples of
how graded Hopf operads can bequeath structure upon compdgins of coalgebras.
We put these trees in context by exhibiting them as the minimd elements of face
posets of convex polytopes. The faces posets themselvesasftpossess the structure of
graded Hopf algebras (with one-sided unit). Some of the polppes that constitute our
main results are well known in other contexts. First we see tle classical permutahe-
dra, and then certain generalized permutahedra: specicdl the graph-associahedra
of the star graphs which are known collectively as thestellohedrg and the graph-
associahedra of the fan-graphs. As an aside we show that théedohedra also appear
as certain lifted generalized permutahedra: graph compobkedra for complete graphs.
Tree species considered here include ordered and unorderbthary trees and ordered
lists (labeled corollas). Thus our results show how to repreent our new algebras using
the graph tubings. We also show an alternative associative lgebra structure on the
graph tubings of star graphs.

1. Introduction

The mathematical operation of grafting trees, root to leafjs a key feature in the
structure of several important operads and Hopf algebrasn 11998 Loday and Ronco
found a Hopf algebra of plane binary trees, initiating the stdy of these type of struc-
tures [18]. There is a surjection from permutations to planinary trees, the Tonks
projection de ned in [27]. Using that surjection on basis ements, the Loday-Ronco
algebra is the image of the Malvenuto-Reutenauer Hopf algebof permutations [21].
There is also a projection from the Loday-Ronco Hopf algebta the algebra of qua-
sisymmetric polynomials. The authors of [18] showed Hopfgabra maps which factor
the descent map from permutations to Boolean subsets. Thest factor is the Tonks
projection from the vertices of the permutohedron to the veices of the associahedron.
Chapoton put this latter fact into context when he found that the Hopf algebras of
vertices are subalgebras of larger ones based on the facab@fespective polytopes|7].
Chapoton's algebras are the di erential graded structuresorresponding to algebras
described by Loday and Ronco i |20].

In [19] the authors describe the product of planar binary tres in terms of the Tamari
order. In 2005 and 2006 Aguiar and Sottile characterized opions in these algebras
by using Mobius functions (of the Tamari order and of the wealBruhat order) to

2000 Mathematics Subject Classi cation. 05E05, 16W30, 18D50.
Key words and phrases.multiplihedron, composihedron, binary tree, cofree coalgbra, one-sided
Hopf algebra, operads, species.
1


http://arxiv.org/abs/1608.08546v3

2 LISA BERRY, STEFAN FORCEY, MARIA RONCO, AND PATRICK SHOWER S

obtain new bases, in respectively [2]][1]. Their work gave race way to construct a
basis of primitive elements, using the irreducible treesnl[17] the authors characterize
the same operations in terms of inclusions (into the largeragbytopes) of products of
polytope faces.

Alternatively, since the Loday-Ronco algebra is self-dualk can project to the divided
power Hopf algebra. In[[15] the authors used the following tadion: S Sym for the
Malvenuto-Reutenauer Hopf algebra)Y Sym for the Loday-Ronco Hopf algebra, and
CSym for the divided power Hopf algebra. They de ned the idea of gifting with two
colors, preserving the colors after the graft in order to havtwo-tone, or painted, trees
with various structures possible in each colored region. Hewe review the de nitions,
adding some generality and de ning poset structures on eadet of painted trees. We
extend the coalgebra structure to twelve new vector spacesnd we extend the Hopf
algbra structure to nine of those. We are also able to concladhat eight of the new
coalgebras de ned have underlying geometries of polytopegaiences.

The stellohedra or star-graph-associahedra, were rst de ned using the teer termi-
nology by Carr and Devadoss in_|6]. The former terminology waintroduced in [24],
where these polytopes were studied as special cases of mestma. In [13] the 3d version
of the stellohedron appears graphically, as the domain andmge quotient of the multi-
plihedra for the complete graphs. These quotients are tlttwmposihedraand cubeahedra
respectively, but this source does not identify them as stehedra. Also in [13] it is
claimed without proof that grafted trees represent these aients in all dimensions,
although the corresponding trees in that source are assaed in error to the wrong
polytope. (We correct the mistake here; compare our Figur@ and[4.2 to Figures 3
and 4 of [13].)

In [22] the authors do actually prove that the stellohedra fioall dimensions are in fact
the cubeahedra of complete graphs (which we will review). g9 in [22] the stellohedron
of dimensionn is recognized as the secondary polytope of pairs of nestedhaantric
n-dimensional simplices. The stellohedra have also beenrses special cases of signed-
tree associahedra in[23].

1.1. Main Results. Our algebraic results are twelve new graded coalgebras ofrmiad
trees, as described in Theorem _3.1. Nine of those contain agalgebras the cofree
graded coalgebras de ned in_[15]. Eight of our new coalgelralso possess one-sided
Hopf algebra structures, some in multiple ways, in Theorem.2

We show that eight sequences of our 12 sets of painted treesthwde ned rela-
tions, are isomorphic as posets to face lattices of convexlytopes. Six of these are
in the collection of Hopf algebras just mentioned. Four of #se isomorphisms are well
known from previous work: the associahedra, multiplihedracomposihedra and cubes.
In Theorem[4.4 we show that weakly ordered forests grafted tweakly ordered trees
are isomorphic to the permutohedra. In Theoremh 4.10 we showat forests of corol-
las grafted to weakly ordered trees are isomorphic to the stgraph-associahedra, or
stellohedra. In Theorem4.12 and Theorein_4.13 we show thatawdy ordered forests
grafted to a corolla are also isomorphic to stellohedra. InfeoremZ.I¥ we show that
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forests of plane trees grafted to weakly ordered trees arensorphic to the fan-graph-
associahedra, or pterahedra. In Theorem4]11 we show thaetktellohedra again appear
as graph-composihedra for the complete graphs.

In Section[2 we de ne the sets of trees and the surjective fuimmns between those sets.
In Section[3 we de ne the operations on our trees and explainhveh sets are graded
coalgebras and which are Hopf algebras. We give examples odducts, coproducts,
and antipodes.

In Section[4 we de ne a partial ordering of painted trees andhew which of our
posets of trees represent combinatorial equivalence clesof polytopes. In Sectionl5
we describe our Hopf algebra of faces of the stellohedra wsgraph tubings. In Propo-
sition we show that a new, less forgetful, product on vaces of the stellohedra is
associative.

2. Definitions

Graphs with unlabeled vertices are isomorphism classes ahghs. In this paper,
treesare unlabeled, connected, acyclic, simple graphs.réoted tree is an oriented tree
having one maximal vertex or node, called theoot. For any nodev of a tree, the edges
oriented towardsv are calledinputs of v and the edges leaving fromr are calledoutputs
of v. We denote by Inv) the set of inputs ofv, and by Out(v) the set of outputs ofv.

We denote by Nodt) the set of nodes of a tre¢. All the trees we work with satisfy
that jIn(v)] > 1 andjOut(v)j = 1. We admit edges which are linked to a unique node,
one of them is the output of the root, the others are calletbaves The degreeof a tree
is the number of its leaves minud.

We use the following terms:

A planetree is a rooted tree satisfying that the set I(v) is totally ordered, for
any nodev. Sometimes this is also referred to gdanar, and can be equivalently
satis ed by requiring the leaves to lie in one horizontal lie, in order, and the
root at a lessery-value.

A binary tree is a rooted tree such thafin(v)j = 2, for any nodev.

An example ofplane rooted binary tree often called a binary tree when the context
is clear, is the following, where the orientation of edges lsgher to lower on the plane:

leaved...4 gaps and nodek..4

The leaves are ordered left to right as shown by the circleddals. The horizontal
node ordering corresponds to the order afaps between leaveghe n" gap is just to
the left of the n™ leaf and then™ node is the one where a raindrop would be caught
which fell in the n'" gap. This ordering is also described as a depth rst travers@f
the nodes. Non-leafed edges are referred to as internal exig€éhe set of plane rooted
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binary trees with n nodes andn + 1 leaves is denoted/,: The cardinality of these sets

are the Catalan numbers: 5
n

Wol= 7

We will also need to consider rooted plane trees whose vees; or nodes, have more
than two inputs. We denote byT, the set of all plane rooted trees witm+1 leaves. The
cardinal of T, is the n" super-Catalan number (also called the little Schroder nunas).

An (n + 1)-leaved rooted tree with only one node (it will have degree + 2  3),
or, for n = 0; a single leaf tree with zero nodes, is called @rolla, denoted C,: This
notation for the (set of one) corolla withn + 1 leaves is the same as used for the set of
oneleft combin [15]. In the current paper we have decided that the corokaare more
easily recognized than the combs.

2.1. Ordered and painted plane trees. Many variations of the idea of the plane
tree have proven useful in applications to algebra and topagy.

Notation 2.2. For any positive integern 1, we denote by[n] the ordered set
f1,2;:::;ng, and by[n], the setfOg[ [n].

De nition 2.1. An ordered tree(sometimes calledleveled is a plane rooted treet,

equipped with a vertical linear ordering of Ndd), in addition to the horizontal one.
That is, an ordered tree is a plane rooted tre¢ equipped with a bijective map :

Nod(t) ! [[Nod(t)j], which respects the order given by the vertical order. Cléar
L (root) = jNod(t)j.

This vertical linear ordering extends the partial verticalordering given by distance
from the root. This vertical ordering allows a well-known Qection between the ordered
trees with n nodes, denoteds ,; and the permutations on[n]:

We may draw an ordered tree in three di erent styles:

The corresponding permutation in the above picture is = (3; 2; 4; 1), in the notation
( 1) @; Q) (4))

We will also considerforests of trees. In this paper, all forests will be a linearly
ordered list of trees, drawn left to right. This linear ordeing can also be seen as an
ordering of all the nodes of the forest, left to right. On top bthat, we can also order
all the nodes of the forest vertically, giving avertically ordered forest which we often
shorten to ordered forest This initially gives us four sorts of forests to consider,h®wn
in Figure [1.

Also shown in Figure[1 are three canonical, forgetful maps tweeen the types of
forests.

De nition 2.2.  We de ne to be the function that takes an ordered foregt and gives
a forest of ordered trees. The output (F) will have the same list of trees a5, and for
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atreet in (F) the vertical order of the nodes of will respect the vertical order of the
nodes inF: That is, for two nodesa;boft we havea binti a binF:

We de ne to be the function that takes an ordered tree and outputs thed itself,
forgetting all of the vertical ordering of nodes (except fdhe partial ordering based on
distance from the root.) We de ne to be the function that takes a tree and gives the
corolla with the same number of leaves.

Note that and are immediately both functions on forests, simply by applyig
them to each tree in turn. Also note that and are described in[[15], but that there

yields a left comb rather than a corolla.

Now we de ne larger sets of trees that generalize the binarynes. First we drop the
word binary; we will consider plane rooted trees with nodesiat have any degree larger
than two. Then, from the non-binary vertically ordered tres we further generalize by
allowing more than one node to reside at a given level. Insg&f corresponding to a
permutation, or total ordering, these trees will correspah to an ordered patrtition, or
weak ordering, of their nodes.

De nition 2.3. A weakly ordered treeis a plane rooted tree with a weak ordering of
its nodes that respects the partial order of proximity to theoot.

Recall that this means all sets of nodes are comparable bubme are considered as
tied when compared, forming a block in an ordered partitionfahe nodes. The linear
ordering of the blocks of the partition respects the partiabrder of nodes given by paths
to the root.

For a weakly ordered tree withn + 1 leaves the ordered partition of the nodes deter-
mines an ordered partition ofS = f1;:::;ng, as described in[27]. Here we s&eas the
set of gaps between leaves. (Recall that a gap between twoamnt leaves corresponds
to the node where a raindrop would eventually come to res§ is partitioned into the
subsets of gaps that all correspond to nodes at a given leyelVeakly ordered trees are
drawn using nodes with degree greater than two, and using nbx@rs and dotted lines
to show levels.

NN | NN

t /

ASIRTAY,

Figure 1. Following the arrows: a (vertically) ordered forest, a forgt of
ordered trees, a forest of binary trees, and a forest of cdes.
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The ordered partition corresponding to the above pictures{f 2; 5g; f 1g; f 3; 4g): Note
that an ordered tree is a (special) weakly ordered tree.

As well as forests of weakly ordered trees we also consideiakg ordered forests.
This gives us three more sorts of forests to consider, shownHigure[2. As indicated in
that gure, the maps ; and are easily extended to forests of the non-binary and/or
weakly ordered trees: forgets the weak ordering of the forest to create a forest of
weakly ordered trees, forgets the weak ordering, and forgets the partial order to
create corollas.

N P

””””””””””” | — A

t -

\AVIRAYS

Figure 2. Following the arrows: a (vertically) weakly ordered foresta
forest of weakly ordered trees, a forest of plane rooted teeand a forest
of corollas. Note that the forests in Figuré]l are special @ of these.

The trees we focus on in this paper generalize those introditin [15]. They are con-
structed by grafting together combinations of ordered trex binary trees, and corollas.
Visually, this is accomplished by attaching the roots of onef the above forestsv to
the leaves of one of the above types of tre@s but remembering the originalsw and
v. The result is denotedw=v: We use two colors, which we refer to as painted and
unpainted. The forest is described as unpainted, and thedse tree (which the forest is
grafted to) is painted. At a graft the leaf is identi ed with t he root, and in the diagram
that point is no longer considered a node, but is rather drawas a change in color (and
thickness, for easy recognition) of the resulting edge. (Mothat in some papers such
as [12] our mid-edge change in color is described instead aseav node of degree two.)
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With regard to the partial ordering of nodes by proximity to the root (with the closest
to the root being least), we can describe a painted tree as hiag a distinguished order
ideal of painted nodes.

We refer to the result as a(partly) painted tree, regardless of the types of upper
(unpainted) and lower (painted) portions. Notice that in a @inted tree the original
trees (before the graft) are still easily observed since thmloring creates a boundary,
called the paint-line halfway up the edges where the graft was performed. Thus the
paint line separates the painted tree into a single tree of ercolor and a forest of trees
of another color. In Figure[B we show all 12 ways to graft one ofir types of partially
ordered forest with one of our types of tree.

Denition 2.4. The maps ; and are now extended to the painted trees, just by
applying them to the unpainted forest and/or to the paintedde beneath. We indicate
this by writing a fraction: fa for two of our three maps, or the identity map, as seen in

Figure 3. That is, % indicates applyingf to the forest andg to the painted base tree,
for f;g 2f ; ;; 1g.

2.3. General painted trees. Now our de nition of painted trees is expanded to in-
clude any of our types of forest grafted to any of our types ofde. On top of that we
will also permit a further broadening of the allowed structue of our painted trees. The
paint-line, where the graft occurs, is allowed to coincideith nodes, where branching
occurs. We call it ahalf-painted node In terms of the grafting of a forest onto a tree
our description depends on the type of forest. If the foress iweakly ordered, or is a
forest of weakly ordered trees, then we see each half-pathteode as grafting on a single
tree at its least node, after removing its trunk and root. If he forest is only partially
ordered (i.e. of binary trees or corollas) then we see the halainted nodes as (possibly)
several roots of several trees simultaneously grafted to aen leaf. See the examples
in Figures[4 and’b.

For these general painted trees we can again extend the ft@nal maps using ;
and : We reiterate from above how the half-painted nodes are intereted, since that
determines the input for the numerator map. Specically- operates by taking as
input for  the weakly ordered forest of trees, one tree for each halfiped node. That
is, g treats the half-painted nodes as being the location of a silegtree that is grafted
on without a trunk. This description is the same for-: In contrast however, the map;
takes as input the forest found by listing all the unpainted tees while assuming each has
a visible trunk, some of which are simultaneously grafted @he same half-painted node.
Examples of these maps are shown in Figuré 4, where we show &@egal painted trees
that consist of one of the four general types of forest and ooé the three general types
of trees. Figurelb is a detail from Figur€l4 showing how the aehs of the projections
di er.
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Figure 3. Varieties of grafted, painted trees. Each diagonal shares a
type of tree on the bottom (painted) or a type of forest graftd on, as
indicated by the labels. These trees correspond to vertexblals of the
10-dimensional polytopes in sequences whose 3-dimendimeasions are
shown in Example_4.P. The forgetful maps are shown with exanepinput
and output. Parallel arrows all denote the same map, excepf course
that the identity is context dependent.
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C = weakly
ordered forests

C = forests of weakly
ordered trees

N N

d
C = forests of
(planar rooted) trees
= (planar rooted) trees

/

C =forests of corollas

D = corollas

Figure 4. More varieties of grafted, painted treesC=D. For those
proven to be polytopes in Sectionl4, these correspond to faedels of
the 10-dimensional polytope sequences whose 3-dimensiaegssions are
shown in Example[4.R. Parallel arrows all denote the same mapote
that the trees in Figure[3 are special cases vertex trees, ominimal in
the face lattice of the types illustrated in this gure.
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Figure 5. Action of the projections, detail from Figure[4. At rst there
is a single (weakly) ordered tree attached at the half-paietl node; at last
there are two (corolla) trees attached at the same node. In éhcenter,
where the unpainted portion is one or two binary trees, we casee it as

either without any contradiction.
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3. Hopf Algebras

Let K denote a eld. For any setX, we denote byK[X ] the K-vector space spanned
by X. As in [15] we work over a xed eld of characteristic zero, ad our vector spaces
will be constructed by using the sets of trees as graded bases

Recall from [15] the concept of splitting a tree, given a muklet of its leaves. Here,
modi ed from an example in [13], is a 4-fold splitting into anordered list of 5 trees:

Vo Voo
WL}&;/: C AR

Also recall the process of grafting an ordered forest to thedves of a tree:

(V,,V,Y,Y)/W%}XW

In [15] there are de ned coproducts on nine of the families giainted trees shown in
Figure [3 (the ones with labels denoting their membership in eomposition of coalge-
bras). Eight of these, all but the composition of coalgebra&& Sym S Sym, are shown to
possess various Hopf algebraic structures in[15]. Now wewshwhich of those structures
can be extended to our generalized painted trees in Figure 4.

The Hopf algebras we are interested in rst are the algebra @brollas, calledCSym
and shown to be identical to the divided power Hopf algebra if15]; second the algebra
of rooted planar binary treesY Sym which is known as the Loday-Ronco Hopf algebra,
and nally the algebra of rooted planar treesY ym: The latter is the Hopf algebra of
faces of the associahedra as described(in [7], and in termg@dph tubings in [17].

The coproducts and products are all de ned in[15] using subspts: the element of
the vector space id-,, wherew is a tree of the given type. The coproduct is de ned by
splitting:

X
( FW) = I:Wo FWl

w¥ (wo;w1)

where the sum is over all ways to split the treev at one leaf; so has terms.
Multiplication on the left is de ned by splitting the left op erand and grafting to the
right operand:

where the sum is over all ways to split the tregv at a multiset of n 1 leaves (where
n is the number of leaves o¥:)

We will often eliminate the subscript notation and simply daw the basis element.
For example, here is the coproduct ity Sym:
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OV = 1Y sy e

Here is how to multiply two trees inY Sym:

N YV

For more examples seé [15].

Given any of the 12 types of painted tree from Figurel 4, we getggaded vector space
where trees withn leaves comprise the basis of degree 1. The basis of degree O is
the single-leaved painted tree this is the same for each ofi¢ 12 cases. The degree 1
basis is also identical for all 12 cases: the three paintede@s with 2 leaves. The 12
cases di er when it comes to the degree 2 bases, as seen in f@glt Note that while
most of the trees in Figuré B can be seen as coming from a compas of coalgebras, as
labeled, the general trees in Figurel 4 cannot since the unpted forests can be grafted
in multiple ways. However, they can often still possess a amgluct, given by splitting
the trees leaf to root. Splitting a tree of a given type alwayproduces two trees of that
same type. The weakly ordered trees and weakly ordered fdsesan be split into two
weakly ordered trees or forests. In fact we have the follovgn

Theorem 3.1. The action of splitting trees leaf to root makes each of thestr types in
Figure [4 into the basis of a graded coassociative coalgebra.

Proof. The coproduct of a basis element is the sum of pairs of trees ialn are formed
by splitting at each leaf. Note that the degrees of the pairsaeh sum ton 1. Coas-
sociativity is seen by comparing both orders of applying theoproduct to the result of
choosing any two leaves at which to split at the same time:

X
( DICRD=@ (O Fu))= Fwo Fwi  Fu!

wf (woiwiiwz)

The compositions of coalgebras labeled in Figufé 3 are sublgebras of the cor-
responding generalizations in Figurél4. We will denote theslarger coalgebras by

E = t=D whereC and D are the corresponding sets of trees. For example here is
a coproduct in t=D: in this picture the painted trees could be any of our twelve v&

oYY Y Y Y

Next we point out the actions of certain Hopf algebras on many of our coalgebras of
generalized painted trees.
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3.1. Hopf algebra modules. Using the same operations of splitting and grafting, we
can often show that the Hopf algebra® = Y Sym; and D = CSym possess actions on
painted trees which make our coalgebras of the latter intD-modules.

Theorem 3.2. For eachE = €=D with C being the planar trees or corollas, the coal-
gebraE with basisC=D is respectively aD = Y Sym-module coalgebra oD = CSym-
module coalgebra.

Proof. We show thatE is an associative left module, and that the action dD (denoted

?) commutes with the coproducts as follows: ¢(d?6€ = p(d)? g(e): We consider
the action on basis elements. The action of a planar trek2 Y Sym (or corolla in CSym

respectively) on a painted treee involves splitting d and grafting the resulting forest
onto the leaves ofe. In the case ofC being corollas, the result of the grafting is then
subjected to the application of = 1. Note that this application of is equivalent to the

composition in the operad of corollas, as pointed out in [1L5For example, whereC is

the set of corollas:

AR

Note in the above example that six terms result from choosingny two splits of the
three leaves in the corolla. After applying; there are duplicates as enumerated by the
coe cients.

The associativity of the action is then straightforward to sow on basis elements:
given three layers of trees (the bottom layer is the paintedrée) the result does not
depend upon the order in which one makes the grafts.

The commutativity property is also straightforward on bass elements. Recall that
the coproduct is applied linearly to each term in a sum, on thkeft side of the equation:

e(d?6. Also recall that the action of a tensor product on a tensor mrduct is performed
componentwise:(x y)?(z w)=(x?z) (y?w) on the right side. Thus each term on
the left-hand side is a pair of painted trees, formed by sptihg after grafting a splitting
of d onto e. That pair is found on the right-hand side: all the splits argust performed
before the grafting occurs. See the following example, wkewe pick out the matching
terms.

N A YY) ey

Theorem 3.3. For eachE = €=D for D being the planar trees or corollas, an@ being
either corollas, planar trees, or weakly ordered trees, tlepalgebrakE with basisC=D is
respectively aD = Y Sym-module coalgebra oD = CSym-module coalgebra.
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Proof. The same features need to be checked as in the proof of the poes theorem,
which is straightforward. Now however the action of the Hopélgebra is on the right,
so the producte ? dinvolves splitting e 2 E and then graftingtod 2 D :

The fact that one sided Hopf algebras exist for the generadid painted trees follows
from the use of the maps; ; and de ned on trees and forests. We recall the de nition
of the sort of map we need from [15]. We IdD be one of our connected graded Hopf
algebras with productv w:

De nition 3.4. A mapf :E!D of connected graded coalgebras iscannection on
D if Eis a left (right) D-module coalgebra and is both a coalgebra map and a module
map:

(f f) e(e= pf(e)andf(d?e=d f(e):

We have examples of connectiorfsusing the maps and . If the target is corollas,
we apply rst andthen to a painted treew. Then we forget the painting and apply
once more. The result is just a corolla with the same number tfaves asw: If the
target is planar trees we apply only, and then forget the painting. The result is a
planar tree with the same branching structure asv: These example connections are
seen to be coalgebra and module maps by inspecting their action basis elements: the

result is the same iff is applied before or after splitting and grafting.
Here is an example connection from planar trees over weaklgdered trees to planar

trees:
4 4
f
—_—>
1\2
1

Here is an example connection from corollas over weakly oreé trees to corollas:

W

Here is an example connection from corollas over planar tee® planar trees:

4

Theorem 3.5. Consider the coalgebrag with graded bases the painted treegS=D
with C (top) consisting of forests of planar trees or forests of collas; and those with
D being planar trees or corollas (bottom) and with forests ofgmar trees, corollas or
weakly ordered trees on top. Each of these eight coalgebnesane-sided Hopf algebras
(they possess a one-sided unit and one-sided antipode.)
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Proof. We rely on Theorem 4.1 of [15], which states that when there & connection
f :E!D thenEis a Hopfmodule and a comodule algebra over, and also a one-sided

Hopf algebra in its own right. For those coalgebrab:D with planar trees or corollas on
top (as C), the connectionf is the map to C; the planar trees or corollas respectively.
Note that in this case the product : E E ! E will be on the left: fore;&2 E we
have, from the proof of Theorem 4.1 of [15], thae €°= f () ? &

For those coalgebraii:D with planar trees or corollas on bottom (ad), the con-
nectionf is the map to D; the planar trees or corollas respectively. Note that in this
case the product : E E ! E will be on the right: for e;& 2 E we have, from the
proof of Theorem 4.1 of [15], thae €°= e ?f(&9):

We note that the one-sided unit = (1) for either left or right products is the
painted corolla with one leaf. The counit is a projection fromE onto the base eld:
its value is the coe cient of the painted corolla with one led

Notice that some of our structures (the four painted trees tht use no ordered trees)
are Hopf algebras in two di erent ways. One has a left-sidednit and the other has a
right-sided unit. Here is an example of the product in the Hdpalgebra with left-side

unit on the coalgebrab:C for C the binary trees:

YV NN N

Here is an example of the product in the Hopf algebra with rigkside unit on the
coalgebrat=C for C the binary trees:

YVYNYNY- VY'Y Y

Finally, we exhibit some antipodesS : t=D! C€=D. These are guaranteed to exist
in connected graded bialgebras. For example, for left myiiication, the left antipode
may be calculated with the recursive formula developed in%}, section 4:

X
S()= :S(e= e S(e1) &

where the sum is over all splittings ofe into two painted trees e; and e, both with
more than a single leaf.

Here are some examples, where the antipodes of larger treas be found recursively
using antipodes of their splittings:

$Y)=Y
Y ) =Y )| Y
Y)r=sY)Y Y ¥ ¥ Y
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4. Polytopes

4.1. Partial ordering of nodes and gaps. Each of our 12 types of painted tree
comes with a canonicapainted vertical partial ordering (or weak ordering) of its nodes,
produced by concatenating the various root proximity ordey that existed before the
graft. Each painted vertical partial ordering is a re nemen of the partial ordering
given by proximity to the root of the newly minted painted tree, and also preserves
the relations that existed before the graft. The painted noels form an order ideal. We
observe the rules that 1) all half-painted nodes must be faed to remain at the same
level, that is, incomparable to each other (or tied in a weakrder); and 2) that nodes
below the paint line will never surpass half painted nodes,nd neither of the former
will surpass unpainted nodes in the partial order. Furtherrare, this ordering of nodes
implies an ordering of the gaps between leaves of the tree. n8gaps share a node.
Two gaps that share a node are considered to be incomparabiethe partial order (or
tied in a weak order).

Now we can de ne 12 separate posets whose elements are tre@se poset on each
of our 12 types of painted trees shown in Figure 4. Note that hsimplest painted tree
with n leaves has one half-painted noden single leafed unpainted trees all grafted to
a painted trunk, the node coinciding with the paint line. This half-painted corollacan
be interpreted as one of any of the 12 painted tree varietieand it will be the unique
maximal element in all 12 posets.

De nition 4.1.  Given two painted treess andt that are of the same painted type (i.e.
they share the same types of tree and forest, below and aboe tpaint line) we de ne
the painted growth preorderwhere :

s t

if s=t orif sis formed fromt using a series of pair¢a; b); of the following two moves,
each pair performed in the following order:

a) growing internal edges oft : introducing new internal edges or increasing the
length of some internal edges (either painted or unpainted)This is precisely
described as a possible re nement of the vertical partial (oweak) order of
gaps between leaves, by adding relations to the partial ondeetween previously
incomparable (or equal) elements.

b) ...followed by throwing away, or forgetting, any supemous structure intro-
duced by the edge growing. This is described precisely by tag the tree that
results from growing edges, and applying to it the forgetfunap (from the set
of ; ;; 1and their fractions and compositions) that is needed to ensel that
the result is in the original type of the painted treet.

For example if the original type oft had weakly ordered forests grafted to
weakly ordered trees, we only apply the identity. However if originally was a
forest of weakly ordered trees grafted to a weakly orderedee we should apply
I
Unpacking the de nition a bit: relations may not be deleted ly the growth (nor ties
formed in a weak order), but if the growing of painted edges ours at a collection of
half-painted nodes int then the partial order may be preserved rather than strictly
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re ned. Note that internal edges can grow where there was naoternal edge before,
such as at a half-painted node or any node that had degree larghan three. Note also
that the rules for painted trees must be obeyed by the growingrocess for instance an
unpainted edge cannot grow from a completely painted noden@ vice versa), and if
some painted edges are grown from a half-painted node thehtak edges possible must
be formed, to allow the paint line to be drawn horizontally.

For examples of (non-covering) relations in the 12 posetsesthe trees in respective
locations of gure 3 and Figure 4: the latter are all greaterttan the former in the same

positions. Several more covering relations for some of ol édlasses of general painted
trees are shown next:
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8 9 10 1 4 6

‘/ Y/ 5 \/8 9‘1/10
- ﬂ/ )

@)

1 2 5 6 7 8 9 23 6 7 8 2 34 5 6 7 8 10

'\corollas \\w/ W

Some covering relations. In the rst (a) we are looking at wddy ordered forests grafted
to a weakly ordered trees, so growing an edge is a coveringateln. In the next rela-

tion (b) we are looking at rooted trees above and below the dgtaagain no forgetting is

needed. Relation (c) is in the stellohedron. At the bottom foboth covering relations
the forgetful map is : Relation (e) is in the stellohedron, although it is also truen the

cube.

/

forests of corollas
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In what follows we argue that most of the posets just descrideare realized by
inclusion of faces in a convex polytope.

4.2. Bijections. The painted growth relation is re exive and transitive by castruc-
tion, for all 12 types. We conjecture also that in all 12 of ca&s the the painted growth
preorder is in fact a poset, and moreover we conjecture thall she posets thus de ned
are realized as the face posets of sequences of convex ppBdo Four of the cases
have been proven in previous work. These four appear as thgllighted diamond in
Example 4.2. The polytope sequences are the cubes, assaiah, composihedra and
multiplihedra. The latter three are shown (with pictures ofpainted trees) in [12]; the
fact that the cubes result from forgetting all the branchingstructure is equivalent to
the fact that cubes arise when both of two product spaces aressociative, as pointed
out in [5], also (with design tubings) in [10].
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Example 4.2.

The 3-dimensional polytopes which represent the paintedees in our 12 sequences.
The four in the shaded diamond are the cub€, associahedrorK; multiplihedron J
and composihedronCK: The other two shaded polytopes are the pterahedroKF;.,
(fan graph associahedron) and the stellahedroikSt: The topmost is the permutohe-
dron. The furthest to the left is again the stellohedron. Theother four, unlabeled,
are conjectured to be polytopes (clearly they are in three mliensions the conjecture is
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about all dimensions.) Each of these corresponds to the tyétree shown in Figure 3,
in the corresponding position.

1
W Ny

R
v

DN
v

KSt ,,,=IK = Z:; K Fin i
Nk ) Ny wKSt, =IK
(DO

K 2 ¥
C

Figure 6. These are the 2-dimensional terms in the same sequences asigure 4.2.

In this section four more sequences of our sets of painteddsg with their relations,
will be shown to be isomorphic as posets to face lattices ofnvex polytopes. Two of
these are the species whose structure types are: a forestarllas grafted to a weakly
ordered tree (stellohedra) or a weakly ordered forest grafi to a corolla (stellohedra
again). A third is the species whose structure type is the wkly ordered forest grafted
to a weakly ordered tree (permutohedra). Finally the specsewhose structure type is a
forest of plane rooted trees grafted to a weakly ordered tr¢pterahedra). There remain
four cases in Figure 4.2 that we leave as a conjecture. (Thda#ter four are the ones
which do not have a label naming them under their picture).

Some of our proofs and corollaries will use the concept of fngs, which we review
next.
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Figure 7. These are the 2-dimensional terms with their faces labeled.
The same labels are used no matter where the shape occurs inrg 6.

4.3. Tubes, tubings and marked tubings. The de nitions and examples in this
section are largely taken from [17] and [9]. They are based tre original de nitions
in [6], with only the slight change of allowing a universal the, as in [8].

De nition 4.3. Let G be a nite connected simple graph. Atube is a set of nodes
of G whose induced graph is a connected subgraph Gf For a given tubet and a

graph G, let G(t) denote the induced subgraph on the grap. We will often refer to

the induced graph itself as the tube. Two tubesl and v may interact on the graph as
follows:

(1) Tubes arenestedif u v.

(2) Tubes arefar apart if u[ v is not a tube in G; that is, the induced subgraph of
the union is not connected, (equivalently none of the node$ o are adjacent to
a node ofv).

Tubes arecompatibleif they are either nested or far apart. We calG itself the universal
tube A tubing U of G is a set of tubes ofG such that every pair of tubes inU is
compatible; moreover, we force every tubing d& to contain (by default) its universal
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Remark 4.4.

For connected graphs our de nition here is equivalent to thiain [24]. In [6] and [9]
the universal tube is not considered a tube, nor included irubings. This however leads
to a poset of tubings which is isomorphic to the one in this pag.

When G is a disconnected graph with connected componeng,, ..., Gy, there are
alternate de nitions in the literature. In [25] and [24], aswell as in [3], the connected
components are all tubes and must all be included in every tuilg. We will refer to
this as abuilding set tubingsince it contains all maximal elements.

Alternatively, in [6], [8] and [16], as well as in [15], the atitional condition for
disconnected graphs is as follows: Uf is the tube of G whose induced graph i§;, then

tube is still included in all tubings despite being itself diconnected.
Parts (a)-(c) of Figure 8 from [8] show examples of allowabtabings, whereas (d)-(f)
depict the forbidden ones.

A e $ A
o—o-) o) (0) (o0—o O)—o0-- 0) (©) (0) (o

—%% 5 d\: d—>

(a) (b) (¢) (d) (e) (0

Figure 8. (a)-(c) Allowable tubings and (d)-(f) forbidden tubings, gure
from [8].

Let Tub(G) denote the set of tubings on a graplé: As shown in [6, Section 3], for
a graph G with n nodes, thegraph associahedrorKG is a simple, convex polytope of
dimensionn 1 whose face poset is isomorphic to Ti{&), partially ordered by the
relationshipU  U°%if U° U:

The vertices of the graph associahedron are thetubings of G: Faces of dimension
k are indexed by(n k)-tubings of G: In fact, the barycentric subdivision ofKG is
precisely the geometric realization of the described poset tubings.

To describe the face structure of the graph associahedra weed a de nition from
[6, Section 2].

De nition 4.5.  For graph G and a collection of nodes, construct a new graphG (t)
called thereconnected complementIf V is the set of nodes o5, thenV t is the
set of nodes ofG (t). There is an edge between nodesand bin G (t) if fa;kg [ t%is
connected inG for somet® t.

Figure 9 illustrates some examples of graphs along with theeconnected complements.

Theorem 4.6. [6, Theorem 2.9]Let V be a facet ofKG; that is, a face of dimension
n 2 of KG, whereG hasn nodes.V corresponds tat, a single, non-universal, tube of
G . The face poset ol is isomorphic toKG(t) K G (t).
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ooe=oo [l SR <
5
— <] = <O <P
Figure 9. Examples of tubes and their reconnected complements. Fig-
ure from [17].

We will consider a related operation on graphs. Theuspensionof G is the graph
S G whose set of nodes is obtained by adding a no@do the set Nod G), of nodes of
G, and whose edges are de ned as all the edges®fogether with the edged 0; vg for
v 2 Nod(G):

The reconnected complement dfOg in S G is the complete graphK, for any graph
G with n nodes. Note that the star graphSt, is the suspension of the grapit, with
hasn nodes and no edge, while the fan graph,., is the suspension of the path graph
on n nodes.

It turns out that this construction of the graph multiplihedra is a special case of
a more general construction on certain polytopes called ttgeneralized permutahedra
as de ned by Postnikov in [25]. Thelifting of a generalized permutahedron, and a
nestohedron in particular, is a way to get a new generalizedepnutahedron of one
greater dimension from a given example, using a factor gf2 [0; 1] to produce new
vertices from some of the old ones [3]. This procedure wastiseen in the proof that
Stashe 's multiplihedra complexes are actually realizedsaconvex polytopes [12].

Soon afterwards the lifting procedure was applied to the gpa associahedra well-
known examples of nestohedra rst described by Carr and Dedass. We completed an
initial study of the resulting polytopes, dubbedgraph multiplihedrg published as [8].

This application raised the question of a general de nitiorof lifting using q: At the
time it was also unknown whether the results of lifting, thenust the multiplihedra and
the graph-multiplihedra, were themselves generalized peutahedra. These questions
were both answered in the recent paper of Ardila and Doker [3They de ned nesto-
multiplihedra and showed that they were generalized permahedra of one dimension
higher in each case.

We refer the reader to Ardila and Doker [3] for the general daitions. Here we need
only the following de nitions, from [8]. Combinatorially, lifting of a graph associahedron
occurs when the notion of a tube is extended to include marlgs.

De nition 4.7. A marked tubeof a graph G is a tube with one of three possible
markings:

(1) a thin tube (O given by a solid line,

(2) athick tube () given by a double line, and

(3) a brokentube :  given by fragmented pieces.
Marked tubesu and v are compatibleif

(1) they form a tubing and
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(2) if u v wherev is not thick, then u must be thin.
A marked tubingof G is a tubing of pairwise compatible marked tubes d&.

A partial order is now given on marked tubings of a grapl. This poset structure
is then used to construct thegraph multiplihedron below.

De nition 4.8. The collection of marked tubings on a graphG can be given the
structure of a poset. For two marked tubingsU and U° we have U Ulif U is
obtained from U° by a combination of the following four moves. Figure 10 proges the
appropriate illustrations, with the top row depicting U° and the bottom row U.

(1) Resolving markings A broken tube becomes either a thin tube (10a) or a thick

tube (10b).

(2) Adding thin tubes A thin tube is added inside either a thin tube (10c) or broken
tube (10d).

(3) Adding thick tubes A thick tube is added inside a thick tube (10e).

(4) Adding broken tubes A collection of compatible broken tubed uy;:::;u,g is

added simultaneously inside a broken tube only whenu; b v and v becomes
a thick tube; two examples are given in (10f) and (10g9).

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
"""""""""""""""

0 Ol
||||||||||||||||||||||||||||||||||||

||||||||||||||||||
|||||||||||||

(a) (b) (c) (d) (e) () (9)

Figure 10. The top row are the tubings and bottom row their re ne-
ments. Figure based on original in [8].

Here is the key idea from [8]: for a grapls with n nodes, thegraph multiplihedron
J G is a convex polytope of dimensiom whose face poset is isomorphic to the set of
marked tubings of G with the poset structure given above.

There are two important quotient polytopes mentioned in [8]J G4 and J G, for a
given graphG: The former is called thegraph composihedronlts faces correspond to
marked tubings, but for which no thin tubes are allowed to beniside another thin tube.
In terms of equivalence of tubings, the face poset dfGq is isomorphic to the poset
J G modulo the equivalence relation on marked tubings generatdy identifying any
two tubings U  V such thatU V in J G precisely by the addition of a thin tube
inside another thin tube, as in Figure 10(c). Thus an equivahce class of tubings can
be represented by its maximum member: a tubing with no thin thes inside any other
thin tube. The graph composihedron is de ned via geometricealization in [8]. The
relations in Figure 10 still hold, but some of them appear derently, and one (c) is no
longer present in Figure 11.

The polytope J G, has faces which correspond to marked tubings, but for whicton
thick tubes are allowed to be inside another thick tube. In tens of equivalence of
tubings, the face poset ofl G, is isomorphic to the poset] G modulo the equivalence
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Figure 11. The top row are the tubings and bottom row their re ne-
ments, in the graph composihedron. These are altered venrsso(shown
up to equivalence) of the relations in Figure 10. In fact (c)sithe re ective
relation.

relation on marked tubings generated by identifying any twdubings UV such that
U V in J G precisely by the addition of a thick tube, as in Figure 10(eJThus an
equivalence class of tubings can be represented by its masimmember: a tubing with
no thin tubes inside any other thin tube. J G, is de ned via geometric realization in
[8]. For connected graphss, the polytope J G; is combinatorially equivalent to the
graph cubeahedrornCG; as de ned in [10].

The graph cubeahedrorCK ,, is described in [10] as comprising theesign-tubingson
the complete graph. In Figure 21 we show the correspondenaaeen labels of vertices:
range-equivalence classes of marked tubings and designimgis. The isomorphism
claimed in [10] is easily described: design tubes (squard#és) correspond to the nodes
not inside any thin or broken tube; while round tubes in the deign tubing correspond
to thin tubes. Broken tubes contain any nodes not in any tubefdhe design tubing.

For this reason we refer to the entire class of polytopelsG, as the (general) graph
cubeahedra.ln fact the description of CG using design tubings which is given in [10] is
not di cult to extend to graphs with multiple components: we only need to introduce
the universal (round) tube. For example, the graph cubeahean for the edgeless graph
is the hypercube with a single truncated vertex.

The four well-known examples of polytopes from Figure 4.2 mebe seen as tubing
posets, as pointed out in [8]. The multiplihedral = J P have face posets equivalent
to the marked tubes on path graphs?. The composihedra are the domain quotients
of these:J Py; and the associahedra are the range quotients of theskP,: The cubes
show up as the result of taking both quotients simultaneougl

Figure 12. The permutation = (2431) 2 S, pictured as an ordered
tree and as a tubing of the complete graph; An unordered binartree,
and its corresponding tubing. Figure from [17].
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Figure 13. The ordered patrtition (f 1; 2; 4g; f 3g) pictured as a leveled
tree and as a tubing of the complete graph; the underlying teg and its
corresponding tubing. Figure from [17].

4.4. Permutohedra. First we prove that the poset of painted trees made by graftim
a weakly ordered forest to a weakly ordered base tree is theedéaposet of a polytope.
It turns out that for painted trees with n leaves this polytope is the permutohedron
Pn: It is well known (see [18]) that the permutohedron has faceadexed by the weak
orders, which in turn may be represented by weakly ordereddes. The face poset is
the partial ordering of these trees by re nements.

Theorem 4.9. There is an isomorphism' from the poset of(n + 1)-leaved weakly
ordered trees to the painted growth preorder ofleaved weakly ordered forests grafted to
weakly ordered trees.

Proof. The isomorphism and its inverse are described as switchingtiveen the paint
line and an extra branch. Given a weakly ordered treg, we nd ' (t) by adding a
paint line at the level of left-most node oft, and then deleting the left-most branch of
t. Finally the remaining nodes are ordered, above and belowetpaint line, according
to their original vertical order in t: The inverse is straightforward. Here is a picture of

the process:
Il/

Next we argue that the isomorphism just described respecthd poset structures. If
a bfor two weakly ordered trees, we have that the weak ordering the nodes ofa is
a re nement of the weak ordering forb: We can visualize this re nement as the growing
of some internal edges o& to break ties between nodes that were at the same level.
If the re nement involves breaking a tie that does not inclué the left-most node (see
level 2 in the above picture), then the same growing productdse same relation between
the painted tree images (a) and ' (b): If the growing does break a tie involving the
left-most node (see level 4 in the above picture), then the mge ofb may di er from
that of a only in that the set of nodes of (a) which coincide with the paint line will
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be a subset of those in (b). This can be seen as growing edges at some half-painted
nodes. Here is an example of the latter case, with trees reddtto those in the above
pictured example:

This theorem immediately implies that the poset oh-leaved weakly ordered forests
grafted to weakly ordered trees is isomorphic to the face peisof the n-dimensional
permutohedron. That is because the poset ¢h + 1) -leaved weakly ordered trees is well
known to represent the face poset of the permutohedron (vi@aing each tree as a weak
order of [n], that is, an ordered partition.)

A corollary, from [8], is that the poset ofn-leaved weakly ordered forests grafted
to weakly ordered trees is isomorphic to the face poset of thedimensional graph
multiplihedron of the complete graph.

4.5. Stellohedra. Now we prove that the poset of painted trees made by grafting a
forest of corollas to a weakly ordered base tree is the facespbof a polytope. It turns
out that for painted trees with n + 1 leaves this polytope is the graph-associahedron
KG whereG is the star graph St,:

Recall that the star graph St is de ned as follows: we use the sét0; 1;2;:::;ng as

Theorem 4.10. The poset of tubings on the star grap8t, is isomorphic to the poset
of n-leaved forests of corollas grafted to weakly ordered trees

Proof. We rst note that any tubing T of the star graph includes a unique smallest
tube ty which contains node 0. All other tubes oT are either contained inty or contain
to; since the node O is adjacent to all other nodes. The tubes caimted in ty form a
tubing of an edgeless graph. The tubes containirtg form a tubing on the reconnected
complement ofty, which is the complete graph on the nodes not ity: Here the key idea
is that the tube tg is analogous to the half-painted nodes. See Figure 14.

Now we use two facts shown in [6]: that the permutohedron is minatorially equiv-
alent to the graph-associahedron of the complete graph, atitat the simplex is combi-
natorially equivalent to the graph-associahedron of the ggless graph, which in turn is
equivalent to the Boolean lattice of subsets of its nodes. Ball that the permutohedron
is also indexed by the weakly ordered trees, leading to an msorphism between tubings
and trees as seen in Figures 12 and 13.

Thus the bijection we want takes a tubingT on the star graphS = S,, to a painted
tree. This bijection is constructed from the bijection from tubings on an edgeless
graph to subsets oh gaps between leaves (corresponding to nodes in a unpaintedeft
of corollas); together with the bijection from tubings on a complete graph withj
vertices to weakly ordered trees with + 1 leaves.
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The construction of proceeds as follows. First the nodek :::; n of the star graph
correspond to the gaps (between leave$):::;n of the output tree. The tubing of the
subgraph inside ofto maps via to a subset of[n]; and that subset is precisely the
subset of the gaps which correspond to unpainted nodes (ofra@itas) in our output
tree. Second, nodes that are insidg but not inside any smaller tube determine the
gaps that coincide with the paint line, half-painted nodes o our output tree. Finally
the tubing outside ofty maps via to the painted weakly ordered tree. The inverse of

is the straightforward reversal of these steps. An example seen in Figure 14.

.1.2.34 5 6.7_8 9 10

V

1 2 3 4 5 6 10

W V
| l\ ))/
Figure 14. A tubing T on the star graph and its bijective image in

the corollas over weakly ordered trees. The three steps areown for
constructing (T):

Checking that this bijection preserves the ordering is stightforward. Covering re-
lations in the stellohedron are face inclusions, which eadworrespond to adding one
tube to a tubing. The addition of a singleton tube inside otf, corresponds under our
bijection to growing an unpainted edge at a half-painted ncal(and then applying :)

The addition of a tube just inside ofty that contains all the singleton tubes, so in
e ect creating a newtg, corresponds to growing some painted edges from half-padt
nodes.

The addition of a tube outside ofty corresponds to growing a painted edge at a
painted node. The three possibilities are illustrated herehe rst has a singleton tube
added (around vertex 9) compared with the original tubing inFigure 14.
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10

The isomorphism of vertices of the polytopes in 3d is showngporially in Figure 15.
Next we show that the stellohedra can also be seen as the domand range quotients
J G4 and J G, of the multiplihedron J G where G is the complete graph.

Theorem 4.11. The graph-composihedron for a complete grapty, is combinatorially
equivalent to the stellohedron for the star-grapBt,.; :

Proof. We can most easily see the isomorphism by using the stelloh@dust found in
Theorem 4.10, that is, by showing an isomorphism to painteddes.
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Figure 15. Two pictures of the stellohedron, via the bijection in Thecem 4.10.

We show a bijection °from the graph-composihedron of the complete graph to the

complete graph correspond to the gaps (between leavds) ::; n of the tree. Here the
key idea is that now a broken tubeg plays the same role as the half-painted nodes in the
corresponding tree, and a single thin tube the role of the uamted nodes. The steps in
the construction of the bijection °are analogous to those in the proof of Theorem 4.10,
as follows:

The bijection °takes as input a marked tubing on the complete graph with no ih
tubes inside another thin tube. It outputs a painted tree asdllows: if there is a single
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to nodes of unpainted corollas. Nodes that are inside a brakéube but not inside any
thin tube of the input correspond to the gaps of the output th&a correspond to half-
painted nodes. Any nodes outside of all the thin or broken tus in the input correspond
to nodes of the weakly ordered base tree in the output, and thimapping is via the
previously mentioned bijection between weak orders and tuigs on the complete graph.
Note that the reconnected complement of the largest thin orrbken tube is a complete
graph. The inverse of %is the straigtforward reversal of these steps. An example of
the bijection Cis seen in Figure 16.

We check that this bijection ° preserves the ordering. Note that the relations are
simpler than in general for marked tubes since the tubings mt all be completely
nested, and since thin tubes inside of thin tubes are ignorg@ia the equivalence).
Thus the relations in the Figure 11(c) and 11(g) need not be elked. The relations in
Figure 11(a) and (d) correspond to growing unpainted edgesofn half-painted nodes.
The relations in Figure 11(b) and (f) correspond to growing g@inted edges from half-
painted nodes. The relation in Figure 11(e) corresponds taaying a painted edge from
a painted node. Examples of the preservation of ordering vié re seen in Figure 17.
3d examples are seen in Figure 19. See Figure 22 for some igphio chains.

2 3 4 5 6 7 8

Figure 16. A marked tubing on the complete graph, representing an
element of the complete-graph-composihedron (no struceiis shown in-
side the thin tube) and its bijective image in the forest of cwllas over a
weakly ordered tree.

Moreover, we will show that the poset of painted trees made hyrafting a weakly
ordered forest to a base corolla is the face poset of a poly&oplt turns out that for
painted trees withn+1 leaves this polytope is again the graph-associahedrii where
G is the star graph St,:

First, however, we show a bijection from the range-quotiestof the complete graph
multiplihedron (the complete graph-cubeahedron) to the wakly ordered forests grafted
to corollas.
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Figure 17. The rst (upper) example of ©has source and target re-
lated to Figure 16 by a adding a tube as in Figure 11(d) and gramg an
unpainted edge from a half-painted node, and then forgettinstructure
in both pictures. The other two relations are from Figure 1) and (b)
(right to left).

Theorem 4.12. The poset ofn + 1-leaved weakly ordered forests grafted to corollas is
combinatorially equivalent to the graph-cubeahedron forcamplete graphK,:

Proof. This proof follows the pattern of the previous one, so we leanmost of it to the
reader. Note that any nodes outside of the brokety tube in the input correspond to
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the painted corolla base tree of the ouput. The tubing insida largest thin tube (which
contains a clique) in the input corresponds to the gaps (bewaen leaves) that end in
nodes of the unpainted weakly ordered forest of the output. ddles that are inside a
broken tube but not inside any thin tube determine the gaps tat coincide with the
paint line. An example of the bijection is seen in Figure 18.

The fact that this bijection preserves the ordering is seeru$t as in the proof of
Theorem 4.11. 3d examples are seen in Figure 20. See Figurda2Zome isomorphic
chains.

Figure 18. A marked tubing on the complete graph, representing an
element of the complete-graph-cubahedron (no structure shown outside
the broken tube) and its bijective image in the weakly ordeik forests
over corollas.

We now can nish with the following:

Theorem 4.13. The weakly ordered forests grafted to corollas are isomorpho the
stellohedra.

Proof. By Theorem 62 of [22], the graph-cubeahedron for a completeagh K, is com-
binatorially equivalent to the stellohedron for the star-gaph St,.,: Here is a brief
description of the poset isomorphism described in that papeif the star graph St,.;
has node 0 as its center, and the nodes of the complete grapk &r:: :; n, then a square
tube on the complete graph is mapped to itself, as a round tuband round tubes on the
complete graph are mapped to their complement plus the nodeod the star graph. We
demonstrate this isomorphism in Figure 22. Thus the theorems shown, by composition
with the isomorphism in our Theorem 4.12.

4.6. Pterahedra. The aim of this subsection is to prove that the poset of paintktrees
made by grafting a forest of plane rooted trees to a weakly cgted base tree is the face
poset of a polytope. It turns out that for painted trees withn + 1 leaves this polytope
is the graph-associahedroK F1., where the fan graphF,., is the suspension of the path
graph P,,.
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Figure 19. Another stellahedra bijection via Theorem 4.11: wheiK
is the complete graph then) K, (the complete graph composihedron) is
the stellohedron.

More precisely, the fan graptfF;., is de ned as follows: the set of nodes &y, is [n]o,

Theorem 4.14. The poset of tubings on the fan graphR;., is isomorphic to the poset
of n-leaved forests of plane trees grafted to weakly orderecete

Proof. Recall that any tubing T of the fan graph includes a unique smallest tubg,
which contains the nodeD. As the node0 is adjacent to all other nodes, the other tubes
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Figure 20. Another stellahedra bijection via Theorem 4.13: the compo-
sition of ordered forests with corollas, seen in bijectionith the complete
graph cubeahedron.

of T are either contained inty or contain to. The tubes contained inty form a tubing
of a graph which is a (possibly) disconnected set of line gtagm The tubes containing
to form a tubing on the reconnected complement df, which is the complete graph on
the nodes which do not belong td,.

There exists a canonical bijection between the poset of wdyakrdered trees withn+1
leaves and the poset TufK ) of tubings on the complete graph: pictured in Figures 12
and 13. The restriction of this map to the set of plane trees,i\es a bijection between
this poset and the poset TulfP,) of tubings on the path graph.
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Figure 21. Another stellahedra bijection: the complete graph cubeahe
dron indexed by design tubings.

Thus the bijection from the poset Tul{F.,) of tubings on the fan graph to our set
of painted trees is obtained from the bijection between TulK ,,) and the set of weakly
ordered trees, together with the bijections between the sdub(Py,) of tubings on the
path graph and the set of plane rooted trees witim + 1 leaves, form 1. The tubet,
plays the same role as the paint line in the corresponding e The nodesl;:::;n of
the fan graphF,., correspond to the gaps (between leave$):::; n of the plane rooted
tree. For any tubing T 2 Tub(F.,) tubing outside of to maps to the painted weakly
ordered tree, the tubings insidé, map to the unpainted trees, and nodes that are inside
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-------------

Cubeahedron J Knr

Corollas / Weak orders

v v
O/TKO<O/LO<«I\O<;I%
VAN

Stellahedron (tubings)

Cubeahedron (design tubings} K,

A

Composihedron J Ky

------------

Weak orders / Corollas

Figure 22. Here we bring together six isomorphic ags from the 3d
stellohedra shown above.

to but not inside any smaller tube determine the gaps that coinde with the paint line.
Examples are seen in Figure 23.

The fact that this bijection preserves the ordering followgasily from the de nitions.
Just note that adding a tube to a tubing of the fan graph corrgsonds to growing an
internal edge in the tree. Adding a tube far outside df, corresponds to growing an edge
in the painted base. Adding a tube containing node 0 just inde to (so that it becomes
the newtg) corresponds to growing painted edge(s) from a half-pairdenode. Adding
a tube just inside ty that does not contain node O corresponds to growing unpaimte
edge(s) from a half-painted node. Adding a tube further inde ofty (that does not
contain node 0) corresponds to growing an edge in the unpagat forest.

The isomorphism in 3d is shown pictorially in Figure 4.6.

4.7. Enumeration.  As well as uncovering the equivalence between the pterahadind
the fan-graph associahedra, we found some new counting fotas for the vertices and
facets of the pterahedra.
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1 2 4 5 6 7 8 9 )10

N

Figure 23. Example of the bijection in Theorem 4.14. The steps are
shown left to right.

First the vertices of the pterahedra, which are forests of bary trees grafted to an
ordered tree. If there arek nodes in the ordered, painted portion of a tree, then there
are:

k! ways to make the ordered portion of this tree withk nodes,

k + 1 leaves of the ordered portion of this tree, and

n k remaining nodes to be distributed among th& + 1 binary trees that will
go on the leveled/painted leaves.

Thus the number of vertices of the pterahedron, labeled by ées withn nodes, is:

P P
v(n)= [kl (" C)HI

k=0 ot:it =0
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Figure 24. Two pictures of the pterahedron, via the bijection from Thetem 4.14.

where C; is the jth Catalan number. As an example, the number of trees with = 4
is:

0! [C4]

+ 11 [C3Co + CoCy + C1Cy + CoCs

+2! [CoCoCp + C1C1Co + C1CoCy + CoCrCp + CoC1Cy + CoCoCy]
+ 3! [C1CoCoCo + CpC1CpCp + CpCuC1Co + CoCoCoCy]

+ 41 [CoCoCoCoCo]

=1(14) + 1(14) + 2(9) + 6(4) + 24(12)

=14+14+18+24+24

=04



POLYTOPES AND TREES 41

We have computed the cardinalities fon = 0 to 9 and they are shown in table 1.

Table 1. The numberv(n) vertices of the pterahedran =0 to 9

| n[ v(n)] n| v(n) |

0 5 464

1 2 6 2652

2 6 7| 17,562
3| 22 || 8| 133,934
41 94 || 91,162,504

There does not seem to be an entry for this sequence in the OEIS
Examination of the computations ofv(n) leads to an interesting discovery. If we strip
o the factorial factors in v(n) and build a triangle of just the sums ofC , products, it

appears we are building the Catalan triangle.

1

1 1

2 2 1

5 5 3 1

14 14 9 4 1

42 42 28 14 5 1

132 132 90 48 20 6 1

429 429 297 165 75 27 7 1

1430 1430 1001 572 275 110 35 8 1
4862 4862 3432 2002 1001 429 154 44 9 1

For example,
v(4) =94 =0!(14) + 1!1(14) + 21(9) + 3!(4) + 41(1)

leads to the values of then = 4 row in the triangle above. In fact, Zoque [28] states that
the entries of the Catalan triangle, often calledballot numbers count the number of
ordered forests withm binary trees and with total number of " internal vertices where
m and ~ are indices into the triangle. These forests describe exbcthe sets of binary
trees we are grafting onto the leaf edges of individual leeel trees, which are counted
by the sums ofC , products. Thus we know that the ballot numbers are equivalério
the sums ofC , products and can be used in the calculation of(n) for all values ofn.
The formula for the entries of the Catalan triangle leads to aimpler formula for

v(n), namely

_ (2n k)!(k+1)
v(n) = k!m,
k=0
Lastly, by considering the Catalan triangle as a matrix as iji4], we can say that the
sequence of cardinalitieg(n) for all n is the Catalan transform of the factorialgn 1)!.
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This means that the ordinary generating function fov(n) is:

N P—— «
(k 1) 1 1 &
k=1 2

Also, it will be helpful to have a formula for the number of faets for the fan graphs,
Fmn. RecallFy,., is de ned to be the graph join ofK ,, the edgeless graph om nodes,
and P,, the path graph onn nodes. Thus,F,., hasm+ n vertices, n of which comprise
a subgraph isomorphic to the path graph orm nodes, the othern vertices connected
to each of thesan. Thus, F,, hasm 1+ mn=m(n+1) 1 edges.

Now, counting tubes in this case is again a matter of countingubsets of vertices
whose induced subgraph is connected. The structure IBf,., makes it useful to letVy,
denote those vertices coming from the edgeless graphmhodes, and likewisé/, those
from the path graph onn nodes.

It is clear that some tubes are simply tubes of the path grapP,,, hence there are
at least @ 1 tubes. We must not forget thatV, is itself now a tube since it is a
proper subset of nodes df..,. These tubes include every subset &f, that is a valid
tube of F.p .

It is simple to see that the only subsets oY/, that are valid tubes are precisely the
singletons, since no pair of vertices iN,, are connected by an edge. ThuB,., has at
least " + m tubes.

The remaining possibility for tubes must include at least om node fromV,, as well
as at least one node fronV,. This produces all (possibly improper) tubes, since any
subset ofV = V,, [ V, satisfying this criterion is connected. It is straightforvard to see
that there are exactly (2™ 1)(2" 1) tubes arising in this fashion. Now, however, we
must subtract 1 from the above since we have allowed oursedvi® countV as a tube,
although it is not proper.

Hence we count

n(n+1)
2
as the number of tubes of,, and the number of facets of the corresponding graph
associahedron. For the pterahedra, whema = 1, the formula becomes:

n(n+1)
— 7 42"
2
Interestingly, this is the same number of facets as posseds$y the multiplihedron J (n),
as seen in [12], where we enumerate the facets by describihgit associated trees.
The number of vertices of the stellahedron is worked out in geral places, including
[14], where the formula is given:

+2" 12" 1)+m 1

1:

X q X
v(n) = k! = n'=k!;
k=0 K k=0
which is sequence A000522 in the OEIS [26]. This is the bina@htransform of the
factorials.

Now for the facets. We will use the following, possibly weknown
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Lemma 4.15. The bipartite graph associahedroKK ., has2™ "+(m+n) (2™+2")
facets.

To see this, we will count subsets of nodes which give valididas. We will over-count
and then correct. LetKy., = (V1 [ Vo, E) wherejVij = m and jV,j = n. Note that
the only subsetsS of nodes which do not give valid tubes ar& such thatS V; (or
V,) with jSj > 1. These are simply edgeless graphs wiilsj > 1 nodes, and do not
constitute valid tubes. For the moment, letS V; wherejVyj = m:

LetM =#fS V;:]Sj> 1g. Now

X«
M = K ° 2™ (m+1)
2
and by the above, there ar&"” (n+1) bad subsets that can be chosen frori, for
atotal of 2" +2" (m+ n 2) bad subsets oV = V;[ V..

It follows that we may choose any oR2™*" 2 proper, nonempty subsets o¥/, and

subtract o the bad choices for the total number of tubes. Ths, K., has

2mn 2 2"+2" (m+n 2) =2mn" 2 2"+2")+ m+ n+2
=2™N"+(m+n) (2m+2")
tubes.
Note that, for K1, 1, we see that star graphs om nodes have

2"+n (2" '+2) =2n 22 l+n 2
=2" 42 1)+n 2
=2"1+n 2

tubes.

5. Additional shuffle product on the Stellohedra

5.1. Preliminaries. For n 1, we denote by , the group of permutations ofn
elements. For any setU = fuj;:::;u,g with n elements, an element 2 | acts
naturally on the left on U and induces a total ordeu 14y <  <uU 1, onU.

For nonnegative integers and m, let Sh(n; m) denote the set ofn; m)-shu es, that
is the set of permutations in the symmetric group ..+ Satisfying that:

Q) < < (n) and (n+1) < < (n+ m):
Forn =0, we de ne SKO; m) := f 1,9 =: Sh(m;0), wherel,, is the identity of the group
m-. More in general, for any compositiorfns;:::;n;) of n, we denote by Skny;:::;n;)

the subset of all permutations in |, such that (n; + +n+1) < < (ng+
+ Njs ), for0 i r L
The concatenation of permutations : | m 4 n+m IS the associative product
given by:
(i) = (1); forl i1 n;
’ (i n)+n; forn+1 i n+m
for any pair of permutations 2 ,and 2 .
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The well-known associativity of the shu e states that:
Sh(n+ m;r) (Sh(n;m) 1,)= Shn;m;r)= Sh(inym+r) (1, Sh(m;r));
where denotes the product in the group p: g+ -

For n 1, recall that the star graph St, is a simple connected graph with set of

by Tub,.

Recall this example of a tree splitting from Section 3.

Vo Vool
WL}@y: AR

Note that a k-fold splitting, which is given by a sizek multiset of the n + 1 leaves,
corresponds to ak;n) shue. The corresponding shu e is described as follows: (i)

through i. For instance in the above example the shu e i93;4; 8; 10, 1; 2;5; 6; 7; 9; 11):

In the above Section 3 the product of two painted trees is dedzed as a sum over
splits of the rst tree, where after each split the resultinglist of trees is grafted to the
leaves of the second tree. Thus this product can be seen as mswer shu es. In fact
if we illustrate the products using the graph tubings, then lsu es are actually more
easily made visible than splittings.

Here we mainly want to show some examples of the products, @nwe have already
proven the structure. For that purpose we show single terms ithe product, each term
relative to a shu e. Figures 25 and 27 show terms in two sampleroducts, relative to
the given shu e, and illustrating the splitting as well. In Figures 26 and 28 we show
the same sample product terms, pictured using the tubings dhe star graphs and fan
graphs.
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N Y

| s=(3,6,7,10,1,2,4,5,8,9) |

Figure 25. One term in the product de ned in Section 3, relative to the

given shu e.
/ @ \ {6)
(),

s=(3,6,7,10,1,2,4,5,8,9)

Figure 26. The same product as pictured in Figure 25, shown here using

tubings on the star graphs.

2
s—(36710124589)| [

Figure 27. One term in the product de ned in Section 3, relative to the
given shu e.
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N ©
oy 50 /@< e
Sl (Ko - [ E2Y
6! > APV 7
Dt < {5
s=(3,6,7,10,1,2,4,5,8,9)

Figure 28. The same product as pictured in Figure 27, shown here using
tubings on the star graphs.
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6. Alternative product on the Stellohedra vertices

Let G be a simple nite graph with set of nodes No(G) = fji;:::;jrg N, we
denote by G + n the graph G, with the set of nodes colored by No@) + n, obtained
by replacing the nodgj; of G by the nodej; + n,forl i r.

Let G be a simple nite graph, whose set of nodes i#], we identify a tubet =

T = ftjg of G, we denote byT (h) the tubing ftj(h)g of G + h. In the present section,

we use the shu e product, which de nes an associative structre on the vector space
spanned by all the vertices of permutohedra, in order to intrduce associative products
(of degree 1) on the vector spaces spanned by the vertices of stellohedra

De nition 6.1. Let T be a maximal tubing of St and V be a maximal tubing of St,
such that T = Tub,(uy;:::;u,) and V = Tubg(vy;:ii;vm). Forany (n rnm 9)-

T Vi=Tubres(Up iU Vit N il Ve MW 103005 W 1nem (r49)))s
where: '

W= U+, ford 1 n

b Vs+i+r ntN; forn r<i n+m r s:
If T = Tub,, then =1, and

Tub, 1, V = Tubp+s(L;::05n;ve+ njiii; vy + 0)

In Figure 29 we illustrate the following example.
Tubs(1;2;6;5;3;4) Tub,(1;3;2;4) = Tubs(1;2;6;7;9;5;8;3;10,4)

..where = (1;3;5;2;4): For comparison see a product with the same operands in
Figure 26.

Using De nition 6.1, we de ne a shu e product on the vector space K[MT (St)] :=

. 1 KIMT (St,)], whereMT (St,) denotes the set of maximal tubings on $f which
correspond to the vertices of stellohedra, as follows.

De nition 6.2. Let T 2 MT (St,) andV 2 MT (St,) be two maximal tubings. The
product T V 2 MT (St,+m) is de ned as follows:

T V= T V,;
ZSI"(n nm s)
where Sifn - r;m  s) denotes the set ofn r,m s)-shuesin Syim (+5).
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s=(1,3,52,4)

Figure 29. Example of De nition 6.1.

(2) If T = Tub, andV = Tub,, then:

T V=Tubpim:
(3) If T = Tub, andV = Tubg(vy;:::;Vm) 6 Tuby,, then:

T V= Tubnss(L;::;nvi+ N iiiiVm + N):

Proposition 6.3. The graded vector spacK[MT (St)], equipped with the product is
an associative algebra.

mal tubings, where eventuallyT = Tub,, V = Tub, or W = Tub,,.
Applying the associativity of the shu e, we get that:

p (T V) W=
Tubr i gz (Ups DIV VAH NI Wik N E MTX 1) 105X Lnemep (r+5+2))
=T (V W);
where we sum over all permutations 2 Sh(n r,m s;p s) and
8 9
< Ur+j; forl i nir =
Xi = Vssi+r ntN; forn r<i n+m r s;
" Wziisr+s n mtn+m; forn+m r s<i n+m+pr s z;’

which ends the proof.
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7. Questions

There are well-known extensions o Sym and Y Sym to Hopf algebras based on all
of the faces of the permutohedron and associahedron. Theserev rst described by
Chapoton, in [7], along with a Hopf algebra of the faces of theypercubes. We realize
the rst two Hopf algebras using the graph tubings in [17]. Ty are denotedS Sym
and Y Sym respectively, and so we refer to Chapoton's algebra of thec&s of the cube
as CSym.

Immediately the question is raised: how might we relate theoalgebraS Sym CSym

to our algebra of stellohedra faces? How can we relate the Habgebra ont=C for C
the corollas, thus an algebra on the faces of the hypercube, €hapoton's Hopf algebra
CSym?

Further questions arise as we look at the other polytopes irunset of 12 sequences.
(Of course, recall that 4 of them are only conjecturally corax polytope sequences.) For
instance, via our bijection there is a Hopf algebra based ohd weakly ordered forests
grafted to corollas which we would like to characterize in ¢rms of known examples.
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