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POLYTOPES AND HOPF ALGEBRAS OF PAINTED TREES: FAN

GRAPHS AND STELLOHEDRA.

LISA BERRY, STEFAN FORCEY, MARIA RONCO, AND PATRICK SHOWERS

Abstract. Combinatorial Hopf algebras of painted trees exemplify the connections
between operads and bialgebras. These trees were introduced recently as examples of
how graded Hopf operads can bequeath structure upon compositions of coalgebras.
We put these trees in context by exhibiting them as the minimal elements of face
posets of convex polytopes. The faces posets themselves often possess the structure of
graded Hopf algebras (with one-sided unit). Some of the polytopes that constitute our
main results are well known in other contexts. First we see the classical permutahe-
dra, and then certain generalized permutahedra: specifically the graph-associahedra
of the star graphs which are known collectively as the stellohedra, and the graph-
associahedra of the fan-graphs. As an aside we show that the stellohedra also appear
as certain lifted generalized permutahedra: graph composihedra for complete graphs.
Tree species considered here include ordered and unordered binary trees and ordered
lists (labeled corollas). Thus our results show how to represent our new algebras using
the graph tubings. We also show an alternative associative algebra structure on the
graph tubings of star graphs.

1. Introduction

The mathematical operation of grafting trees, root to leaf, is a key feature in the
structure of several important operads and Hopf algebras. In 1998 Loday and Ronco
found a Hopf algebra of plane binary trees, initiating the study of these type of struc-
tures [18]. There is a surjection from permutations to plane binary trees, the Tonks
projection defined in [27]. Using that surjection on basis elements, the Loday-Ronco
algebra is the image of the Malvenuto-Reutenauer Hopf algebra of permutations [21].
There is also a projection from the Loday-Ronco Hopf algebra to the algebra of qua-
sisymmetric polynomials. The authors of [18] showed Hopf algebra maps which factor
the descent map from permutations to Boolean subsets. The first factor is the Tonks
projection from the vertices of the permutohedron to the vertices of the associahedron.
Chapoton put this latter fact into context when he found that the Hopf algebras of
vertices are subalgebras of larger ones based on the faces of the respective polytopes [7].
Chapoton’s algebras are the differential graded structures corresponding to algebras
described by Loday and Ronco in [20].

In [19] the authors describe the product of planar binary trees in terms of the Tamari
order. In 2005 and 2006 Aguiar and Sottile characterized operations in these algebras
by using Möbius functions (of the Tamari order and of the weak Bruhat order) to

2000 Mathematics Subject Classification. 05E05, 16W30, 18D50.
Key words and phrases. multiplihedron, composihedron, binary tree, cofree coalgebra, one-sided

Hopf algebra, operads, species.
1

http://arxiv.org/abs/1608.08546v3


2 LISA BERRY, STEFAN FORCEY, MARIA RONCO, AND PATRICK SHOWERS

obtain new bases, in respectively [2],[1]. Their work gave a nice way to construct a
basis of primitive elements, using the irreducible trees. In [17] the authors characterize
the same operations in terms of inclusions (into the larger polytopes) of products of
polytope faces.

Alternatively, since the Loday-Ronco algebra is self-dual, it can project to the divided
power Hopf algebra. In [15] the authors used the following notation: SSym for the
Malvenuto-Reutenauer Hopf algebra, YSym for the Loday-Ronco Hopf algebra, and
CSym for the divided power Hopf algebra. They defined the idea of grafting with two
colors, preserving the colors after the graft in order to have two-tone, or painted, trees
with various structures possible in each colored region. Here we review the definitions,
adding some generality and defining poset structures on each set of painted trees. We
extend the coalgebra structure to twelve new vector spaces, and we extend the Hopf
algbra structure to nine of those. We are also able to conclude that eight of the new
coalgebras defined have underlying geometries of polytope sequences.

The stellohedra, or star-graph-associahedra, were first defined using the latter termi-
nology by Carr and Devadoss in [6]. The former terminology was introduced in [24],
where these polytopes were studied as special cases of nestohedra. In [13] the 3d version
of the stellohedron appears graphically, as the domain and range quotient of the multi-
plihedra for the complete graphs. These quotients are the composihedra and cubeahedra
respectively, but this source does not identify them as stellohedra. Also in [13] it is
claimed without proof that grafted trees represent these quotients in all dimensions,
although the corresponding trees in that source are associated in error to the wrong
polytope. (We correct the mistake here; compare our Figures 4 and 4.2 to Figures 3
and 4 of [13].)

In [22] the authors do actually prove that the stellohedra for all dimensions are in fact
the cubeahedra of complete graphs (which we will review). Also in [22] the stellohedron
of dimension n is recognized as the secondary polytope of pairs of nested concentric
n-dimensional simplices. The stellohedra have also been seen as special cases of signed-
tree associahedra in [23].

1.1. Main Results. Our algebraic results are twelve new graded coalgebras of painted
trees, as described in Theorem 3.1. Nine of those contain as subalgebras the cofree
graded coalgebras defined in [15]. Eight of our new coalgebras also possess one-sided
Hopf algebra structures, some in multiple ways, in Theorem 3.5.

We show that eight sequences of our 12 sets of painted trees, with defined rela-
tions, are isomorphic as posets to face lattices of convex polytopes. Six of these are
in the collection of Hopf algebras just mentioned. Four of these isomorphisms are well
known from previous work: the associahedra, multiplihedra, composihedra and cubes.
In Theorem 4.4 we show that weakly ordered forests grafted to weakly ordered trees
are isomorphic to the permutohedra. In Theorem 4.10 we show that forests of corol-
las grafted to weakly ordered trees are isomorphic to the star-graph-associahedra, or
stellohedra. In Theorem 4.12 and Theorem 4.13 we show that weakly ordered forests
grafted to a corolla are also isomorphic to stellohedra. In Theorem 4.14 we show that



POLYTOPES AND TREES 3

forests of plane trees grafted to weakly ordered trees are isomorphic to the fan-graph-
associahedra, or pterahedra. In Theorem 4.11 we show that the stellohedra again appear
as graph-composihedra for the complete graphs.

In Section 2 we define the sets of trees and the surjective functions between those sets.
In Section 3 we define the operations on our trees and explain which sets are graded
coalgebras and which are Hopf algebras. We give examples of products, coproducts,
and antipodes.

In Section 4 we define a partial ordering of painted trees and show which of our
posets of trees represent combinatorial equivalence classes of polytopes. In Section 5
we describe our Hopf algebra of faces of the stellohedra using graph tubings. In Propo-
sition 6.3 we show that a new, less forgetful, product on vertices of the stellohedra is
associative.

2. Definitions

Graphs with unlabeled vertices are isomorphism classes of graphs. In this paper,
trees are unlabeled, connected, acyclic, simple graphs. A rooted tree is an oriented tree
having one maximal vertex or node, called the root. For any node v of a tree, the edges
oriented towards v are called inputs of v and the edges leaving from v are called outputs
of v. We denote by In(v) the set of inputs of v, and by Out(v) the set of outputs of v.

We denote by Nod(t) the set of nodes of a tree t. All the trees we work with satisfy
that |In(v)| > 1 and |Out(v)| = 1. We admit edges which are linked to a unique node,
one of them is the output of the root, the others are called leaves. The degree of a tree
is the number of its leaves minus 1.

We use the following terms:

• A plane tree is a rooted tree satisfying that the set In(v) is totally ordered, for
any node v. Sometimes this is also referred to as planar, and can be equivalently
satisfied by requiring the leaves to lie in one horizontal line, in order, and the
root at a lesser y-value.

• A binary tree is a rooted tree such that |In(v)| = 2, for any node v.

An example of plane rooted binary tree, often called a binary tree when the context
is clear, is the following, where the orientation of edges is higher to lower on the plane:

r

0 1 2 3 4

{ {

{leaves 0...4

right

limb

left

limb

trunk
root

1 32 4

gaps and nodes 1...4

1

The leaves are ordered left to right as shown by the circled labels. The horizontal
node ordering corresponds to the order of gaps between leaves: the nth gap is just to
the left of the nth leaf and the nth node is the one where a raindrop would be caught
which fell in the nth gap. This ordering is also described as a depth first traversal of
the nodes. Non-leafed edges are referred to as internal edges. The set of plane rooted
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binary trees with n nodes and n+ 1 leaves is denoted Yn. The cardinality of these sets
are the Catalan numbers:

|Yn| =
1

n+ 1

(
2n

n

)
.

We will also need to consider rooted plane trees whose vertices, or nodes, have more
than two inputs. We denote by Tn the set of all plane rooted trees with n+1 leaves. The
cardinal of Tn is the nth super-Catalan number (also called the little Schröder number).

An (n + 1)-leaved rooted tree with only one node (it will have degree n + 2 ≥ 3),
or, for n = 0, a single leaf tree with zero nodes, is called a corolla, denoted Cn. This
notation for the (set of one) corolla with n+ 1 leaves is the same as used for the set of
one left comb in [15]. In the current paper we have decided that the corollas are more
easily recognized than the combs.

2.1. Ordered and painted plane trees. Many variations of the idea of the plane
tree have proven useful in applications to algebra and topology.

Notation 2.2. For any positive integer n ≥ 1, we denote by [n] the ordered set
{1, 2, . . . , n}, and by [n]0 the set {0} ∪ [n].

Definition 2.1. An ordered tree (sometimes called leveled) is a plane rooted tree t,
equipped with a vertical linear ordering of Nod(t), in addition to the horizontal one.
That is, an ordered tree is a plane rooted tree t equipped with a bijective map L :
Nod(t) −→ [|Nod(t)|], which respects the order given by the vertical order. Clearly
L(root) = |Nod(t)|.

This vertical linear ordering extends the partial vertical ordering given by distance
from the root. This vertical ordering allows a well-known bijection between the ordered
trees with n nodes, denoted Sn, and the permutations on [n].

We may draw an ordered tree in three different styles:

1

2

3

4

1

2

3

4

1  2  3  4

1  2  3  4

The corresponding permutation in the above picture is σ = (3, 2, 4, 1), in the notation
(σ(1), σ(2), σ(3), σ(4).)

We will also consider forests of trees. In this paper, all forests will be a linearly
ordered list of trees, drawn left to right. This linear ordering can also be seen as an
ordering of all the nodes of the forest, left to right. On top of that, we can also order
all the nodes of the forest vertically, giving a vertically ordered forest, which we often
shorten to ordered forest. This initially gives us four sorts of forests to consider, shown
in Figure 1.

Also shown in Figure 1 are three canonical, forgetful maps between the types of
forests.

Definition 2.2. We define β to be the function that takes an ordered forest F and gives
a forest of ordered trees. The output β(F ) will have the same list of trees as F , and for
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a tree t in β(F ) the vertical order of the nodes of t will respect the vertical order of the
nodes in F. That is, for two nodes a, b of t we have a ≤ b in t iff a ≤ b in F.

We define τ to be the function that takes an ordered tree and outputs the tree itself,
forgetting all of the vertical ordering of nodes (except for the partial ordering based on
distance from the root.) We define κ to be the function that takes a tree and gives the
corolla with the same number of leaves.

Note that τ and κ are immediately both functions on forests, simply by applying
them to each tree in turn. Also note that τ and κ are described in [15], but that there
κ yields a left comb rather than a corolla.

Now we define larger sets of trees that generalize the binary ones. First we drop the
word binary; we will consider plane rooted trees with nodes that have any degree larger
than two. Then, from the non-binary vertically ordered trees we further generalize by
allowing more than one node to reside at a given level. Instead of corresponding to a
permutation, or total ordering, these trees will correspond to an ordered partition, or
weak ordering, of their nodes.

Definition 2.3. A weakly ordered tree is a plane rooted tree with a weak ordering of
its nodes that respects the partial order of proximity to the root.

Recall that this means all sets of nodes are comparable–but some are considered as
tied when compared, forming a block in an ordered partition of the nodes. The linear
ordering of the blocks of the partition respects the partial order of nodes given by paths
to the root.

For a weakly ordered tree with n+1 leaves the ordered partition of the nodes deter-
mines an ordered partition of S = {1, . . . , n}, as described in [27]. Here we see S as the
set of gaps between leaves. (Recall that a gap between two adjacent leaves corresponds
to the node where a raindrop would eventually come to rest; S is partitioned into the
subsets of gaps that all correspond to nodes at a given level.) Weakly ordered trees are
drawn using nodes with degree greater than two, and using numbers and dotted lines
to show levels.

1
2

3

4

1

2

3
, ,

2
4

5

7

1
3

6

, ,

, , , ,

β

τ

κ

Figure 1. Following the arrows: a (vertically) ordered forest, a forest of
ordered trees, a forest of binary trees, and a forest of corollas.
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1

2

3
2 5  1  3 4

11

2

3

The ordered partition corresponding to the above pictures is ({2, 5}, {1}, {3, 4}). Note
that an ordered tree is a (special) weakly ordered tree.

As well as forests of weakly ordered trees we also consider weakly ordered forests.
This gives us three more sorts of forests to consider, shown in Figure 2. As indicated in
that figure, the maps β, τ and κ are easily extended to forests of the non-binary and/or
weakly ordered trees: β forgets the weak ordering of the forest to create a forest of
weakly ordered trees, τ forgets the weak ordering, and κ forgets the partial order to
create corollas.

2

3

4

11

3

, ,

, , , ,

1

2

3

11

2

, ,

κ

τ

β

Figure 2. Following the arrows: a (vertically) weakly ordered forest, a
forest of weakly ordered trees, a forest of plane rooted trees, and a forest
of corollas. Note that the forests in Figure 1 are special cases of these.

The trees we focus on in this paper generalize those introduced in [15]. They are con-
structed by grafting together combinations of ordered trees, binary trees, and corollas.
Visually, this is accomplished by attaching the roots of one of the above forests w to
the leaves of one of the above types of trees v, but remembering the originals w and
v. The result is denoted w/v. We use two colors, which we refer to as “painted” and
“unpainted.” The forest is described as unpainted, and the base tree (which the forest is
grafted to) is painted. At a graft the leaf is identified with the root, and in the diagram
that point is no longer considered a node, but is rather drawn as a change in color (and
thickness, for easy recognition) of the resulting edge. (Note that in some papers such
as [12] our mid-edge change in color is described instead as a new node of degree two.)
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With regard to the partial ordering of nodes by proximity to the root (with the closest
to the root being least), we can describe a painted tree as having a distinguished order
ideal of painted nodes.

We refer to the result as a (partly) painted tree, regardless of the types of upper
(unpainted) and lower (painted) portions. Notice that in a painted tree the original
trees (before the graft) are still easily observed since the coloring creates a boundary,
called the paint-line halfway up the edges where the graft was performed. Thus the
paint line separates the painted tree into a single tree of one color and a forest of trees
of another color. In Figure 3 we show all 12 ways to graft one of our types of partially
ordered forest with one of our types of tree.

Definition 2.4. The maps β, τ and κ are now extended to the painted trees, just by
applying them to the unpainted forest and/or to the painted tree beneath. We indicate
this by writing a fraction: f

g
for two of our three maps, or the identity map, as seen in

Figure 3. That is, f
g

indicates applying f to the forest and g to the painted base tree,

for f, g ∈ {β, τ, κ, 1}.

2.3. General painted trees. Now our definition of painted trees is expanded to in-
clude any of our types of forest grafted to any of our types of tree. On top of that we
will also permit a further broadening of the allowed structure of our painted trees. The
paint-line, where the graft occurs, is allowed to coincide with nodes, where branching
occurs. We call it a half-painted node. In terms of the grafting of a forest onto a tree
our description depends on the type of forest. If the forest is weakly ordered, or is a
forest of weakly ordered trees, then we see each half-painted node as grafting on a single
tree at its least node, after removing its trunk and root. If the forest is only partially
ordered (i.e. of binary trees or corollas) then we see the half-painted nodes as (possibly)
several roots of several trees simultaneously grafted to a given leaf. See the examples
in Figures 4 and 5.

For these general painted trees we can again extend the “fractional” maps using β, τ
and κ. We reiterate from above how the half-painted nodes are interpreted, since that
determines the input for the “numerator” map. Specifically β

g
operates by taking as

input for β the weakly ordered forest of trees, one tree for each half-painted node. That
is, β

g
treats the half-painted nodes as being the location of a single tree that is grafted

on without a trunk. This description is the same for τ
g
. In contrast however, the map κ

g

takes as input the forest found by listing all the unpainted trees while assuming each has
a visible trunk, some of which are simultaneously grafted at the same half-painted node.
Examples of these maps are shown in Figure 4, where we show 12 general painted trees
that consist of one of the four general types of forest and one of the three general types
of trees. Figure 5 is a detail from Figure 4 showing how the actions of the projections
differ.
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3

2

3

1

2

3
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3

1
2

1
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7
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4

 3

2

3

6

1

7

5

4

2

3

6

1

7

5

4

ordered forests

forests of ordered trees

forests of binary trees

forests of corollas

ordered trees

binary trees

corollas

κ

β
1

τ
1

1

τ
1

1
κ

SymSym

SymSym

SymSym

Sym Sym

Sym Sym

Sym Sym

Sym Sym

SymSym

Sym Sym

Figure 3. Varieties of grafted, painted trees. Each diagonal shares a
type of tree on the bottom (painted) or a type of forest grafted on, as
indicated by the labels. These trees correspond to vertex labels of the
10-dimensional polytopes in sequences whose 3-dimensional versions are
shown in Example 4.2. The forgetful maps are shown with example input
and output. Parallel arrows all denote the same map, except of course
that the identity is context dependent.
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1

1

2

1

1

2

1

2

1

2

1

1

3

2

 2

C = weakly

 ordered forests

C = forests of weakly 

  ordered trees

       C = forests of 

(planar rooted) trees

C = forests of corollas

D = weakly

 ordered trees

D = (planar rooted) trees

D = corollas

1

3

22

2
1

3

2

1

3

2

1

3

2

1

3

2

κ

β
1

τ
1

1

τ
1

1
κ

Figure 4. More varieties of grafted, painted trees C/D. For those
proven to be polytopes in Section 4, these correspond to face labels of
the 10-dimensional polytope sequences whose 3-dimensional versions are
shown in Example 4.2. Parallel arrows all denote the same map. Note
that the trees in Figure 3 are special cases—vertex trees, or minimal in
the face lattice—of the types illustrated in this figure.
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1

3

2 τ
1

κ
1

1
1

3

2 β
1

2

Figure 5. Action of the projections, detail from Figure 4. At first there
is a single (weakly) ordered tree attached at the half-painted node; at last
there are two (corolla) trees attached at the same node. In the center,
where the unpainted portion is one or two binary trees, we can see it as
either without any contradiction.
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3. Hopf Algebras

Let K denote a field. For any set X, we denote by K[X ] the K-vector space spanned
by X. As in [15] we work over a fixed field of characteristic zero, and our vector spaces
will be constructed by using the sets of trees as graded bases.

Recall from [15] the concept of splitting a tree, given a multiset of its leaves. Here,
modified from an example in [13], is a 4-fold splitting into an ordered list of 5 trees:

, , , , .

= (                       ) 
Also recall the process of grafting an ordered forest to the leaves of a tree:

, , , , =( ) =

In [15] there are defined coproducts on nine of the families of painted trees shown in
Figure 3 (the ones with labels denoting their membership in a composition of coalge-
bras). Eight of these, all but the composition of coalgebras SSym ◦SSym, are shown to
possess various Hopf algebraic structures in [15]. Now we show which of those structures
can be extended to our generalized painted trees in Figure 4.

The Hopf algebras we are interested in first are the algebra of corollas, called CSym
and shown to be identical to the divided power Hopf algebra in [15]; second the algebra
of rooted planar binary trees YSym which is known as the Loday-Ronco Hopf algebra,

and finally the algebra of rooted planar trees YS̃ym. The latter is the Hopf algebra of
faces of the associahedra as described in [7], and in terms of graph tubings in [17].

The coproducts and products are all defined in [15] using subscripts: the element of
the vector space is Fw where w is a tree of the given type. The coproduct is defined by
splitting:

∆(Fw) =
∑

w
g

→(w0,w1)

Fw0
⊗ Fw1

where the sum is over all ways to split the tree w at one leaf; so has n terms.
Multiplication on the left is defined by splitting the left operand and grafting to the
right operand:

Fw · Fv =
∑

w
g

→(w0,...,wn)

F(w0,...,wn)/v

where the sum is over all ways to split the tree w at a multiset of n− 1 leaves (where
n is the number of leaves of v.)

We will often eliminate the subscript notation and simply draw the basis element.
For example, here is the coproduct in YSym:
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∆ = + +

Here is how to multiply two trees in YSym:

= + + +

For more examples see [15].
Given any of the 12 types of painted tree from Figure 4, we get a graded vector space

where trees with n leaves comprise the basis of degree n − 1. The basis of degree 0 is
the single-leaved painted tree–this is the same for each of the 12 cases. The degree 1
basis is also identical for all 12 cases: the three painted trees with 2 leaves. The 12
cases differ when it comes to the degree 2 bases, as seen in Figure 7. Note that while
most of the trees in Figure 3 can be seen as coming from a composition of coalgebras, as
labeled, the general trees in Figure 4 cannot since the unpainted forests can be grafted
in multiple ways. However, they can often still possess a coproduct, given by splitting
the trees leaf to root. Splitting a tree of a given type always produces two trees of that
same type. The weakly ordered trees and weakly ordered forests can be split into two
weakly ordered trees or forests. In fact we have the following:

Theorem 3.1. The action of splitting trees leaf to root makes each of the tree types in
Figure 4 into the basis of a graded coassociative coalgebra.

Proof. The coproduct of a basis element is the sum of pairs of trees which are formed
by splitting at each leaf. Note that the degrees of the pairs each sum to n − 1. Coas-
sociativity is seen by comparing both orders of applying the coproduct to the result of
choosing any two leaves at which to split at the same time:

(∆⊗ 1)(∆(Fw)) = (1⊗∆)(∆(Fw)) =
∑

w
g

→(w0,w1,w2)

Fw0
⊗ Fw1

⊗ Fw2
.

�

The compositions of coalgebras labeled in Figure 3 are subcoalgebras of the cor-
responding generalizations in Figure 4. We will denote these larger coalgebras by

E = C̃/D where C and D are the corresponding sets of trees. For example here is

a coproduct in C̃/D; in this picture the painted trees could be any of our twelve vari-
eties.

∆ =
+ + +

Next we point out the actions of certain Hopf algebras on many of our coalgebras of
generalized painted trees.
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3.1. Hopf algebra modules. Using the same operations of splitting and grafting, we
can often show that the Hopf algebras D = YSỹm, and D = CSym possess actions on
painted trees which make our coalgebras of the latter into D-modules.

Theorem 3.2. For each E = C̃/D with C being the planar trees or corollas, the coal-
gebra E with basis C/D is respectively a D = YSỹm-module coalgebra or D = CSym-
module coalgebra.

Proof. We show that E is an associative left module, and that the action of D (denoted
⋆) commutes with the coproducts as follows: ∆E(d ⋆ e) = ∆D(d) ⋆∆E(e). We consider
the action on basis elements. The action of a planar tree d ∈ YSỹm (or corolla in CSym

respectively) on a painted tree e involves splitting d and grafting the resulting forest
onto the leaves of e. In the case of C being corollas, the result of the grafting is then
subjected to the application of κ/1. Note that this application of κ is equivalent to the
composition in the operad of corollas, as pointed out in [15]. For example, where C is
the set of corollas:

+ += 3 2

Note in the above example that six terms result from choosing any two splits of the
three leaves in the corolla. After applying κ, there are duplicates as enumerated by the
coefficients.

The associativity of the action is then straightforward to show on basis elements:
given three layers of trees (the bottom layer is the painted tree) the result does not
depend upon the order in which one makes the grafts.

The commutativity property is also straightforward on basis elements. Recall that
the coproduct is applied linearly to each term in a sum, on the left side of the equation:
∆E(d⋆e). Also recall that the action of a tensor product on a tensor product is performed
componentwise: (x⊗y)⋆(z⊗w) = (x⋆z)⊗(y ⋆w) on the right side. Thus each term on
the left-hand side is a pair of painted trees, formed by splitting after grafting a splitting
of d onto e. That pair is found on the right-hand side: all the splits are just performed
before the grafting occurs. See the following example, where we pick out the matching
terms.

=  . . . +                          + . . .∆(                )      (                )=          . . . +                + . . .∆

∆               ∆      =       (          )        . . . +                                                                       + . . .(          ) =   . . . +                          + . . .

�

Theorem 3.3. For each E = C̃/D for D being the planar trees or corollas, and C being
either corollas, planar trees, or weakly ordered trees, the coalgebra E with basis C/D is
respectively a D = YSỹm-module coalgebra or D = CSym-module coalgebra.
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Proof. The same features need to be checked as in the proof of the previous theorem,
which is straightforward. Now however the action of the Hopf algebra is on the right,
so the product e ⋆ d involves splitting e ∈ E and then grafting to d ∈ D. �

The fact that one sided Hopf algebras exist for the generalized painted trees follows
from the use of the maps β, τ, and κ defined on trees and forests. We recall the definition
of the sort of map we need from [15]. We let D be one of our connected graded Hopf
algebras with product v · w.
Definition 3.4. A map f : E → D of connected graded coalgebras is a connection on
D if E is a left (right) D-module coalgebra and f is both a coalgebra map and a module
map:

(f ⊗ f)∆E(e) = ∆Df(e) and f(d ⋆ e) = d · f(e).
We have examples of connections f using the maps τ and κ. If the target is corollas,

we apply first τ and then κ to a painted tree w. Then we forget the painting and apply
κ once more. The result is just a corolla with the same number of leaves as w. If the
target is planar trees we apply τ only, and then forget the painting. The result is a
planar tree with the same branching structure as w. These example connections are
seen to be coalgebra and module maps by inspecting their action on basis elements: the
result is the same if f is applied before or after splitting and grafting.

Here is an example connection from planar trees over weakly ordered trees to planar
trees:

2

1

f

Here is an example connection from corollas over weakly ordered trees to corollas:

f

2

1

Here is an example connection from corollas over planar trees to planar trees:

f

Theorem 3.5. Consider the coalgebras E with graded bases the painted trees C/D
with C (top) consisting of forests of planar trees or forests of corollas; and those with
D being planar trees or corollas (bottom) and with forests of planar trees, corollas or
weakly ordered trees on top. Each of these eight coalgebras are one-sided Hopf algebras
(they possess a one-sided unit and one-sided antipode.)
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Proof. We rely on Theorem 4.1 of [15], which states that when there is a connection
f : E → D then E is a Hopf module and a comodule algebra over D, and also a one-sided

Hopf algebra in its own right. For those coalgebras C̃/D with planar trees or corollas on
top (as C), the connection f is the map to C, the planar trees or corollas respectively.
Note that in this case the product · : E ⊗ E → E will be on the left: for e, e′ ∈ E we
have, from the proof of Theorem 4.1 of [15], that e · e′ = f(e) ⋆ e′.

For those coalgebras C̃/D with planar trees or corollas on bottom (as D), the con-
nection f is the map to D, the planar trees or corollas respectively. Note that in this
case the product · : E ⊗ E → E will be on the right: for e, e′ ∈ E we have, from the
proof of Theorem 4.1 of [15], that e · e′ = e ⋆ f(e′).

We note that the one-sided unit η = η(1) for either left or right products is the
painted corolla with one leaf. The counit ǫ is a projection from E onto the base field:
its value is the coefficient of the painted corolla with one leaf. �

Notice that some of our structures (the four painted trees that use no ordered trees)
are Hopf algebras in two different ways. One has a left-sided unit and the other has a
right-sided unit. Here is an example of the product in the Hopf algebra with left-side

unit on the coalgebra C̃/C for C the binary trees:

= + + +
=

Here is an example of the product in the Hopf algebra with right-side unit on the

coalgebra C̃/C for C the binary trees:

= + + +=

Finally, we exhibit some antipodes S : C̃/D → C̃/D. These are guaranteed to exist
in connected graded bialgebras. For example, for left multiplication, the left antipode
may be calculated with the recursive formula developed in [15], section 4:

S(η) = η; S(e) = −η · e−
∑

S(e1) · e2

where the sum is over all splittings of e into two painted trees e1 and e2, both with
more than a single leaf.

Here are some examples, where the antipodes of larger trees can be found recursively
using antipodes of their splittings:

S(     ) = - 

S(       ) = S(     )      -       =

S(       ) = S(     )      -       =       +       -
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4. Polytopes

4.1. Partial ordering of nodes and gaps. Each of our 12 types of painted tree
comes with a canonical painted vertical partial ordering (or weak ordering) of its nodes,
produced by concatenating the various root proximity orders that existed before the
graft. Each painted vertical partial ordering is a refinement of the partial ordering
given by proximity to the root of the newly minted painted tree, and also preserves
the relations that existed before the graft. The painted nodes form an order ideal. We
observe the rules that 1) all half-painted nodes must be forced to remain at the same
level, that is, incomparable to each other (or tied in a weak order); and 2) that nodes
below the paint line will never surpass half painted nodes, and neither of the former
will surpass unpainted nodes in the partial order. Furthermore, this ordering of nodes
implies an ordering of the gaps between leaves of the tree. Some gaps share a node.
Two gaps that share a node are considered to be incomparable in the partial order (or
tied in a weak order).

Now we can define 12 separate posets whose elements are trees: one poset on each
of our 12 types of painted trees shown in Figure 4. Note that the simplest painted tree
with n leaves has one half-painted node: n single leafed unpainted trees all grafted to
a painted trunk, the node coinciding with the paint line. This half-painted corolla can
be interpreted as one of any of the 12 painted tree varieties, and it will be the unique
maximal element in all 12 posets.

Definition 4.1. Given two painted trees s and t that are of the same painted type (i.e.
they share the same types of tree and forest, below and above the paint line) we define
the painted growth preorder, where :

s ≺ t

if s = t or if s is formed from t using a series of pairs (a, b)i of the following two moves,
each pair performed in the following order:

a) “growing” internal edges of t : introducing new internal edges or increasing the
length of some internal edges (either painted or unpainted). This is precisely
described as a possible refinement of the vertical partial (or weak) order of
gaps between leaves, by adding relations to the partial order between previously
incomparable (or equal) elements.

b) ...followed by “throwing away,” or forgetting, any superfluous structure intro-
duced by the edge growing. This is described precisely by taking the tree that
results from growing edges, and applying to it the forgetful map (from the set
of β, τ, κ, 1 and their fractions and compositions) that is needed to ensure that
the result is in the original type of the painted tree t.

For example if the original type of t had weakly ordered forests grafted to
weakly ordered trees, we only apply the identity. However if t originally was a
forest of weakly ordered trees grafted to a weakly ordered tree we should apply
β
1
.

Unpacking the definition a bit: relations may not be deleted by the growth (nor ties
formed in a weak order), but if the growing of painted edges occurs at a collection of
half-painted nodes in t then the partial order may be preserved rather than strictly
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refined. Note that internal edges can grow where there was no internal edge before,
such as at a half-painted node or any node that had degree larger than three. Note also
that the rules for painted trees must be obeyed by the growing process–for instance an
unpainted edge cannot grow from a completely painted node (and vice versa), and if
some painted edges are grown from a half-painted node then all the edges possible must
be formed, to allow the paint line to be drawn horizontally.

For examples of (non-covering) relations in the 12 posets see the trees in respective
locations of figure 3 and Figure 4: the latter are all greater than the former in the same
positions. Several more covering relations for some of our 12 classes of general painted
trees are shown next:
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2

1

1

3

2

 2

2

1

1

4

3

 2

forests of corollas

corollas

grow growforget forget

(a)

(b)

(c)

(d, e)

      

                   (d)         (e)

1 1

 2

 2

 3

1          2    3   4    5      6      7    8      9      10    

1          2    3   4    5   6      7    8      9    10    1          2    3   4    5   6      7    8      9    10    

1          2    3   4    5      6      7    8      9      10    

1          2     3      4       5     6      7    8      9    10    1       2     3      4        5      6     7    8      9      10    

1          2    3   4      5      6      7    8      9      10    1          2    3   4      5      6      7    8      9      10    1          2    3    4      5      6      7     8      9     10    

1

2

1          2   3      4    5     6      7    8      9      10    

Some covering relations. In the first (a) we are looking at weakly ordered forests grafted
to a weakly ordered trees, so growing an edge is a covering relation. In the next rela-
tion (b) we are looking at rooted trees above and below the graft–again no forgetting is
needed. Relation (c) is in the stellohedron. At the bottom for both covering relations
the forgetful map is κ. Relation (e) is in the stellohedron, although it is also true in the
cube.
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In what follows we argue that most of the posets just described are realized by
inclusion of faces in a convex polytope.

4.2. Bijections. The painted growth relation is reflexive and transitive by construc-
tion, for all 12 types. We conjecture also that in all 12 of cases the the painted growth
preorder is in fact a poset, and moreover we conjecture that all the posets thus defined
are realized as the face posets of sequences of convex polytopes. Four of the cases
have been proven in previous work. These four appear as the highlighted diamond in
Example 4.2. The polytope sequences are the cubes, associahedra, composihedra and
multiplihedra. The latter three are shown (with pictures of painted trees) in [12]; the
fact that the cubes result from forgetting all the branching structure is equivalent to
the fact that cubes arise when both of two product spaces are associative, as pointed
out in [5], also (with design tubings) in [10].
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J

CKK

P

KF

C

κ

β
1

τ
1

1

τ
1

1
κ

1,n

KSt    =J K
n+1          n d

KSt    =J K
n+1          n r

Example 4.2.

The 3-dimensional polytopes which represent the painted trees in our 12 sequences.
The four in the shaded diamond are the cube C, associahedron K, multiplihedron J
and composihedron CK. The other two shaded polytopes are the pterahedron KF1,n

(fan graph associahedron) and the stellahedron KSt. The topmost is the permutohe-
dron. The furthest to the left is again the stellohedron. The other four, unlabeled,
are conjectured to be polytopes (clearly they are in three dimensions–the conjecture is
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about all dimensions.) Each of these corresponds to the type of tree shown in Figure 3,
in the corresponding position.

J

CKK

P

KF

C

κ

β
1

τ
1

1

τ
1

1
κ

1,n

KSt    =J K
n+1          n d

KSt    =J K
n+1          n r

Figure 6. These are the 2-dimensional terms in the same sequences as in Figure 4.2.

In this section four more sequences of our sets of painted trees, with their relations,
will be shown to be isomorphic as posets to face lattices of convex polytopes. Two of
these are the species whose structure types are: a forest of corollas grafted to a weakly
ordered tree (stellohedra) or a weakly ordered forest grafted to a corolla (stellohedra
again). A third is the species whose structure type is the weakly ordered forest grafted
to a weakly ordered tree (permutohedra). Finally the species whose structure type is a
forest of plane rooted trees grafted to a weakly ordered tree (pterahedra). There remain
four cases in Figure 4.2 that we leave as a conjecture. (These latter four are the ones
which do not have a label naming them under their picture).

Some of our proofs and corollaries will use the concept of tubings, which we review
next.
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J

CK
K

C

Figure 7. These are the 2-dimensional terms with their faces labeled.
The same labels are used no matter where the shape occurs in figure 6.

4.3. Tubes, tubings and marked tubings. The definitions and examples in this
section are largely taken from [17] and [9]. They are based on the original definitions
in [6], with only the slight change of allowing a universal tube, as in [8].

Definition 4.3. Let G be a finite connected simple graph. A tube is a set of nodes
of G whose induced graph is a connected subgraph of G. For a given tube t and a
graph G, let G(t) denote the induced subgraph on the graph G. We will often refer to
the induced graph itself as the tube. Two tubes u and v may interact on the graph as
follows:

(1) Tubes are nested if u ⊂ v.
(2) Tubes are far apart if u∪ v is not a tube in G, that is, the induced subgraph of

the union is not connected, (equivalently none of the nodes of u are adjacent to
a node of v).

Tubes are compatible if they are either nested or far apart. We call G itself the universal
tube. A tubing U of G is a set of tubes of G such that every pair of tubes in U is
compatible; moreover, we force every tubing of G to contain (by default) its universal
tube. By the term k-tubing we refer to a tubing made up of k tubes, for k ∈ {1, . . . , n}.
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Remark 4.4.

For connected graphs our definition here is equivalent to that in [24]. In [6] and [9]
the universal tube is not considered a tube, nor included in tubings. This however leads
to a poset of tubings which is isomorphic to the one in this paper.

When G is a disconnected graph with connected components G1, . . . , Gk, there are
alternate definitions in the literature. In [25] and [24], as well as in [3], the connected
components are all tubes and must all be included in every tubing. We will refer to
this as a building set tubing since it contains all maximal elements.

Alternatively, in [6], [8] and [16], as well as in [15], the additional condition for
disconnected graphs is as follows: If ui is the tube of G whose induced graph is Gi, then
any tubing of G cannot contain all of the tubes {u1, . . . , uk}. However, the universal
tube is still included in all tubings despite being itself disconnected.

Parts (a)-(c) of Figure 8 from [8] show examples of allowable tubings, whereas (d)-(f)
depict the forbidden ones.

( a ) ( b ) ( c ) ( d ) ( e ) ( f )

Figure 8. (a)-(c) Allowable tubings and (d)-(f) forbidden tubings, figure
from [8].

Let Tub(G) denote the set of tubings on a graph G. As shown in [6, Section 3], for
a graph G with n nodes, the graph associahedron KG is a simple, convex polytope of
dimension n − 1 whose face poset is isomorphic to Tub(G), partially ordered by the
relationship U ≺ U ′ if U ′ ⊆ U.

The vertices of the graph associahedron are the n-tubings of G. Faces of dimension
k are indexed by (n − k)-tubings of G. In fact, the barycentric subdivision of KG is
precisely the geometric realization of the described poset of tubings.

To describe the face structure of the graph associahedra we need a definition from
[6, Section 2].

Definition 4.5. For graph G and a collection of nodes t, construct a new graph G∗(t)
called the reconnected complement: If V is the set of nodes of G, then V − t is the
set of nodes of G∗(t). There is an edge between nodes a and b in G∗(t) if {a, b} ∪ t′ is
connected in G for some t′ ⊆ t.

Figure 9 illustrates some examples of graphs along with their reconnected complements.

Theorem 4.6. [6, Theorem 2.9] Let V be a facet of KG, that is, a face of dimension
n− 2 of KG, where G has n nodes. V corresponds to t, a single, non-universal, tube of
G . The face poset of V is isomorphic to KG(t)×KG∗(t).
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Figure 9. Examples of tubes and their reconnected complements. Fig-
ure from [17].

We will consider a related operation on graphs. The suspension of G is the graph
SG whose set of nodes is obtained by adding a node 0 to the set Nod(G), of nodes of
G, and whose edges are defined as all the edges of G together with the edges {0, v} for
v ∈ Nod(G).

The reconnected complement of {0} in SG is the complete graph Kn for any graph
G with n nodes. Note that the star graph Stn is the suspension of the graph Cn with
has n nodes and no edge, while the fan graph F1,n is the suspension of the path graph
on n nodes.

It turns out that this construction of the graph multiplihedra is a special case of
a more general construction on certain polytopes called the generalized permutahedra
as defined by Postnikov in [25]. The lifting of a generalized permutahedron, and a
nestohedron in particular, is a way to get a new generalized permutahedron of one
greater dimension from a given example, using a factor of q ∈ [0, 1] to produce new
vertices from some of the old ones [3]. This procedure was first seen in the proof that
Stasheff’s multiplihedra complexes are actually realized as convex polytopes [12].

Soon afterwards the lifting procedure was applied to the graph associahedra–well-
known examples of nestohedra first described by Carr and Devadoss. We completed an
initial study of the resulting polytopes, dubbed graph multiplihedra, published as [8].

This application raised the question of a general definition of lifting using q. At the
time it was also unknown whether the results of lifting, then just the multiplihedra and
the graph-multiplihedra, were themselves generalized permutahedra. These questions
were both answered in the recent paper of Ardila and Doker [3]. They defined nesto-
multiplihedra and showed that they were generalized permutohedra of one dimension
higher in each case.

We refer the reader to Ardila and Doker [3] for the general definitions. Here we need
only the following definitions, from [8]. Combinatorially, lifting of a graph associahedron
occurs when the notion of a tube is extended to include markings.

Definition 4.7. A marked tube of a graph G is a tube with one of three possible
markings:

(1) a thin tube given by a solid line,
(2) a thick tube given by a double line, and

(3) a broken tube given by fragmented pieces.

Marked tubes u and v are compatible if

(1) they form a tubing and
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(2) if u ⊂ v where v is not thick, then u must be thin.

A marked tubing of G is a tubing of pairwise compatible marked tubes of G.

A partial order is now given on marked tubings of a graph G. This poset structure
is then used to construct the graph multiplihedron below.

Definition 4.8. The collection of marked tubings on a graph G can be given the
structure of a poset. For two marked tubings U and U ′ we have U ≺ U ′ if U is
obtained from U ′ by a combination of the following four moves. Figure 10 provides the
appropriate illustrations, with the top row depicting U ′ and the bottom row U .

(1) Resolving markings: A broken tube becomes either a thin tube (10a) or a thick
tube (10b).

(2) Adding thin tubes: A thin tube is added inside either a thin tube (10c) or broken
tube (10d).

(3) Adding thick tubes: A thick tube is added inside a thick tube (10e).
(4) Adding broken tubes: A collection of compatible broken tubes {u1, . . . , un} is

added simultaneously inside a broken tube v only when ui ⋐ v and v becomes
a thick tube; two examples are given in (10f) and (10g).

( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g )

Figure 10. The top row are the tubings and bottom row their refine-
ments. Figure based on original in [8].

Here is the key idea from [8]: for a graph G with n nodes, the graph multiplihedron
JG is a convex polytope of dimension n whose face poset is isomorphic to the set of
marked tubings of G with the poset structure given above.

There are two important quotient polytopes mentioned in [8]: JGd and JGr for a
given graph G. The former is called the graph composihedron. Its faces correspond to
marked tubings, but for which no thin tubes are allowed to be inside another thin tube.
In terms of equivalence of tubings, the face poset of JGd is isomorphic to the poset
JG modulo the equivalence relation on marked tubings generated by identifying any
two tubings U ∼ V such that U ≺ V in JG precisely by the addition of a thin tube
inside another thin tube, as in Figure 10(c). Thus an equivalence class of tubings can
be represented by its maximum member: a tubing with no thin tubes inside any other
thin tube. The graph composihedron is defined via geometric realization in [8]. The
relations in Figure 10 still hold, but some of them appear differently, and one (c) is no
longer present in Figure 11.

The polytope JGr has faces which correspond to marked tubings, but for which no
thick tubes are allowed to be inside another thick tube. In terms of equivalence of
tubings, the face poset of JGr is isomorphic to the poset JG modulo the equivalence
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( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g )

Figure 11. The top row are the tubings and bottom row their refine-
ments, in the graph composihedron. These are altered versions (shown
up to equivalence) of the relations in Figure 10. In fact (c) is the reflective
relation.

relation on marked tubings generated by identifying any two tubings U ∼ V such that
U ≺ V in JG precisely by the addition of a thick tube, as in Figure 10(e).Thus an
equivalence class of tubings can be represented by its maximum member: a tubing with
no thin tubes inside any other thin tube. JGr is defined via geometric realization in
[8]. For connected graphs G, the polytope JGr is combinatorially equivalent to the
graph cubeahedron CG, as defined in [10].

The graph cubeahedron CKn is described in [10] as comprising the design-tubings on
the complete graph. In Figure 21 we show the correspondence between labels of vertices:
range-equivalence classes of marked tubings and design tubings. The isomorphism
claimed in [10] is easily described: design tubes (square tubes) correspond to the nodes
not inside any thin or broken tube; while round tubes in the design tubing correspond
to thin tubes. Broken tubes contain any nodes not in any tube of the design tubing.

For this reason we refer to the entire class of polytopes JGr as the (general) graph
cubeahedra. In fact the description of CG using design tubings which is given in [10] is
not difficult to extend to graphs with multiple components: we only need to introduce
the universal (round) tube. For example, the graph cubeahedron for the edgeless graph
is the hypercube with a single truncated vertex.

The four well-known examples of polytopes from Figure 4.2 can be seen as tubing
posets, as pointed out in [8]. The multiplihedra J = JP have face posets equivalent
to the marked tubes on path graphs P . The composihedra are the domain quotients
of these: JPd; and the associahedra are the range quotients of these: JPr. The cubes
show up as the result of taking both quotients simultaneously.

1
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4

1

2

3

4

1      2       3         4 1      2       3         4

1      2                3         4

Figure 12. The permutation σ = (2431) ∈ S4 pictured as an ordered
tree and as a tubing of the complete graph; An unordered binary tree,
and its corresponding tubing. Figure from [17].
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1

2

1

2

3

4

1      2       3         4 1      2       3         4

1      2                3         4

Figure 13. The ordered partition ({1, 2, 4}, {3}) pictured as a leveled
tree and as a tubing of the complete graph; the underlying tree, and its
corresponding tubing. Figure from [17].

4.4. Permutohedra. First we prove that the poset of painted trees made by grafting
a weakly ordered forest to a weakly ordered base tree is the face poset of a polytope.
It turns out that for painted trees with n leaves this polytope is the permutohedron
Pn. It is well known (see [18]) that the permutohedron has faces indexed by the weak
orders, which in turn may be represented by weakly ordered trees. The face poset is
the partial ordering of these trees by refinements.

Theorem 4.9. There is an isomorphism ϕ from the poset of (n + 1)-leaved weakly
ordered trees to the painted growth preorder of n-leaved weakly ordered forests grafted to
weakly ordered trees.

Proof. The isomorphism and its inverse are described as switching between the paint
line and an extra branch. Given a weakly ordered tree t, we find ϕ(t) by adding a
paint line at the level of left-most node of t, and then deleting the left-most branch of
t. Finally the remaining nodes are ordered, above and below the paint line, according
to their original vertical order in t. The inverse is straightforward. Here is a picture of
the process:
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Next we argue that the isomorphism just described respects the poset structures. If
a ≺ b for two weakly ordered trees, we have that the weak ordering of the nodes of a is
a refinement of the weak ordering for b. We can visualize this refinement as the growing
of some internal edges of a to break ties between nodes that were at the same level.
If the refinement involves breaking a tie that does not include the left-most node (see
level 2 in the above picture), then the same growing produces the same relation between
the painted tree images ϕ(a) and ϕ(b). If the growing does break a tie involving the
left-most node (see level 4 in the above picture), then the image of b may differ from
that of a only in that the set of nodes of ϕ(a) which coincide with the paint line will
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be a subset of those in ϕ(b). This can be seen as growing edges at some half-painted
nodes. Here is an example of the latter case, with trees related to those in the above
pictured example:
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This theorem immediately implies that the poset of n-leaved weakly ordered forests
grafted to weakly ordered trees is isomorphic to the face poset of the n-dimensional
permutohedron. That is because the poset of (n+1)-leaved weakly ordered trees is well
known to represent the face poset of the permutohedron (via seeing each tree as a weak
order of [n], that is, an ordered partition.)

A corollary, from [8], is that the poset of n-leaved weakly ordered forests grafted
to weakly ordered trees is isomorphic to the face poset of the n-dimensional graph
multiplihedron of the complete graph.

4.5. Stellohedra. Now we prove that the poset of painted trees made by grafting a
forest of corollas to a weakly ordered base tree is the face poset of a polytope. It turns
out that for painted trees with n + 1 leaves this polytope is the graph-associahedron
KG where G is the star graph Stn.

Recall that the star graph Stn is defined as follows: we use the set {0, 1, 2, . . . , n} as
the set of nodes. Edges are {0, i} for i = 1, . . . , n.

Theorem 4.10. The poset of tubings on the star graph Stn is isomorphic to the poset
of n-leaved forests of corollas grafted to weakly ordered trees.

Proof. We first note that any tubing T of the star graph includes a unique smallest
tube t0 which contains node 0. All other tubes of T are either contained in t0 or contain
t0, since the node 0 is adjacent to all other nodes. The tubes contained in t0 form a
tubing of an edgeless graph. The tubes containing t0 form a tubing on the reconnected
complement of t0, which is the complete graph on the nodes not in t0. Here the key idea
is that the tube t0 is analogous to the half-painted nodes. See Figure 14.

Now we use two facts shown in [6]: that the permutohedron is combinatorially equiv-
alent to the graph-associahedron of the complete graph, and that the simplex is combi-
natorially equivalent to the graph-associahedron of the edgeless graph, which in turn is
equivalent to the Boolean lattice of subsets of its nodes. Recall that the permutohedron
is also indexed by the weakly ordered trees, leading to an isomorphism between tubings
and trees as seen in Figures 12 and 13.

Thus the bijection φ we want takes a tubing T on the star graph S = Sn to a painted
tree. This bijection is constructed from the bijection α from tubings on an edgeless
graph to subsets of n gaps between leaves (corresponding to nodes in a unpainted forest
of corollas); together with the bijection β from tubings on a complete graph with j
vertices to weakly ordered trees with j + 1 leaves.
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The construction of φ proceeds as follows. First the nodes 1, . . . , n of the star graph
correspond to the gaps (between leaves) 1, . . . , n of the output tree. The tubing of the
subgraph inside of t0 maps via α to a subset of [n], and that subset is precisely the
subset of the gaps which correspond to unpainted nodes (of corollas) in our output
tree. Second, nodes that are inside t0 but not inside any smaller tube determine the
gaps that coincide with the paint line, half-painted nodes on our output tree. Finally
the tubing outside of t0 maps via β to the painted weakly ordered tree. The inverse of
φ is the straightforward reversal of these steps. An example is seen in Figure 14.
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1     2    3     4    5    6     7     8     9      10

φ

Figure 14. A tubing T on the star graph and its bijective image in
the corollas over weakly ordered trees. The three steps are shown for
constructing φ(T ).

Checking that this bijection preserves the ordering is straightforward. Covering re-
lations in the stellohedron are face inclusions, which each correspond to adding one
tube to a tubing. The addition of a singleton tube inside of t0 corresponds under our
bijection to growing an unpainted edge at a half-painted node (and then applying κ.)

The addition of a tube just inside of t0 that contains all the singleton tubes, so in
effect creating a new t0, corresponds to growing some painted edges from half-painted
nodes.

The addition of a tube outside of t0 corresponds to growing a painted edge at a
painted node. The three possibilities are illustrated here: the first has a singleton tube
added (around vertex 9) compared with the original tubing in Figure 14.
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The isomorphism of vertices of the polytopes in 3d is shown pictorially in Figure 15.
Next we show that the stellohedra can also be seen as the domain and range quotients

JGd and JGr of the multiplihedron JG where G is the complete graph.

Theorem 4.11. The graph-composihedron for a complete graph Kn is combinatorially
equivalent to the stellohedron for the star-graph Stn+1.

Proof. We can most easily see the isomorphism by using the stellohedra just found in
Theorem 4.10, that is, by showing an isomorphism to painted trees.
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1 2

3

0

Figure 15. Two pictures of the stellohedron, via the bijection in Theorem 4.10.

We show a bijection φ′ from the graph-composihedron of the complete graph to the

set C̃/D of forests of corollas grafted to weakly ordered trees. The nodes 1, . . . , n of the
complete graph correspond to the gaps (between leaves) 1, . . . , n of the tree. Here the
key idea is that now a broken tube t0 plays the same role as the half-painted nodes in the
corresponding tree, and a single thin tube the role of the unpainted nodes. The steps in
the construction of the bijection φ′ are analogous to those in the proof of Theorem 4.10,
as follows:

The bijection φ′ takes as input a marked tubing on the complete graph with no thin
tubes inside another thin tube. It outputs a painted tree as follows: if there is a single
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thin tube t = {v1, v2, . . . , vk} then the like-numbered gaps of the output will correspond
to nodes of unpainted corollas. Nodes that are inside a broken tube but not inside any
thin tube of the input correspond to the gaps of the output that correspond to half-
painted nodes. Any nodes outside of all the thin or broken tubes in the input correspond
to nodes of the weakly ordered base tree in the output, and this mapping is via the
previously mentioned bijection between weak orders and tubings on the complete graph.
Note that the reconnected complement of the largest thin or broken tube is a complete
graph. The inverse of φ′ is the straigtforward reversal of these steps. An example of
the bijection φ′ is seen in Figure 16.

We check that this bijection φ′ preserves the ordering. Note that the relations are
simpler than in general for marked tubes since the tubings must all be completely
nested, and since thin tubes inside of thin tubes are ignored (via the equivalence).
Thus the relations in the Figure 11(c) and 11(g) need not be checked. The relations in
Figure 11(a) and (d) correspond to growing unpainted edges from half-painted nodes.
The relations in Figure 11(b) and (f) correspond to growing painted edges from half-
painted nodes. The relation in Figure 11(e) corresponds to growing a painted edge from
a painted node. Examples of the preservation of ordering via φ′ re seen in Figure 17.
3d examples are seen in Figure 19. See Figure 22 for some isomorphic chains. �
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φ'

Figure 16. A marked tubing on the complete graph, representing an
element of the complete-graph-composihedron (no structure is shown in-
side the thin tube) and its bijective image in the forest of corollas over a
weakly ordered tree.

Moreover, we will show that the poset of painted trees made by grafting a weakly
ordered forest to a base corolla is the face poset of a polytope. It turns out that for
painted trees with n+1 leaves this polytope is again the graph-associahedron KG where
G is the star graph Stn.

First, however, we show a bijection from the range-quotients of the complete graph
multiplihedron (the complete graph-cubeahedron) to the weakly ordered forests grafted
to corollas.
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Figure 17. The first (upper) example of φ′ has source and target re-
lated to Figure 16 by a adding a tube as in Figure 11(d) and growing an
unpainted edge from a half-painted node, and then forgetting structure
in both pictures. The other two relations are from Figure 11(a) and (b)
(right to left).

Theorem 4.12. The poset of n + 1-leaved weakly ordered forests grafted to corollas is
combinatorially equivalent to the graph-cubeahedron for a complete graph Kn.

Proof. This proof follows the pattern of the previous one, so we leave most of it to the
reader. Note that any nodes outside of the broken t0 tube in the input correspond to
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the painted corolla base tree of the ouput. The tubing inside a largest thin tube (which
contains a clique) in the input corresponds to the gaps (between leaves) that end in
nodes of the unpainted weakly ordered forest of the output. Nodes that are inside a
broken tube but not inside any thin tube determine the gaps that coincide with the
paint line. An example of the bijection is seen in Figure 18.

The fact that this bijection preserves the ordering is seen just as in the proof of
Theorem 4.11. 3d examples are seen in Figure 20. See Figure 22 for some isomorphic
chains. �
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Figure 18. A marked tubing on the complete graph, representing an
element of the complete-graph-cubahedron (no structure is shown outside
the broken tube) and its bijective image in the weakly ordered forests
over corollas.

We now can finish with the following:

Theorem 4.13. The weakly ordered forests grafted to corollas are isomorphic to the
stellohedra.

Proof. By Theorem 62 of [22], the graph-cubeahedron for a complete graph Kn is com-
binatorially equivalent to the stellohedron for the star-graph Stn+1. Here is a brief
description of the poset isomorphism described in that paper: if the star graph Stn+1

has node 0 as its center, and the nodes of the complete graph are 1, . . . , n, then a square
tube on the complete graph is mapped to itself, as a round tube; and round tubes on the
complete graph are mapped to their complement plus the node 0 on the star graph. We
demonstrate this isomorphism in Figure 22. Thus the theorem is shown, by composition
with the isomorphism in our Theorem 4.12. �

4.6. Pterahedra. The aim of this subsection is to prove that the poset of painted trees
made by grafting a forest of plane rooted trees to a weakly ordered base tree is the face
poset of a polytope. It turns out that for painted trees with n+ 1 leaves this polytope
is the graph-associahedron KF1,n where the fan graph F1,n is the suspension of the path
graph Pn.
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1           2

3

Figure 19. Another stellahedra bijection via Theorem 4.11: when Kn

is the complete graph then JKnd
(the complete graph composihedron) is

the stellohedron.

More precisely, the fan graph F1,n is defined as follows: the set of nodes of F1,n is [n]0,
while an edge of the graph is given either by the pair {i, i+1}, for some i = 1, . . . , n−1,
or by a pair {0, i}, for some i = 1, . . . , n.

Theorem 4.14. The poset of tubings on the fan graph F1,n is isomorphic to the poset
of n-leaved forests of plane trees grafted to weakly ordered trees.

Proof. Recall that any tubing T of the fan graph includes a unique smallest tube t0
which contains the node 0. As the node 0 is adjacent to all other nodes, the other tubes
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1           2

3

Figure 20. Another stellahedra bijection via Theorem 4.13: the compo-
sition of ordered forests with corollas, seen in bijection with the complete
graph cubeahedron.

of T are either contained in t0 or contain t0. The tubes contained in t0 form a tubing
of a graph which is a (possibly) disconnected set of line graphs. The tubes containing
t0 form a tubing on the reconnected complement of t0, which is the complete graph on
the nodes which do not belong to t0.

There exists a canonical bijection between the poset of weakly ordered trees with n+1
leaves and the poset Tub(Kn) of tubings on the complete graph: pictured in Figures 12
and 13. The restriction of this map to the set of plane trees, gives a bijection between
this poset and the poset Tub(Pn) of tubings on the path graph.
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1           2

3

Figure 21. Another stellahedra bijection: the complete graph cubeahe-
dron indexed by design tubings.

Thus the bijection from the poset Tub(F1,n) of tubings on the fan graph to our set
of painted trees is obtained from the bijection between Tub(Km) and the set of weakly
ordered trees, together with the bijections between the set Tub(Pm) of tubings on the
path graph and the set of plane rooted trees with m+1 leaves, for m ≥ 1. The tube t0
plays the same role as the paint line in the corresponding tree. The nodes 1, . . . , n of
the fan graph F1,n correspond to the gaps (between leaves) 1, . . . , n of the plane rooted
tree. For any tubing T ∈ Tub(F1,n) tubing outside of t0 maps to the painted weakly
ordered tree, the tubings inside t0 map to the unpainted trees, and nodes that are inside
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Figure 22. Here we bring together six isomorphic flags from the 3d
stellohedra shown above.

t0 but not inside any smaller tube determine the gaps that coincide with the paint line.
Examples are seen in Figure 23.

The fact that this bijection preserves the ordering follows easily from the definitions.
Just note that adding a tube to a tubing of the fan graph corresponds to growing an
internal edge in the tree. Adding a tube far outside of t0 corresponds to growing an edge
in the painted base. Adding a tube containing node 0 just inside t0 (so that it becomes
the new t0) corresponds to growing painted edge(s) from a half-painted node. Adding
a tube just inside t0 that does not contain node 0 corresponds to growing unpainted
edge(s) from a half-painted node. Adding a tube further inside of t0 (that does not
contain node 0) corresponds to growing an edge in the unpainted forest. �

The isomorphism in 3d is shown pictorially in Figure 4.6.

4.7. Enumeration. As well as uncovering the equivalence between the pterahedra and
the fan-graph associahedra, we found some new counting formulas for the vertices and
facets of the pterahedra.
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Figure 23. Example of the bijection in Theorem 4.14. The steps are
shown left to right.

First the vertices of the pterahedra, which are forests of binary trees grafted to an
ordered tree. If there are k nodes in the ordered, painted portion of a tree, then there
are:

• k! ways to make the ordered portion of this tree with k nodes,
• k + 1 leaves of the ordered portion of this tree, and
• n− k remaining nodes to be distributed among the k + 1 binary trees that will

go on the leveled/painted leaves.

Thus the number of vertices of the pterahedron, labeled by trees with n nodes, is:

v(n) =
n∑

k=0

[ k!
∑

γ0+...+γk
=n−k

(
k∏

i=0

Cγi) ].
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0
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Figure 24. Two pictures of the pterahedron, via the bijection from Theorem 4.14.

where Cj is the jth Catalan number. As an example, the number of trees with n = 4
is:

0! [C4]

+ 1! [C3C0 + C2C1 + C1C2 + C0C3]

+ 2! [C2C0C0 + C1C1C0 + C1C0C1 + C0C2C0 + C0C1C1 + C0C0C2]

+ 3! [C1C0C0C0 + C0C1C0C0 + C0C0C1C0 + C0C0C0C1]

+ 4! [C0C0C0C0C0]

= 1(14) + 1(14) + 2(9) + 6(4) + 24(1)

= 14 + 14 + 18 + 24 + 24

= 94
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We have computed the cardinalities for n = 0 to 9 and they are shown in table 1.

Table 1. The number v(n) vertices of the pterahedra, n = 0 to 9

n v(n) n v(n)

0 1 5 464
1 2 6 2652
2 6 7 17,562
3 22 8 133,934
4 94 9 1,162,504

There does not seem to be an entry for this sequence in the OEIS.
Examination of the computations of v(n) leads to an interesting discovery. If we strip

off the factorial factors in v(n) and build a triangle of just the sums of Cγi products, it
appears we are building the Catalan triangle.

1
1 1
2 2 1
5 5 3 1
14 14 9 4 1
42 42 28 14 5 1
132 132 90 48 20 6 1
429 429 297 165 75 27 7 1
1430 1430 1001 572 275 110 35 8 1
4862 4862 3432 2002 1001 429 154 44 9 1

For example,

v(4) = 94 = 0!(14) + 1!(14) + 2!(9) + 3!(4) + 4!(1)

leads to the values of the n = 4 row in the triangle above. In fact, Zoque [28] states that
the entries of the Catalan triangle, often called ballot numbers, count “the number of
ordered forests with m binary trees and with total number of ℓ internal vertices” where
m and ℓ are indices into the triangle. These forests describe exactly the sets of binary
trees we are grafting onto the leaf edges of individual leveled trees, which are counted
by the sums of Cγi products. Thus we know that the ballot numbers are equivalent to
the sums of Cγi products and can be used in the calculation of v(n) for all values of n.

The formula for the entries of the Catalan triangle leads to a simpler formula for
v(n), namely

v(n) =
n∑

k=0

k! (2n−k)!(k+1)
(n−k)!(n+1)! ,

Lastly, by considering the Catalan triangle as a matrix as in [4], we can say that the
sequence of cardinalities v(n) for all n is the Catalan transform of the factorials (n−1)!.
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This means that the ordinary generating function for v(n) is:

∞∑

k=1

(k − 1)!

(
1−

√
1− 4x

2

)k

.

Also, it will be helpful to have a formula for the number of facets for the fan graphs,
Fm,n. Recall Fm,n is defined to be the graph join of K̄m the edgeless graph on m nodes,
and Pn the path graph on n nodes. Thus, Fm,n has m+n vertices, n of which comprise
a subgraph isomorphic to the path graph on m nodes, the other n vertices connected
to each of these m. Thus, Fm,n has m− 1 +mn = m(n+ 1)− 1 edges.

Now, counting tubes in this case is again a matter of counting subsets of vertices
whose induced subgraph is connected. The structure of Fm,n makes it useful to let Vm

denote those vertices coming from the edgeless graph of m nodes, and likewise Vn those
from the path graph on n nodes.

It is clear that some tubes are simply tubes of the path graph Pn, hence there are

at least n(n+1)
2

− 1 tubes. We must not forget that Vn is itself now a tube since it is a
proper subset of nodes of Fm,n. These tubes include every subset of Vn that is a valid
tube of Fm,n.

It is simple to see that the only subsets of Vm that are valid tubes are precisely the
singletons, since no pair of vertices in Vm are connected by an edge. Thus Fm,n has at

least n(n+1)
2

+m tubes.
The remaining possibility for tubes must include at least one node from Vm as well

as at least one node from Vn. This produces all (possibly improper) tubes, since any
subset of V = Vm ∪Vn satisfying this criterion is connected. It is straightforward to see
that there are exactly (2m − 1)(2n − 1) tubes arising in this fashion. Now, however, we
must subtract 1 from the above since we have allowed ourselves to count V as a tube,
although it is not proper.

Hence we count
n(n + 1)

2
+ (2m − 1)(2n − 1) +m− 1

as the number of tubes of Fm,n and the number of facets of the corresponding graph
associahedron. For the pterahedra, where m = 1, the formula becomes:

n(n+ 1)

2
+ 2n − 1.

Interestingly, this is the same number of facets as possessed by the multiplihedron J (n),
as seen in [12], where we enumerate the facets by describing their associated trees.

The number of vertices of the stellahedron is worked out in several places, including
[14], where the formula is given:

v(n) =
n∑

k=0

k!

(
n

k

)
=

n∑

k=0

n!/k! ,

which is sequence A000522 in the OEIS [26]. This is the binomial transform of the
factorials.

Now for the facets. We will use the following, possibly well-known
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Lemma 4.15. The bipartite graph associahedron KKm,n has 2m+n+(m+n)−(2m+2n)
facets.

To see this, we will count subsets of nodes which give valid tubes. We will over-count
and then correct. Let Km,n = (V1 ∪ V2, E) where |V1| = m and |V2| = n. Note that
the only subsets S of nodes which do not give valid tubes are S such that S ⊆ V1 (or
V2) with |S| > 1. These are simply edgeless graphs with |S| > 1 nodes, and do not
constitute valid tubes. For the moment, let S ⊆ V1 where |V1| = m.

Let M = #{S ⊆ V1 : |S| > 1}. Now

M =
k∑

2

(
m
k

)
= 2m − (m+ 1)

and by the above, there are 2n − (n+ 1) “bad subsets” that can be chosen from V2 for
a total of 2m + 2n − (m+ n− 2) bad subsets of V = V1 ∪ V2.

It follows that we may choose any of 2m+n − 2 proper, nonempty subsets of V , and
subtract off the bad choices for the total number of tubes. Thus, Km,n has

2m+n − 2− (2m + 2n − (m+ n− 2)) = 2m+n − 2− (2m + 2n) +m+ n + 2

= 2m+n + (m+ n)− (2m + 2n)

tubes.
Note that, for K1,n−1, we see that star graphs on n nodes have

2n + n− (2n−1 + 2) = 2n − 2n−1 + n− 2

= 2n−1(2− 1) + n− 2

= 2n−1 + n− 2

tubes.

5. Additional shuffle product on the Stellohedra

5.1. Preliminaries. For n ≥ 1, we denote by Σn the group of permutations of n
elements. For any set U = {u1, . . . , un} with n elements, an element σ ∈ Σn acts
naturally on the left on U and induces a total order uσ−1(1) < · · · < uσ−1(n) on U .

For nonnegative integers n and m, let Sh(n,m) denote the set of (n,m)-shuffles, that
is the set of permutations σ in the symmetric group Σn+m satisfying that:

σ(1) < · · · < σ(n) and σ(n+ 1) < · · · < σ(n+m).

For n = 0, we define Sh(0, m) := {1m} =: Sh(m, 0), where 1m is the identity of the group
Σm. More in general, for any composition (n1, . . . , nr) of n, we denote by Sh(n1, . . . , nr)
the subset of all permutations σ in Σn such that σ(n1 + · · · + ni + 1) < · · · < σ(n1 +
· · ·+ ni+1), for 0 ≤ i ≤ r − 1.

The concatenation of permutations × : Σn × Σm →֒ Σn+m is the associative product
given by:

σ × τ(i) :=

{
σ(i), for 1 ≤ i ≤ n,
τ(i− n) + n, for n+ 1 ≤ i ≤ n+m,

}

for any pair of permutations σ ∈ Σn and τ ∈ Σm.
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The well-known associativity of the shuffle states that:

Sh(n+m, r) · (Sh(n,m)× 1r) = Sh(n,m, r) = Sh(n,m+ r) · (1n × Sh(m, r)),

where · denotes the product in the group Σp+q+r.

For n ≥ 1, recall that the star graph Stn is a simple connected graph with set of
nodes Nod(Stn) = {0, 1, . . . , n} and whose edges are given by {0, i} for i = 1, . . . , n.

That is Stn is the suspension of the graph with n nodes and no edges.

Notation 5.2. For any maximal tubing T of Stn such that T 6= {{1}, . . . , {n}}, there
exists a unique integer 0 ≤ r ≤ n, a unique family of integers 1 ≤ u1 < · · · < ur ≤ n
and an order {ur+1, . . . , un} on the set {1, . . . , n} \ {u1, . . . , ur} such that

T = {{u1}, . . . , {ur}, t0, t0 ∪ {ur+1}, . . . , t0 ∪ {ur+1, . . . , un−1}},
where t0 := {0, u1, . . . , ur}.

We denote such tubing T by Tubr(u1, . . . , un), where un is the unique vertex which
does not belong to any tube of T . We denote the tubing {{1}, . . . , {n}} = Tubn(1, . . . , n)
by Tubn.

Recall this example of a tree splitting from Section 3.

, , , , .

= (                       ) 
Note that a k-fold splitting, which is given by a size k multiset of the n + 1 leaves,

corresponds to a (k, n) shuffle. The corresponding shuffle is described as follows: σ(i)
for i ∈ 1, . . . , k is equal to the sum of the numbers of leaves in the resulting list of trees 1
through i. For instance in the above example the shuffle is (3, 4, 8, 10, 1, 2, 5, 6, 7, 9, 11).

In the above Section 3 the product of two painted trees is described as a sum over
splits of the first tree, where after each split the resulting list of trees is grafted to the
leaves of the second tree. Thus this product can be seen as a sum over shuffles. In fact
if we illustrate the products using the graph tubings, then shuffles are actually more
easily made visible than splittings.

Here we mainly want to show some examples of the products, since we have already
proven the structure. For that purpose we show single terms in the product, each term
relative to a shuffle. Figures 25 and 27 show terms in two sample products, relative to
the given shuffle, and illustrating the splitting as well. In Figures 26 and 28 we show
the same sample product terms, pictured using the tubings on the star graphs and fan
graphs.
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Figure 25. One term in the product defined in Section 3, relative to the
given shuffle.
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Figure 26. The same product as pictured in Figure 25, shown here using
tubings on the star graphs.
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Figure 27. One term in the product defined in Section 3, relative to the
given shuffle.
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Figure 28. The same product as pictured in Figure 27, shown here using
tubings on the star graphs.
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6. Alternative product on the Stellohedra vertices

For n ≥ 1, we denote by [n] the set {1, . . . , n}. For any set of natural numbers
U = {u1, . . . , uk} and any integer r ∈ Z, we denote by U+r the set {u1+r, . . . , uk+r}.

Let G be a simple finite graph with set of nodes Nod(G) = {j1, . . . , jr} ⊆ N, we
denote by G + n the graph G, with the set of nodes colored by Nod(G) + n, obtained
by replacing the node ji of G by the node ji + n, for 1 ≤ i ≤ r.

Let G be a simple finite graph, whose set of nodes is [n], we identify a tube t =
{v1, . . . , vk} of G with the tube t(h) = {v1 + h, . . . , vk + h} of G + h. For any tubing
T = {ti} of G, we denote by T (h) the tubing {ti(h)} of G + h. In the present section,

we use the shuffle product, which defines an associative structure on the vector space
spanned by all the vertices of permutohedra, in order to introduce associative products
(of degree −1) on the vector spaces spanned by the vertices of stellohedra.

Definition 6.1. Let T be a maximal tubing of Stn and V be a maximal tubing of Stm
such that T = Tubr(u1, . . . , un) and V = Tubs(v1, . . . , vm). For any (n − r,m − s)-
shuffle σ ∈ Sn+m−r−s define the maximal tubing T ∗σ V of Sn+m as follows:

T ∗σ V := Tubr+s(u1, . . . , ur, v1+n, . . . , vs+n, wσ−1(1), . . . , wσ−1(n+m−(r+s))),

where:

wi :=

{
ur+i, for 1 ≤ i ≤ n− r,
vs+i+r−n+n, for n− r < i ≤ n+m− r − s.

}

If T = Tubn, then σ = 1m and

Tubn ∗1m V = Tubn+s(1, . . . , n, v1 + n, . . . , vm + n).

In a similar way, we have that

T ∗1n Tubm = Tubr+m(u1, . . . , ur, n+ 1, . . . , n +m, ur+1, . . . , un).

In Figure 29 we illustrate the following example.

Tub3(1, 2, 6, 5, 3, 4) ∗σ Tub2(1, 3, 2, 4) = Tub5(1, 2, 6, 7, 9, 5, 8, 3, 10, 4)

...where σ = (1, 3, 5, 2, 4). For comparison see a product with the same operands in
Figure 26.

Using Definition 6.1, we define a shuffle product on the vector space K[MT (St)] :=⊕
n≥1K[MT (Stn)], where MT (Stn) denotes the set of maximal tubings on Stn, which

correspond to the vertices of stellohedra, as follows.

Definition 6.2. Let T ∈ MT (Stn) and V ∈ MT (Stm) be two maximal tubings. The
product T ∗ V ∈ MT (Stn+m) is defined as follows:

(1) If T = Tubr(u1, . . . , un) 6= Tubn and V = Tubs(v1, . . . , vm) 6= Tubm, then:

T ∗ V :=
∑

σ∈Sh(n−r,m−s)

T ∗σ V,

where Sh(n− r,m− s) denotes the set of (n−r,m−s)-shuffles in Sn+m−(r+s).
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Figure 29. Example of Definition 6.1.

(2) If T = Tubn and V = Tubm, then:

T ∗ V = Tubn+m.

(3) If T = Tubn and V = Tubs(v1, . . . , vm) 6= Tubm, then:

T ∗ V := Tubn+s(1, . . . , n, v1 + n, . . . , vm + n).

(4) If T = Tubr(u1, . . . , un) 6= Tubn and V = Tubm, then:

T ∗ V := Tubr+m(u1, . . . , ur, n+ 1, . . . , n+m, ur+1, . . . , un).

Proposition 6.3. The graded vector space K[MT (St)], equipped with the product ∗ is
an associative algebra.

Proof. Suppose that the elements T = Tubr(u1, . . . , un) in MT (Stn), V = Tubs(v1, . . . , vm)
belongs to MT (Stm) and W = Tubz(w1, . . . , wp) belongs to MT (Stp) are three maxi-
mal tubings, where eventually T = Tubn, V = Tubm or W = Tubp.

Applying the associativity of the shuffle, we get that:

(T ∗ V ) ∗W =∑
Tubr+s+z(u1, . . . vr, v1+n, . . . , w1+n+m, . . . , xσ−1(1), . . . , xσ−1(n+m+p−(r+s+z)))
= T ∗ (V ∗W ),

where we sum over all permutations σ ∈ Sh(n−r,m− s, p−s) and

xi :=





ur+i, for 1 ≤ i ≤ n−r,
vs+i+r−n+n, for n−r < i ≤ n +m−r−s,
wz+i+r+s−n−m+n+m, for n +m−r−s < i ≤ n+m+ p−r−s−z,





which ends the proof. �
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7. Questions

There are well-known extensions of SSym and YSym to Hopf algebras based on all
of the faces of the permutohedron and associahedron. These were first described by
Chapoton, in [7], along with a Hopf algebra of the faces of the hypercubes. We realize
the first two Hopf algebras using the graph tubings in [17]. They are denoted SSỹm
and YSỹm respectively, and so we refer to Chapoton’s algebra of the faces of the cube
as CSỹm.

Immediately the question is raised: how might we relate the coalgebra SSỹm◦CSỹm
to our algebra of stellohedra faces? How can we relate the Hopf algebra on C̃/C for C
the corollas, thus an algebra on the faces of the hypercube, to Chapoton’s Hopf algebra
CSỹm?

Further questions arise as we look at the other polytopes in our set of 12 sequences.
(Of course, recall that 4 of them are only conjecturally convex polytope sequences.) For
instance, via our bijection there is a Hopf algebra based on the weakly ordered forests
grafted to corollas–which we would like to characterize in terms of known examples.
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