1700 FORESTS

NACHUM DERSHOWITZ

Arvoles lloran por lluvia
y montañas por aire
Ansí lloran mis ojos
por ti querido amante
Ladino folk song

Abstract

Since ordered trees and Dyck paths are equinumerous, so are ordered forests and grand-Dyck paths that start with an upwards step.

1. Introduction

We are interested in the number of ordered forests (that is, sequences of non-trivial ordered rooted trees) with a total of n edges. Every tree in the forest must have at least one edge (in that sense they are nontrivial), or else there would be infinitely many forests for every n. For example, there are $\binom{5}{3}=10$ such forests with $n=3$ edges, as depicted in Figure 1 .

It turns out - easily enough - that these forests are counted by

$$
\begin{equation*}
F_{n}=\frac{1}{2}\binom{2 n}{n}=\binom{2 n-1}{n} \tag{1}
\end{equation*}
$$

This enumeration is sequence A001700 in Neil Sloane's On-Line Encyclopedia of Integer Sequences (OEIS):1

n	0	1	2	3	4	5	6	7	8	\cdots
F_{n+1}	1	3	10	35	126	462	1716	6435	24310	\cdots

In other words, sequence $\mathrm{A} 001700(n)=F_{n+1}$ also counts the number of ordered forests with $n+1$ edges (and no trivial trees).

Compare this forest enumeration with the Catalan numbers, $C(n)=$ $\frac{1}{n+1}\binom{2 n}{n}$, which count (among many combinatorial objects) ordered

[^0]

Figure 1. Ten triple-edge forests $(n=3)$.

Figure 2. The grand-Dyck path corresponding to the 7th (blue) forest in Figure 1 .
forests with n nodes, allowing for trivial (leaf-only, edgeless) trees. They form sequence A000108 in the OEIS.

Perhaps it is because parameterizing by the number of edges is less common than the use of a node parameter that this enumeration of ordered forests has not appeared in the literature until now.

2. Paths and Forests

The justification for enumeration (1) follows from the standard correspondence between trees and lattice paths. A Dyck path is a (monotonic, "staircase") lattice path (consisting of a mix of \uparrow and \rightarrow steps) beginning and ending on the diagonal and never venturing below; a grand-Dyck path may go both above and below the diagonal but must end on it 2^{2}

Ordered (rooted plane) trees with n edges are well-known to be in bijection with Dyck paths of length $2 n \sqrt[3]{3}$ So a forest, which is a sequence of trees, corresponds to a sequence of Dyck paths. Every grand-Dyck can be interpreted as a sequence of Dyck paths, one per (non-trivial) tree, delineated by the points at which the path crosses the diagonal. See Figure 2 (left). There are $\binom{2 n}{n}$ such paths (since they must have $n \uparrow$ steps and $n \rightarrow$ steps). But a path and its mirror image (reflected about the diagonal) correspond to the same forest. The equation follows.

[^1]
3. Height Restrictions

The correspondence between forests and grand-Dyck paths applies equally to trees of restricted height and paths within a band, the latter analyzed by Mohanty $\sqrt[4]{4}$ It follows that the number of n-edge forests whose trees are all of height at most h is

$$
\begin{equation*}
F_{n}^{h}=\frac{1}{2} \sum_{k \in \mathbb{Z}}\left[\binom{2 n}{n+2 k(h+1)}-\binom{2 n}{n+(2 k+1)(h+1)}\right] \tag{2}
\end{equation*}
$$

For example, there are

$$
\begin{aligned}
F_{3}^{1} & =\frac{1}{2} \sum_{k}\left[\binom{6}{3+4 k}-\binom{6}{5+4 k}\right] \\
& =\frac{1}{2}\left[\binom{6}{-1}-\binom{6}{1}+\binom{6}{3}-\binom{6}{5}\right] \\
& =\frac{1}{2}[0-6+20-6]=4
\end{aligned}
$$

forests in Figure 1 with trees of height 1.

[^2]
[^0]: Date: January 15, 2018.
 ${ }^{1}$ http://oeis.org Previously in print form: Neil J. A. Sloane, A Handbook of Integer Sequences, Academic Press, NY, 1973.

[^1]: ${ }^{2}$ Grand-Dyck paths are classified as "bridges" in Cyril Banderier and Philippe Flajolet, "Basic analytic combinatorics of directed lattice paths", Theoretical Computer Science 281 (2002): 37-80.
 ${ }^{3}$ David A. Klarner, "Correspondence between plane trees and binary sequences", Journal of Combinatorial Theory 9 (1970) 401-411.

[^2]: ${ }^{4}$ Sri Gopal Mohanty, Lattice Path Counting and Applications, volume 37 of Probability and Mathematical Statistics, Academic Press, New York, 1979, pp. 6-7.

