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A q-QUEENS PROBLEM
IV. QUEENS, BISHOPS, NIGHTRIDERS (AND ROOKS)

CHRISTOPHER R. H. HANUSA, THOMAS ZASLAVSKY, AND SETH CHAIKEN

Abstract. Parts I–III showed that the number of ways to place q nonattacking queens
or similar chess pieces on an n × n chessboard is a quasipolynomial function of n whose
coefficients are essentially polynomials in q and, for pieces with some of the queen’s moves,
proved formulas for these counting quasipolynomials for small numbers of pieces and high-
order coefficients of the general counting quasipolynomials.

In this part, we focus on the periods of those quasipolynomials by calculating explicit
denominators of vertices of the inside-out polytope. We find an exact formula for the
denominator when a piece has one move, give intuition for the denominator when a piece has
two moves, and show that when a piece has three or more moves, geometrical constructions
related to the Fibonacci numbers show that the denominators grow at least exponentially
with the number of pieces.

Furthermore, we provide the current state of knowledge about the counting quasipoly-
nomials for queens, bishops, rooks, and pieces with some of their moves. We extend these
results to the nightrider and its subpieces, and we compare our results with the empirical
formulas of Kotěšovec.
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1. Introduction

The famous n-Queens Problem asks for the number of arrangements of n nonattacking
queens—the largest possible number—on an n × n chessboard. (See, for instance, [15].)
There is no known general formula, other than the very abstract, that is to say impractical
one we obtained in Part II. Solutions have been found only by individual analyses for small
n.

In this series of five papers [?, 8, 19] we treat the problem by separating the board size,
n, from the number of queens, q, and rephrasing the whole problem in geometry. We also
generalize to every piece P whose moves are, like those of the queen, rook, and bishop,
unlimited in length. Such pieces are known as “riders” in fairy chess (chess with modified
rules, moves, or boards); an example is the nightrider, whose moves are those of the knight
extended to any distance. The problem then, given a fixed rider P, is:

Problem 1. Find an explicit, easily evaluated formula for uP(q;n), the number of nonat-
tacking configurations of q unlabelled pieces P on an n× n board.

Two kinds of piece were previously solved: the rook, which is elementary, and the bishop,
for which Arshon and Kotěšovec found a single formula. Aside from those two, formulas in
terms of n have been found for only a few riders and only for small numbers of pieces—for
instance, up to 6 queens or 3 nightriders—and mostly heuristically, without rigorous proof.
(Given the power of computers, proving a formula is more difficult than making an educated
guess, which itself is by no means easy even for an expert like Václav Kotěšovec [10, 11].)
Finding a single comprehensive formula, for all numbers of pieces q and all board sizes n, for
any piece other than the rook and bishop—especially for the queen, the original problem of
this type—looks impossible.

One difficulty is not being certain what such a formula should look like.

Problem 2. Describe the nature of a formula for uP(q;n) for an arbitrary piece.
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One would wish there to be one style of formula that applies to all riders. This ideal is
realized to an extent. We proved in Part I that for each rider P, uP(q;n) is a quasipolynomial
function of n of degree 2q and that the coefficients of powers of n are given by polynomials in
q, up to a simple normalization; for instance, the leading term is n2q/q!. Being a quasipoly-
nomial means that for each fixed q, uP(q;n) is given by a cyclically repeating sequence of
polynomials in n (called the constituents of the quasipolynomial); the shortest length of such
a cycle is the period of uP(q;n). That raises a fundamental question.

Problem 3. What is the period p of the quasipolynomial formula for uP(q;n)? (The period,
which pertains to the variable n, may depend on q.)

The period tells us how much data is needed to rigorously determine the complete formula;
2qp values of the counting function determine it completely, since the degree is 2q and the
leading coefficient is known. The difficulty with this computational approach is that, in
general, p is hard to determine and seems usually to explode with increasing q. (Indeed,
we have reason to believe the period increases at least exponentially for any rider with at
least three moves; see Theorem 5.10.) A better way would be to find information about the
uP(q;n) that is valid for all q.

Problem 4. For a given piece P, find explicit, easily evaluated formulas for the coefficients
of powers of n in the quasipolynomials uP(q;n), valid for all values of q.

A complete solution to Problem 4 would solve Problem 1. We think that is unrealistic but
we have achieved some results. In Part I we took a first step: in each constituent polynomial,
the coefficient γi of n

2q−i is (neglecting a denominator of q!) itself a polynomial in q of degree
2i, that varies with the residue class of n modulo a period pi that is independent of q. In
other words, if we count down from the leading term there is a general formula for the ith
coefficient as a function of q that has its own intrinsic period; the coefficient is independent
of the overall period p. This opens the way to explicit formulas and in Part II we found
such a formula for the second leading coefficient as well as the complete quasipolynomial
for an arbitrary rider with only one move—an unrealistic game piece but mathematically
informative. In Part III we found the third and fourth coefficients by concentrating on partial
queens, whose moves are a subset of the queen’s.

Still, that is only scratching at the surface; we want to go further. In this part we present
our current state of knowledge about specific pieces: the queen, rook, bishop, and nightrider
and the pieces that have a subset of their moves. Our goal is to prove exact quasipolynomial
formulas for a fixed number q of each piece, where q is (unavoidably) small, and along the
way to see how many complete formulas we can prove for coefficients of high powers of n.

How large a number q and how many coefficients we can handle depends on the piece. For
the rook, naturally, we get well-known formulas for all q. At the other extreme we have only
very partially solved three nightriders, for which the formula was previously found heuristi-
cally, without proof, by Kotěšovec. No formula for four nightriders has even been guessed;
it is conceivable, but judging by the 11-digit denominator we computed (see Table 9.1) not
probable, that it could be obtained by a painstaking analysis using our method. We offer no
hope for five.

One reason we want a quasipolynomial is to substitute n = −1 to get the number of
combinatorially distinct types of configuration, as explained in Section I.5. The Arshon–
Kotěšovec formula for bishops is not a quasipolynomial and does not help us find the bishops
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counting quasipolynomials. For that reason we consider the bishops problem only partially
solved and we give it close attention in Part V.

We summarize our geometrical approach: We create a configuration of points and lines to
represent attacks of specified slopes. The boundaries of the square determine a hypercube
in R2q and the attack lines determine hyperplanes whose 1/(n+ 1)-fractional points within
the hypercube represent attacking configurations, which must be excluded; the nonattacking
configurations are the integral points inside the hypercube and outside every hyperplane, so it
is they we want to count. The combination of the hypercube and the hyperplanes is an inside-
out polytope [2]. The Ehrhart theory of inside-out polytopes implies quasipolynomiality of
the counting function and that the period divides the denominator D, defined as the least
common multiple of the denominators of all coordinates of vertices of the inside-out polytope.
Then we apply the inside-out adaptation of Ehrhart lattice-point counting theory, in which
we combine by Möbius inversion the numbers of lattice points in the polytope that are in
each intersection subspace of the hyperplanes.

We also investigate the denominators of individual vertices, which provide a better un-
derstanding of the period because the overall denominator bounds it. In general in Ehrhart
theory the period and the denominator need not be equal and often are not, so it is surprising
that in all our examples, and for any rider with only one move, they are. We cannot prove
that is always true for the inside-out polytopes arising from the problem of nonattacking
riders, but this observation suggests that our approach to that problem may be a good test
case for understanding the relationship between denominators and periods.

We find an exact formula for the denominator of a one-move rider in Proposition 4.1, and
we introduce a notion of trajectories to give intuition about finding the denominator for a
piece with two moves (Section 4.2). We show that when a piece has three or more moves,
by letting the number q of pieces increase we obtain a sequence of inside-out polytope
vertices with denominators that increase exponentially, and the polytope denominators may
increase even faster. These vertices arise from geometrical constructions related to Fibonacci
numbers.

A summary of this paper: Section 2 recalls some essential notation and formulas from
Parts I–III. Section 3 describes the concepts we use to analyze the periods. We turn to
the theory of attacking configurations of pieces with small numbers of moves in Sections 4
and 5, partly to establish formulas and conjectural bounds for the denominators of their
inside-out polytopes, especially for partial queens and nightriders, and partly to support
the exponential lower bound on periods and our many conjectures. After connecting to our
theory the known results on rooks in Section 6, we discuss the current state of knowledge
and ignorance about bishops and semi-bishops in Section 7. Section 8 treats the queen as
well as the partial queens that are not the rook, bishop, and semi-bishop. Section 9 concerns
the nightrider and sub-nightriders, whose nonattacking placements have not been the topic
of any previous theoretical discussion that we are aware of.

We conclude with questions related to these ideas and with proposals for research. For
example, since counting nonattacking rider placements is an accessible topic in Ehrhart
theory, we suggest in Section 10.1 fairy chess pieces with relatively simple behavior that
might provide insight into the central open problem of a good general bound on the period
of the counting quasipolynomial in terms of q and the set of moves. In future work we will
prove stronger properties, such as that every positive integer ∆ appears as a denominator
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given enough pieces; specifically, about C log∆ pieces where C depends on the piece’s set of
moves.

We append a dictionary of notation for the benefit of the authors and readers.

We must mention Kotěšovec’s book [11], replete with formulas, mostly generated by him-
self, for all kinds of nonattacking chess problems. We learned of this work after beginning
our research; then properties of Kotěšovec’s bishops and queens formulas inspired much of
our detailed results. For instance, we saw that the coefficients of highest degree are constant
(independent of n); then we proved most of the observed constancies. Kotěšovec conjectured
some formulas for high-degree coefficients; we prove some of those conjectures. We saw that
the bishops quasipolynomials (for q ≥ 3) all have period 2; in Part V we prove that is true
for every number (at least 3) of bishops. Kotěšovec conjectured that the period of a queens
quasipolynomial is a product of Fibonacci numbers; we take a step toward a proof.

Anyone who wants to know the actual number of nonattacking placements of q of our four
principal pieces will find answers in the Online Encyclopedia of Integer Sequences [16]. Table
1.1 gives sequence numbers in the OEIS. The first sequence in each column is the sequence
of square numbers. After that it gets interesting.

q Rooks Bishops Queens Nightriders

1 A000290 A000290 A000290 A000290

2 A163102* A172123 A036464 A172141

3 A179058 A172124 A047659 A173429

4 A179059 A172127 A061994 —

5 A179060 A172129 A108792 —

6 A179061 A176886 A176186 —

7 A179062 A187239 A178721 —

8 A179063 A187240 — —

9 A179064 A187241 — —

10 A179065 A187242 — —

Table 1.1. Sequence numbers in the OEIS for nonattacking placements of
q rooks, bishops, queens, and nightriders. In each sequence the board size n
varies from 1 to (usually) 1000. * means n in the OEIS is offset from our value.

2. Essentials from Before

Each configuration-counting problem arises from making two choices: a chess piece, and
the number of pieces. (The size of the board is considered a variable within the problem.)
The pieces are placed on the integral points, (x, y) for x, y ∈ [n] := {1, . . . , n}, in the interior
of an integral dilation (n + 1)[0, 1]2 of the unit square. We call the set

[n]2 = (n+ 1)(0, 1)2 ∩ Z2,

whose dilation factor is n + 1, the board, in full the integral square board. We also call the
open or closed unit square the “(square) board”; it will always be clear which board we
mean.
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We sometimes consider a general board B, which is any rational convex polygon, i.e., it
has rational corners. (We call the vertices of B its corners to avoid confusion with other
points called vertices.) When we do not mention B or a polygonal board, our board will
always be square.

The piece P has moves defined as all integral multiples of a finite set M of non-zero,
non-parallel integral vectors m = (c, d) ∈ Z2, which we call the basic moves. Each one must
be reduced to lowest terms; that is, its two coordinates need to be relatively prime; and no
basic move may be a scalar multiple of any other. Thus, the slope of m contains all necessary
information and can be specified instead of m itself. We say two distinct pieces attack each
other if the difference of their locations is a move. In other words, if a piece is in position
z := (x, y) ∈ Z2, it attacks any other piece in the lines z+rm for r ∈ Z and m ∈ M. Attacks
are not blocked by a piece in between, and they include the case where two pieces occupy the
same location. (The set M is {(1, 1), (1,−1)} for the bishop, {(1, 0), (1, 1), (0, 1), (1,−1)} for
the queen, {(2, 1), (1, 2), (2,−1), (1,−2)} for the nightrider, and of course {(1, 0), (0, 1)} for
the rook.) The number q is the number of pieces that are to occupy places on the board; we
assume q > 0.

A configuration z = (z1, . . . , zq) is any choice of locations for the q pieces, including on the
board’s boundary, where zi := (xi, yi) denotes the position of the ith piece Pi. (The boundary,
while not part of the board proper, is necessary in our counting method.) Therefore, z is
an integral point in the (n + 1)-fold dilation of the 2q-dimensional closed, convex polytope
P = Bq.. If we are considering the undilated board, z is a fractional point in Bq. We
consider these two points of view equivalent; it will always be clear which kind of board
or configuration we are dealing with. Any integral point z in the dilated polytope, or its
fractional representative 1

n+1
z in the undilated board, represents a placement of pieces on

the board, and vice versa; thus we use the same term “configuration” for the point and the
placement. In this part B is usually the square board; then the closed and open polytopes
are [0, 1]2q and (0, 1)2q.

The constraint for a nonattacking configuration is that the pieces must be in the board
proper (so z ∈ (B◦)q or its dilation) and that no two pieces may attack each other. In other
words, if there are pieces at positions zi and zj , then zj − zi is not a multiple of any m ∈ M;
equivalently, (zj − zi) ·m⊥ 6= 0 for each m ∈ M, where m⊥ := (d,−c).

For counting we treat nonattacking configurations as interior integral lattice points in the
dilation of an inside-out polytope (P,AP), where P = Bq and AP is the move arrangement ,
whose members are the move hyperplanes (or attack hyperplanes)

H
d/c
ij := {(z1, . . . , zq) ∈ R2q : (zj − zi) ·m⊥ = 0}

for m = (c, d) ∈ M; the equations of these hyperplanes are called the move equations (or
attack equations) of P. Thus (by the definition of “interior” of an inside-out polytope [2]), a
configuration z ∈ P is nonattacking if and only if it is in P◦ and not in any of the hyperplanes

H
d/c
ij . The intersection lattice L (AP) is the lattice of all intersections of subsets of the move

arrangement, ordered by reverse inclusion. The Möbius function of L (AP) is denoted by µ.
A vertex of (P,AP) is any point in P that is the intersection of facets of P and hyperplanes of
AP. For instance, it may be a vertex of P, or it may be the intersection point of hyperplanes
if that point is in P, or it may be the intersection of some facets and some hyperplanes.

Each subspace U ∈ L (AP) is the intersection of hyperplanes involving a set I consisting

of κ of the q pieces. The essential part of U is the subspace Ũ of R2κ that satisfies the same
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attack equations as U. Define α(U;n) to be the number of integral points in the dilation of

(B◦)κ ∩ Ũ, i.e.,

α(U;n) := E(0,1)2κ∩Ũ(n + 1).

(The utility of this quantity is that it is independent of q, because Ũ is independent of the
value of q used to construct it from U.) By Ehrhart theory α(U;n) is a quasipolynomial

of degree 2κ − codimU. Since U ∼= R2(q−κ) × Ũ, the number of lattice points in U ∩ P◦ is
n2(q−κ)α(U;n).

The Parity Theorem (Theorem II.4.1) tells us that α(U;n) is an even or odd function of n
(depending on the codimension of U). What it does not say is how that affects the number
of undetermined coefficients in computing α(U;n), which is, in particular, the number of
values of the function we need to interpolate all the coefficients. In general, an Ehrhart
quasipolynomial of degree d with period p has pd+1 coefficients that have to be computed.
(The leading coefficient is the same for all constituents; it is the volume of U ∩ P.) The full
theorem, then, should be this:

Theorem 2.1 (Strong Parity Theorem). For a subspace U ∈ L (AP) whose equations involve
κ pieces, for which α(U;n) has period p, the number of values of α(U;n) that are sufficient
to determine all the coefficients in all constituents is ⌈p(κ− 1

2
codimU)⌉+ ε, where ε = 1 if

codimU is even and 0 if it is odd.

Proof. Let α(n) := α(U;n) and ν := codimU. Thus, α has degree d := 2κ− ν.
Let the constituents of α be α0, α1, . . . , αp−1; that means α(n) = αn mod p(n). We take

subscripts modulo p so that, e.g., α−1 = αp−1. Write αi(n) = adn
d+ai,d−1n

d−1+ · · ·+ai,0n
0.

Since α−i(−n) = (−1)dαi(n) (Corollary II.4.1),

α−i(−n) = adn
d + a−i,d−1n

d−1 + · · ·+ a−i,0n
0 =

(−1)dαi(n) = adn
d(−1)0 + ai,d−1n

d−1(−1)1 + · · ·+ ai,0n
0(−1)d.

Subtracting,
∑d−1

j=0[ai,j(−1)d−j − a−i,j]n
j = 0, which implies that a−i,j = (−1)d−jai,j for

j < d. It follows that only the coefficients for 0 ≤ i ≤ p/2 need to be computed. There are
d⌊(p − 1)/2⌋ coefficients with j < d for 0 < i < p/2. For i = 0, Corollary II.4.1 says that
α0 is an even or odd polynomial (depending on d) and so is αp/2 if the period is even. The
number of coefficients to determine, other than αd, is therefore ⌊d/2⌋ for α0 and the same
for αp/2 if it exists. Summing these up, there are

pd

2
+





1 if d is even,

0 if d is odd and p is even,
1
2

if pd is odd

independent coefficients to be computed in α. �

The quasipolynomial for the number of nonattacking configurations of q unlabelled pieces
on an n× n board expands in powers of n in the form

uP(q;n) = γ0(n)n
2q + γ1(n)n

2q−1 + γ2(n)n
2q−2 + · · ·+ γ2q(n)n

0.

With labelled pieces the number is oP(q;n), which equals q!uP(q;n). Our task is to find the
coefficients γi(n), or in practice q!γi(n), which we know to be polynomials in q that may
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differ for each residue class of n modulo the period p (Theorem I.4.2). Ehrhart theory says
that the leading coefficient of oP(q;n) is the volume of the polytope [0, 1]2q, i.e., 1; so

γ0 = 1/q!

for every piece.
In the proofs we assume acquaintance with the counting theory of Part II for the square

board, [0, 1]2 in the notation of Part II. For a basic move m = (c, d), we define ĉ :=

min(|c|, |d|), d̂ := max(|c|, |d|), and n̄ := (n mod d) ∈ {0, . . . , n− 1}.
In Part II we defined

αd/c(n) := α(H
d/c
12 ;n),

the number of ordered pairs of positions that attack each other along slope d/c (they may
occupy the same position; that is considered attacking). Similarly,

βd/c(n) := α(H
d/c
12 ∩H

d/c
13 ;n),

the number of ordered triples that are collinear along slope d/c. Proposition II.3.1 gives
general formulas for α and β. We need only a few examples for later use:

(2.1)

α0/1(n) = α1/0(n) = n3, α±1/1(n) =
2n3 + n

3
,

β0/1(n) = β1/0(n) = n4, β±1/1(n) =
n4 + n2

2
,

α±2/1(n) = α±1/2(n) =

{
5
12
n3 + 1

3
n for n even,

5
12
n3 + 7

12
n for n odd

=
5

12
n3 +

11

24
n + (−1)n

{
1

8
n

}
,

β±2/1(n) = β±1/2(n) =

{
3
16
n4 + 1

4
n2 for n even,

3
16
n4 + 5

8
n2 + 3

16
for n odd.

=
3

16
n4 +

7

16
n2 +

3

32
− (−1)n

{
3

16
n2 +

3

32

}
.

3. Periods and Denominators

3.1. Vertex Configurations and the Denominator.
A point z = (z1, . . . , zq) of an inside-out polytope (Bq,AP), associated with q copies of

a piece P on a board B, represents a configuration of q pieces on the board, with piece Pi

located at position zi ∈ B.
A vertex z of (Bq,AP) is determined by 2q equations that are either move equations,

associated to hyperplanes H
d/c
ij ∈ AP, or boundary equations, also called fixations in this

part, of the form zi ∈ an edge line E of B; for the square board a fixation is one of xi = 0,
yi = 0, xi = 1, and yi = 1. (For a configuration in an N -fold dilation N · B, a fixation has
the form zi ∈ N ·E.) The vertex z represents a configuration with Pi on the boundary of the
board (if it has a fixation) or attacking one or more other pieces (if in a hyperplane). We
call the configuration of pieces that corresponds to a vertex z a vertex configuration.
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Let us write ∆(z) for the least common denominator of a fractional point z ∈ R2q and call
it the denominator of z. The denominator D = D(Bq,AP) of the inside-out polytope is the
least common multiple of the denominators ∆(z) of the individual vertices.

One way to find ∆(z) for a vertex z is to find its coordinates by intersecting move hyper-
planes of P and facet hyperplanes of Bq. There is an equivalent method to find ∆(z). For
a set of move equations and fixations producing a vertex configuration z, notice that the
∆(z)-multiple of z has integer coordinates and no smaller multiple of z does. This proves:

Lemma 3.1. For a vertex z of (Bq,AP), ∆(z) equals the smallest integer N such that a
configuration N · z satisfying the move equations and fixations zi ∈ N · E for edge lines E

(xi = 0, yi = 0, xi = N , or yi = N on the square board) has integral coordinates.

We define ∆q to be the maximum value of the denominator ∆(z) over all vertices z of the
inside-out polytope for q. (It is not to be confused with Dq, which means the least common
multiple of vertex denominators.)

We expect the period to be weakly increasing with q and also with the set of moves; that
is, if q′ > q, the period for q′ pieces should be a multiple of that for q; and if P′ has move
set containing that of P, then the period of P′ should be a multiple of that of P. (The pieces
need not be partial queens.) We cannot prove either property, but they are obvious for
denominators, and we see in examples that the period equals the denominator. We write
Dq(P) for the denominator of the inside-out polytope ([0, 1]2q,A q

P ). (The optional superscript
in A

q
P shows the number of pieces.)

Proposition 3.2. Let B be any board, let q′ > q > 0, and suppose P and P′ are pieces
such that every basic move of P is also a basic move of P′. Then the denominators satisfy
Dq(P)|Dq′(P) and Dq(P)|Dq(P

′).

Proof. The first part is clear if we embed R2q into R2q′ as the subspace of the first 2q
coordinates, so the polytope Bq is a face of B2q′ and the move arrangement A

q
P in R2q is a

subarrangement of the arrangement induced in R2q by A
q′

P .
The second part is obvious since A

q
P ⊆ A

q
P′. �

Although in Ehrhart theory periods often are less than denominators, we observe that not
to be true for our solved chess problems. We believe that will some day become a theorem.

Conjecture 3.3. For every rider piece P and every number of pieces q ≥ 1, the period of the
counting quasipolynomial uP(q;n) equals the denominator D([0, 1]2q,AP) of the inside-out
polytope for q pieces P.

3.2. Partial queens and polynomials. A partial queen Qhk is a piece with h basic moves
that are horizontal or vertical (obviously, h ≤ 2) and k basic moves at ±45◦ to the horizontal
(also, k ≤ 2). We studied partial queens in Part III. Table 3.1 contains a list of the partial
queens with their names and what we know or believe about the periods of their counting
quasipolynomials. In particular, we think four of the partial queens are uniquely special.

Conjecture 3.4. The rook and semirook, the semibishop, and the subqueen are the only
four pieces that have period 1—that is, whose counting functions are polynomials in n.

Conjecture 3.4 is supported by the fact that, by Theorem 4.2, the only one-move pieces
with period 1 are the semirook and semibishop. The rook is obvious. If Conjecture 4.3 is true
Corollary 4.5 establishes the same for the subqueen. Any other one-move piece has larger
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Name (h, k) Periods

q = 2 q = 3 q = 4 q = 5 q = 6 q > 6

Semirook (1, 0) 1 1 1 1 1 1

Rook (2, 0) 1 1 1 1 1 1

Semibishop (0, 1) 1 1 1 1 1 1

Subqueen (1, 1) 1 1 1 1 1 1* (q = 7, 8)

Semiqueen (2, 1) 1 1 2* 2* 6* 12◦ (q = 7)

Bishop (0, 2) 1 2 2 2 2 2

Frontal queen (1, 2) 1 2 6* 12◦ 60◦ 420◦ (q = 7)

Queen (2, 2) 1 2 6* 60* 840† 360360* (q = 7)

Table 3.1. The quasipolynomial periods for partial queens Qhk.
* is a number deduced from a formula in [11].
† is deduced from the formula of Karavaev; see [9, 11].
◦ is a value we conjecture.

period and denominator. Conjecture 3.4 follows from Proposition 3.2 and Conjecture 3.3, if
the latter is true.

4. Pieces with Fewer Moves

4.1. One-move riders. The denominator of the inside-out polytope of a one-move rider
can be explicitly determined for arbitrary boards B.

Given a move m = (c, d), the line parallel to m through a corner z of B may pass through
another point on the boundary of B. Call that point the antipode of z. The antipode may
be another corner of B. When m is parallel to an edge zizj of B, we consider zi and zj to
be each other’s antipodes.

Proposition 4.1. For a one-move rider P with move (c, d), the denominator of the inside-
out polytope (Bq,AP) equals the least common denominator of the corners of B when q = 1,
and when q ≥ 2 it equals the least common denominator of the corners of B and their
antipodes.

Proof. A vertex of (Bq,AP) is generated by some set of hyperplanes, possibly empty, and a
set of fixations. The total number of hyperplanes and fixations required is 2q. When q = 1,
because there are no move equations involved, a vertex of the inside-out polytope is a corner
of B.

When q ≥ 2, a vertex is determined by its fixations and the intersection U of the move
hyperplanes it lies in. Let π be the partition of [q] into blocks for which i and j are in

the same block if H
d/c
ij is one of the hyperplanes containing U. The number of hyperplanes

necessary to determine U is q minus the number of blocks of π. (U will be contained in
additional, unnecessary hyperplanes if a block of π has three or more members; we do not
count those.)
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Consider a particular block of π, which we may suppose to be [k] for some k ≥ 1. We
need k + 1 fixations on the k pieces to specify a vertex, so there must be two fixations that
apply to the same i ∈ [k], anchoring zi to a corner of B. The remaining k − 1 fixations fix
the other values zj for j ∈ [k] to either zi’s corner or its antipode.

It follows that all vertices (z1, . . . , zq) of the inside-out polytope satisfy that each zi is
either a corner or a corner’s antipode for all i. Furthermore, with at least two pieces and for
every corner z, it is possible to create a vertex containing z and its antipode as components,
from which the proposition follows. �

For the square board, the corners are (0, 0), (1, 0), (0, 1), and (1, 1), and the antipodes
have denominator max(|c|, |d|). Alongside Proposition II.6.2, this proves Conjecture II.6.1.

Theorem 4.2. On the square board with q ≥ 2 copies of a one-move rider with basic move
(c, d), the period of uP(q;n) is max(|c|, |d|).

This is an example where Conjecture 3.3 is true: the period agrees with the denominator.

4.2. Two-move riders. We continue with a general board B.
One fruitful kind of configuration of two-move riders with moves (c1, d1) and (c2, d2) in-

volves a trajectory, composed of a sequence of distinct pieces in which the first piece Pt1 is
anchored at a corner of B by two fixations, and the position of each subsequent piece Pti is

determined by one move hyperplane H
d′
i
/c′

i

ti−1,ti involving Pti−1
and by one fixation. The basic

moves of a trajectory are the moves (c′i, d
′
i), each of which equals either (c1, d1) or (c2, d2).

We can regard a trajectory as a sequence of points in the board instead of pieces; the position
of Pti is denoted by zti .

A trajectory is primitive if any piece after Pt1 that is placed at a corner of B is its
last. Any trajectory can be decomposed into primitive trajectories in the following manner.
Suppose T = (Pt1 , . . . ,Ptk , . . . ,Ptl) is a trajectory, perhaps accompanied by an additional
set of trajectories in order to completely determine a vertex z of the inside-out polytope, in
which k < l and ztk is a corner. We break T into T1 = (Pt1 , . . . ,Ptk−1

) and T2 = (Ptk , . . . ,Ptl)
with Ptk anchored at its corner by two fixations. We have replaced the move hyperplane

H
d′
k
/c′

k

tk−1,tk
by a new fixation that had been implied by this move hyperplane because it had

forced Ptk to be in a corner. Conversely, any equation, whether from a move hyperplane or
a fixation, that fixes Ptk in its corner is sufficient to give the same vertex z as we get from
T and the other accompanying trajectories. Therefore T can be replaced by T1 and T2 in
determining z.

A simple trajectory is a primitive trajectory in which no two consecutive slopes are equal
and no segment zti−1

zti lies on the boundary of the board.
Figure 4.1 shows that primitive trajectories can involve complex dynamics. The pattern

of piece placements depends on the range into which the slopes fall (less than −1, between
−1 and 0, between 0 and 1, and greater than 1). In most cases, the piece positions and
the denominator of the corresponding vertex follow a pattern that is difficult to describe
completely.

We believe that for two-move riders simple trajectories encompass the full scope of possible
denominators, as conjectured here.

Conjecture 4.3. The points zi ∈ R2 that occur as components of a vertex z of an inside-out
polytope of q two-move riders are determined by simple trajectories. Such points can only
occur as points along a k-point simple trajectory where k ≤ q, as intersection points of two
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Figure 4.1. A two-move rider with diagonal slopes can produce configura-
tions with arbitrarily large denominators. The coordinates of the ninth pieces
are, from left to right, (15/16, 0), (32/63, 1), and (22850/194481, 0).

simple trajectories of i and j points where i + j ≤ q + 1, or as self-intersection point of a
k-point simple trajectory where k ≤ q. As a consequence, denominators of z only arise from
such points.

Intersection points have to be included in the conjecture. If z is the intersection of segments
PiPj and PkPl of the trajectory or trajectories, segments parallel respectively to moves m
and m′, z may also have a piece Ph located at z (so z = zh), which is fixed in place by the
move equations connecting it to Pi by move m and Pk by move m′. The length limits on
the trajectories come from the fact that there are only q pieces. For an intersection point,
one piece Ph has to be reserved to place on the intersection in order to generate that point’s
denominator. With Ph on the intersection it is no longer necessary to have a piece on the
final points of the intersecting trajectory or trajectories.

Example 5.2 demonstrates that the conjecture is false for three or more moves.

Proposition 4.4. Let B be the square board and let c and d be relatively prime positive
integers. If Conjecture 4.3 is true, then the denominator of the inside-out polytope for q
two-move riders with moves (1, 0) and (±c,±d) is

D =






1 if q = 1,

d if d ≥ c and q > 1,

c if d < c and 1 < q ≤ 2⌊c/d⌋+ 1,

cd if d < c and q ≥ 2⌊c/d⌋+ 2.

Proof. We consider the two-move rider with move (c, d); the argument is similar for the other
signs. We assume q > 1 since otherwise the period is 1 and the problem is trivial.

Assuming Conjecture 4.3, we obtain all vertices of the inside-out polytope by combining
simple trajectories.

Construct a trajectory T by fixing a piece P1 at the corner (0, 0) and following the two
moves alternately, with slope first d/c, then 0, etc. At each step, stop when the move hits
an edge of the square, place the next piece there, and then begin the next move. So P2, P3,
P4 have coordinates (1, d/c), (0, d/c), (1, 2d/c), and so forth. If q is sufficiently large, this
generates a trajectory that continues until it reaches y = 1, where it stops. Evidently, T is
simple and has no self-intersections. The only other simple trajectory is T ′, a rotation of T
by 180◦ around the center of the square. T ′ begins at (1, 1) and is centrally symmetric to T .
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If d ≥ c, then T ends at P2 with coordinates (c/d, 1). T and T ′ do not intersect, so d is
the only denominator.

If d < c, then P2 in trajectory T has coordinates (1, d/c) and P3 has coordinates (0, d/c).
This zigzag pattern continues up to P2k+1 at (0, k(d/c)), where k = ⌈c/d⌉ − 1 = ⌊c/d⌋,
and then P2k+2 on the line y = 1 with x-coordinate c/d − ⌊c/d⌋. (See the illustration in
Figure 4.2.) By central symmetry, the points along T and T ′ have the same denominators
and neither T nor T ′ has a self-intersection. Thus, if q ≥ 2k + 2, there is a denominator d
as well as c and the overall denominator of the configuration is cd.

Figure 4.2. The coordinates of pieces in a trajectory of a two-move rider
with a horizontal move has denominator c until a piece has y-coordinate 1.
In this example (c, d) = (13, 4) and the coordinates of the even pieces are
P2(1, 4/13), P4(1, 8/13), P6(1, 12/13), and P8(1/4, 1).

It remains to calculate the intersections of T and T ′ if they are not the same trajectory
and if q is big enough for them to intersect. They are the same when c/d is an integer (that
means d = 1) and q ≥ 2c (P2c has coordinates (1, 1) in that case); then the denominator is
c, which is also the denominator when there are q points in T alone if 1 < q < 2c.

Now assume T and T ′ are not the same; that is, c/d is fractional (d 6= 1). Intersections
occur when a sloped edge of one trajectory (say T ) intersects a horizontal edge of the other
trajectory (say T ′). The horizontal edges of T ′ occur at y-coordinates 1 − id/c, 1 ≤ i ≤ k.
The sloped edge joins, say, P2j−1 to P2j . The x-coordinate of the intersection point is
i + j − c/d, whose denominator is d. Thus, points on the edges and points of intersection
have denominators c and d, implying that the least common denominator of all points of
the configuration is cd. For there to be an intersection, however, P2j must have greater
y-coordinate than a horizontal edge of T ′; thus, jd/c > 1 − id/c, or i + j > ⌊c/d⌋. As
the horizontal edge in T ′ is P′

2iP
′
2i+1, the number of pieces necessary for an intersection to

occur is 2(i+ j) + 1 ≥ 2(⌊c/d⌋+ 1) + 1, the denominator d appears only if q ≥ 2⌊c/d⌋+ 3.
Otherwise, the overall denominator in the trajectories is c. �

Proposition 4.4 applies to the subqueen, which has one diagonal move and one horizontal
or vertical move. Therefore:

Corollary 4.5. If Conjecture 4.3 is true, the denominator and period of the subqueen are 1.
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5. Pieces with More Moves

A piece with three or more moves enters a new domain of complexity that begins when we
have just three copies of it. (In this section and from now on we assume the square board.)

For such a piece, the denominator Dq grows exponentially, or super-exponentially, with q
(Theorem 5.10). Conjecture 3.3 would imply that the period of its counting quasipolynomial
also grows at least exponentially. Two fruitful constructions that yield the largest known
vertex denominators ∆(z) combine 2q − 3 move equations and three fixations. These con-
structions produce pieces arranged in a golden parallelogram configuration when the piece
has at least three moves (see Example 5.4) or in a twisted Fibonacci spiral when the piece
has at least four moves (see Example 5.15).

5.1. Triangle configurations. With three or more moves, a new key configuration appears.
It is a triangle of pairwise attacking pieces. We can calculate the corresponding denominator
∆.

Consider a piece with the three moves m1 = (c1, d1), m2 = (c2, d2), and m3 = (c3, d3).
Since no move is a multiple of another, there exist nonzero integers w1, w2, and w3 such that
w1m1 + w2m2 + w3m3 = (0, 0) with gcd(w1, w2, w3) = 1. The wi are unique up to negating
all of them.

Proposition 5.1. For q = 3, a triangular configuration of three pieces on the square board,
attacking pairwise along three distinct move directions m1 = (c1, d1), m2 = (c2, d2), and
m3 = (c3, d3), together with three fixations that fix its position in the square [0, 1]2, gives a
vertex z of the inside-out polytope. Its denominator is

(5.1) ∆(z) = max(|w1c1|, |w1d1|, |w2c2|, |w2d2|, |w3c3|, |w3d3|).

The pieces may be at corners, and there may be two pieces on the same edge. The three
fixations may be choosable in more than one way but they will give the same denominator.

Proof. There is a unique similarity class of triangles with edge directions m1, m2, and m3, if
we define triangles with opposite orientations to be similar. We can assume the the pieces
are located at coordinates z1, z2, z3 with max yi − min yi ≤ maxxi − maxxi (by diagonal
reflection), with x1 ≤ x2 ≤ x3 (by suitably numbering the pieces), with y1 ≤ y3 (by horizontal
reflection), and with z2 below the line z1z3 (by a half-circle rotation). The reflections change
the move vectors mi by negating or interchanging components; that makes no change in
Equation (5.1). We number the slopes so thatm1,m2, andm3 are, respectively, the directions
of z1z2, z1z3, and z2z3.

Given these assumptions the triangle must have width x3 − x1 = 1, since otherwise it will
be possible to enlarge it by a similarity transformation while keeping it in the square [0, 1]2;
consequently x1 = 0 and x3 = 1. Furthermore, the slopes satisfy d1/c1 < d2/c2 < d3/c3.
(If c3 = 0 we say the slope d3/c3 = +∞ and treat it as greater than all real numbers. If
c1 = 0 we say d1/c1 = −∞ and treat it as less than all real numbers. c2 cannot be 0.) Our
configuration has d2/c2 ≥ 0 so two slopes are nonnegative but d1/c1 may be negative. That
gives two cases.

If d1/c1 ≤ 0, we choose fixations x1 = 0, y2 = 0, and x3 = 1. (A different choice of
fixations is possible if z1z2 is horizontal or vertical, if z2z3 is horizontal or vertical, or if
z1z3 is horizontal, not to mention combinations of those cases. Note that the denominator
computation depends on the differences of coordinates rather than their values. In each
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horizontal or vertical case the choice of fixations affects only the triangle’s location in the
square, not its size or orientation.)

If d1/c1 > 0, we choose fixations x1 = y1 = 0 and x3 = 1.
The rest of the proof is the same for both cases. First we prove that the configuration

is a vertex. That means the locations of the three pieces are completely determined by the
fixations and the fact that z = (z1, z2, z3) ∈ H

m1

12 ∩ H
m2

13 ∩ H
m3

23 . We know the similarity
class of △z1z2z3 and its orientation. The fixations of P1 and P3 determine the length of the
segment z1z3. That determines the congruence class of △z1z2z3, and the fixations determine
its position. Thus, z is a vertex.

We now aim to find the smallest integer N such that N ·△z1z2z3 has integral coordinates,
i.e., it embeds in the integral lattice [0, N ] × [0, N ]. By the definition of w1, w2, and w3,
we know that z′1 = (0, 0), z′2 = −w1m1, and z′3 = w2m2 gives an integral triangle that
is similar to △z1z2z3 and similarly or oppositely oriented, because its sides have the same
slopes. If △z′1z

′
2z

′
3 is oppositely oriented to △z1z2z3 (that means z′2 is above the line z′1z

′
3),

we can make the orientations the same by negating all wi. Given these restrictions △z′1z
′
2z

′
3

is as compact as possible, for if some multiple ν△z′1z
′
2z

′
3 were smaller (0 < ν < 1) and

integral, then (νw1)m1 + (νw2)m2 + (νw3)m3 = 0 with integers νw1, νw2, νw3, so ν would
be a proper divisor of 1. By Lemma 3.1, N = ∆(z). We can now translate △z′1z

′
2z

′
3 to the

box [0, N ]× [0, N ] where

N = max(|w1c1|, |w1d1|, |w2c2|, |w2d2|, |w3c3|, |w3d3|). �

Example 5.2. For the three-move partial nightrider with move setM = {(2,−1), (2, 1), (1, 2)},
since 3 · (2,−1)− 5 · (2, 1) + 4 · (1, 2) = (0, 0) the denominator is

max(|6|, |−3|, |−10|, |−5|, |4|, |8|) = 10,

as shown in Figure 5.1.

Figure 5.1. The integral configuration determined by H
−1/2
12 , H

1/2
13 , H

2/1
23 ,

x1 = 0, y2 = 0, and x3 = 10. The coordinates are (0, 3), (6, 0), and (10, 8).
This illustrates Proposition 5.1 when d1/c1 < 0. The value of N is 10.

5.2. Three-move configurations.
Now, for pieces with three or more moves, we explore vertex configurations that use only

three moves. We motivate the general case by studying the semiqueen Q21 which has a
horizontal, vertical, and diagonal move: M = {(1, 0), (0, 1), (1, 1)}. To supplement the

standard move-hyperplane notation we define Xij := H
1/0
ij : xi = xj and Yij := H

0/1
ij : yi = yj

for the hyperplanes that express an attack along a file (column) or rank (row).
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Figure 5.2. The integral configuration determined byH
1/3
12 , H

3/4
13 , H

2/1
23 , x1 =

0, y2 = 0, and x3 = 10. The coordinates are (0, 0), (3, 1), and (4, 3). This
illustrates Proposition 5.1 when d1/c1 > 0. The value of N is 4.

In this subsection and the next we use the terminology “golden rectangle configuration”
and “discrete Fibonacci spiral”, which is inspired by the following two concepts. (We index
the Fibonacci numbers Fi so that F0 = F1 = 1.) A golden rectangle is a rectangle whose sides

are in the ratio 1:ϕ, ϕ being the golden ratio 1+
√
5

2
. The rectangle that has side lengths Fi and

Fi+1 is a close approximation to such a rectangle. The Fibonacci spiral is an approximation
to the golden spiral (the logarithmic spiral with growth factor ϕ) where squares of Fibonacci
side length are arranged in an outwardly spiraling manner and each has a quarter circle
inscribed, as shown in Figure 5.3.

Figure 5.3. The Fibonacci spiral

There are multiple vertex configurations of q semiqueens that have denominator F⌊q/2⌋. In
this analysis we take the diagonal move to be (−1, 1).

The golden rectangle configuration with q semiqueens is defined by the move equations

X4i,4i+1, X4i+2,4i+6, X4i+1,4i+3,

Y14, Y4i,4i+4, Y4i+2,4i+3, Y4i+3,4i+5,

H
−1/1
2i+1,2i+2,

for all i such that both indices fall between 1 and q, inclusive, and fixations y1 = 0, x2 = 0,
and either xq = F⌊q/2⌋ if ⌊q/2⌋ is even or yq = F⌊q/2⌋ if ⌊q/2⌋ is odd. These fixations define
the smallest square box that contains all pieces in the configuration. They also serve to
locate the configuration in the unit-square board, by giving the unique positive integer N
such that dividing by N fits the shrunken configuration z into the square board with three
queens fixed on its boundary; thus z is a vertex (and the shrinkage justifies the use of the
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term fixation for equations like xq = F⌊q/2⌋). The denominator ∆(z) is that integer N . (See
Lemma 3.1.) The denominator of this configuration for every value of q is therefore

∆(z) = F⌊q/2⌋.

Figure 5.4(a) shows the golden rectangle configuration of 12 semiqueens; the configuration
fits in an 8 × 13 rectangle. We note that Figure 5.4(b) is a related expanding discrete
Fibonacci spiral that has the same denominator; a similar spiral will figure more prominently
in configurations with four moves.

Figure 5.4. (a) The golden rectangle configuration. (b) The discrete Fi-
bonacci spiral.

It is straightforward to find the coordinates of Pi, which we present without proof. We
assume coordinates with origin in the lower left corner of Figure 5.4(a).

Proposition 5.3. For the semiqueen P = Q21, when the pieces are arranged in the golden
rectangle configuration, P1 is in position (1, 0) and for i ≥ 2, Pi is in position

(F⌊i/2⌋, 0) if i ≡ 0 mod 4,

(F⌊i/2⌋, F⌊i/2⌋−1) if i ≡ 1 mod 4,

(0, F⌊i/2⌋) if i ≡ 2 mod 4,

(F⌊i/2⌋−1, F⌊i/2⌋) if i ≡ 3 mod 4.

The step from Pi−1 to Pi is

F⌊i/2⌋−1(1,−1) if i ≡ 0 mod 4,

F⌊i/2⌋−1(0, 1) if i ≡ 1 mod 4,

F⌊i/2⌋−1(−1, 1) if i ≡ 2 mod 4,

F⌊i/2⌋−1(1, 0) if i ≡ 3 mod 4.

A key idea is that we can apply a linear transformation to the golden rectangle configura-
tion to create six golden parallelogram configurations for any piece with three moves, some of
which may coincide if there is symmetry in the move set. To define the golden parallelogram,
in the golden rectangle configuration consider the semiqueens Q21

1 at position (1, 0), Q21
2 at

(0, 1), and Q21
3 at (1, 1). They form the smallest possible triangle; they and the construction
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rule determine the positions of the remaining pieces. For an arbitrary piece P with moves
m1, m2, and m3, we consider the smallest integral triangle involving three copies of P, which
we discussed in Proposition 5.1. We apply to the golden rectangle configuration a linear
transformation that takes vectors (1, 0) and (0, 1) to any ordered choice of two of the vectors
w1m1, w2m2, and w3m3, with a minus sign on one of them if needed to ensure that the
third side of the triangle has the correct orientation; that transforms the golden rectangle
with the Q21

i in their locations to a golden parallelogram with pieces Pi in the transformed
locations and with P1,P2,P3 forming the aforementioned smallest triangle; hence, there are
six possible golden parallelograms.

Example 5.4. For the three-move partial nightrider (defined in Section 9) the vectors are
w1m1 = (6,−3), w2m2 = (−10,−5), and w3m3 = (4, 8). The corresponding six distinct
golden parallelogram configurations are presented visually in Figure 5.5. The precise linear
transformations are given in Table 5.2. We see that of these six parallelograms, the one
yielding the largest denominator is that in the upper left.

Figure 5.5. The six golden parallelograms for 13 three-move partial nightrid-
ers. The corresponding linear transformations are given in Table 5.2.

These golden parallelograms appear to maximize the denominator, from which we infer
formulas for the largest denominators for various pieces of interest.

Conjecture 5.5. For a piece with exactly three moves, the vertex configuration giving the
largest denominator is one of the golden parallelogram configurations.

Example 5.6. The semiqueen has (up to symmetry) only one other golden parallelogram
besides the golden rectangle; it is shown in Figure 5.6. It has a larger denominator than the
golden rectangle configuration when q is odd and q ≥ 7. Here, if we consider P2 to be in
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Transformation
(1, 0) 7→ (10, 5)
(0, 1) 7→ (6,−3)

(1, 0) 7→ (−6, 3)
(0, 1) 7→ (4, 8)

(1, 0) 7→ (10, 5)
(0, 1) 7→ (4, 8)

∆ 172 110 158

Transformation
(1, 0) 7→ (6,−3)
(0, 1) 7→ (10, 5)

(1, 0) 7→ (4, 8)
(0, 1) 7→ (−6, 3)

(1, 0) 7→ (4, 8)
(0, 1) 7→ (10, 5)

∆ 152 125 139

Table 5.1. The linear transformations corresponding to the golden parallel-
ogram configurations of 13 pieces in Figure 5.5, along with the denominator
∆ for each configuration.

Figure 5.6. A golden parallelogram configuration of q semiqueens has the
largest denominator when q is odd.

position (0, 0), then P1 is in position (0,−1) and for i ≥ 2, Pi is in position

(F⌊i/2⌋ − 1,−F⌊i/2⌋) if i ≡ 0 mod 4,

(F⌊i/2⌋+1 − 1,−F⌊i/2⌋) if i ≡ 1 mod 4,

(F⌊i/2⌋ − 1, 0) if i ≡ 2 mod 4,

(F⌊i/2⌋+1 − 1,−F⌊i/2⌋−1) if i ≡ 3 mod 4.

Conjecture 5.7. The largest denominator of a vertex configuration for q semiqueens Q21 is
F⌊q/2⌋ if q is even and is F⌊q/2⌋+1 − 1 if q is odd.

Example 5.8. The frontal queen Q12 gives the three distinct golden parallelogram config-
urations shown in Figure 5.7. Once again, the largest denominator depends on q. Because
the piece positions for i ≥ 2 for the configuration in Figure 5.7(a) are

(0, 2F⌊i/2⌋ − 1) if i ≡ 0 mod 4,

(F⌊i/2⌋−1, F⌊i/2⌋+2 − 1) if i ≡ 1 mod 4,

(F⌊i/2⌋, F⌊i/2⌋ − 1) if i ≡ 2 mod 4,

(F⌊i/2⌋, F⌊i/2⌋+1 + F⌊i/2⌋−1 − 1) if i ≡ 3 mod 4,
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Figure 5.7. The three golden parallelograms for the frontal queen Q12. For
twelve pieces, the denominators are 25, 21, and 20, respectively.

the largest denominator for such a configuration with q pieces is

2F⌊q/2⌋ − 1 if q ≡ 0 mod 4,

F⌊q/2⌋+2 − 1 if q ≡ 1 mod 4,

F⌊q/2⌋+1 − 1 if q ≡ 2 mod 4,

F⌊q/2⌋+1 + F⌊q/2⌋−1 − 1 if q ≡ 3 mod 4.

On the other hand, in the configuration in Figure 5.7(c), the piece positions for i ≥ 2 are

(F⌊i/2⌋, F⌊i/2⌋ − 1) if i ≡ 0 mod 4,

(F⌊i/2⌋, F⌊i/2⌋+1 + F⌊i/2⌋−1 − 1) if i ≡ 1 mod 4,

(0, 2F⌊i/2⌋ − 1) if i ≡ 2 mod 4,

(F⌊i/2⌋−1, F⌊i/2⌋+2 − 1) if i ≡ 3 mod 4,

which yields a largest denominator of such a configuration with q pieces of

F⌊q/2⌋+1 − 1 if q ≡ 0 mod 4,

F⌊q/2⌋+1 + F⌊q/2⌋−1 − 1 if q ≡ 1 mod 4,

2F⌊q/2⌋ − 1 if q ≡ 2 mod 4,

F⌊q/2⌋+2 − 1 if q ≡ 3 mod 4.

Conjecture 5.9. The largest denominator of a vertex configuration for q frontal queens Q12

is 2Fq/2 − 1 if q is even and F(q+3)/2 − 1 if q is odd.

The symmetry in the piece positions for the two configurations is remarkable.

Suppose the linear transformation that creates a golden parallelogram carries (1, 0) 7→
w1m1 = (w1c1, w1d1) and (0, 1) 7→ w2m2 = (w2c2, w2d2). It is possible to write an explicit
formula for the denominator of the resulting golden parallelogram configuration. We have
not computed the entire formula. It has not more than 128 = 4 · 24 · 2 cases, with one case
for each value of q mod 4 and one subcase for each of the 24 sign patterns of the components
of w1m1 and w2m2 (sign 0 can be combined with sign +), and in some of those subcases one
further subcase for each of the 22 magnitude relations between |w1c1| and |w2c2| or between
|w1d1| and |w2d2|.
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Theorem 5.10. The denominators Dq(P) of any piece that has three or more moves increase
at least exponentially; specifically, they are bounded below by 1

2
ϕq/2 when q ≥ 12, where ϕ is

the golden ratio.

Proof. To prove the theorem it suffices to produce a vertex of ([0, 1]2q,A q
P ) with denominator

exceeding ϕq/2.
First consider the semiqueen. The points Q21

1 and Q21
4j of the golden rectangle have coor-

dinates (1, 0) and (F2j , 0). Letting q = 4j or 4j + 1 gives an x-difference of F2j − 1 for a
golden rectangle of q pieces. Similarly, letting q = 4j + 2 or 4j + 3 gives a y-difference of
F2j+1. The golden rectangle is a vertex configuration so it follows by Lemma 3.1 that the

vertex z has ∆(z) ≥ F⌊q/2⌋ − 1. A calculation shows that F⌊j⌋ − 1 > 1
2
ϕj+ 1

2 for j ≥ 6. The
theorem for Q21 follows.

An arbitrary piece with three (or more) moves has a golden parallelogram configuration
formed from the golden rectangle by the linear transformation (1, 0) 7→ w1m1 and (0, 1) 7→
w2m2. We may choose these moves from at least three, so we can select m1 to have c1 6= 0 and
m2 to have d2 6= 0. The displacement from Q21

1 to Q21
4j becomes that from P1 at w1m1 to P4j

at F2jw1m1. This displacement is (F2j − 1)(w1c1, w1d1). Since c1 6= 0, the x-displacement is
at least that for Q21; therefore the denominator of the corresponding vertex for P is bounded
below by F2j−1, just as it is for Q21. Similarly, the y-displacement for q = 4j+2 is bounded
below by F2j+1. This reduces the problem to the semiqueen, which is solved. �

We know that Dq is weakly increasing, by Proposition 3.2. If, as we believe, the period
equals Dq, then the period increases at least exponentially for any piece with more than two
moves.

We think any board has a similar lower bound, say C(B)ϕq/2 where C(B) is a constant
depending upon B, but we ran into technical difficulties trying to prove it.

5.3. Four-move configurations. When a piece has four or more moves, the diversity of
vertex configurations increases dramatically and the denominators grow much more quickly.
Again we start with the piece with the simplest four moves, the queen.

The discrete Fibonacci spiral with q queens is defined by the move hyperplanes

H
+1/1
2i,2i+1, H

−1/1
2i+1,2i+2, X1,3, X2i,2i+3, Y2i+1,2i+4

for all i such that both indices fall between 1 and q, inclusive, and fixations for pieces Pq−2,
Pq−1, and Pq. The fixations are

xq = 0, yq−1 = 0, xq−2 = Fq if q ≡ 0 mod 4,

xq = 0, yq = 0, xq−2 = Fq if q ≡ 1 mod 4,

xq = Fq, yq = 0, xq−2 = 0 if q ≡ 2 mod 4,

yq = Fq, xq−1 = 0, yq−2 = 0 if q ≡ 3 mod 4.

Figure 5.8 shows the discrete Fibonacci spiral of 8 queens.
The bounding rectangle of the discrete Fibonacci spiral with q queens has dimensions Fq

by Fq−1 so the vertex’s denominator is Fq.

Conjecture 5.11. The largest denominator that appears in any vertex configuration for q
queens is Fq.
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Figure 5.8. The discrete Fibonacci spiral for eight queens.

The queen appears to satisfy an extremely special property that is not shared with three-
piece riders nor with other four-piece riders. The initial data (for q ≤ 9) seems to indicate
that it is possible to construct vertex configurations that generate all denominators up to
Fq.

Conjecture 5.12. For every integer δ between 1 and Fq inclusive, there exists a vertex
configuration of q queens with denominator δ.

Example 5.13. The eighth Fibonacci number is F8 = 21. The spiral in Figure 5.8 exhibits
a denominator of 21. For each δ ≤ F7 = 13 there is a vertex configuration of seven or
fewer queens with denominator δ (we do not show them). Figure 5.9 provides seven vertex
configurations of eight queens in which the denominator ranges from 14 to 20, as one can
tell from the size of the smallest enclosing square and Lemma 3.1.

Figure 5.9. Vertex configurations of eight queens with denominators 14
through 20.
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Conjecture 5.14. The denominator of the inside-out polytope for q queens is lcm[Fq], where
[Fq] = {1, 2, . . . , Fq}.

The appearance of Fibonacci numbers in Kotěšovec’s Conjecture 8.2 was one of the main
motivations for this line of study.

Unlike in the case of three-move pieces, a simple transformation of the queen’s Fibonacci
spiral to general four-move pieces does not suffice; the configuration also experiences an
extra expansion as pieces are added. Consider the nightrider N. Example 5.2 shows that the
numbers w1, w2, and w3 are rearrangements of the triple (3, 4, 5). When we fit four nightriders
in the next Fibonacci spiral, the smallest triangle must be dilated by an additional factor of
four.

We define a twisted Fibonacci spiral of q pieces P with moves {m1, m2, m3, m4} to be
defined by the move equations

H
m1

2i,2i+1, H
m2

2i+1,2i+2, H
m3

1,3 , H
m3

2i,2i+3, H
m4

2i+1,2i+4,

for all i such that both indices fall between 1 and q, inclusive. In addition, choose the three
fixations to ensure that the square box bounding all the pieces is as small as possible and so
that all coordinates are integral.

By varying the choice of m1, m2, m3, and m4 we get different vertex configurations.
Consider nightriders in the following example.

Example 5.15. The most obvious analog of the queens’ discrete Fibonacci spiral for the
nightriders is given in Figure 5.10, for which m1 = 1/2, m2 = −2/1, m3 = 2/1, and m4 =
−1/2. There is an alternate vertex configuration with larger denominator, the “expanding
kite” shown in Figure 5.11, that is a twisted Fibonacci spiral in which m1 = −2/1, m2 = 1/2,
m3 = 2/1, and m4 = −1/2.

Figure 5.10. A twisted Fibonacci spiral for 5, 6, and 7 nightriders. These
configurations have denominators 286, 1585, and 8914.

Conjecture 5.16. For any piece P, there is a vertex configuration that maximizes the
denominator and is a twisted Fibonacci spiral.

Unlike for queens, the maximum denominator ∆q of a vertex configuration of q pieces P

is difficult to compute. Furthermore, it cannot be expected that for all integers N between
1 and ∆q inclusive, there will exist a vertex configuration of q pieces P with denominator N .
As an example, with three nightriders the only possible denominators are {1, 2, 3, 4, 5, 10}.
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Figure 5.11. An expanding kite configuration for 5, 6, and 7 nightriders.
These configurations have denominators 346, 2030, and 11626.

6. The Rook and Its Squire

6.1. The rook.
Rooks illustrate our approach nicely because they are well understood. The well-known

elementary formula is

(6.1) uR(q;n) = q!

(
n

q

)2

=
1

q!
(n)2q ,

where (n)q denotes the falling factorial. Thus, oR(q;n) = q!uR(q;n) is a quasipolynomial of
period 1 (that is, a polynomial) and degree 2q, in accordance with our general theory. We
want to study its coefficients.

The coefficient of n2q−i is

(6.2) q!γi =
i∑

k=0

s(q, q − k)s(q, q − (i− k)),

where s(q, j) denotes the Stirling number of the first kind, defined as 0 if j < 0 or j > q.
For instance,

q!γ0 = 1, q!γ1 = −(q)2,

q!γ2 = (q)2
3q2 − 5q + 1

6
, q!γ3 = −(q)3

q(q − 1)2

6
.

These formulas, derived from Equation (6.2), agree with the general partial queens formulas
in Theorem III.3.1. (Recall that the rook is the partial queen Q20.)

The sign of each term in the summations in (6.2) is (−1)i, so that is the sign of γi for
0 ≤ i ≤ 2q − 2. For i > 2q − 2, γi = 0 because s(q, 0) = 0. The rook is one of few pieces for
which we know the sign of every term in oP(q;n).

Proposition 6.1. The coefficient q!γi is a polynomial in q of degree 2i. It has a factor
(q)⌈i/2⌉+1. The coefficient of q2i is

(6.3)
1

(2i)!

i∑

k=0

(
2i

2k

) k∑

r=0

(−1)r
(

2k

k + r

)
S(k + r, r)

i−k∑

s=0

(−1)s
(
2(i− k)

i− k + s

)
S(i− k + s, s),

whose sign is (−1)i.
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Proof. Schlömilch’s formula [4, p. 216]

s(q, q − k) =

k∑

r=0

(−1)r
(
q − 1 + r

k + r

)(
q + k

k − r

)
S(k + r, r)

(which involves the Stirling numbers S(n, k) of the second kind) tells us that s(q, q− k) is a
polynomial in q of degree 2k with leading term

k∑

r=0

(−1)r
qk+r

(k + r)!

qk−r

(k − r)!
S(k + r, r) =

q2k

(2k)!

k∑

r=0

(−1)r
(

2k

k + r

)
S(k + r, r).

This term, as the leading term, must have the same sign as s(q, q − k) for large q. So the
leading coefficient of q!γi is as in Equation (6.3) and the sign of this coefficient is (−1)i.

It is easy to infer from (6.2) that the polynomial equals 0 if i > 2q − 2, i.e., q ≤ ⌈i/2⌉;
therefore q(q − 1) · · · (q − ⌈i/2⌉) is a factor. �

The number of combinatorial types of nonattacking configuration of q (unlabelled) rooks
is q!. To prove it we may substitute n = −1 into Equation (6.1) (by Theorem I.5.3) or
apply Theorem I.5.8, which says that every piece with two basic moves has q! combinatorial
configuration types.

6.2. The semirook.
The semirook has only one of the rook’s moves and is consequently the least interesting

of all riders. We mention it because it is a second example with period 1; also because it
has no diagonal move and, as such, exemplifies Corollary III.3.2, that partial queens with at
most one diagonal move have a coefficient γ6 that is independent of n. Counting formulas for
q ≤ 4 are given in Proposition II.6.1 (where one should take (c, d) = (1, 0) and, for q = 2, 3,
explicitly in Tables III.4.1 and III.4.2. The leading coefficients of those polynomials are in
Theorem III.3.1 and Tables III.3.1 and III.3.2. The number of combinatorial types with q of
any one-move rider equals 1 (Theorem I.5.8).

7. The Bishop and Its Scion

Here we treat the bishop and its scion the semibishop.

7.1. The bishop.
The bishop’s basic move set is MB = {(1, 1), (1,−1)}. The quasipolynomial formulas for

up to 6 bishops, published by Kotěšovec in early editions of [11]—most of which were found
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by him—are:

(7.1)

uB(1;n) = n2.

uB(2;n) =
n4

2
− 2n3

3
+

n2

2
− n

3
.

uB(3;n) =

{
n6

6
− 2n5

3
+

5n4

4
− 5n3

3
+

4n2

3
− 2n

3
+

1

8

}
− (−1)n

1

8
.

uB(4;n) =

{
n8

24
− n7

3
+

11n6

9
− 29n5

10
+

355n4

72
− 35n3

6
+

337n2

72
− 73n

30
+

1

2

}

− (−1)n
{
n2

8
− n

2
+

1

2

}
.

uB(5;n) =

{
n10

120
− n9

9
+

49n8

72
− 118n7

45
+

523n6

72
− 2731n5

180
+

3413n4

144
− 4853n3

180

+
2599n2

120
− 1321n

120
+

9

4

}
− (−1)n

{
n4

16
− 7n3

12
+

17n2

8
− 85n

24
+

9

4

}
.

uB(6;n) =

{
n12

720
− n11

36
+

37n10

144
− 4813n9

3240
+

8819n8

1440
− 72991n7

3780
+

2873n6

60

−100459n5

1080
+

199519n4

1440
− 498557n3

3240
+

14579n2

120
− 7517n

126
+

765

64

}

− (−1)n
{
n6

48
− n5

3
+

221n4

96
− 211n3

24
+

467n2

24
− 47n

2
+

765

64

}
.

The formula for q = 2 is due to Dudeney [5, Problem 318—Lion-Hunting—solution] and
those for q = 3, 4 to Fabel [6, pp. 58–62] (Kotěšovec [11, p. 234] supplies these attributions).
The formulas for q = 2, 3 are special cases of our Theorems III.4.1and III.4.2, thereby sup-
porting the correctness of those theorems. Kotěšovec found the formulas for q = 5, 6 by
calculating the values uB(q;n) for many values of n, looking for an empirical recurrence rela-
tion, deducing a generating function, and from that getting the quasipolynomial. (Reference
[12] has details of his method of calculation applied to queens.) His approach, while excellent
for finding formulas, does not prove their validity because it does not bound the period—
though intuitively period 2 is plausible since one could guess that odd and even board sizes
would have separate polynomials.

In fact, 2 is the complete story on the period. In Theorem V.1.1 we provide the missing
upper bound of 2 that rigorously establishes period 2 for every q > 2 and hence the cor-
rectness of Kotěšovec’s quasipolynomial formulas.1 Together with the fact that we know the
degree 2q and the leading coefficient 1/q! of the constituent polynomials, this implies that, if
the first 4q values of a candidate quasipolynomial are correct, then we have uB(q;n). Since
Kotěšovec did check those values for q ≤ 6 [12], his formulas are proved correct.

Despite the overall period 2, in Kotěšovec’s formulas (7.1) the six leading coefficients do
not vary with the parity of n. Kotěšovec conjectured expressions for γ1, γ2, and γ3 in terms

1Stanley in [18, Solution to Exercise 4.42] says that both quasipolynomiality and the period follow directly
from Arshon’s formulas; however, we believe such a derivation would be difficult.
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of q alone, which we proved in Theorem III.3.1 (and see Tables III.3.1 and III.3.2) since the
bishop is the partial queen Q02. That theorem also gives the periods of γ4, γ5, and γ6.

Corollary 7.1 (of Theorem III.3.1). In uB(q;n) the coefficients γi for i ≤ 5 are constant as
functions of n, while γ6 has period 2 (if q ≥ 4).

The number of combinatorial types of nonattacking configuration of q unlabelled bishops
is q!, by Theorem I.5.8. This is therefore the value of uB(q;−1), which we know even though
we do not know the general formula for uB(q;n).

A surprising development during our work on this project was Kotěšovec’s discovery that,
in 1936, Arshon had solved the n-bishops problem, the number of ways to place n nonat-
tacking bishops on an n× n board [1]. His method was to count independently the number
of ways to place i nonattacking bishops on the black squares, uB

B (n; i) (Arshon’s pi), and on
the white squares, uW

B (n; i) (Arshon’s p′i), of the n× n chessboard. When n is even,

uB
B (n; i) = uW

B (n; i) =
n−1∑

j=0

(−1)j
(
n− 1− i

j

)
(n + 1− i− j)n/2(n− i− j)n/2−1

(n− 1− i)!
.

When n is odd,

uB
B (n; i) =

n∑

j=0

(−1)j
(
n− 1− i

j

)
(n + 1− i− j)(n−1)/2(n− i− j)(n−1)/2

(n− 1− i)!
.

and

uW
B (n; i) =

n∑

j=0

(−1)j
(
n− 1− i

j

)
(n+ 1− i− j)(n+1)/2(n− i− j)(n−1)/2

(n− 1− i)!

With these formulas Arshon solved the n-bishops problem.
This work was forgotten until Kotěšovec rediscovered it. It was an easy step for him to

write down an explicit formula for the number of placements of q nonattacking bishops [11,
fourth ed., p. 140]. Kotěšovec then restated the Arshon equations with no signed terms by
using Stirling numbers of the second kind [11, fourth ed., p. 142]. His formula for q bishops
is

uB(q;n) =

q∑

i=0

⌊
n+1
2

⌋

∑

j=0

(⌊n+1
2
⌋

j

)
S
(
j + ⌊n

2
⌋, n− i

)
·
⌊n
2 ⌋∑

h=0

(⌊n
2
⌋

h

)
S
(
h+ ⌊n+1

2
⌋, n− (q − i)

)
.

Since the number of terms depends on n, these formulas do not tell us the quasipolynomial
form of uB(q;n). Neither do they allow us to substitute n = −1 to obtain the number of
combinatorial types of nonattacking configuration (though for the bishop this number is
known, obtained from Theorem I.5.8). We consequently take the point of view that bishops
formulas, like those for other pieces, call for a quasipolynomial analysis via Ehrhart theory.

7.2. The semibishop.
The semibishop Q01 has just one of the bishop’s moves, say (c, d) = (1, 1). Thus, it is an

example of a one-move rider (Section II.6). As such it has counting functions

uQ01(1;n) = n2,

uQ01(2;n) =
1

2
n4 − 1

3
n3 − 1

6
n,
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uQ01(3;n) =
1

6
n6 − 1

3
n5 +

1

6
n4 − 1

6
n3 +

1

6
n2,

uQ01(4;n) =
1

24
n8 − 1

6
n7 +

2

9
n6 − 11

60
n5 +

2

9
n4 − 1

6
n3 +

1

72
n2 +

1

60
n,

from Proposition II.6.1 (in which we have n̄ = 0). All of these are polynomials in n. (Letting
q vary gives a power series in two variables that is truncated, for each q, above the n2q term.
We have not investigated that power series.)

Theorem 7.2. The counting function for nonattacking unlabelled semibishops on the square
board is

uQ01(q;n) = (−1)q
q∑

k=0

s(n+ 1, n+ 1− k)s(n, n− (q − k)),

which is a polynomial function of n of degree 2q.

Proof. This is an immediate consequence of Proposition 7.4 below. Alternatively, it can be
proved similarly to that proposition. �

Explicit formulas for the coefficients γi for i ≤ 3 are in Theorem III.3.1 and Tables III.3.1
and III.3.2.

We prepare for the proof of Theorem 7.2 by changing the board. The right triangle board
(triangular board for short) has legs parallel to the axes and hypotenuse in the direction of
the semibishop’s move; thus, it is the set T := {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ 1}. The n × n
triangular board is the set of integral points in the interior of the dilation by n+ 2, i.e.,

(n+ 2)T◦ ∩ Z2 = {(x, y) ∈ Z2 : 1 ≤ x ≤ y − 1 ≤ n}.
Write uT

Q01(q;n) for the counting function of nonattacking placements of q unlabelled semibish-
ops on an n × n triangular board. Most of our theory for the square board applies equally
well to the triangular board; we omit details.

Proposition 7.3. The Stirling number of the first kind, s(n+1, n+ 1− q), is a polynomial
function of n of degree q. The coefficient of n2q−i in q!(−1)qs(n+1, n+1−q) is a polynomial
function of q of degree 2i.

The fact that s(n + 1, n+ 1 − q) is a polynomial in n of degree 2q is well known; see e.g.
[7]. We give a proof here which we believe to be new, using Ehrhart theory in the spirit
of our chess series. We do not know a prior reference for the fact that the coefficients are
polynomials.

Proposition 7.4. The counting function for nonattacking unlabelled semibishops on the
triangular board is uT

Q01(q;n) = (−1)qs(n+ 1, n+ 1− q).

We prove both propositions together.

Proof. The n × n integral right triangle board has n diagonals (parallel to the hypotenuse)
of lengths 1, 2, . . . , n, each of which can have at most one semibishop. The number of ways
to place q labelled semibishops is the sum of all products of q of these n values, i.e., the
elementary symmetric function eq(1, 2, . . . , n), which equals |s(n+1, n+1−q)|. That proves
the first part of the proposition.

Proposition 4.1 applies because the semibishop is a one-move rider. The corners of the
triangular board T are (0, 0), (1, 1), and (0, 1). For the move (1, 1), the corner (0, 1) has
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no antipode while the corners (0, 0) and (1, 1) serve as each other’s antipodes. Thus, every
vertex is integral and the denominator D(Tq,AQ01) = 1, so q!uT

Q01(q;n) is a polynomial in n.
Theorem I.4.2 says that the coefficients are polynomials in q with the stated degrees. �

8. The Queen and Its Less Hardy Sisters

There are four pieces in this section: the queen, and three others that are like defective
queens without being similar to bishops or rooks, which we call the semiqueen, the frontal
queen, and the subqueen. As they are all partial queens, counting formulas for q = 2, 3
are special cases of our Theorems III.4.1 and III.4.2 and are presented in Tables III.4.1
and III.4.2. The four leading coefficients of the general counting polynomial are implied by
Theorems III.3.1, III.4.2, and III.4.2; see Tables III.3.1 and III.3.2. All our formulas that
were also calculated by Kotěšovec in [11] agree with his.

Let ζr := e2πi/r be a primitive r-th root of unity.

8.1. The queen.
The basic move set for the queen Q is M = {(1, 0), (0, 1), (1, 1), (1,−1)}. The quasipoly-

nomial formulas for up to four queens are:
(8.1)
uQ(1;n) = n2.

uQ(2;n) =
n4

2
− 5n3

3
+

3n2

2
− n

3
=

n(n− 1)(3n2 − 7n+ 2)

6

uQ(3;n) =

{
n6

6
− 5n5

3
+

79n4

12
− 25n3

2
+ 11n2 − 43n

12
+

1

8

}
+ (−1)n

{
n

4
− 1

8

}
.

uQ(4;n) =

{
n8

24
− 5n7

6
+

65n6

9
− 1051n5

30
+

817n4

8
− 19103n3

108
+

3989n2

24
− 18131n

270
+

253

54

}

+ (−1)n
{
n3

4
− 21n2

8
+ 7n− 7

2

}
+ Re(ζn3 )

32(n− 1)

27
+ Im(ζn3 )

40
√
3

81
.

The formula for two queens is given by Theorem III.4.1 and is originally due to Lucas
[14, page 98, Exemple II]. The formula for three queens is implied by Theorem III.4.2 and is
originally due to Landau [13]. Kotěšovec gives formulas for up to six queens, calculated by
him for q = 4, 5 and calculated for six queens by Karavaev [9] and [16, Sequence A176186].

The number of combinatorial types of nonattacking configuration for q pieces is uQ(q;−1).
The numbers for q ≤ 6 are in Table 8.1. For two queens the number is what one expects
from two pieces with four basic moves (Proposition I.5.6).

Kotěšovec conjectured formulas for γ1 and γ2 based on the known and heuristically derived
formulas (mostly by him) for uQ(q;n) for small q. Theorem III.3.1 proves his conjectures
along with a formula for γ3 and further proves that γ4 is constant as a function of n, but
that the next two coefficients are not.

Corollary 8.1 (of Theorem III.3.1). In uQ(q;n) the coefficients γi for i ≤ 4 are constant as
functions of n; but γ5 has period 2 if q ≥ 3 and γ6 has period 2 if q ≥ 4. Exact formulas are

γ0 =
1

q!
, γ1 = − 1

(q − 2)!

{
5

3

}
,
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γ2 =
1

2!(q − 2)!

{
25

9
(q − 2)2 +

61

6
(q − 2) + 3

}
,

γ3 = − 1

3!(q − 2)!

{
125

27
(q − 2)4 +

305

6
(q − 2)3 +

681

5
(q − 2)2 + 73(q − 2) + 2

}
.

The periodic parts are −(−1)n/4(q − 3)! for γ5 and −(−1)n/8(q − 3)! for γ6.

Unlike the case of bishops and semibishops, the period of uQ(q;n) is not simple, although
Kotěšovec [11, 6th ed., p. 31] makes the following remarkable conjecture.

Conjecture 8.2 (Kotěšovec). The counting quasipolynomial for q queens has period lcm[Fq],
the least common multiple of all positive integers up through the qth Fibonacci number Fq.

The observed periods up to q = 7 (see [11, 6th ed., pp. 19, 27–28] for q = 7) agree with
this proposal, and the theory of Section 5.3 lends credence to its veracity.

Kotěšovec conjectures, yet more strongly, the exact form of the denominator of the gen-
erating function

∑
n≥0 uQ(q;n)x

n: it is a product of specific cyclotomic polynomials raised
to specific powers; see [11, 6th ed., p. 22]. The conjecture implies that, when written in
standard Ehrhart form with denominator (1 − xp)2q+1, the generating function has many
cancellable factors. This, too, is not predicted by Ehrhart theory; but as it is too systematic
and elegant to be accidental, it presents another tantalizing question. Kotěšovec’s evidence,
indeed, suggests that uQ(q;n) has a recurrence relation of length far less than its period. A
proof of these conjectures seems to require a new theoretical leap forward.

We summarize the known numerical results for queens in Table 8.1. Unlike in the case of
bishops and semibishops, the period of uQ(q;n) is not simple and we have no general formula
in terms of q.

Types Period Denom

q = 1 1 1 1

2 4 1 1

3 36 2 2

4 574* 6* 6

5 14206* 60* —

6 501552† 840† —

7 — 360360* —

Table 8.1. The number of combinatorial configuration types of q nonattack-
ing (unlabelled) queens in an n × n square board, with the period, and the
denominator. Periods without denominators are unproved.
* is a number deduced from a formula in [11].
† is deduced from the formula of Karavaev; see [9, 11].

8.2. The semiqueen.
The semiqueen Q21 is the queen without one of its diagonal moves (think of it as having

lost the left (or right) arm in battle).
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Conjecture 5.7 gives a conjectural upper bound for the quasipolynomial period of lcm[Fq/2]
when q is even and lcm[F(q+1)/2− 1] when q is odd. Since we do not expect all denominators
in [Fq/2] or [F(q+1)/2 − 1] to appear, we do not expect this bound to be tight for large q,
although it agrees with Kotěšovec’s formulas for q ≤ 6 in [11, 6th ed., pp. 732–733].

8.3. The frontal queen.
The frontal queen is the partial queen Q12 that can advance and retreat but cannot move

sideways. Our counting formulas for q ≤ 3 are the same as Kotěšovec’s heuristic ones [11,
pp. 730–731].

Conjecture 5.9 implies a conjectural upper bound for the period pq of the counting quasipoly-
nomial for q frontal queens of lcm[2Fq/2 − 1] when q is even and lcm[F(q+3)/2 − 1] when q is
odd. Again, this should not be considered tight, because we do not expect that all denom-
inators from 1 to the maximum will appear. However, Kotěšovec’s heuristic approach did
find that the period when q = 4 is 6, which is our bound.

8.4. The subqueen.
The subqueen (Kotěšovec’s “semi-rook + semi-bishop”) is the partial queen Q11, with one

horizontal or vertical and one diagonal move. It is the fourth and final piece whose counting
function uQ11(q;n) is a polynomial for all q, if our Conjecture 4.3 is correct.

(There are two subqueens that differ in chirality: the right-handed subqueen has, say, a
vertical move (0, 1) and a diagonal move (1, 1) to the right; the left-handed subqueen has
the vertical move and a diagonal move (−1, 1) to the left. Mixing the two types is outside
our competence since they will behave like two different pieces. In our work all subqueens
are right-handed.)

Kotěšovec noticed that (n)q is a factor of uQ11(q;n) for q up to 8. For instance,

uQ11(6;n) =
(n)6
6!

(
n6 − 10n5 + 45n4 − 1093

9
n3 +

634

3
n2 − 14033

63
n+

2278

21

)
.

We would like to have an explanation for this.
Kotěšovec also presents a formula for the number of ways to place n nonattacking sub-

queens on an n× n board:

uQ11(n;n) =
n∑

k=1

(
n + 1

k

)
k!

2k
S(n, k).

We hope that our method will be able to prove this.

9. The Nightrider

The basic move set for a nightrider N is {(1, 2), (2, 1), (1,−2), (2,−1)}. As always, uN(1;n) =
n2. It is easy to see that uN(2; 1) = 0, uN(2; 2) = 6, uN(2; 3) = 28, and not quite so easy to
find uN(2; 4) = 96 by hand. Many more values of uN(2;n) are in the OEIS (see Table 1.1). In

Theorem II.3.1, all (ĉ, d̂) = (1, 2) and the period is 2, so n̄ := (n mod 2) ∈ {0, 1}. Therefore,

uN(2;n) =

{
n4

2
− 5n3

6
+

3n2

2
− 11n

12

}
+ (−1)n

n

4
.
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This formula was found independently by Kotěšovec. His [11, 6th ed., p. 312] has an enor-
mous formula for three nightriders (undoubtedly correct, though unproved) that is too com-
plicated to reproduce here. A proof may be accessible using our techniques.

We summarize the known numerical results for nightriders in Table 9.1. We calculated the
denominator for four nightriders by using Mathematica to find all vertices of the inside-out
polytope and then the least common multiple of their denominators.

Types Period Denom

q = 1 1 1 1

2 7 2 2

3 36* 60* 60

4 — — 14559745200

Table 9.1. The number of combinatorial types of nonattacking placements
of q (unlabelled) nightriders in an n × n square board; also the period and
denominator.

* is a number derived from an unproved formula in [11].

From Theorem II.3.1 we get a generalization. Define a partial nightrider Nk to have any
k (1 ≤ k ≤ 4) of the nightrider’s moves. (There are three different pieces N2; see Section
10.1. All have the same formula for two pieces.) Letting n̄ := n mod 2 ∈ {0, 1},

(9.1)

uNk(2;n) =
1

2
n4 − 5k

24
n3 +

k − 1

2
n2 − k

6
n− kn̄

8
n

=

{
1

2
n4 − 5k

24
n3 +

k − 1

2
n2 − 11k

48
n

}
+ (−1)n

3k

48
n.

A direct consequence of Theorem II.5.1 is that we know the second coefficient of the
counting quasipolynomial of Nk:

(9.2) γ1 = − 5k

24(q − 2)!
.

This formula for N was conjectured by Kotěšovec. γ1 is its own leading coefficient. Theo-
rem II.5.1 gives the leading coefficient of every γi for all partial nightriders.

Theorem 9.1. (I) For a partial nightrider Nk, the coefficient q!γi of n
2q−i in oNk(q;n) is a

polynomial in q, periodic in n, with leading term
(
− 5k

24

)i
q2i

i!
.

Specializing to the complete nightrider N, computer algebra gives us a general formula for
the third coefficient, γ2. It and the periods of γ3 and γ4 are new. Both agree with Kotěšovec’s
data.

Theorem 9.2. The third coefficient of the nightrider counting quasipolynomial is indepen-
dent of n; it is

γ2 =
1

2!(q − 2)!

{(
5

6

)2

(q − 2)2 +
1871

720
(q − 2) + 3

}
.
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The next coefficient, γ3, is periodic in n with period 2 and periodic part

(−1)n
1

3!(q − 2)!

{
3

2

}
.

The coefficient γ4 has period 2 and periodic part

−(−1)n
1

4!(q − 2)!

{
5(q − 2)2 +

21

2
(q − 2)

}
.

Proof. Just as in Theorem III.3.1, we calculate γ2 by determining the contribution from all

subspaces U defined by two move equations, each of the formH
d/c
ij for d/c ∈ {1/2, 2/1,−1/2,−2/1}

and i, j ∈ [q]. This is done in Lemma 9.3.
There is no contribution to γ2 from subspaces of codimension 0 or 1.
The coefficient γ3 may have contributions from subspaces of codimensions 1 to 3. Since

the contribution of a subspace of codimension 3 comes from the leading coefficient, it is
independent of n. We did not compute these leading coefficients. A subspace of codimen-
sion 2 contributes zero by Theorem II.4.2, or simply by observing the formula in Equa-
tion (II.2.5). Because by Equation (2.1) α(H2/1;n) = α2/1(n) provides a periodic contribu-
tion of (−1)n 1

8
n2q−3

(
q
2

)
to q!γ3, the periodic part of (q − 2)!γ3 is (−1)n 1

4
n2q−3, consisting of

one contribution from each hyperplane in AN.
The calculations for hyperplanes and subspaces of Type U2

3b imply that γ4 is periodic
with period 2. That is because a periodic contribution can come only from a subspace of
codimension 1, 2, or 3. Equation (2.1) shows that hyperplanes make no contribution to
γ4. Subspaces of codimension 2 with periodic part all have period 2 with values that are
the periodic coefficients of n2q−4 in the formulas for Types U2

3a, U
2
3b, and U2

4∗ . Subspaces of
codimension 3 contribute zero by Theorem II.4.2. Thus, the periodic part of q!γ4 is the sum
of −(−1)n 1

4
(q)3 from Type U2

3a, −(−1)n 3
16
(q)3 from Type U2

3b, and −(−1)n 5
24
(q)4 from Type

U2
4∗ , giving a total periodic part of γ4 of

−(−1)n
(q − 2)(21 + 10(q − 3))

48
= −(−1)n

(q − 2)(10q − 9)

48
. �

Lemma 9.3. The total contribution to oN(q;n) of all subspaces with codimension 2 is
{[

3

2
(q)2 +

1

4
(q)3 +

1511

1440
(q)3 +

25

72
(q)4

]
n2q−2 +

[
7

12
(q)3 +

227

144
(q)3 +

55

72
(q)4

]
n2q−4

+

[
1

8
(q)3 +

65

144
(q)4

]
n2q−6

}

− (−1)n
{[

1

4
(q)3 +

3

16
(q)3 +

5

24
(q)4

]
n2q−4 +

[
1

8
(q)3 +

11

48
(q)4

]
n2q−6

}

+

[(
527

1728
− 1

8
ζ3n12 +

2

27
ζ4n12 − 13

64
ζ6n12 +

2

27
ζ8n12 − 1

8
ζ9n12

+
599

1600
− 4

25
ζ4n20 +

1

8
ζ5n20 − 4

25
ζ8n20 +

1

64
ζ10n20 − 4

25
ζ12n20 +

1

8
ζ15n20 − 4

25
ζ16n20

+
51

256
− 19

256
ζn4 − 13

256
ζ2n4 − 19

256
ζ3n4

)
2(q)3

]
n2q−6.
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The striking symmetry in the coefficients of powers of each ζr in the last n2q−6-term is due
to the coefficients’ being real numbers.

Proof. There are four types of subspace, of which only Type U2
3b involves calculations that

are substantially different from those in Lemma III.3.4.
From Section 2, for a subspace determined by equations involving κ pieces, α(U;n) is a

quasipolynomial of degree 2κ− codimU.

Type U2
2 : The subspace U is defined by two move equations involving the same two

pieces. The contribution to oN(q;n) is n2q−4oN(2;n) = 3
2
(q)2n

2q−2. Since U lies in

four hyperplanes, the Möbius function is µ(0̂,U) = 3 and the contribution to q!γ2 is
3
2
(q)2.

Type U2
3a : The subspace U is defined by two move equations of the same slope involv-

ing three pieces. There is one subspace of this type for each of the four slopes. The
number of points in each subspace is β2/1(n) from Equation (2.1). There are (q)3/3!
ways to choose three nightriders, and the Möbius function is 2. Thus we multiply
β2/1(n) by 8

3!
(q)3n

2q−6 to find that the contribution to oN(q;n) is

(q)3

{
1

4
n2q−2 +

7

12
n2q−4 +

1

8
n2q−6 − (−1)n

[1
4
n2q−4 +

1

8
n2q−6

]}
,

so that to q!γ2 is 1
4
(q)3 and that to q!γ4 is

[
7
12

− (−1)n 1
4

]
(q)3.

Type U2
3b : The subspace U is defined by two move equations of different slopes in-

volving three pieces, say U = H
d/c
12 ∩H

d′/c′

23 . It suffices to find the contributions when
d/c = 1/2 and d′/c′ ∈ {2/1,−2/1,−1/2}; the other three combinations of slopes are
symmetric to these three, generating a multiplicative factor of 2. We write U = Ud′/c′

when we need to mention the slope.
The Möbius function is µ(0̂,U) = 1.
We choose N2 in q ways, N1 in q − 1 ways, and N3 in q − 2 ways.
For each value of d′/c′ we calculated the denominators of all vertex coordinates of

[0, 1]2q ∩ U using Mathematica. That gave us the denominator D([0, 1]2q ∩ U) and
hence an upper bound on the period of α(U;n) in each case. Using Mathematica
again we found quasipolynomial formulas for the number of placements of the three
nightriders, α(U;n). These formulas were calculated by varying the position of N2 in
the n× n grid as n varied in a residue class modulo D([0, 1]2q ∩U). The calculations
were carried out for n = 1, . . . , 100, which covers at least five periods in every case.
By Theorem 2.1 and the fact that α(U;n) has degree 4 = 2 · 3 − codimU, there
are 2p + 1 coefficients to determine in α(U;n); as the periods are bounded by 20 in
every case, that is enough data to infer them all with redundancy. We found that
the period always equals the denominator.



A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks) 35

Case d′/c′ = 2/1. The vertex denominators here are 2, 3, 4 so D([0, 1]2q ∩ U) =
lcm(2, 3, 4) = 12. The number of placements is

α(U2/1;n) =





53
288

n4 + 7
36
n2 for n ≡ 0 mod 12,

53
288

n4 + 7
36
n2 − 2

9
for n ≡ ±4 mod 12,

53
288

n4 + 7
36
n2 + 1

2
for n ≡ 6 mod 12,

53
288

n4 + 7
36
n2 + 5

18
for n ≡ ±2 mod 12,

53
288

n4 + 55
144

n2 + 21
32

for n ≡ 3 mod 6,

53
288

n4 + 55
144

n2 + 125
288

for n ≡ ±1 mod 6.

Note that the coefficient of n2, which becomes a contribution to γ4, has period 2.
Case d′/c′ = −2/1. The vertex coordinate denominators here are 2, 4, and 5 so

D([0, 1]2q ∩ U) = 20. The number of placements is

α(U−2/1;n) =





27
160

n4 + 1
4
n2 for n ≡ 0 mod 20,

27
160

n4 + 1
4
n2 + 4

5
for n ≡ ±4,±8 mod 20,

27
160

n4 + 1
4
n2 − 1

2
for n ≡ 10 mod 20,

27
160

n4 + 1
4
n2 + 3

10
for n ≡ ±2,±6 mod 20,

27
160

n4 + 1
4
n2 − 9

32
for n ≡ ±5 mod 20,

27
160

n4 + 1
4
n2 + 83

160
for odd n 6≡ ±5 mod 20.

Case d′/c′ = −1/2. The vertex denominators here are 2 and 4 soD([0, 1]2q∩U) = 4.
The number of placements is

α(U−1/2;n) =





11
64
n4 + 1

4
n2 for n ≡ 0 mod 4,

11
64
n4 + 1

4
n2 + 1

4
for n ≡ 2 mod 4,

11
64
n4 + 1

4
n2 + 19

64
for n odd.

The contribution to γ2 is therefore 2(q)3
(

53
288

+ 27
160

+ 11
64

)
= 1511

1440
(q)3. That to γ4 is[

227
144

− (−1)n 3
16

]
(q)3. Last, the contribution to γ6 has period 60 = lcm(12, 20, 4) and

is 2(q)3 times
(

527
1728

− 1
8
ζ3n12 + 2

27
ζ4n12 − 13

64
ζ6n12 + 2

27
ζ8n12 − 1

8
ζ9n12

)

+
(

599
1600

− 4
25
ζ4n20 + 1

8
ζ5n20 − 4

25
ζ8n20 + 1

64
ζ10n20 − 4

25
ζ12n20 + 1

8
ζ15n20 − 4

25
ζ16n20

)

+
(

51
256

− 19
256

ζn4 − 13
256

ζ2n4 − 19
256

ζ3n4
)
.

Type U2
4∗ :U

1
2U

1
2 : The subspace U is defined by two move equations involving four

distinct pieces. For every pair of hyperplanes, the number of attacking configura-

tions is
(
α2/1(n)

)2
, whose value is given in Equation (2.1). We must also multiply

by the number of ways in which we can choose this pair of hyperplanes, which is

4 (q)4
8

+ 6 (q)4
4

= 2(q)4. The Möbius function is 1. We conclude that the contribution
to oN(q;n) is

(q)4

{
25

72
n2q−2 +

55

72
n2q−4 +

65

144
n2q−6 − (−1)n

[
5

24
n2q−4 +

11

48
n2q−6

]}
,
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that to γ2 is 25
72
(q)4, and that to γ4 is

(
55
72

− (−1)n 5
24

)
(q)4.

Curiously, not only is the quasipolynomial for every subspace as a whole an even function,
so is each constituent; equivalently, opposite constituents αi(U;n) and α−i(U;n) are equal,
for every i. We do not know why. �

Type U2
3b contributes period 60 to γ6, as one can see from Lemma 9.3. We therefore expect

γ6 to have period that is a multiple of 60; however, we are far from proving this.
This computational method can be applied to larger numbers of any piece, limited only by

human effort and computing power. It should be feasible to deduce, at the least, nightrider
formulas for γ3, γ4, and uN(3;n).

10. Conclusions, Conjectures, Extensions

Work on nonattacking chess placements raises many questions, some of which have general
interest.

10.1. Simplified riders.
We cannot reach satisfactorily strong conclusions about the queen and nightrider in part

because their periods grow too rapidly as q increases, which we now understand by way of the
twisted Fibonacci spirals in Section 5.3. It would be desirable to study simplified analogs,
hoping not only for hints to solve those pieces but to find general patterns in the period and
coefficients. As having four move directions is complicated, we propose handicapping the
pieces by eliminating some of their moves.

As we saw in Part III, partial queens Qhk are approachable because the queen’s moves are
individually simple. We suggest further study of the following variants, some of which have
been investigated by Kotěšovec.

(a) A generalization of the subqueen is a rider with two moves, (1, 0) and (c, d). The de-
nominator of this piece was determined in Proposition 4.4. This piece, and especially its
period, would facilitate analysis of the effect of non-unit slopes.

The nightrider’s main complication comes from the non-unit slopes. We propose as worthy
subjects the partial nightriders with only two moves:

(b) The lateral nightrider, which moves along slope ±1/2 (or equivalently ±2/1). We con-
jecture a period of 4 for q ≥ 3. We verified this for q = 3, 4.

(c) The inclined nightrider, which moves along slopes 1/2 and 2. We propose a period of
3 · 2q−1 for q ≥ 3. We only know this for q = 3 but we have evidence for q = 4 from
analyzing trajectories (with help from Arvind Mahankali) and it is certainly correct if
Conjecture 4.3 is true.

(d) The orthonightrider, whose directions have the orthogonal slopes 1/2 and −2. We pro-
pose the period is 5 · 2q−1 for q ≥ 3. This is correct for q = 3 and evidence suggests it
for higher q.

These should exhibit some of the complexity of the nightrider without being so opaque.
It appears that the lateral nightrider should behave more nicely than the other two. For
one, from our analysis of subspaces of Type U2

3b in Theorem 9.2, it is expected to have a
smaller period. Furthermore, the denominators generated by configurations similar to those
in Figure 4.1 behave much more nicely than the others.

(e) A simple three-move rider would have moves (1, 0), (0, 1), (c, d). This should be investi-
gated.
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(f) The partial nightrider N3. We discussed it briefly in Section 9, finding the counting
formula and the period 2 for q = 2. The period for three pieces appears to be 60. These
periods are the same as for the complete nightrider but we expect N3 to have a smaller
period than N when q ≥ 4.

10.2. Counting nonattacking combinatorial types.
It would be valuable to produce a conjectural expression for the number of combinatorial

types of nonattacking configuration for the queen, a partial queen with three moves, or any
other piece with more than two moves (one or two moves being easy; see Proposition I.5.6).

10.3. A surprise in Ehrhart theory.
We found that periods equal denominators. That is not a general truth about Ehrhart

quasipolynomials. Is there always equality in nonattacking rider problems, and if so, is there
an interesting reason?

10.4. Points and lines.
In Section 8 we saw that denominators arising from vertex configurations of queens can

be determined by understanding configurations of points and lines. Indeed, the Fibonacci
numbers seem to arise from optimal configurations of points and lines—in some imprecise
notion of optimality. Understanding which denominators appear is a fundamental problem.

10.5. Connection with billiards.
The configurations in Section 4.2 may be related to the theory of billiards. If there are

only two moves, with a linear transformation one can ensure that the angle of incidence
equals the angle of reflection and make it equal to any desired angle less than a right angle.
The square board becomes a parallelogram, but a theory of two-move riders on polygonal
boards would be able to handle that.

Dictionary of Notation

(c, d) – coordinates of move vector (pp. 6)

(ĉ, d̂) – (min,max) of c, d (p. 8)
d/c – slope of line or move (p. 6)
Fq – Fibonacci numbers (p. 16)
h – # of horizontal, vertical moves of partial queen (p. 9)
k – # of diagonal moves of partial queen (p. 9)
m = (c, d) – basic move (p. 6)
m⊥ = (d,−c) – orthogonal vector to move m (p. 6)
n – size of square board (p. 2)

n̄ := n mod d̂ (p. 8)
[n]2 – square board (p. 5)
oP(q;n) – # of nonattacking labelled configurations (p. 7)
p – period of quasipolynomial (p. 3)
q – # of pieces on a board (p. 2)
s(n, k) – Stirling number of the first kind (p. 24)
S(n, k) – Stirling number of the second kind (p. 25)
uP(q;n) – # of nonattacking unlabelled configurations (p. 2)
uW
B (n; i), uB

B (n; i) – Arshon’s bishops numbers (p. 27)
z = (x, y), zi = (xi, yi) – piece position (p. 6)
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z = (z1, . . . , zq) – configuration (p. 6)

αd/c(n) – # of 2-piece attacks on slope d/c (p. 8)
α(U;n) – # of attacking configurations in essential part of subspace U (p. 7)
βd/c(n) – # of 3-piece attacks on slope d/c (p. 8)
γi – coefficient of n2q−i in uP (p. 7)
ζr = e2πi/r – primitive r-th root of unity (p. 29)
κ – # of of pieces in equations of U
µ – Möbius function of intersection lattice (p. 6)
ϕ – golden ratio (1 +

√
5)/2 (p. 16)

D – denominator of inside-out polytope (p. 4)
∆(z) – denominator of vertex z (p. 9)

M – set of basic moves (p. 6)

AP – move arrangement of piece P (p. 6)
B – closed board: usually the square [0, 1]2 (p. 6)
E – edge line of the board (p. 8)

H
d/c
ij – hyperplane for move (c, d) (p. 6)

L (AP) – intersection lattice (p. 6)
P,P◦ – closed, open polytope (p. 6)
[0, 1]2q, (0, 1)2q – closed, open hypercube (p. 6)
(P,AP), ([0, 1]

2q,AP) – inside-out polytope (p. 6)
(P◦,AP), ((0, 1)

2q,AP) – open inside-out polytope (p. 6)
T – triangular board 0 ≤ x ≤ y ≤ 1 (p. 28
U – subspace in intersection lattice (p. 6)

Ũ – essential part of subspace U (p. 6)
Xij – hyperplane of equal x coordinates (p. 15)
Yij – hyperplane of equal y coordinates (p. 15)

R – real numbers
R2q – configuration space (p. 4)
Z – integers

B – bishop (p. 25)
N – nightrider (p. 31)
P – piece (p. 6)
Q – queen (p. 29)
Qhk – partial queen (p. 9)
R – rook (p. 24)



A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks) 39

References
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