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Some Notes on Pairs in Binary Strings
Jeremy M. Dover

Abstract

Seth [3] posed a problem that is equivalent to the following: how
many binary strings of length n have exactly k pairs of consecutive
0s and exactly m pairs of consecutive 1s, where the first and last
bits are considered as being consecutive? In this paper, we provide
a closed form solution which also solves a related problem with some
interesting connections to other combinatorial sequences.

1 The Setup

Seth [3] posed the following problem: consider a microstate consisting of 8
spins, where a microstate is a linear ordering of spins, each of which may be
in the up or down state. Seth asks how many of these 8-spin microstates
have exactly 2 “up parallel pairs” and 2 “down parallel pairs”, where an
“up parallel pair” is two consecutive up states, and the obvious meaning
of consecutive for the linear ordering is extended so that the first and last
states are also considered consecutive. A “down parallel pair” is defined
analogously. Note that despite the first and last states being considered
consecutive, the microstate is still considered to have a first and last state,
so rotations of the state pattern are counted as being different.

It is not hard to cast this problem into a question about binary strings,
where an “up spin” is a 0, and a “down spin” a 1, namely finding the car-
dinality of the set S◦(n, k,m), the set of all binary strings of length n with
k pairs of consecutive 0s and m pairs of consecutive 1s, with the first and
last bits considered consecutive. In order to address this problem, we define
the related set Z(n, k,m) to be the number of binary sequences of length
n that start with 0 and have k pairs of consecutive zeroes, and m pairs of
consecutive ones, where the first and last bits are not considered consecutive.
We denote the cardinality of Z(n, k,m) as z(n, k,m). We now show that
|S◦(n, k,m)| can be determined in terms of the values z(n, k,m). In what
follows, we will assume unless otherwise stated that the first and last bits of
a binary string are not considered consecutive. For brevity, we refer to a pair
of consecutive 0s (resp. 1s) in a binary string as a 0-pair (resp. 1-pair); this
terminology will specifically not be used for the first and last bits, in those
cases where they are considered consecutive.
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The first issue to address is that some of the binary strings in S◦(n, k,m)
begin with 1. However, we note that the operation of inverting each bit of
a binary string of length n is obviously a bijective involution from the set
of all binary strings of length n onto itself, and shows that the number of
binary strings that start with a 1 and have k 0-pairs and m 1-pairs is exactly
z(n,m, k).

We know that the elements of Z(n, k,m) begin with 0, but we do not
necessarily know how they end, which is an important consideration when
analyzing S◦(n, k,m). The following lemma provides an answer to this ques-
tion.

Lemma 1.1. Let n, k,m be integers such that n ≥ 1 and k,m ≥ 0, and let b

be a binary string of length n containing k 0-pairs and m 1-pairs. Then the

last bit of b is the same as the first bit of b if and only if n+ k +m is odd.

Proof. Given a binary string b of length n, assign to each pair of consecutive
bits (of which there are n−1) the letter S if they are the same, and D if they
are different. Since b has k 0-pairs and m 1-pairs, there are exactly m + k

Ss, and thus there are n− 1−m− k Ds. Reading from left to right, we only
change values in the string when we encounter a D, so it is easy to see that
the last bit of the string depends only on the parity of n − 1 − m − k. If
this value is odd, then the last bit of b is different from the first bit, while
these bits will be the same if the number of Ds is even. Since n+m+ k and
n− 1−m− k have opposite parity, we obtain the result.

Let’s use these facts to determine |S◦(n, k,m)|. Let b ∈ S◦(n, k,m) be a
binary string. If the first and last bits of b are different, then by Lemma 1.1
we must have n + k + m even, since b has k 0-pairs and m 1-pairs. If the
first and last bits of b are the same, then b has either k − 1 0-pairs and m
1-pairs, or k 0-pairs and m− 1 1-pairs; in either case Lemma 1.1 shows that
n+k+m−1 must be odd, or n+k+m is even. This shows that if n+k+m
is odd, then there are no binary strings in S◦(n, k,m). But if n + k +m is
even, then all of the binary strings in Z(n, k,m) and Z(n, k − 1, m) are in
S◦(n, k,m), as are the inversed of the string in Z(n,m, k) and Z(n,m−1, k).
Thus we have:

S◦(n, k,m) =











0 n + k +m odd

z(n, k,m) + z(n, k − 1, m)+

z(n,m, k) + z(n,m− 1, k) n + k +m even
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The important takeaway from this section is that our original problem
can be solved strictly by consideration of the numbers z(n, k,m), which we
focus on exclusively in what follows.

2 Some recurrence relations for z(n, k,m)

The boundary conditions for z(n, k,m) are fairly straightforward; for conve-
nience we define z(n, k,m) = 0 for all n < 0, k < 0 or m < 0. Noting that a
binary string of length n only has n − 1 pairs of consecutive bits, we know
that z(n, k,m) = 0 for all integers k,m such that k +m ≥ n. Moreover, if
k+m = n− 1, our numbers z(n, k,m) count the number of strings where all
pairs of consecutive bits are identical, with the first bit of the string being 0.
This forces the string to be entirely 0s, showing that for integers k,m with
k +m = n − 1, z(n, k,m) = 0 unless k = n − 1 and m = 0, in which case
z(n, n− 1, 0) = 1.

We now derive several different recurrence relations for the z(n, k,m),
which each have different uses.

Theorem 2.1. Let n, k,m be integers such that n ≥ 3 and k,m ≥ 0. Then

z(n, k,m) = z(n− 1, k − 1, m) + z(n− 2, k,m) + z(n− 2, m− 1, k).

Proof. To prove this result, we count the size of Z(n, k,m) in two ways, one
of which is z(n, k,m) by definition. For the other count, let b ∈ Z(n, k,m)
and consider three cases:

1. If b starts with 00, then b consists of a 0 followed by a string of n − 1
bits starting with 0 with k − 1 0-pairs and m 1-pairs, of which there
are z(n− 1, k − 1, m).

2. If b starts with 010, then b consists of 01 followed by a string of n− 2
bits starting with 0 with k 0-pairs and m 1-pairs, of which there are
z(n− 2, k,m).

3. If b starts with 011, then b consists of 01 followed by a string of n− 2
bits starting with 1 with k 0-pairs and m − 1 1-pairs, of which there
are z(n− 2, m− 1, k).

Note that ifm = 0, no strings in Z(n, k,m) start with 011, but z(n−2,−1, k)
is defined to be 0, so this remains correct. Since these three cases count sets
that form a disjoint union of Z(n, k,m), we have the result.
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Our next recurrence is somewhat more complicated and is not univer-
sally applicable, but it counts in a way which quickly reveals an important
corollary.

Theorem 2.2. Let n, k,m be integers such that n ≥ 1 and k +m < n − 1.
Then

z(n, k,m) =
k+1
∑

f=1

z(n− f,m, k + 1− f)

Proof. Again we proceed by counting the cardinality of Z(n, k,m) in two
ways, the first yielding z(n, k,m). To count this set in another way, we note
that since k +m < n − 1, any b ∈ Z(n, k,m) must contain at least one 1.
Let f be the position of the first 1 in b, so f may vary between 1 and n− 1
(note: the first bit of b has index 0). Prior to the first 1, the string consists
entirely of 0s, creating f − 1 pairs of consecutive 0s. Starting from the first
1, the remainder of the string is a binary string of length n− f starting with
1 that contains exactly k + 1 − f 0-pairs and m 1-pairs, of which there are
z(n− f,m, k + 1− f) such strings. Thus we can write

z(n, k,m) =
n−1
∑

f=1

z(n− f,m, k + 1− f)

Noting that z(n−f,m, k+1−f) = 0 for all f > min{n, k+1} and that k+1 <
n yields the indices of summation shown in the Theorem statement.

Corollary 2.3. Let n,m be integers with n ≥ 1 and 0 ≤ m < n − 1. Then

z(n, 0, m) = z(n− 1, m, 0).

Proof. Since m < n − 1, we can apply Theorem 2.2 to z(n, 0, m) to obtain
z(n, 0, m) =

∑

1

f=1
z(n − f,m, 1 − f). Evaluating the single term of the

summation yields the result.

Our final recurrence is nice because it shows how we can reduce the
problem of calculating z(n, k,m) to just those values with m = 0.
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Theorem 2.4. Let n, k,m be integers such that n ≥ 3, 0 ≤ k ≤ n − 1,
0 < m ≤ n− 1− k. Then

z(n, k,m) =











































m
∑

f=1

(

k + f

f

)(

m− 1

f − 1

)

z(n−m− f, k + f, 0) n+ k +m odd

m
∑

f=1

(

k + f − 1

f − 1

)(

m− 1

f − 1

)

z(n−m− f, k + f − 1, 0)+

m
∑

f=1

(

k + f

f

)(

m− 1

f − 1

)

z(n−m− f, k + f, 0) n+ k +m even

Proof. Define the mapping ψ on a string b ∈ Z(n, k,m) to be the string
obtained by deleting from b all substrings of consecutive 1s of length greater
than 1; notice that this operation is well-defined, and that ψ(b) is unique. Let
f be the number of substrings of 1s removed from b, so clearly f is between
1 and m. The length of ψ(b) must be n − (m + f), since the removal of a
substring of g consecutive 1s removes only g − 1 1-pairs. Clearly ψ(b) has
no 1-pairs, since all such strings are removed, and no 1-pair can be created
by our deletion process. Indeed, the removal of a string of consecutive 1s
creates an additional 0-pair, unless that substring is removed from the end of
the original string (it cannot come from the beginning since the string starts
with a zero, by definition of Z(n, k,m)).

So to summarize, for any b ∈ Z(n, k,m) ending in either 0 or 01, there
exists a unique integer 1 ≤ f ≤ m and a unique binary string ψ(b) ∈ Z(n−
m− f, k+ f, 0) such that b can be obtained from ψ(b) by injecting a total of
m+f 1s into f 0-pairs such that each injected substring contains at least two
1s. Also, for any b ∈ Z(n, k,m) ending in 11, there exists a unique integer
1 ≤ f ≤ m and a unique binary string ψ(b) ∈ Z(n − m − f, k + f − 1, 0)
ending in 0 such that b can be obtained from ψ(b) by injecting a total of
m + f 1s into f − 1 0-pairs and at the end of ψ(b) such that each injected
substring contains at least two 1s.

To count the number of strings in Z(n, k,m) that end in 0 or 01, we follow
the recipe above. Given any 1 ≤ f ≤ m, let b′ ∈ Z(n−m− f, k + f, 0), for
which there are z(n−m−f, k+f, 0) choices. We can pick any f 0-pairs in b′,
which can be done in

(

k+f

f

)

ways. To inject our substrings of ones, since we
know each substring must have at least two 1s, and the remaining m− f 1s
are “identical balls” that need to be distributed into “distinguishable urns”,
which can be done in

(

m−1

f−1

)

ways. Each of the binary strings constructed

this way is contained in Z(n, k,m), and all are distinct as discussed above.
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Hence Z(n, k,m) contains

m
∑

f=1

(

k + f

f

)(

m− 1

f − 1

)

z(n−m− f, k + f, 0)

strings ending in either 0 or 01.
To count the number of strings in Z(n, k,m) that end in 11, we proceed

as before. Given any 1 ≤ f ≤ m, we pick b′ ∈ Z(n − m − f, k + f − 1, 0)
ending in zero. From Lemma 1.1, the number of possibilities for b′ is 0 if
n−m− f + k+ f − 1 = n−m+ k− 1 is even, or equivalently if n+ k+m is
odd. However, if n+ k+m is even, every string in Z(n−m− f, k+ f − 1, 0)
ends in 0, so there are z(n−m−f, k+f −1, 0) choices for b′. Then from the
k+ f − 1 0-pairs in b′, we choose f − 1 into which to inject 1s, which can be
done in

(

k+f−1

f−1

)

ways. Finally, we can distribute the m+f 1s we need to add
between these f−1 0-pairs and at the end of b′, such that each injected string
has at least two 1s, in

(

m−1

f−1

)

ways, exactly as above. Therefore, if n+ k+m

is odd, Z(n, k,m) contains no strings ending in 11, while if n+k+m is even,
Z(n, k,m) contains:

m
∑

f=1

(

k + f − 1

f − 1

)(

m− 1

f − 1

)

z(n −m− f, k + f − 1, 0)

strings ending in 11. This proves the result.

3 The case m = 0 and Terquem’s problem

Theorem 2.4 reduces our problem of computing z(n, k,m) to the values of
z(n, k, 0), but does not help us find these values. Fortunately, when analyzing
computational data for z(n, k,m), we searched the OEIS [1] for the case
m = 0, which yielded an unexpected connection with the sequence A046854.
This sequence, which we call T (n, k), represents a triangle of numbers with
n ≥ 0, 0 ≤ k ≤ n− 1 defined via

T (n, k) =

(
⌊

n+k
2

⌋

k

)

Combinatorially, this sequence arises as a solution to Terquem’s problem [2],
namely providing the number of length k, increasing sequences of integers
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from {1 . . . n} that alternate parity and start with an odd number, as well
as the number of length k, increasing sequences of integers from {1 . . . n+1}
that alternate parity and start with an even number.

We can verify this numerical relationship with a quick induction proof:

Theorem 3.1. Let n, k be integers such that n > 0 and 0 ≤ k ≤ n−1. Then

z(n, k, 0) = T (n− 1, k) =
(⌊n+k−1

2 ⌋
k

)

.

Proof. We proceed via strong induction. It is easy to calculate z(n, k, 0) for
small values of n via enumeration:

n = 1 Z(1, 0, 0) = {0}, z(1, 0, 0) = T (0, 0) = 1

n = 2 Z(2, 0, 0) = {01}, z(2, 0, 0) = 1; Z(2, 1, 0) = {00}, z(2, 1, 0) = 1

n = 3 Z(3, 0, 0) = {010}, Z(3, 1, 0) = {001}, Z(3, 2, 0) = {000},
Z(3, 0, 1) = {011}

By way of induction, assume z(n, k, 0) =
(⌊n+k−1

2 ⌋
k

)

for all n < N , 0 ≤
k ≤ n− 1, and consider z(N, k, 0). By Theorem 2.1, we have

z(N, k, 0) = z(N − 1, k − 1, 0) + z(N − 2, k, 0) + z(N − 2,−1, k)

= z(N − 1, k − 1, 0) + z(N − 2, k, 0)

Using our induction hypothesis, we have z(N, k, 0) =
(⌊N+k−3

2 ⌋
k−1

)

+
(⌊N+k−3

2 ⌋
k

)

.
A simple application of Pascal’s identity yields the result.

Interestingly, it is possible to generate a bijection between all of the binary
strings in Z(n, k, 0) and Terquem’s sequences. A rigorous proof of this fact
is tedious, but beginning with b ∈ Z(n, k, 0), define t to be the sequence of
positions of the first 0 in each 0-pair, where the first position in b is position
1. The key is to note that to be in Z(n, k, 0), b basically consists of runs
of two or more 0s, with alternating strings of 0s and 1s between them; this
alternation forces the first element of t to be odd, as well as alternate parity
thereafter. As an example:

001010001010001 → 1, 6, 7, 12, 13

7



References

[1] On-line encylcopedia of integer sequences. Published electronically at
http://oeis.org.

[2] J. Riordan. An Introduction to Combinatorial Analysis. Princeton Uni-
versity Press, 1978. p. 17.

[3] Swarnadeep Seth. How many ways we can find out the strip
of n spins contains m “parallel pair” out of which m1 of
them are “up parallel pair”? Mathematics Stack Exchange.
URL:http://math.stackexchange.com/q/1812699 (version: 2016-06-06).

8


	1 The Setup
	2 Some recurrence relations for z(n,k,m)
	3 The case m=0 and Terquem's problem

