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Abstract

1 Introduction

The three ’R’s of the title are: reversion of series, recurrence relations, and Ri-
ordan arrays. In this paper we describe how the reversion of a series is related
to convolutional recurrence relations for the series. We also show how the re-
currence relation can be seen in the context of Riordan arrays. The connection
with Riordan arrays includes a relation between reversion, inversion, and the
A-sequence of Riordan arrays.

The motivation for doing this is to provide a clear statement of relationship
between reversions and recurrences. Such a statement would have provided
a helpful reference for the author’s paper on the super Patalan numbers [10,
equation (14)]. As an example of the theorem that we prove in this paper, we
also give a second convolutional recurrence for the Patalan numbers.

A second aspect of the relationship with Riordan arrays is that the doubly
infinite matrix that is called an extended Super Patalan matrix in [10], is an
example of a recursive matrix, as defined by Luzón et. al. [8]. Luzón et. al.
also defined the concept of a dual Riordan array, and we describe the Riordan
arrays and dual Riordan arrays that are related to the super Patalan numbers.

2 Reversion of series

Definition 2.1. Let A(x) =
∑

k≥0

akx
k. The reversion of A is a series B(x) =

∑

k≥0

bkx
k such that B(A(x)) = x.

Since polynomial multiplication corresponds to convolution of the coeffi-
cients, it is not terribly surprising that one can get recurrence relations involving
convolution from reversion. One does have to be moderately careful in trans-
forming the equation B(A(x)) = x into a recurrence relation on the coeffecients
of A.
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Following standard notation, we let [xn]P (x) be the coefficient of xn in the

power series P (x). We observe that B(A(x)) =
∑

k≥0

bkA(x)
k.

Lemma 2.1. Let a(k)n = [xn]A(x)k. Then

a(k)n =
∑

i1+···+ik=n

k
∏

j=1

aij . (1)

The summation in equation (1) is over all degree sequences of length k that
sum to n.

Lemma 2.2. If B(x) is the reversion of the series A(x), then B(a0) = 0.

Lemma 2.3. If B(x) is the reversion of the series A(x), then B′(a0) = 1/a1.

Proof. The equation B(A(x)) = x implies [x]B(A(x)) = 1, and this implies

∑

k≥0

bka
(k)
1 = 1. (2)

Now a
(k)
1 = kak−1

0 a1, so equation (2) is equivalent to

∑

k>0

bkka
k−1
0 a1 = 1. (3)

Now
∑

k>0

bkka
k−1
0 = B′(a0), so equation (3) is equivalent to

B′(a0)a1 = 1.

3 From reversion to recurrence relations

In this section, we give two theorems that describe a convolutional recurrence
relation for any power series with a reversion that is a polynomial. One applies
to any such power series, and the other to power series with constant term 0.

Lemma 3.1. Let (an) be a sequence with generating function A(x). Let a(k)n be

as in Lemma 2.1. Then a(k)n satisfies a(1)n = an and

a(k)n =
n
∑

j=0

an−ja
(k−1)
j . (4)

We next define a term that is closely related to a(k)n .

2



Definition 3.1. Let (an) be a sequence. Define a{k}n by a{1}n = 0 and, for k > 1,

a{k}n =

n−1
∑

j=1

an−ja
(k−1)
j + a0a

{k−1}
n . (5)

Lemma 3.2. The terms a(k)n and a{k}n satisfy

a(k)n = a{k}n + kak−1
0 an (6)

Proof. We use induction on k. For k = 1 we have a(1)n = an, a
{1}
n = 0, and

kak−1
0 an = an. For k > 1, by equation (4), we get

a(k)n = ana
(k−1)
0 + a0a

(k−1)
n +

n−1
∑

j=1

an−ja
(k−1)
j . (7)

By induction, a(k−1)
n = a{k−1}

n +(k− 1)ak−2
0 an. Thus equation (7) is equivalent

to

a(k)n = a0
(

a{k−1}
n + (k − 1)ak−2

0 an
)

+ ana
(k−1)
0 +

n−1
∑

j=1

an−ja
(k−1)
j . (8)

Now a
(k−1)
0 = ak−1

0 , so we collect the multiples of ak−1
0 an in (8) to get

a(k)n = a0a
{k−1}
n + kak−1

0 an +

n−1
∑

j=1

an−ja
(k−1)
j . (9)

Now equation (5) lets us substitute a{k}n for the first and third terms in (9),
giving the desired result.

Corollary 3.1. In the situation of Lemma 3.2, if a0 = 0, then a(k)n = a{k}n for

k > 1.

Next we consider the equation 0 = [xn]B(A(x)) for n > 1.

Theorem 3.1. The coefficient an, for n > 1, satisfies

an = −a1
∑

k>0

bka
{k}
n . (10)

Proof. By Lemma 3.2, we have

0 =[xn]B(A(x)) (11)

=
∑

k>0

bka
{k}
n (12)

=
∑

k>0

bkka
k−1
0 an +

∑

k>0

bka
{k}
n . (13)
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By Lemma 2.3, we have
∑

k>0

bkka
k−1
0 = 1/a1. so the first term is equal to

an/a1. Substituting this into (13) gives

0 = an/a1 +
∑

k>0

bka
{k}
n .

Now solving for an gives the desired result.

Corollary 3.2. In the situation of Lemma 3.2, if a0 = 0, then for n > 1 we

have

an = −a1
∑

k>1

bka
(k)
n . (14)

Proof. This follows from the fact that a{1}n = 0 and Lemma 3.1.

Corollary 3.3. Let A(x) =
∑

k≥0

anx
n be a power series with a0 6= 0, let C(x) =

xA(x), and let B(x) be the reversion of C(x).Then

an = −
∑

k>1

bka
(k)
n−k+1. (15)

Proof. Since C(x) = xA(x), the coefficients of C and A are related by cn = an−1

for n > 0 and c0 = 0. By Corollary 3.2, we have

cn = −c1
∑

k>1

bkc
(k)
n . (16)

Substituting in terms of the coefficients of A we get

an−1 = −a0
∑

k>0

bka
(k)
n−k. (17)

Note that the subscripts of the corresponding terms c{k}n and a
{k}
n−k in equations

(16) and (17) differ by k units. Every term in the corresponding sums has
k factors, and every factor’s subscript differs by 1, so the subscripts of their
products differ by k units. Now shifting the index on (an) by one unit gives

an = −a0
∑

k>0

bka
(k)
n−k+1. (18)

In general, equation (10) does not give us a way to compute the terms of
the sequence (an). It reduces to a finite sum if B(x) is a polynomial. In that
case, a0 must be a root of B(x), and a1 is determined by Lemma 2.3. Then by
equation (5), for a given n, a{k}n for k > 1 is computed before an, equation (5)
gives a recursive formula. In the case a0 = 0, the sum terminates for each n,
but the number of terms grows with n. We can always get recurrence relations
with either a finite sum or terminating sums by using the reversion of xA(x)
when a0 6= 0. We consider some examples next.
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4 Examples 1: Catalan and Patalan recurrences

with non-zero constant term

We consider convolutional recurrences for the Catalan and Patalan numbers.
Let (an)n≥0 be the Patalan numbers of order p, and let A(x) be their generating
function. Define the sequences (cn) and (dn) by c0 = 0, cn = dn = an−1 for
n > 0, and d0 = −1/p. Also let C(x) and D(x) be their respective generating
functions. Thus C(x) = xA(x), and D(x) = C(x) − 1/p.

Now C(x) is the reversion of f(x)
1 − (1− px)p

p2
. This expression for f ex-

pands to f(x) = −
p

∑

k=1

(

p

k

)

pk−2(−x)k [10]. By equation (10), we get the con-

volutional recurrence

cn =
∑

k≥2

(−1)k
(

p

k

)

pk−2c(k)n . (19)

By Corollary 3.3, this gives the convolutional recurrence

an =
∑

k>1

(−1)k
(

p

k

)

pk−2a
(k)
n−k+1. (20)

Equation (20) is equivalent to equation (14) of [10].
Next we consider d(n) and D(x). Since D(x) = C(x)− 1/p, and C(x) is the

reversion of
1− (1− px)p

p2
, we see that D(x) is reversion of

g(x) =
1−

(

1− p(x+ 1/p)
)p

p2
=

1− (−px)p

p2
.

This gives the convolutional recurrence

dn = (−1)ppp−2d{p}n . (21)

While the convolutional recurrences of equations (19) and (20) are essentially
the same except for the indexing, the recurrence relation of equation (21) is

distinct when p > 2. For example, for p = 4, we have d
{4}
2 =

3

8
, d

{4}
3 =

7

2
, and

d
{4}
4 =

77

2
. Thus the recurrence of equation (21) is not an integral recurrence.

The form of equation (21) perhaps is a more natural generalization of the
well known recurrence relation for the Catalan numbers, in the sense that it
defines the Patalan numbers of order p in terms of a pth convolutional power.
Of course, the compact notation d{k}n represents a more complex sum than in
the convolutional recurrence relation for the Catalan numbers.
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Table 1: Reversions of low degree polynomials in OEIS
Polynomial Sequence of Reversion

x− x2 − x3 A001002
x− 2x2 − x3 A192945
x− x2 − 2x3 A250886
x− 3x2 − x3 A120590
x− 2x2 − 2x3 A276310
x− x2 − 3x3 A276314
x− 3x2 − 2x3 A276315
x− 2x2 − 3x3 A250887
x− 2x2 + x3 A006013
x− 3x2 + x3 A005159
x− 2x2 + 2x3 A085614
x− 4x2 + x3 A276316

5 Examples 2: reversions of small polynomials

with constant term zero

Most of the sequences in the OEIS that are related to reversions of small poly-
nomials are listed as such in the OEIS [13]. The Catalan numbers are related to
the reversion of x− x2, corresponding to the well known convolutional formula
for the Catalan numbers [13, A000108].

Other sequences that are related to reversions of small polynomials are listed
in Table 1. The terms of these sequences may all be calculated using equation
(14).

6 Recurrence relations and Riordan arrays

The examples in the last section can be put into the context of Riordan arrays.
A Riordan array is an infinite lower triangular matrix based on two power series.

Definition 6.1. Let g(x) =
∑

k≥0

gkx
k and f(x) =

∑

k≥0

fkx
k be power series, with

f0 = 0. Define the Riordan array R = R(g, f) by Rn,k = [xn](g(x)f(x)k), for
integers n, k ≥ 0.

The elements of the Riordan array may also be defined using two sequences,
the A-sequence and the Z sequence. The A-sequence depends only on f . The
A sequence is the coefficient sequence of the recurrence relation

dn+1,k+1 =

∞
∑

j=0

ajdn, k + j (22)
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for the entries of a Riordan array. See the paper of He and Sprugnoli for details
[6, equation (2.4)]. He and Sprugnoli show that the power series of the A-
sequence satisfies f(x) = xA(f(x)) [6, equation (2.6)]. If we let f̄(x) be the

reversion of f(x), this is equivalent to A(x) =
x

f̄(x)
. This formula may be

interepreted as a compostion of the inversion and reversion of the power series
f . The following definitions make this precise.

Definition 6.2. Let (fn), n ≥ 0 be a sequence with f0 6= 0, and let f(x) =
∑

n

fnx
n. Define INV ((fn)) to be the sequence given by the inversion of f(x).

Definition 6.3. Let (fn), n ≥ 0 be a sequence with f0 6= 0, and let F (x) =
∑

n≥0

fnx
n+1. Let the power series H(x) =

∑

n≥0

hnx
n+1 be the reversion of F (x).

Define REV ((fn)) to be (hn).

Now we can express the A-sequence in terms of INV and REV .

Theorem 6.1. Let (fn), n ≥ 0 be a sequence with f0 6= 0, and let (an) be the

A-sequence of the Riordan array R(1, xf(x)). Then (an) = INV (REV ((fn))).

Note that the INV transform of a sequence defined by a linear recurrence
gives the coefficients of the linear recurrence, while the REV transform of a se-
quence defined by a convolutional recurrence gives the coefficients of the convo-
lutional recurrence. From this view, Theorem 6.1 relates recurrences, reversion,
and Riordan arrays.

7 Recursive matrices and the extended super

Patalan matrix

The next definition, which extends definition 6.1, follows Luzón et. al [8]. to
define doubly infinite Riordan Arrays.

Definition 7.1. Let g(x) =
∑

k≥0

gkx
k and f(x) =

∑

k≥0

fkx
k be power series, with

f0 = 0 and f1 6= 0. For k < 0, let f(x)k be the multiplicative inverse of f(x)−k

in the ring of formal Laurent series. Define the recursive matrix D = D(g, f)
by Dn,k = [xn](g(x)f(x)k), for all integers n, k.

The matrix L in the authors paper The Super Patalan Numbers is in fact
a recursive matrix [10, Theorem 6]. In addition, L is an involution. Riordan
group involutions have been studied by Shapiro, Cheon, and Kim [12], [3], [4].

The Super Catalan numbers, form the lower left quadrant of L [13, sequence
A068555]. The ordinary Riordan array R(1/

√
1− 4x,−x/(1 − 4x)) forms the

(absolute value of the) lower right quadrant of L [13, sequence A046512].
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8 The dual Riordan array

We consider a Riordan array that is called the dual Riordan array by Luzón
et. al. [8]. It the upper left quadrant of a recursive matrix, after rotating and
transposing.

We want to define the anti-transpose of a matrix, including infinite matrices,
to be the reflection across the anti-diagonal. First, we will use the notation A@

for the anti-transpose. The pronounciation of @ as ”at” suggests its use as an
abbreviation for ”anti-transpose”.

For finite matrices, the anti-transpose is just like the transpose, except it is
the reflection across the anti-diagonal instead of the main diagonal. For doubly
infinite matrices, we define A@

i,j = A−j,−i, for all integers i, j. For infinite
matrices we use the same definition as for doubly infinite matrices, with the
understanding that the index sets are as implied by the definition.

The anti-transpose of a recursive matrix is the [0]-complementary recursive
matrix defined by Luzón et. al. [8, Definition 3.1].

Now we define the Riordan dual R∗(g, f).

Definition 8.1. Let R(g, f) be a Riordan array as in definition 6.1. Let D(g, f)
be the corresponding recursive matrix. Define the dual Riordan array R∗(g, f)
by

R∗(g, f)i,j = D(g, f)−j,−i. (23)

In the recursive matrix D(g, f), the corresponding Riordan array R(g, f) is
the lower right quadrant, while the corresponding dual Riordan array R∗(g, f)
is the anti-transpose of the upper left quadrant.

In an earlier version of this paper, before we were aware of the work of Luzón
et. al., we used the term doubly infinite Riordan array for recursive matrix, and
Riordan dual for dual Riordan array.

The following theorem was proved by Luzón et. al. [8, Theorem 3.1]. The
paper by Kruchinin and Kruchinin is also relevant to this theorem. [7, Theorem
2]

Theorem 8.1. Let g and f be as in definition 6.1. Let f̄ be the reversion of f .

Let f̂ be given by f̂(x) =
xf̄ ′(x)

f̄(x)
. Then the Riordan dual satisfies

R∗(g, f) = R(f̂g(f̄), f̄). (24)

We have seen that a recursive matrix contains both the corresponding Ri-
ordan array and the dual Riordan array. For the the example of the recursive
matrix L in [10], the matrix S in the lower left quadrant of L is a Super Catalan
or Super Patalan matrix, with the column ordering reversed. We state without
proof the theorems that describe these relationships.

Theorem 8.2. Let p and q be integers with p ≥ 2 and 0 < q < p. Let Q(p, q)
be the matrix of (p, q)-super Patalan numbers. Then Q(p, q) forms the lower left

quadrant of the recursive matrix D

(

1

(1− p2x)q/p
,

−x

1− p2x

)

.
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See the comments about the generating functions of the columns of the
doubly infinite matrix E in the author’s paper on the super Patalan numbers
[10].

Theorem 8.3. Let p and q be integers with p ≥ 2 and 0 < q < p. Let g(x) =
1

(1− p2x)q/p
, let h(x) =

1

(1− p2x)(p−q)/p
, and let f(x) =

−x

1− p2x
. Then the

dual Riordan array R∗(g, f) = R(h, f).

For q = 2 and p = 1, this shows that the Riordan arrayR

(

1√
1− 4x

,
−x

1− 4x

)

is self-dual. The Riordan arrayR

(

1√
1− 4x

,
−x

1− 4x

)

is OEIS sequence A046521

[13].
For one more example with q = 3 and p = 1, we find that the Riordan array

R

(

1

(1 − 9x)1/3
−x

1− 9x

)

is dual to the Riordan array R

(

1

(1− 9x)2/3
,

−x

1− 9x

)

.

These are OEIS sequences A283150 and A283151 [13].
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