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Stability of iterated polynomials and linear

transformations preserving the strong q-log-convexity ∗

Bao-Xuan Zhu

School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, PR China

Abstract

In this paper, we mainly study the stability of iterated polynomials and linear
transformations preserving the strong q-log-convexity of polynomials

Let [Tn,k]n,k≥0 be a triangular array of nonnegative numbers. We give two cri-
terions for the linear transformation

yn(q) =

n
∑

k=0

Tn,kxk(q)

preserving the strong q-log-convexity (resp. log-convexity). As applications, we
derive that some linear transformations (for instance, the Stirling transformations
of two kinds, the Jacobi-Stirling transformation of the second kind, the Legendre-
Stirling transformation of the second kind, the central factorial transformations,
the Catalan transformations of Aigner and Shaprio, the Motzkin transformation,
the Bell transformation, and so on) preserve the strong q-log-convexity (resp. log-
convexity) in a unified manner. In particular, we confirm a conjecture of Lin and
Zeng and extend some results of Chen et al. and Zhu for strong q-log-convexity of
polynomials.

The stability property of iterated polynomials implies the q-log-convexity. By
applying the method of interlacing of zeros, we also present two criterions for the
stability of the iterated Sturm sequences and q-log-convexity of polynomials. As
consequences, we get the stabilities of iterated Eulerian polynomials of Types A

and B, and their q-analogs. In addition, we also prove that the generating func-
tions of alternating runs, the longest alternating subsequence and up-down runs of
permutations form a q-log-convex sequence, respectively.
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1 Introduction

The main objective of this paper is twofold: one is to study the linear transformations
preserving the strong q-log-convexity of the sequences of polynomials and another is to
research one strong property of q-log-convexity called the stability of polynomials.

The Jacobi-Stirling numbers JSk
n(z) of the second kind, which were introduced in [23],

are the coefficients of the integral composite powers of the Jacobi differential operator

ℓα,β[y](t) =
1

(1− t)α(1 + t)β
(

−(1 − t)α+1(1 + t)β+1y′(t)
)′
,

with fixed real parameters α, β ≥ −1. They also satisfy the following recurrence relation:
{

JS0
0(z) = 1, JSk

n(z) = 0, if k 6∈ {1, . . . , n},
JSk

n(z) = JSk−1
n−1(z) + k(k + z) JSk

n−1(z), n, k ≥ 1,

where z = α+β+1. Actually, these numbers are a generalization of the Legendre-Stirling
numbers of the second kind: it suffices to choose α = β = 0. Recently, the Jacobi-Stirling
numbers and Legendre-Stirling numbers have generated a significant amount of interest
from some researchers in combinatorics, see Andrews et al. [4, 5, 6], Egge [21], Everitt
et al. [22, 23], Gelineau and Zeng [26], Mongelli [39], Lin and Zeng [31] and Zhu [52] for
details. In [31], Lin and Zeng proposed the next conjecture.

Conjecture 1.1. [31] The Jacobi-Stirling transformation

yn =

n
∑

k=0

JSk
n(z)xk

preserves the log-convexity for z = 0, 1.

Recall some notation and definitions. Let {an}n≥0 be a sequence of nonnegative real
numbers. It is called log-convex (resp. log-concave) if for all k ≥ 1, ak−1ak+1 ≥ a2k (resp.
ak−1ak+1 ≤ a2k), which is equivalent to that an−1am+1 ≥ anam (resp. an−1am+1 ≤ anam)
for all 1 ≤ n ≤ m. The log-concave sequences arise often in combinatorics, algebra,
geometry, analysis, probability and statistics and have been extensively investigated, see
survey articles Stanley [46] and Brenti [12] for details. On the other hand, the theory of
log-convexity was recently developed by Liu and Wang [33] and Zhu [51].

For two polynomials with real coefficients f(q) and g(q), denote f(q) ≥q g(q) if the
difference f (q) − g (q) has only nonnegative coefficients. For a polynomial sequence
{fn(q)}n≥0, it is called q-log-concave first suggested by Stanley if

fn(q)
2 − fn+1(q)fn−1(q) ≥q 0

for n ≥ 1 and is called strongly q-log-concave introduced by Sagan if

fn+1(q)fm−1(q)− fn(q)fm(q) ≥q 0

for any m ≥ n ≥ 1. Obviously, the strong q-log-concavity of polynomials implies the
q-log-concavity. However, the converse does not hold. The q-log-concavity of polynomials
have been extensively studied, see Butler [15], Leroux [30], and Sagan [41] for instance.
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For the polynomial sequence {fn(q)}n≥0, it is called q-log-convex introduced by Liu
and Wang if

fn+1(q)fn−1(q)− fn(q)
2 ≥q 0

for n ≥ 1 and is called strongly q-log-convex defined by Chen et al. if

fn+1(q)fm−1(q)− fn(q)fm(q) ≥q 0

for any n ≥ m ≥ 1. Clearly, strong q-log-convexity of polynomials implies the q-log-
convexity. However, the converse does not hold.

The operator theory often is used to study the log-concavity or log-convexity. For ex-
ample, the log-convexity and log-concavity are preserved under the binomial convolution
respectively, see Davenport and Pólya [20] and Wang and Yeh [50]. Brändén [9] stud-
ied some linear transformations preserving the Pólya frequency property of sequences.
Liu and Wang [33] also studied the linear transformation preserving the log-convexity.
However, there are fewer results about the linear transformation preserving the strong
q-log-convexity. This is our motivation of this paper.

Given a triangular array [Tn,k]n,k≥0 of nonnegative real numbers and a sequence of
polynomials {xn(q)}n≥0, define the polynomials

yn(q) =
n
∑

k=0

Tn,kxk(q)

for n ≥ 0. If we take xk(q) = qk, then it was demonstrated that the corresponding
sequence yn(q) has the q-log-convexity or strong q-log-convexity for many famous triangles
[Tn,k]n,k≥0, including the Stirling triangle of the second kind, the Jacobi-Stirling triangle of
the second kind, the Legendre-Stirling triangle of the second kind, the Eulerian triangles
of Types A and B, the Narayana triangles of Types A and B, and so on, see Chen, et al.,
[16, 17, 18], Liu and Wang [33], Liu and Zhu [34], and Zhu [51, 52] for instance. Thus
it is natural to consider the strong q-log-convexity of the linear transformation yn(q) by
that of xn(q). On the other hand, note that a log-convex sequence is one special case of
the strongly q-log-convex sequence since the real number sequence {an}n≥0 is log-convex
if and only if an−1am+1 ≥ anam for all 1 ≤ n ≤ m. So it is easy to see that the linear
transformation preserving the strong q-log-convexity also preserves the log-convexity.

Let [Tn,k]n,k≥0 be an array of nonnegative numbers satisfying the recurrence relation:

Tn,k = (a0n + a1k
2 + a2k + a3)Tn−1,k + (b0n+ b1k

2 + b2k + b3)Tn−1,k−1 (1.1)

with Tn,k = 0 unless 0 ≤ k ≤ n and T0,0 = 1. Note that all a0, a1, b0, b1 are nonnegative by
the necessary condition for the nonnegativity of [Tn,k]n,k≥0. For a2, b2 ≥ 0 and a1 = b1 = 0,
or a0 = b0 = 0 and a3, b3 ≥ 0, then the criterions for the strong q-log-convexity of the
row generating functions were gave by Chen et al. [18] and Zhu [52], respectively. An
extensive result can be presented as follows.

Theorem 1.2. Assume that the nonnegative triangle [Tn,k]n,k≥0 satisfies the recurrence
(1.1) with a1 + a2 ≥ 0 and b1 + b2 ≥ 0. If {xn(q)}n≥0 is strongly q-log-convex, then
so is yn(q) =

∑n

k=0 Tn,kxk(q). In particular, if {xn}n≥0 is log-convex, then so is yn =
∑n

k=0 Tn,kxk.
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In the following, we will also present another criterion for the linear transformation
preserving the strong q-log-convexity.

Theorem 1.3. Let [Tn,k]n,k≥0 be an array of nonnegative numbers satisfying the recurrence
relation:

Tn,k = fk Tn−1,k−1 + gk Tn−1,k + hk Tn−1,k+1 (1.2)

with Tn,k = 0 unless 0 ≤ k ≤ n and T0,0 = 1. Assume that nonnegative sequences {fk}k≥0,
{gk}k≥0 and {hk}k≥0 are increasing, respectively. If gkgk+1 ≥ hkfk+1, then the linear
transformation

yn(q) =
n
∑

k=0

Tn,kxk(q)

preserves the strong q-log-convexity, therefore preserves the log-convexity.

By Theorem 1.3, the next is immediate.

Proposition 1.4. Let [Tn,k]n,k≥0 satisfy the recurrence relation (1.2). Assume that Tn(q) =
∑n

k=0 Tn,kq
k is the row generating functions. If nonnegative sequences {fk}k≥0, {gk}k≥0

and {hk}k≥0 are increasing respectively, and gkgk+1 ≥ hkfk+1 for k ≥ 0, then generating
functions Tn(q) form a strongly q-log-convex sequence.

Twenty five years ago Gian-Carlo Rota said “The one contribution of mine that I hope
will be remembered has consisted in just pointing out that all sorts of problems of com-
binatorics can be viewed as problems of the locations of zeros of certain polynomials...”,
see the end of the introduction of [8]. In fact, polynomials with only real zeros play an
important role in attacking log-concavity of sequences. One classical result is that if the
polynomial

∑n

i=0 aix
i with nonnegative coefficients has only real zeros, then the sequence

a0, a1, . . . , an is log-concave. In addition, many log-concave sequences arising in combi-
natorics have the stronger property, see Liu and Wang [32] and Wang and Yeh [49] for
instance. Using the algebraical method, Liu and Wang [33] found that many polynomials
with real zeros have q-log-convexity. Thus at the end of their paper, they proposed the
problem to research this relation between the q-log-convexity and real zeros. This is our
another motivation.

One of the classical problems of the theory of equations is to find relations between the
zeroes and coefficients of a polynomial. A real polynomial is (Hurwitz) stable if all of its
zeros lie in the open left half of the complex plane. A well-known necessary condition for a
real polynomial with positive leading coefficient to be stable is that all its coefficients are
positive. Polynomial stability problems of various types arise in a number of problems in
mathematics and engineering. We refer to [38, Chapter 9] for deep surveys on the stability
theory. Clearly, the stability property of iterated polynomials implies the q-log-convexity.
Thus it is natural to consider the following stronger problem.

Problem 1.5. Given a sequence {fn(q)}n≥0 of polynomials with only real zeros, under
which conditions can we obtain that fn+1(q)fn−1(q)− f 2

n(q) is stable for n ≥ 1 ?

We say a polynomial is a generalized stable polynomial if all of its zeros excluding 0
lie in the open left half of the complex plane. The following result gives an answer to
Problem 1.5.
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Theorem 1.6. Let {fn(q)}n≥0 be a sequence of polynomials with nonnegative coefficients,
where deg(fn(q)) = deg(fn−1(q)) + 1 for n ≥ 1. Assume that the sequence {fn(q)}n≥0

satisfies the recurrence relation

fn(q) = [a1n+ a2 + (b1n+ b2)q + (c1n+ c2)q
2]fn−1(q) + q(a3 + b3q + c3q

2)f ′
n−1(q),

where a1, b1, c1, a1 + a3, b1 + b3, c1 + c3 are all nonnegative. If {fn(q)}n≥0 is a generalized
Sturm sequence, then it is q-log-convex. Furthermore, assume that {a1, b1, c1} 6= {0}. If
c1 + c3 = 0, a1 + 2a3 ≥ 0 and b1 ≥ b3, then fn+1(q)fn−1(q)− f 2

n(q) is a generalized stable
polynomial for n ≥ 1.

The generalized Sturm sequences arise often in combinatorics. In addition, the fol-
lowing result given by Liu and Wang [32] provides an approach to the generalized Sturm
sequences.

Proposition 1.7. Let {Pn(x)} be a sequence of polynomials with nonnegative coefficients
and deg Pn = degPn−1 + 1. Suppose that

Pn(x) = (anx+ bn)Pn−1(x) + x(cnx+ dn)P
′
n−1(x)

where an, bn ∈ R and cn ≤ 0, dn ≥ 0. Then {Pn(x)} forms a generalized Sturm sequence.

It is well-known that many classical combinatorial sequences of polynomials arising
in certain triangular arrays, e.g., Pascal triangle, Stirling triangle, Eulerian triangle and
so on, satisfy the following recurrence relation (1.3). Let {Tn,k}0≤k≤n be an array of
nonnegative numbers satisfying the recurrence relation

Tn,k = (a1n+ a2k + a3)Tn−1,k + (b1n + b2k + b3)Tn−1,k−1 (1.3)

with Tn,k = 0 unless 0 ≤ k ≤ n. Let its row generating function Tn(q) =
∑n

k=0 Tn,kq
k. By

the recurrence relation (1.3), we have

Tn(q) = [a1n + a3 + (b1n + b2 + b3)q]Tn−1(q) + (a2 + b2q)qT
′
n−1(q).

By Proposition 1.7, we know that generating functions Tn(q) form a generalized Sturm
sequence. Thus, the next result follows from Theorem 1.6.

Proposition 1.8. Let {Tn,k}n,k≥0 be the nonnegative array as above (1.3) and the row gen-
erating function Tn(q) =

∑n

k=0 Tn,kq
k. If a2 ≥ 0 ≥ b2, then {Tn+1(q)Tn−1(q)− T 2

n(q)}n≥1

is a sequence of the generalized stable polynomials.

The remainder of this paper is structured as follows. In Section 2, we will present the
proofs of Theorems 1.2 and 1.3. In Section 3, we give the proof of Theorem 1.6. In Section
4, we apply Theorems 1.2 and 1.3 to some famous triangular arrays in a unified manner,
including Stirling triangles of two kinds, the Jacobi-Stirling triangle of the second kind,
the Legendre-Stirling triangle of the second kind, the central factorial numbers triangle,
the Catalan triangles of Aigner and Shaprio, the Motzkin triangle, the Bell triangle, and
so on. In particular, we solve the Conjecture 1.1. Finally, we also apply Proposition 1.8 to
Eulerian polynomials of Types A and B, and their q-analogs. Using Theorem 1.6, we also
obtain the q-log-convexities of the generating functions of alternating runs, the longest
alternating subsequence and up-down runs of permutations, respectively.
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2 Proof of Theorems 1.2 and 1.3

Recall that a matrix M = (mij)i,j≥0 of nonnegative numbers is said to be r-order totally
positive (TPr for short) if its all minors of order at most r are nonnegative. It is called
totally positive (TP for short) if its all minors of order are nonnegative. Total positivity of
matrices has been extensively studied and is very useful, see Karlin [27] for more details.

The following result for log-concavity is a classical result, which can be applied to
many combinatorial triangular arrays.

Lemma 2.1. [29] Assume that a nonnegative triangular array [A(n, k)]n,k≥0 satisfies the
recurrence

A(n, k) = f(n, k)A(n− 1, k − 1) + g(n, k)A(n− 1, k − 1).

If 2f(n, k) ≥ f(n, k+1)+f(n, k−1) and 2g(n, k) ≥ g(n, k+1)+g(n, k−1) for n > k > 1,
then

A2(n, k) ≥ A(n, k + 1)A(n, k − 1)

for n ≥ k ≥ 0.

The next result for TP2 is very important in our proof.

Lemma 2.2. Let [Tn,k]n,k≥0 be an array of nonnegative numbers satisfying the recurrence

Tn,k = [a0n+ f(k)]Tn−1,k + [b0n+ g(k)]Tn−1,k−1 (2.1)

with Tn,k = 0 unless 0 ≤ k ≤ n. If both f(k) and g(k) are nonnegative and increasing in
k, then [Tn,k]n,k≥0 is TP2.

Proof. For j ≥ i, by recurrence (2.1), we have

Tn+1,jTn,i − Tn+1,iTn,j

= [(a0n + f(j))Tn,j + (b0n + g(j))Tn,j−1]Tn,i − [(a0n+ f(i))Tn,i + (b0n+ g(i))Tn,i−1]Tn,j

≥ [f(j)− f(i)]Tn,jTn,i + [b0n+ g(i)][Tn,j−1Tn,i − Tn,iTn,j]

≥ 0

by Lemma 2.1 and the monotonicity of f(k) and g(k). Thus we have

Tn+1,jTn,i − Tn+1,iTn,j ≥ 0

for j ≥ i. It follows that

Tn+1,jTn,i ≥ Tn+1,iTn,j,

Tn+2,jTn+1,i ≥ Tn+2,iTn+1,j,

Tn+3,jTn+2,i ≥ Tn+3,iTn+2,j,
...

Tm,jTm−1,i ≥ Tm,iTm−1,j ,

which imply that
Tm,jTn,i ≥ Tm,iTn,j

for any m ≥ n and j ≥ i, that is to say that [Tn,k]n,k≥0 is TP2. This completes the
proof.
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The next lemma plays an important role in our proof.

Lemma 2.3. [48] Given four sequences {ai}ni=0, {bi}ni=0, {ci}ni=0 and {di}ni=0, then we
have

n
∑

i=0

aici

n
∑

i=0

bidi −
n
∑

i=0

aidi

n
∑

i=0

bici =
∑

0≤i<j≤n

(aibj − ajbi)(cidj − cjdi).

Proof of Theorem 1.2: In the following proof, we simply write xk for xk(q).
In order to prove the strong q-log-convexity of {yn(q)}n≥0, it suffices to show for n ≥ m

that
yn+1(q)ym−1(q)− yn(q)ym(q) ≥q 0.

Assume that f(k) = a1k
2 + a2k and g(k) = b1k

2 + b2k. Since all a1, b1, a1 + a2, b1 + b2 are
nonnegative, both f(k) and g(k) are nonnegative and increasing in k. So it follows from
Lemma 2.2 that the matrix [Tn,k]n,k≥0 is TP2. In addition, for j ≥ i, we also have

g(j + 1)xixj+1 − g(i+ 1)xi+1xj ≥q g(i+ 1)[xixj+1 − xi+1xj ] ≥q 0 (2.2)

since {xn(q)}n≥0 is strongly q-log-convex. Thus if we view Tm−1,k, Tn,k, xk and f(k)xk as
ak, bk, ck and dk in Lemma 2.3, respectively, then we obtain that

n
∑

k=0

f(k)Tn,kxk

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=0

f(k)Tm−1,kxk

=

n
∑

k=0

f(k)Tn,kxk

n
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

n
∑

k=0

f(k)Tm−1,kxk

=
∑

0≤i<j≤n

[f(j)− f(i)](Tm−1,iTn,j − Tm−1,jTn,i)xixj

≥q 0 (2.3)

since f(k) is increasing and the matrix [Tn,k]n,k≥0 is TP2. Similarly by Lemma 2.3,
it follows from (2.2), 2-order positivity of [Tn,k]n,k≥0 and the strong q-log-convexity of
{xn(q)}n≥0 that we have

n
∑

k=0

g(k + 1)Tn,kxk+1

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=0

g(k + 1)Tm−1,kxk+1

=

n
∑

k=0

g(k + 1)Tn,kxk+1

n
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

n
∑

k=0

g(k + 1)Tm−1,kxk+1

=
∑

0≤i<j≤n

[Tm−1,iTn,j − Tm−1,jTn,i] [g(j + 1)xixj+1 − g(i+ 1)xi+1xj ]

≥q 0 (2.4)

and
n
∑

k=0

[b0n+ b3]Tn,kxk+1

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=0

(b0m+ b3)Tm−1,kxk+1

=
∑

0≤i<j≤n

(b0m+ b3) [Tm−1,iTn,j − Tm−1,jTn,i] [xixj+1 − xi+1xj ]

≥q 0. (2.5)

7



Thus, for n ≥ m, by the recurrence relation (1.1), we have

yn+1(q)ym−1(q)− yn(q)ym(q)

=

[

n
∑

k=0

(a0n+ f(k) + a3 + a0)Tn,kxk +

n+1
∑

k=1

(b0n+ g(k) + b3 + b0)Tn,k−1xk

]

m−1
∑

k=0

Tm−1,kxk

−
n
∑

k=0

Tn,kxk

[

m−1
∑

k=0

(a0m+ f(k) + a3)Tm−1,kxk +

m
∑

k=1

(b0m+ g(k) + b3)Tm−1,k−1xk

]

=

[

n
∑

k=0

[a0n+ f(k) + a0]Tn,kxk

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=0

[a0m+ f(k)]Tm−1,kxk

]

+

[

n+1
∑

k=1

(b0n+ g(k) + b3 + b0)Tn,k−1xk

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m
∑

k=1

(b0m+ g(k) + b3)Tm−1,k−1xk

]

=

[

n
∑

k=0

f(k)Tn,kxk

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=0

f(k)Tm−1,kxk

]

+a0(n−m+ 1)

n
∑

k=0

Tn,kxk

m−1
∑

k=0

Tm−1,kxk + b0(n−m+ 1)

n
∑

k=0

Tn,kxk+1

m−1
∑

k=0

Tm−1,kxk

+

[

n
∑

k=0

(b0m+ b3)Tn,kxk+1

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=0

(b0m+ b3)Tm−1,kxk+1

]

+

[

n
∑

k=0

g(k + 1)Tn,kxk+1

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=0

g(k + 1)Tm−1,kxk+1

]

=
∑

0≤i<j≤n

[f(j)− f(i)](Tm−1,iTn,j − Tm−1,jTn,i)xixj + a0(n−m+ 1)

n
∑

k=0

Tn,kxk

m−1
∑

k=0

Tm−1,kxk

+b0(n−m+ 1)

n
∑

k=0

Tn,kxk+1

m−1
∑

k=0

Tm−1,kxk

+
∑

0≤i<j≤n

(b0m+ b3) [Tm−1,iTn,j − Tm−1,jTn,i] [xixj+1 − xi+1xj ]

+
∑

0≤i<j≤n

[Tm−1,iTn,j − Tm−1,jTn,i] [g(j + 1)xixj+1 − g(i+ 1)xi+1xj ]

≥q 0

by (2.6), (2.4) and (2.5). This completes the proof.
In what follows we will prove Theorem 1.3. The following lemma has been proved in

[51, Theorem 1].

Lemma 2.4. Let [Tn,k]n,k≥0 be an array of nonnegative numbers satisfying the recurrence
relation:

Tn,k = fk Tn−1,k−1 + gk Tn−1,k + hk Tn−1,k+1

with Tn,k = 0 unless 0 ≤ k ≤ n and T0,0 = 1. Assume that nonnegative sequences {fk}k≥0,
{gk}k≥0 and {hk}k≥0 satisfy gkgk+1 ≥ hkfk+1, then the lower triangle matrix [Tn,k]n,k≥0 is
TP2.
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Proof of Theorem 1.3: In the following proof, we simply write xk for xk(q).
In order to prove the strong q-log-convexity of {yn(q)}n≥0, it suffices to show for n ≥ m

that
yn+1(q)ym−1(q)− yn(q)ym(q) ≥q 0.

Thus, by the recurrence relation (1.2), we have

yn+1(q)ym−1(q)− yn(q)ym(q)

=

[

n+1
∑

k=0

fkTn,k−1xk +

n+1
∑

k=0

gkTn,kxk +

n+1
∑

k=0

hkTn,k+1xk

]

m−1
∑

k=0

Tm−1,kxk

−
n
∑

k=0

Tn,kxk

[

m
∑

k=0

fkTm−1,k−1xk +

m
∑

k=0

gkTm−1,kxk +

m
∑

k=0

hkTm−1,k+1xk

]

=

[

n+1
∑

k=1

fkTn,k−1xk +

n
∑

k=0

gkTn,kxk +

n−1
∑

k=0

hkTn,k+1xk

]

m−1
∑

k=0

Tm−1,kxk

−
n
∑

k=0

Tn,kxk

[

m
∑

k=1

fkTm−1,k−1xk +

m−1
∑

k=0

gkTm−1,kxk +

m−2
∑

k=0

hkTm−1,k+1xk

]

=

[

n+1
∑

k=1

fkTn,k−1xk

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m
∑

k=1

fkTm−1,k−1xk

]

+

[

n
∑

k=0

gkTn,kxk

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=0

gkTm−1,kxk

]

+

[

n−1
∑

k=0

hkTn,k+1xk

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−2
∑

k=0

hkTm−1,k+1xk

]

=

[

n
∑

k=0

fk+1Tn,kxk+1

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=0

fk+1Tm−1,kxk+1

]

+

[

n
∑

k=0

gkTn,kxk

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=0

gkTm−1,kxk

]

+

[

n
∑

k=1

hk−1Tn,kxk−1

m−1
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

m−1
∑

k=1

hk−1Tm−1,kxk−1

]

=

[

n
∑

k=0

fk+1Tn,kxk+1

n
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

n
∑

k=0

fk+1Tm−1,kxk+1

]

+

[

n
∑

k=0

gkTn,kxk

n
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

n
∑

k=0

gkTm−1,kxk

]

+

[

n
∑

k=1

hk−1Tn,kxk−1

n
∑

k=1

Tm−1,kxk −
n
∑

k=1

Tn,kxk

n
∑

k=1

hk−1Tm−1,kxk−1

]

+

[

n
∑

k=1

hk−1 (Tn,kTm−1,0 − Tn,0Tm−1,k) xk−1x0

]

.
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By Lemma 2.4, it is clear that
∑n

k=1 hk−1 (Tn,kTm−1,0 − Tn,0Tm−1,k)xk−1x0 ≥q 0.
On the other hand, similar to the proof of Theorem 1.2, by Lemma 2.3, we have the

following:
[

n
∑

k=0

fk+1Tn,kxk+1

n
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

n
∑

k=0

fk+1Tm−1,kxk+1

]

=
∑

0≤i<j≤n

[Tm−1,iTn,j − Tm−1,jTn,i] [fj+1xixj+1 − fi+1xi+1xj]

≥q 0,
[

n
∑

k=0

gkTn,kxk

n
∑

k=0

Tm−1,kxk −
n
∑

k=0

Tn,kxk

n
∑

k=0

gkTm−1,kxk

]

=
∑

0≤i<j≤n

[gj − gi](Tm−1,iTn,j − Tm−1,jTn,i)xixj

≥q 0

and
[

n
∑

k=1

hk−1Tn,kxk−1

n
∑

k=1

Tm−1,kxk −
n
∑

k=1

Tn,kxk

n
∑

k=1

hk−1Tm−1,kxk−1

]

=
∑

1≤i<j≤n

[Tm−1,iTn,j − Tm−1,jTn,i] [hj−1xixj+1 − hi−1xi+1xj ]

≥q 0.

Hence for any n ≥ m, we have

yn+1(q)ym−1(q)− yn(q)ym(q) ≥q 0.

This completes the proof.

3 Proof of Theorem 1.6

Following Wagner [47], a real polynomial is said to be standard if either it is identically
zero or its leading coefficient is positive. Suppose that f, g ∈ RZ. Let {ri} and {sj} be
all zeros of f and g in nondecreasing order respectively. We say that g interlaces f if
deg f = deg g + 1 = n and

rn ≤ sn−1 ≤ · · · ≤ s2 ≤ r2 ≤ s1 ≤ r1. (3.1)

By g � f we denote “g interlaces f”. For notational convenience, let a � bx + c for any
real constants a, b, c and f � 0, 0 � f for all real polynomial f with only real zeros.

Let {Pn(x)}n≥0 be a sequence of standard polynomials. Recall that {Pn(x)} is a Sturm
sequence if degPn = n and Pn−1(r)Pn+1(r) < 0 whenever Pn(r) = 0 and n ≥ 1. We say
that {Pn(x)} is a generalized Sturm sequence if Pn ∈ RZ and P0 � P1 � · · · � Pn−1 �
Pn � · · · . For example, if P is a standard polynomial with only real zeros and degP = n,
then P (n), P (n−1), . . . , P ′, P form a generalized Sturm sequence by Rolle’s theorem.

In order to simplify our proof, we need the following lemma.
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Lemma 3.1. [24, Lemma 1.20] Let both f(x) and g(x) be standard real polynomials with
only real zeros. Assume that deg(f(x)) = n and all real zeros of f(x) are s1, . . . , sn. If
deg(g) = n− 1 and we write

g(x) =

n
∑

i=1

cif(x)

x− si
,

then g(x) interlaces f(x) if and only if all ci are positive.

Proof of Theorem 1.6:

Since

fn(q) = [a1n+ a2 + (b1n+ b2)q + (c1n+ c2)q
2]fn−1(q) + q(a3 + b3q + c3q

2)f ′
n−1(q),

it follows that

fn+1(q)fn−1(q)− f 2
n(q)

= {[a1n + a2 + a1 + (b1n + b2 + b1)q + (c1n+ c2 + c1)q
2]fn(q) + q(a3 + b3q + c3q

2)f ′
n(q)}

fn−1(q)− {[a1n + a2 + (b1n + b2)q + (c1n+ c2)q
2]fn−1(q) + q(a3 + b3q + c3q

2)f ′
n−1(q)}fn(q)

= (a1 + b1q + c1q
2)fn(q)fn−1(q) + q(a3 + b3q + c3q

2)
[

f ′
n(q)fn−1(q)− fn(q)f

′
n−1(q)

]

= f 2
n(q)

[

(a1 + b1q + c1q
2)
fn−1(q)

fn(q)
− q(a3 + b3q + c3q

2)

(

fn−1(q)

fn(q)

)′]

. (3.2)

Note that {fn(q)}n≥0 is a generalized Sturm sequence. Thus, if we assume that the all non-
positive zeros of fn(q) are ordered as r1 ≥ r2 ≥ . . . ≥ rn, then fn−1(q) = fn(q)

∑n

i=1
si

q−ri
by Lemma 3.1, where si > 0 for 1 ≤ i ≤ n. Hence,

fn+1(q)fn−1(q)− f 2
n(q)

= f 2
n(q)

[

(a1 + b1q + c1q
2)
fn−1(q)

fn(q)
− q(a3 + b3q + c3q

2)

(

fn−1(q)

fn(q)

)′]

= f 2
n(q)

[

(a1 + b1q + c1q
2)

n
∑

i=1

si
q − ri

+ q(a3 + b3q + c3q
2)

n
∑

i=1

si
(q − ri)2

]

= f 2
n(q)

n
∑

i=1

si [(a1 + b1q + c1q
2)(q − ri) + q(a3 + b3q + c3q

2)]

(q − ri)2

=

n
∑

i=1

si
[

(c1 + c3)q
3 + (b1 + b3 − c1ri)q

2 + (a1 + a3 − b1ri)q − a1ri
]

(

fn(q)

q − ri

)2

,

which is a polynomial with nonnegative coefficients since

(c1 + c3)q
3 + (b1 + b3 − c1ri)q

2 + (a1 + a3 − b1ri)q − a1ri,
fn(q)

q − ri

are all polynomials with nonnegative coefficients for 1 ≤ i ≤ n. Thus {fn(q)}n≥0 is
q-log-convex.

In the following, we proceed to demonstrate the second part that

fn+1(q)fn−1(q)− f 2
n(q)

11



is a generalized stable polynomial for each n ≥ 1. Note that

fn+1(q)fn−1(q)− f 2
n(q)

= f 2
n(q)

n
∑

i=1

si [(a1 + b1q + c1q
2)(q − ri) + q(a3 + b3q + c3q

2)]

(q − ri)2
.

Thus we only need to show that

n
∑

i=1

si [(b1 + b3 − c1ri)q
2 + (a1 + a3 − b1ri)q − a1ri]

(q − ri)2
(3.3)

has no zeros in the right half plane since c1 + c3 = 0. Let q = x + yi, where i is the
imaginary number unit. Then, for x ≥ 0 and r ≤ 0, it follows from a1 + 2a3 ≥ 0 and
b1 ≥ b3 that we have

[(x− r)2 − y2]2Re

(

(b1 + b3 − c1r)q
2 + (a1 + a3 − b1r)q − a1r

(q − r)2

)

= [(x− r)2 − y2]2Re

(

(b1 + b3 − c1r)(x+ yi)2 + (a1 + a3 − b1r)(x+ yi)− a1r

(x− r + yi)2

)

= (B − c1r)(x
2 − y2)2 + (B − c1r)x

2(r2 − 2xr) + (xA− xb1r − a1r)(x− r)2 +

y2
{

4x2B + xA− (2B + b1)xr − (a1 + 2a3)r + (b1 − b3)r
2 − xr[(2x− r)2 − 2xr]

}

≥ 0,

where A = a1 + a3 and B = b1 + b3. Thus,

Re

(

n
∑

k=1

ck [(b1 + b2)q
2 + (a1 + a2 − b1rk)q − a1rk]

(q − rk)2

)

≥ 0

with the equality if and only if q = 0 since not all of a1, b1, c1 is equal to 0. This completes
the proof.

4 Applications

In this section, we give some applications of the main results.

4.1 Stirling transformations of two kinds

The Bell polynomial is the generating function Bn(q) =
∑n

k=0 Sn,kq
k of the Stirling num-

bers of the second kind, where the Stirling numbers of the second kind satisfy the recur-
rence

Sn+1,k = kSn,k + Sn,k−1.

Let cn,k be the signless Stirling number of the first kind, i.e., the number of permutations
of [n] which contain exactly k permutation cycles. Similarly, singless Stirling numbers of
the first kind cn,k satisfy the recurrence

cn,k = (n− 1)cn−1,k + cn−1,k−1.
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The q-log-convexity and strong q-log-convexity of {Bn(q)}n≥0 have been proved, see
Liu and Wang [33], Chen et al. [18] and Zhu [51, 52] for instance. Liu and Wang [33]
also proved that both the Stirling transformation of two kinds preserve the log-convexity,
respectively. By Theorem 1.2, we can extend above results to the strong q-log-convexity
as follows.

Proposition 4.1. The linear transformation yn(q) =
∑n

k=0 Sn,kxk(q) preserves the strong
q-log-convexity.

Proposition 4.2. The linear transformation yn(q) =
∑n

k=0 cn,kxk(q) preserves the strong
q-log-convexity.

4.2 Jacobi-Stirling transformation of the second kind

Note that the Jacobi-Stirling numbers JSk
n(z) of the second kind satisfy the following

recurrence relation:
{

JS0
0(z) = 1, JSk

n(z) = 0, if k 6∈ {1, . . . , n},
JSk

n(z) = JSk−1
n−1(z) + k(k + z) JSk

n−1(z), n, k ≥ 1,
(4.1)

where z = α + β + 1. Lin and Zeng [31] and Zhu [52] independently proved the strong
q-log-convexity of the row generating functions of Jacobi-Stirling numbers. By Theorem
1.2, we have the following generalization, which in particular confirms Conjecture 1.1.

Proposition 4.3. The Jacobi-Stirling transformation

zn(q) =

n
∑

k=0

JSk
n(z)xk(q)

preserves the strong q-log-convexity for z ≥ 0. In particular, the Jacobi-Stirling transfor-
mation

zn =

n
∑

k=0

JSk
n(z)xk

preserves the log-convexity for z ≥ 0.

Remark 4.4. If z = 1, then JSk
n(1) are the Legendre-Stirling numbers of the second kind.

4.3 Central factorial transformations

The central factorial numbers of the second kind T (n, k) are defined in Riordan’s book
[40, p. 213-217] by

xn =
n
∑

k=0

T (n, k) x
k−1
∏

i=1

(

x+
k

2
− i

)

. (4.2)

Therefore, if we denote the central factorial numbers of even indices by U(n, k) = T (2n, 2k),
then

U(n, k) = U(n− 1, k − 1) + k2U(n− 1, k).

13



For the central factorial numbers of odd indices, set V (n, k) = 4n−kT (2n+ 1, 2k + 1). By
the definition, we have the following recurrence relation:

V (n, k) = V (n− 1, k − 1) + (2k + 1)2V (n− 1, k).

Zhu [52] proved that the row generating functions of U(n, k) and V (n, k) form a strongly
q-log-convex sequence, respectively. These can be extended to the following in view of
Theorem 1.2.

Proposition 4.5. The linear transformation yn(q) =
∑n

k=0U(n, k)xk(q) preserves the
strong q-log-convexity. In particular, yn =

∑n

k=0U(n, k)xk preserves the log-convexity.

Proposition 4.6. The linear transformation yn(q) =
∑n

k=0 V (n, k)xk(q) preserves the
strong q-log-convexity. In particular, yn =

∑n

k=0 V (n, k)xk preserves the log-convexity.

4.4 Ramanujan transformation

Let rn,k be the number of rooted labeled trees on n vertices with k improper edges. Shor
[43] proved that rn,k satisfies the following recurrence relation:

rn,k = (n− 1)rn−1,k + (n+ k − 2)rn−1,k−1

where r1,0 = 1, n ≥ 1, k ≤ n− 1, and rn,k = 0 otherwise. It was proved by that the row
generating functions of [rn,k]n,k≥0 are the famous Ramanujan polynomials rn(y), which
are defined by the recurrence relation

r1(y) = 1, rn+1 = n(1 + y)rn(y) + y2r′(y).

The first values of the polynomials rn(y) are

r2(y) = 1 + y, r3(y) = 2 + 4y + 3y2, r4(y) = 6 + 18y + 25y2 + 15y3.

Chen et al. [18] proved that rn(y) forms a strongly q-log-convex sequence, which can be
extended to the following by Theorem 1.2.

Proposition 4.7. If {xn(q)}n≥0 is strongly q-log-convex, then the linear transformation
yn(q) =

∑n

k=0 rn,kxk(q) is q-log-convexity. In particular, yn =
∑n

k=0 rn,kxk preserves the
log-convexity.

4.5 Associated Lah transformation

The associated Lah numbers defined by

Lm(n, k) = (n!/k!)
k
∑

i=1

(−1)k−i

(

k

i

)(

n +mi− 1

n

)

satisfy the recurrence

Lm(n, k) = (mk + n− 1)Lm(n− 1, k) +mLm(n− 1, k − 1).

Let Ln(q) =
∑n

k=0Lm(n, k)q
k, which has only real zeros, see Wang and Yeh [49] for

instance. By virtue of Theorem 1.2 and Proposition 1.8, we have the following two results,
respectively.
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Proposition 4.8. The linear transformation zn(q) =
∑n

k=0Lm(n, k)xk(q) preserves the
strong q-log-convexity. In particular, zn =

∑n

k=0Lm(n, k)xk preserves the log-convexity.

Proposition 4.9. Ln+1(q)Ln−1(q)− L2
n(q) is a stable polynomial for each n ≥ 1.

4.6 Catalan transformations of two kinds

Aigner [2] defined the Catalan triangle

C = [Cn,k]n,k≥0 =















1
1 1
2 3 1
5 9 5 1
...

. . .















,

where Cn+1,k = Cn,k−1 + 2Cn,k + Cn,k+1 and Cn+1,0 = Cn,0 + Cn,1. The numbers in the
0th column are the Catalan numbers Cn. Shaprio [42] also introduced another Catalan
triangle of

C ′ = [C ′
n,k]n,k≥0 =















1
2 1
5 4 1
14 14 6 1
...

. . .















,

where C ′
n+1,k = C ′

n,k−1 + 2C ′
n,k + C ′

n,k+1 for k ≥ 0. The numbers in the 0th column are
also the Catalan numbers Cn. By Theorem 1.3, the next is immediate.

Proposition 4.10. The Catalan transformations of two kinds yn(q) =
∑n

k=0Cn,kxk(q)
and yn(q) =

∑n

k=0C
′
n,kxk(q) preserve the strong q-log-convexity, respectively. In particu-

lar, they preserve the log-convexity, respectively.

4.7 The Motzkin transformation

The Motzkin triangle [1, 2] is

M = [Mn,k]n,k≥0 =















1
1 1
2 2 1
4 5 3 1
...

. . .















,

where Mn+1,k = Mn,k−1 +Mn,k +Mn,k+1 and Mn+1,0 = Mn,0 +Mn,1. The numbers in the
0th column are the Motzkin numbers Mn. Using Theorem 1.3, we immediately have the
following.

Proposition 4.11. The Motzkin transformation zn(q) =
∑n

k=0Mn,kxk(q) preserves the
strong q-log-convexity. In particular, it preserves the log-convexity.
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4.8 The Bell transformation

The Bell triangle [3] is

B = [Bn,k]n,k≥0 =















1
1 1
2 3 1
5 10 6 1
...

. . .















,

where Bn+1,k = Bn,k−1 + (1 + k)Bn,k + (1 + k)Bn,k+1 and Bn+1,0 = Bn,0 + Bn,1. The
numbers in the 0th column are the Bell numbers. The next is immediate from Theorem
1.3.

Proposition 4.12. The Bell transformation yn(q) =
∑n

k=0Bn,kxk(q) preserves the strong
q-log-convexity. In particular, it preserves the log-convexity.

4.9 Eulerian polynomials of Types A and B

Let π = a1a2 · · · an be a permutation of [n]. An element i ∈ [n− 1] is called a descent of
π if ai > ai+1. The Eulerian number An,k is defined as the number of permutations of [n]
having k − 1 descents, which satisfies the recurrence

An,k = kAn−1,k + (n− k + 1)An−1,k−1.

Let An(q) =
∑n

k=0An,kq
k be the classical Eulerian polynomial.

For Coxeter groups of type Bn, let En,k be the Eulerian numbers of type Bn counting
the elements of Bn with k B-descents. Then the Eulerian numbers of type Bn satisfy the
recurrence

En,k = (2k + 1)En−1,k + (2n− 2k + 1)En−1,k−1. (4.3)

Assume that En(q) =
∑n

k=0En,kq
k be the Eulerian polynomial of type Bn. It is known

that An(q) and En(q) forms a strong q-log-convex sequence, respectively, see [52, 34]. By
Theorem 1.6, the following is immediate.

Proposition 4.13. Both An+1(q)An−1(q)− A2
n(q) and En+1(q)En−1(q)− E2

n(q) are gen-
eralized stable polynomials in q for n ≥ 1.

4.10 Q-Eulerian polynomials

Given a finite Coxeter group W , define the Eulerian polynomials of W by

P (W,x) =
∑

π∈W

xdW (π),

where dW (π) is the number of W -descents of π. We refer the reader to Björner and Brenti
[7] for relevant definitions.
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For Coxeter groups of type An, it is known that P (An, x) = An(x)/x, where An(x) is
the classical Eulerian polynomial. Foata and Schützenberger [25] introduced a q-analog
of the classical Eulerian polynomials, defined by

An(x; q) =
∑

π∈Sn

xexc (π)+1qc(π),

where exc (π) and c(π) denote the numbers of excedances and cycles in π respectively.
It is clear that An(x; 1) = An(x) is precisely the classical Eulerian polynomial. Brenti
showed that q-Eulerian polynomials satisfy the recurrence relation

An(x; q) = (nx+ q − 1)An−1(x; q) + x(1− x)
∂

∂x
An−1(x; q),

with A0(x; q) = x, see [14, Proposition 7.2].
For Coxeter groups of type Bn, Brenti [13] defined a q-analogues of P (Bn, x), which

reduces to An(x) when q = 0 and to P (Bn, q) when q = 1, by

Bn(x; q) =
∑

π∈Bn

qN(π)xdB(π)

where N(π) = |{i ∈ [n] : π(i) < 0}|. He showed that {Bn(x; q)} satisfies the recurrence
relation

Bn(x; q) = {1 + [(1 + q)n− 1]x}Bn−1(x; q) + (1 + q)x(1− x)
∂

∂x
Bn−1(x; q),

with B0(x; q) = 1, see [13, Theorem 3.4 (i)]. Thus the following result follows from
Proposition 1.8.

Proposition 4.14. Both An+1(x; q)An−1(x; q)−A2
n(x; q) and Bn+1(x; q)Bn−1(x; q)−B2

n(x; q)
are generalized stable polynomials in x for any fixed q ≥ 0.

4.11 Alternating runs

Let Sn denote the symmetric group of all permutations of [n], where [n] = {1, 2, . . . , n}.
Let π = π(1)π(2) · · ·π(n) ∈ Sn. We say that π changes direction at position i if either
π(i− 1) < π(i) > π(i+1), or π(i− 1) > π(i) < π(i+1). We say that π has k alternating
runs if there are k − 1 indices i such that π changes direction at these positions. Let
R(n, k) denote the number of permutations in Sn having k alternating runs. Then

R(n, k) = kR(n− 1, k) + 2R(n− 1, k − 1) + (n− k)R(n− 1, k − 2) (4.4)

for n, k ≥ 1, where R(1, 0) = 1 and R(1, k) = 0 for k ≥ 1, see Bóna [10] for a combinatorial
proof. Let Rn(x) =

∑n−1
k=1 R(n, k)xk. Then the recurrence (4.4) induces

Rn+2(x) = x(nx+ 2)Rn+1(x) + x(1− x2)R′
n+1(x)

with R1(x) = 1 and R2(x) = 2x. The polynomial Rn(x) is closely related to the classical
Eulerian polynomial An(x):

Rn(x) =

(

1 + x

2

)n−1

(1 + w)n+1An(
1− w

1 + w
), w =

√

1− x

1 + x
,
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see Knuth [28]. The polynomials Rn(x) have only real non-positive zeros and Rn(x) �
Rn+1(x), see Ma and Wang [37]. Thus it follows from Theorem 1.6 that the next result is
immediate.

Proposition 4.15. The generating functions of alternating runs Rn(q) form a q-log-
convex sequence.

4.12 The longest alternating subsequence and up-down runs of

permutations

Let π = π(1)π(2) · · ·π(n) ∈ Sn. An alternating subsequence of π is a subsequence
π(i1) · · ·π(ik) satisfying

π(i1) > π(i2) < π(i3) > · · ·π(ik).

Denote by as (π) the length of the longest alternating subsequence of π. Let

ak(n) = #{π ∈ Sn : as (π) = k},

and let tn(x) =
∑n

k=1 ak(n)x
k. Define

T (x, z) =
∑

n≥0

tn(x)
zn

n!
.

Remarkably, Stanley [45, Theorem 2.3] obtained the following closed-form formula:

T (x, z) = (1− x)
1 + ρ+ 2xeρz + (1− ρ)e2ρz

1 + ρ− x2 + (1− ρ− x2)e2ρz
,

where ρ =
√
1− x2.

For n ≥ 2, Bóna [10, Section 1.3.2] obtained the following identity:

tn(x) =
1

2
(1 + x)Rn(x).

Ma [35] also proved that the polynomials tn(x) satisfy the recurrence relation

tn+1(x) = x(nx+ 1)tn(x) + x
(

1− x2
)

t′n(x),

with initial conditions t0(x) = 1 and t1(x) = x.
On the other hand, ak(n) is also the number of permutations in Sn with k up-down

runs. The up-down runs of a permutation π are the alternating runs of π endowed with a
0 in the front, see [44, A186370]. The up-down runs of a permutation are closely related to
interior peaks and left peaks. Based on the interior peaks and left peaks, Ma [36] defined
polynomials Mn(x), which satisfy the recurrence relation

Mn+1(x) = (1 + nx2)Mn(x) + x(1− x2)M ′
n(x),

with initial conditions M1(x) = 1 + x and M2(x) = 1 + 2x + x2, see [36, Section 2]. In
addition, Mn(x) has only real non-positive zeros and Mn(x) � Mn+1(x), see Ma [36]. So,
we have the following result by Theorem 1.6.

Proposition 4.16. Both {tn(q)}n≥0 and {Mn(q)}n≥0 are q-log-convex sequences.
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5 Remarks

This work was submitted in 2015 and has been reported on the Fifth Conference on
Theory of Combinatorial Numbers (Sep. 18–20, 2015, Dalian University of Technology,
Dalian) and the Workshop on unimodality properties of Combinatorial sequences (Nov.
27–29, 2015, Nankai University, Tianjin), Institute of Mathematics of Academia Sinica,
Taipei (Jan 19, 2016).
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Combin. Theory Ser. A 109 (2005) 63–74.

[50] Y. Wang and Y.-N. Yeh, Log-concavity and LC-positivity, J. Combin. Theory Ser.
A 114 (2007), 195–210.

21



[51] B.-X. Zhu, Log-convexity and strong q-log-convexity for some triangular arrays, Adv.
in. Appl. Math. 50(4) (2013) 595–606.

[52] B.-X. Zhu, Some positivities in certain triangular array, Proc. Amer. Math. Soc.
142(9) (2014) 2943–2952.

22


	1 Introduction
	2 Proof of Theorems ?? and ??
	3 Proof of Theorem ??
	4 Applications
	4.1 Stirling transformations of two kinds
	4.2 Jacobi-Stirling transformation of the second kind
	4.3 Central factorial transformations
	4.4 Ramanujan transformation
	4.5 Associated Lah transformation 
	4.6 Catalan transformations of two kinds 
	4.7 The Motzkin transformation 
	4.8 The Bell transformation 
	4.9 Eulerian polynomials of Types A and B
	4.10 Q-Eulerian polynomials
	4.11 Alternating runs
	4.12 The longest alternating subsequence and up-down runs of permutations

	5 Remarks

