Random functions from coupled dynamical systems

Lucilla Baldini and Josef Eschgfäller

Università degli Studi di Ferrara

lucilla.baldini@unife.it & esg@unife.it

Abstract

Let $f: T \longrightarrow T$ be a mapping and Ω be a subset of T which intersects every (positive) orbit of f. Assume that there are given a second dynamical system $\lambda : Y \longrightarrow Y$ and a mapping $\alpha : \Omega \longrightarrow Y$. For $t \in T$ let $\delta(t)$ be the smallest k such that $f^k(t) \in \Omega$ and let $t_{\Omega} := f^{\delta(t)}(t)$ be the first element in the orbit of t which belongs to Ω . Then we define a mapping $F: T \longrightarrow Y$ by $F(t) := \lambda^{\delta(t)}(t_{\Omega})$.

Keywords: Random number generator, pseudorandom sequence, weak attractor, coupled dynamical systems, Möbius transformations, finite fields.

1. Weak attractors

We use the notation $\bigcirc_x f(x)$, introduced in [7], for the mapping $x \mapsto f(x)$. The symbol \bigcirc can be obtained in Latex with

\newcommand {\Fun} {\mathop{\bigcirc}\limits}.

Standing hypothesis 1.1. Let *T* be a non-empty set and $f: T \longrightarrow T$ a mapping.

Definition 1.2. For a subset $A \subset T$ we put

$$f^*(A) := \{t \in T \mid f^k(t) \in A \text{ for some } k \in \mathbb{N}\} = \bigcup_{k=0}^{\infty} f^{-k}(A)$$

Definition 1.3. A subset $\Omega \subset T$ is called a *weak attractor* (of f), if $f^*(\Omega) = T$, i.e., if for every $t \in T$ there exists $k \in \mathbb{N}$ such that $f^k(t) \in \Omega$. In this case for $t \in T$ we put

$$\delta(t) := \delta(t, \Omega, f) := \min\{k \in \mathbb{N} \mid f^{\kappa}(t) \in \Omega\}$$
$$t_{\Omega} := f^{\delta(t)}(t)$$

 t_{Ω} is therefore the first element of Ω we reach from t using f.

Example 1.4. Let T be finite. It is well known that then T can be written as the disjoint union

 $T = f^*(M_1) \sqcup \ldots \sqcup f^*(M_m)$

where M_1, \ldots, M_m are the minimal orbits of the dynamical system (T, f). On each M_j the restriction $f_{M_j \longrightarrow M_j}$ is a bijection.

A subset $\Omega \subset T$ is a weak attractor iff $\Omega \cap M_j \neq \emptyset$ for every $j = 1, \ldots, m$.

Remark 1.5. Let Ω be a weak attractor and $t \in T \setminus \Omega$.

Then $\delta(f(t)) = \delta(t) - 1$. Therefore δ assumes all elements of $\{0, 1, \dots, \delta(t)\}$ as values. Furthermore $\Omega = (\delta = 0)$.

Proposition 1.6. Let $\epsilon : T \longrightarrow \mathbb{N}$ be a function which, for every $t \in T$, assumes all elements of $\{0, 1, \dots, \epsilon(t)\}$ as values. Then:

(1) $\Omega := (\epsilon = 0) \neq \emptyset$.

(2) There exists a mapping $g: T \longrightarrow T$ such that Ω is a weak attractor of g and $\epsilon(t) = \delta(t, \Omega, g)$ for every $t \in T$.

<u>Proof.</u> Easy. See Prop. 13.9 in [2].

2. Coupled dynamical systems

Standing hypothesis 2.1. Let the following data be given:

- (1) A set T and a mapping $f: T \longrightarrow T$.
- (2) A weak attractor Ω of f.
- (3) A set Y and a mapping $\lambda : Y \longrightarrow Y$.
- (4) A mapping $\alpha : \Omega \longrightarrow Y$.

We suppose that the sets T, Ω and Y be non-empty.

The triple of mappings (f, λ, α) is then called a *coupled dynamical system*.

Remark 2.2. In [2] a slightly more general concept of *automatic generator* (of pseudorandom functions) has been defined, mainly in order to include also *automatic sequences* (as defined for example in Allouche/Shallit [1]).

Proposition 2.3. *For* $t \in T$ *let*

$$F(t) := \begin{cases} \alpha(t) & \text{if } t \in \Omega\\ \lambda(F(f(t))) & \text{if } t \notin \Omega \end{cases}$$

In this way we obtain a well defined mapping $F : T \longrightarrow Y$ which extends α and which we call the pseudorandom function generated by the triple (f, λ, α) .

Remark 2.4. In Proposition 2.3 for every $t \in T$ we have

$$F(t) = \lambda^{\delta(t)}(\alpha(f^{\delta(t)}(t))) = \lambda^{\delta(t)}(\alpha(t_{\Omega}))$$

Remark 2.5. If the mapping $\lambda : Y \longrightarrow Y$ is the identity, then $F(t) = \alpha(t_{\Omega})$ for every $t \in T$.

Remark 2.6. The most studied classical random sequence generators derive from a mapping $\lambda : Y \longrightarrow Y$ which for every choice of an initial point $y_0 \in Y$ gives rise to a sequence

$$F := \bigcap_{n} \lambda^{n}(y_{0}) : \mathbb{N} \longrightarrow Y$$

This can (in a trivial way) be considered as a special case of Proposition 2.3: It suffices to set $T := \mathbb{N}$, $\Omega := \{0\}$, and

$$f(n) := \begin{cases} n-1 & \text{if } n > 0\\ 0 & \text{if } n = 0 \end{cases}$$

with $\alpha := \bigcap_{0} y_0 : \Omega \longrightarrow Y.$

Then $\delta(n) = n$ for every $n \in \mathbb{N}$ and from Remark 2.4 we have $F(n) = \lambda^n(y_0)$ for every $n \in \mathbb{N}$.

Remark 2.7. In another trivial way one can obtain every mapping $F: T \longrightarrow Y$ with the construction of Proposition 2.3: We put $\Omega := T$, $\alpha := F$ with f and λ (both unused) chosen arbitrarily.

Remark 2.8. Let $a, b \in T \setminus \Omega$ be such that f(a) = f(b).

Then F(a) = F(b).

Proof. This follows from Proposition 2.3.

Lemma 2.9. Let $a, b \in T$ and $j, k \in \mathbb{N}$ be such that the following conditions hold:

(1) $j \leq \delta(a)$ and $k \leq \delta(b)$. This means that $f^{r}(a) \notin \Omega$ for $0 \leq r < j$ and $f^{r}(b) \notin \Omega$ for $0 \leq r < k$. (2) $j \leq k$. (3) $f^{j}(a) = f^{k}(b)$. Then $F(b) = \lambda^{k-j}(F(a))$.

<u>Proof.</u> Let $c := f^{j}(a) = f^{k}b$ and $m := \delta(c)$. Then $\delta(a) = m + j$ and $\delta(b) = m + k$. By condition (3) $f^{j+m}(a) = f^{k+m}(b) =: \omega \in \Omega$

thus

$$F(a) = \lambda^{m+j}(\alpha(f^{m+j}(a))) = \lambda^{m+j}(\alpha(\omega))$$

and similarly

$$\begin{split} F(b) &= \lambda^{m+k}(\alpha(f^{m+k}(b))) \\ &= \lambda^{m+k}(\alpha(\omega)) = \lambda^{k-j+m+j}(\alpha(\omega)) \\ &= \lambda^{k-j}(\lambda^{m+j}(\alpha(\omega))) = \lambda^{k-j}(F(a)) \end{split}$$

Remark 2.10. The mapping $\delta : T \longrightarrow \mathbb{N}$ itself can be considered as a pseudorandom mapping and as a special case of Proposition 2.3. For this put

$$Y := \mathbb{N}, \lambda := \underset{n}{\bigcirc} n + 1, \alpha := \underset{\omega}{\bigcirc} 0 : \Omega {\longrightarrow} \mathbb{N}$$

Then $F(a) = \lambda^{\delta(a)}(0) = \delta(a)$ for every $a \in T$ and therefore $F = \delta$.

3. Examples

Standing hypothesis 3.1. In this section, for each coupled dynamical system $(f: T \longrightarrow T, \lambda: Y \longrightarrow Y, \alpha: \Omega \longrightarrow \Omega)$ we denote by *F* the function generated by the method of Proposition 2.3.

The examples have been calculated with Pari/GP ([102] und [103] in Baldini [2]).

For $a \in \mathbb{N}$ and $b \in \mathbb{N} + 1$ we denote, as in Pari/GP, by $a \setminus b$ the integer quotient of a by b; e.g. $13 \setminus 5 = 2$. The remainder in the division is denoted by $a \mod b$.

 \mathbb{P} is the set of primes.

Remark 3.2. Let α be constant, say $\alpha(\omega) = y_0$ for every $\omega \in \Omega$. Then $F(t) = \lambda^{\delta(t)}(y_0)$ for every $t \in T$.

As in Proposition 1.6 we don't need to specify $f : T \longrightarrow T$ and $\Omega \subset T$ explicitly; is suffices that there is given a function $\delta : T \longrightarrow \mathbb{N}$ which for every $t \in T$ assumes all elements of $\{0, 1, \ldots, \delta(t)\}$ as values.

Example 3.3. Let $T := \mathbb{N}$ and $f : \mathbb{N} \longrightarrow \mathbb{N}$ be defined by

$$f(n) = \begin{cases} n/3 & \text{if } n \in 3\mathbb{N} \\ (n+1) \setminus 2 & \text{if } n \in 3\mathbb{N} + 1 \\ n-2 & \text{if } n \in 3\mathbb{N} + 2 \end{cases}$$

Since f(n) < n for every $n \ge 2$, we can choose the set $\Omega := \{0, 1, 2, 3\}$ as weak attractor. Define then $Y := \{0, 1\}, \alpha(n) := n \mod 2, \lambda(y) := 1 - y$.

The following table gives the values of F(n) for n = 0, ..., 319.

0	1	0	1	1	0	1	0	0	0	1	1	0	1	1	1	1	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	0	1	1	1	1	0	0
0	1	0	1	1	0	1	1	0	1	1	1	1	0	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	0	1	1	1	0	1	1
0	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	1	1	0	0	1	0	1	1	1	0	0	1	1	0
1	0	0	0	0	1	1	1	0	0	0	1	0	1	1	1	1	0	0	1	1	0	1	1	1	1	0	0	0	1	0	0	1	0	1	1	0	0	1	1
1	0	0	1	1	0	0	1	1	1	0	0	1	1	0	1	1	1	1	0	1	1	0	0	1	1	0	1	1	1	1	0	1	1	0	0	0	1	0	1
1	1	1	0	1	1	0	0	0	1	1	0	0	1	0	0	1	1	0	1	0	0	0	0	1	0	0	1	0	1	1	1	1	0	0	0	1	0	1	1
1	1	0	1	1	0	1	1	0	0	0	1	0	0	1	1	1	0	1	1	0	0	0	1	1	0	0	1	0	0	0	0	1	1	1	0	1	0	0	0
0	1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	0	1	1	1	0	1	0	0	1	0	0	1	0	0	0	1	1	1	0	0	0	0

Remark 3.4. We shall often subsume the items in Proposition 2.3 within a table of the following form:

Т	
f(n)	••••
Ω	
Y	
$\alpha(n)$	
$\lambda(y)$	••••

Example 3.5. For $n \in \mathbb{N} + 1$ we denote by $\tau(n)$ the number of (positive) divisors of n. Consider then

$\mathbb{N}+2$
au(n)
$\{2\}$
$\{0, 1\}$
0
1-y

Observe that $\tau(2) = 2$ and $2 \le \tau(n) < n$ for $n \ge 3$, so that $\Omega := \{2\}$ is indeed a weak attractor of f.

We calculate the values of F(n) for $2 \le n \le 321$:

Example 3.6. For $n \in \mathbb{N} + 1$ we denote by $\sigma(n)$ the sum of all (positive) divisors of n. For $n \geq 2$ then $\sigma(n) \geq 1 + n$, hence the mapping $\sigma - 1 : \mathbb{N} + 2 \longrightarrow \mathbb{N} + 2$ is well defined. The prime numbers are exactly the fixed points of $\sigma - 1$:

 $\mathbb{P} = \operatorname{Fix}(\sigma - 1)$

It is not known whether all orbits of $\sigma - 1$ are finite and whether every orbit ends in a prime. In Guy [8, p. 149], this conjecture is attributed to Erds; the final primes of the first orbits are listed on OEIS as sequence A039654.

If we put $T := \mathbb{N} + 2$, $f := \sigma - 1$ and assume the conjecture to be true, $\Omega := \mathbb{P}$ becomes a weak attractor of f.

 T
 $\mathbb{N} + 2$

 f(n) $\sigma(n) - 1$
 Ω \mathbb{P}

 Y
 $\{0, 1, 2, 3, 4\}$
 $\alpha(n)$ $n \mod 5$
 $\lambda(y)$ $(3y + 2) \mod 5$

Lemma 3.7. Let $a, b \in \mathbb{N} + 1$ and $a \neq b$. Then

 $\max(|a-b|, (a+b) \setminus 2) < \max(a, b)$

<u>**Proof.**</u> We may assume a > b. By hypothesis b > 0, hence

 $|a-b| = a-b < a = \max(a,b)$

Also

$$(a+b) \setminus 2 \le \frac{a+b}{2} < \frac{a+a}{2} = a = \max(a,b)$$

Corollary 3.8. *Define* $f : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$ *by*

$$f(a,b) := \begin{cases} (a,a) & \text{if } b = 0\\ (b,b) & \text{if } a = 0\\ (|a-b|,(a+b) \setminus 2) & \text{otherwise} \end{cases}$$

Then the diagonal $\Omega := \{(n,n) \mid n \in \mathbb{N}\}$ is a weak attractor.

Let Y be another set. A map $\alpha : \Omega \longrightarrow Y$ can be identified with a map $\alpha_0 : \mathbb{N} \longrightarrow Y$.

Given α_0 , for every map $\lambda: Y \longrightarrow Y$ we obtain a map $F: \mathbb{N} \times \mathbb{N} \longrightarrow Y$.

Example 3.9.

Т	$\mathbb{N} \times \mathbb{N}$
f(n)	as in Cor. 3.8
Ω	$\{(n,n)\mid n\in\mathbb{N}\}$
Y	$\{0, 1, 2, 3\}$
$\alpha(n,n)$	$(3n+2) \operatorname{mod} 4$
$\lambda(y)$	$(3y+1) \mod 4$

 2
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 1
 3
 3
 1
 2
 0
 1
 1
 1
 3
 1
 1
 3
 1
 1
 3
 1
 1
 1
 3
 1
 1
 1
 3
 1
 1
 1
 3
 1
 1
 3
 1
 1
 3
 1
 1

We obtain a map F that can be considered as an infinite pseudorandom matrix, which is symmetric by construction.

The principal diagonal is the periodic sequence 21032103210321032103...Indeed we have $F(n, n) = \alpha(n, n) = (3n + 2) \mod 4$ for all n.

Remark 3.10. Let $m \in \mathbb{N} + 2$ and consider a coupled dynamical system $(f: T \longrightarrow T, \lambda: Y \longrightarrow Y, \alpha: \Omega \longrightarrow Y)$ in which $Y = \{0, 1, \dots, m-1\}$ and $\lambda(y) = (y+1) \mod m$ for every $y \in Y$. For $0 \le j \le m-1$ let $\Omega_j := \alpha^{-1}(j)$.

For $k \in \mathbb{N}$ and $y \in Y$ then $\lambda^k(y) = (y+k) \mod m$ and therefore

 $F(t) = (j + \delta(t)) \mod m$

for $t \in \Omega_j$.

If in particular $\alpha = 0$, then $F(t) = \delta(t) \mod 2$ for every $t \in T$.

Example 3.11. We show that the Thue-Morse sequence can be obtained by the method indicated at the end of Remark 3.10. The sequence can be defined in the following way (cf. Berstel/Karhumki [3, p. 69]):

 $x_0 = 0, \quad x_{2n} = x_n, \quad x_{2n+1} = 1 - x_n$

Let $T := \mathbb{N}, \Omega := \{0\}, Y := \{0,1\}, \alpha(0) = 0, \lambda(y) = 1 - y$ and define the mapping $f : \mathbb{N} \longrightarrow \mathbb{N}$ by

$$f(n) := \begin{cases} n+1 & \text{if } n \text{ is even} \\ n \setminus 2 & \text{otherwise} \end{cases}$$

It is clear that then Ω is a weak attractor of f and that

$$\begin{split} \delta(0) &= 0\\ \delta(2n) &= \delta(n) + 2 \text{ for every } n \geq 1\\ \delta(2n+1) &= \delta(n) + 1 \text{ for every } n \geq 0 \end{split}$$

and therefore, by Remark 3.10,

$$F(0) = 0$$

$$F(2n) = \delta(2n) \mod 2 = \delta(n) \mod 2 = F(n)$$

$$F(2n+1) = (\delta(n)+1) \mod 2 = 1 - \delta(n) \mod 2 = 1 - F(n)$$

This shows that $F(n) = x_n$ for every $n \in \mathbb{N}$.

The Thue-Morse sequence F can therefore be defined by the table

Example 3.12. Define $f : \mathbb{N} + 1 \longrightarrow \mathbb{N} + 1$ by

 $\begin{array}{ccc} T & \mathbb{N} \\ f(n) & n+1 \text{ for } n \text{ even} \\ & n \setminus 2 \text{ for } n \text{ odd} \\ \Omega & \{0\} \\ Y & \{0,1\} \\ \alpha(0) & 0 \\ \lambda(y) & 1-y \end{array}$

$$f(n) := \begin{cases} 1 & \text{if } n = 1 \\ n - g(n) & \text{otherwise} \end{cases}$$

where g(n) is the greatest divisor $\neq n$ of n. Therefore, if n is prime, then g(n) = 1 and f(n) = n - 1.

The dynamical system $(\mathbb{N}+1, f)$ has been studied by Collatz (cf. Lagarias [10, p. 241]). For n > 1 one has f(n) < n, therefore $\Omega := \{1\}$ is a weak attractor of f.

 $\begin{array}{ll} T & \mathbb{N} + 1 \\ f(n) & 1 \text{ if } n = 1 \\ & n - g(n) \text{ otherwise} \\ g(n) & \textbf{greatest divisor} \neq n \text{ of } n \\ \Omega & \{1\} \\ Y & \{0,1\} \\ \alpha(n) & 0 \\ \lambda(y) & 1 - y \end{array}$

Example 3.13. Mimicking Example 3.12, we define

$$f(n) := egin{cases} 1 & ext{if } n \leq 1 \\ n-h(n) & ext{otherwise} \end{cases}$$

where, for $n \ge 2$, h(n) is the smallest divisor $\ne 1$ of n. Hence f(p) = 0 if p is prime. We obtain a dynamical system (\mathbb{N}, f) .

For n > 1 one has f(n) < n, therefore $\Omega := \{0, 1\}$ is a weak attractor.

Т	N
f(n)	\mathbb{N} $n \text{ if } n \leq 1$
	n - h(n) otherwise smallest divisor $\neq 1$ of n
$\begin{array}{ c c } h(n) \\ \Omega \end{array}$	smallest divisor $\neq 1$ of n
Ω	$\{0,1\}$ $\{0,1\}$
	$\{0,1\}$
$\left \begin{array}{c}Y\\\alpha(n)\\\lambda(y)\end{array}\right $	n
$\lambda(y)$	1-y

Remark 3.14. In the following examples we use the *b*-adic representation of a natural number $n \in \mathbb{N} + 1$, where $b \in \mathbb{N} + 2$. We use the notation

$$n = (a_0, a_1, \dots, a_k)_b = a_0 + a_1 b + \dots + a_k b^k$$

where we require $a_k \neq 0$.

Let $P: \{0, 1, \dots, b-1\} \longrightarrow \mathbb{N}$ be a mapping. We define then $f: \mathbb{N}+1 \longrightarrow \mathbb{N}+1$ by $f(n) := \sum_{j=0}^{k} P(a_j)$. The dynamic properties of this type of functions have been studied by numerous authors, in particular by te Riele [12] and Stewart [13]. They are rather complicated, but in some cases one can find weak attractors, as we shall see in the following examples.

Example 3.15. In Remark 3.14 assume b = 10, $P(a) = a^2$, so that

$$f(n) = \sum_{j=0}^{\kappa} a_j^2.$$

Porges, in a paper cited in Stewart [13, p. 374] has shown that every orbit ends up in the fixed point 1 or in the cycle (4 16 37 58 89 145 42 20).

Therefore $\Omega := \{1, 37\}$ is a weak attractor.

We choose $Y := \{0,1\}$, $\alpha(n) = n \mod 2$ and $\lambda(y) := 1 - y$ and obtain a sequence F which begins with

 1
 0
 0
 1
 1
 1
 0
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 0
 1

Lemma 3.16. Let $b \in \mathbb{N} + 2$, $P : \{0, 1, \dots, b - 1\} \longrightarrow \mathbb{N}$ and $f : \mathbb{N} + 1 \longrightarrow \mathbb{N} + 1$ be defined as in Remark 3.14.

Then there exists $n_0 \in \mathbb{N} + 1$ such that f(n) < n for every $n \ge n_0$.

Proof. We follow the proof of Theorem 1 in Stewart [13, p. 375].

Let $M := \max(P(0), \dots, P(b-1))$. Since $\lim_{r \to \infty} \frac{b^r}{r+1} = \infty$, there must exist

 $r_0 \in \mathbb{N}$ such that $\frac{b^r}{r+1} > M$ for every $r \ge r_0$.

Set $n := (a_0, \ldots, a_k)_b \in \mathbb{N} + 1$ (with $a_k \neq 0$). Then $b^k \leq n$, and

 $f(n) = \sum_{j=0}^{k} P(a_j) \le (k+1)M < b^k \le n$ for $k \ge r_0$, thus f(n) < n for $k \ge r_0$, that is, for $n > b^{r_0}$.

Corollary 3.17. Let f be defined as in Remark 3.14. Then:

(1) Every orbit of f is finite.

(2) There exists only a finite number of cycles of f and every orbit ends up in exactly one of these cycles.

<u>Proof.</u> (1) Choose n_0 as in Lemma 3.16 and let $n \in \mathbb{N} + 2$.

Each time when $f^j(n) \ge n_0$, after a finite number of steps from $f^j(n)$ one arrives at a value $< n_0$. But the set $\{1, \ldots, n_0 - 1\}$ is finite, therefore there have to exist repetitions in the set $\{f^j(n) \mid j \in \mathbb{N}\}$. This implies that the orbit of n is finite.

(2) Every cycle intersects the set $\{1, \ldots, n_0 - 1\}$; but the cycles of f are disjoint.

Example 3.18. Choose b = 10 and $P(a) = a^4$ in Remark 3.14. In Chikawa a.o. [6] the authors show that the cycles of f are (1), (1634), (8208), (9474), (2178 6514) and (13139 6725 4338 4514 1138 4179 9219).

Therefore we may choose $\Omega := \{1, 1634, 8208, 9474, 2178, 1138\}.$

Let *Y*, $\alpha : \Omega \longrightarrow Y$ and $\lambda : Y \longrightarrow Y$ be as in Example 3.15.

 1
 0
 1
 1
 0
 1
 1
 1
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Example 3.19. For $n = (a_0, \ldots, a_k)_{10} \in \mathbb{N} + 1$ let $f(n) := (a_0 + a_1 + \ldots + a_k)^2$. Mohanty/Kumar [11] show that every orbit of f ends up in one of the cycles (1), (81) and (169 256). We may therefore choose the weak attractor $\Omega := \{1, 81, 169\}$.

Let *Y*, $\alpha : \Omega \longrightarrow Y$ and $\lambda : Y \longrightarrow Y$ be as in Example 3.15.

 1
 0
 1
 1
 0
 1
 1
 1
 0
 1
 0
 1
 1
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Example 3.20. For $n = (a_0, \ldots, a_k)_{10} \in \mathbb{N} + 1$ let $f(n) := \prod_{j=0}^k (a_j+1)$. In Wagstaff [14, p. 342], it is shown that every orbit ends up in one of the cycles (18) and (2 3 4 5 6 7 8 9 10). We choose $\Omega := \{18, 2\}$. Let $Y, \alpha : \Omega \longrightarrow Y$ and $\lambda : Y \longrightarrow Y$ be as in Example 3.15.

Lemma 3.21. Let $f : \mathbb{N} \longrightarrow \mathbb{N}$ be any function.

Then $\Omega := \{n \in \mathbb{N} \mid f(n) \ge n\}$ is a weak attractor of f.

<u>Proof.</u> Suppose that there exists $n \in \mathbb{N}$ such that $f^k(n) \notin \Omega$ for every $k \in \mathbb{N}$. By definition of Ω this implies that

$$f(n) < n$$

$$f^{2}(n) < f(n)$$

$$f^{3}(n) < f^{2}(n)$$

...

In this manner we obtain an infinite and strictly decreasing sequence of natural numbers

 $n > f(n) > f^2(n) > f^3(n) > \dots$ and this is impossible.

Corollary 3.22. Let $f : \mathbb{N} \longrightarrow \mathbb{N}$ be any function and $U : \mathbb{N} \longrightarrow \mathbb{N}$ be a mapping such that $U(n) \leq n$ for every $n \in \mathbb{N}$.

Then $\Omega' := \{n \in \mathbb{N} \mid f(n) \ge U(n)\}$ is a weak attractor of f.

<u>Proof.</u> $f(n) \ge n$ implies $f(n) \ge U(n)$. With Ω as in Lemma 3.21 we have $\Omega \subset \Omega'$.

Corollary 3.23. Let $f : \mathbb{N} \longrightarrow \mathbb{N}$ be any function and $V : \mathbb{N} \longrightarrow \mathbb{N}$ be another mapping such that $V(n) \ge n$ for every $n \in \mathbb{N}$.

Then $\Omega'' := \{n \in \mathbb{N} \mid V(f(n)) \ge n\}$ is a weak attractor of f.

<u>Proof.</u> $f(n) \ge n$ implies $V(f(n)) \ge n$. With Ω as in Lemma 3.21 we have $\Omega \subset \Omega''$.

Example 3.24.

-	T	\mathbb{N}
	f(n)	$(n^n+1)\operatorname{mod}(2n+1)$
	Ω	$\{n \mid 3f(n) \geq 2n\}$
	Y	$\{0, 1\}$
	$\alpha(n)$	$n \operatorname{mod} 2$
	$\lambda(y)$	1-y

Example 3.25.

Т	$\mathbb{N}+2$
	$\left(13n(n-1)(n-2) + \frac{n(n-1)}{2} \mod(n+1)\right)$
Ω	$\{n \mid f(n) \ge n\}$
	$\{0,1\}$
$\alpha(n)$	$n \operatorname{mod} 2$
$\lambda(y)$	1-y

Proposition 3.26. Let $m = 2^k \ge 4$ and $a, b \in \mathbb{N} + 1$.

With $T := \{0, 1, \dots, 2^k - 1\}$ let $f : T \longrightarrow T$ be defined by

 $f(n) := (an+b) \mod m$

Then the following conditions are equivalent:

(1) f is a cyclic permutation of T.

(2) $a \in 4\mathbb{N} + 1$ and b is odd.

<u>Proof.</u> This is well known, see e.g. Knuth [9].

Corollary 3.27. Let $k \in \mathbb{N}$ and $f_k := \bigcup_{x} (5x+1) \mod 2^k$.

Then f_k is a cyclic permutation of $\{0, 1, \ldots, 2^k - 1\}$.

Example 3.28. Since

$$\mathbb{N} + 1 = \bigsqcup_{k=0}^{\infty} \{2^k, 2^k + 1, \dots, 2^k + 2^k - 1\}$$

we can construct a function $f : \mathbb{N} + 1 \longrightarrow \mathbb{N} + 1$ by defining

 $f(2^k + x) := 2^k + ((5x + 1) \mod 2^k)$

for $x \in \{0, 1, \ldots, 2^k - 1\}$. By Corollary 3.27 the orbits of f are exactly the intervals $\{2^k, \ldots, 2^k + 2^k - 1\}$ and on each of these intervals f operates as a cyclic permutation.

We obtain a weak attractor of f, if we choose at least one element from each of these intervals. In particular

 $\Omega := \{ 2^k \mid k \in \mathbb{N} \}$

is a weak attractor.

T	$\mathbb{N} + 1$
$f(2^k + x)$	$N + 1$ $2^{k} + ((5x + 1) \mod 2^{k})$ $\{2^{k} \mid k \in \mathbb{N}\}$ $\{0, 1, 2\}$
Ω	$\{2^k \mid k \in \mathbb{N}\}$
Y	$\{0, 1, 2\}$
$\left \begin{array}{c} \alpha(n) \\ \lambda(y) \end{array}\right $	$n \mod 3$
$\lambda(y)$	$(y+1) \mod 3$

Remark 3.29. Let $f : \mathbb{N} \longrightarrow \mathbb{N}$ be defined by

	1	for $n = 0$
$f(n) := \langle$	$f(n \setminus 2)$	for $n \text{ odd}$
	f(n/2) + f(n/2 - 1)	for n even > 0

In Calkin/Wilf [4] it is shown that the sequence of quotients f(n)/f(n+1) contains every rational number > 0 exactly once .

Remark 3.30. Let $f : \mathbb{N} \longrightarrow \mathbb{N}$ be defined as in Remark 3.29.

Then $f(n) \le n/2$ for every $n \ge 5$.

<u>Proof.</u> Induction on $n \ge 5$.

Since f(5) = 2, f(6) = 3, f(7) = 1, f(8) = 4, f(9) = 3, f(10) = 5, f(11) = 2, we have $f(n) \le n/2$ for $5 \le n \le 11$, hence in particular for n = 5.

$$\underline{n-1 \longrightarrow n:} \text{ (i) Assume first that } n \ge 6 \text{ is even.}$$

Then $f(n) = f(n/2) + f(n/2 - 1).$
If $n/2 - 1 \ge 5$, by induction we have
$$f(n) \le \frac{n}{4} + \frac{n}{4} - \frac{1}{2} = \frac{n}{2} - \frac{1}{2} \le \frac{n}{2}$$

Otherwise n = 10, 8, 6.

(ii) Suppose $n \ge 7$ is odd. Then f(n) = f((n-1)/2). If $\frac{n-1}{2} \ge 5$, then by induction

$$f((n-1)/2) \le \frac{n-1}{4} \le \frac{n}{2}$$

Otherwise n = 11, 9, 7.

Example 3.31. Let f be defined as in Remark 3.29. From Remark 3.30 it follows that $\Omega := \{1, 2\}$ is a weak attractor of f.

We can therefore define a coupled dynamical system by the table

 $\begin{array}{ll} T & \mathbb{N} \\ f(n) & 1 \ {\rm for} \ n = 0 \\ & f(n \setminus 2) \ {\rm for} \ n \ {\rm odd} \\ & f(n/2) + f(n/2 - 1) \ {\rm for} \ n \ {\rm even} > 0 \\ \Omega & \{0, 1\} \\ Y & \{0, 1\} \\ \alpha(n) & n \ {\rm mod} \ 2 \\ \lambda(y) & 1 - y \end{array}$

4. Möbius transformations on finite fields

Lemma 4.1. Let K = GF(q) be a finite field of characteristic $\neq 2$ and $\alpha \in K \setminus 0$. Then the equation $x^2 = \alpha$ has two distinct roots in $L := GF(q^2)$.

<u>Proof.</u> We can choose an algebraic field extension of *K* in which the equation has a root β : $\beta^2 = \alpha$.

We must show that $\beta \in L$, i.e., that $\beta^{q^2-1} = 1$, being necessarily $\beta \neq 0$. Since $q^2 - 1$ is even, we have

$$\beta^{q^2-1} = (\beta^2)^{\frac{q^2-1}{2}} = \alpha^{\frac{q^2-1}{2}} = \alpha^{(q+1)(q-1)/2} = \alpha^{2(q-1)/2} = \alpha^{q-1} = 1$$

The second root is then $-\beta$. Finally $\beta \neq -\beta$, since char $K \neq 2$.

Corollary 4.2. Let K = GF(q) be a finite field of characteristic $\neq 2$ and $b, c \in K$. Then the equation $x^2+bx+c = 0$ has the solutions $x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$, where by Lemma 4.1 we can calculate the square roots $\pm \sqrt{b^2 - 4c}$ in $GF(q^2)$.

Proposition 4.3. Let K = GF(q) be a finite field of characteristic $\neq 2$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, K).$

Let $\alpha, \beta \in GF(q^2)$ be the roots of the characteristic polynomial $x^2 - (a + d)x + ad - bc$ of A. Suppose that the multiplicative order of α/β in $GF(q^2)$ is q+1 (this implies that the characteristic polynomial is irreducible).

Define $f: K \longrightarrow K$ by

$$f(t) := egin{cases} rac{at+b}{ct+d} & ext{ if } ct+d
eq 0 \ a/c & ext{ otherwise} \end{cases}$$

Then f is a cyclic permutation of K.

Proof. Çeşmelioğlu/W. Meidl/A. Topuzoğlu [5, p. 597].

Remark 4.4. We use Pari/GP for verifying the hypotheses of Proposition 4.3 for the matrix $A := \begin{pmatrix} 3 & 2 \\ 5 & 1 \end{pmatrix}$ and K := GF(1907).

The characteristic polynomial $x^2 - 4x - 7$ has the roots $\alpha := 2 + \sqrt{11}$ and $\beta := 2 - \sqrt{11}$ which must be calculated in $L := GF(1907^2)$.

First we find a generator *e* of the field *L*:

```
q=1907; q2=q^2; e=ffgen(q2,'e)
```

then we find α and β with

r=sqrt(11+0*e); alfa=2+r; beta=2-r;

Now we can verify that the multiplicative order of α/β is equal to 1907 + 1 = 1908 using

t_out(fforder(alfa/beta)) \\ 1908

Example 4.5. We can thus apply Proposition 4.3 in order to obtain a coupled dynamical system:

 $\begin{array}{c|ccc} T & GF(1907) \\ f(t) & \frac{3t+2}{5t+1} & \text{if } 5t+1 \neq 0 \\ & 3/5 & \text{otherwise} \\ \Omega & \{1,100,900\} \\ Y & \{0,1\} \\ \alpha(t) & 0 \\ \lambda(y) & 1-y \end{array}$

 1
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Here, after defining the fields K and L as in Remark 4.4, we obtained the first terms of the sequence F with

f (t) = {my (u); t=t+0*e; u=5*t+1; if (u, (3*t+2)/u, 3/5)} inomega (t) = t_pos(t,[1,100,900]) alfa (t) = 0 lam (y) = 1-y F (t) = if (inomega(t), alfa(t), lam(F(f(t)))) t_fvo(F,[0..799],40)

using, as in the other examples, the functions t_{pos} and t_{fvo} from *paritools* available on felix.unife.it/++/paritools.

Concluding remark. The first author's thesis **[2]** contains more examples, graphical representations, Fourier transforms and tests.

References

- [1] J. Allouche/J. Shallit: Automatic sequences. Cambridge UP 2003.
- [2] **L. Baldini:** Analisi armonica e successioni automatiche generalizzate. Tesi LM Univ. Ferrara 2015.
- [3] J. Berstel/J. Karhumäki: Combinatorics on words a tutorial. Bull. EATCS 79 (2003), 178-228.
- [4] N. Calkin/H. Wilf: Recounting the rationals. Am. Math. Monthly 107/4 (2000), 360-363.
- [5] **A. Çeşmelioğlu/W. Meidl/A. Topuzoğlu:** On the cycle structure of permutation polynomials. Finite Fields Appl. 14 (2008), 593-614.
- [6] **K. Chikawa/K. Iseki/T. Kusakabe:** On a problem by H. Steinhaus. Acta Arithmetica 7 (1962), 251-252.
- [7] **J. Eschgfäller:** Almost topological spaces. Ann. Univ. Ferrara 30 (1984), 163-183.
- [8] **R. Guy:** Unsolved problems in number theory. Springer 2004.
- [9] D. Knuth: The art of computer programming. Volume 2. Addison-Wesley.
- [10] J. Lagarias: The ultimate challenge the 3x+1 problem. AMS 2010.
- [11] S. Mohanty/H. Kumar: Powers of sums of digits. Math. Magazine 52/5 (1979), 310-312.
- [12] **H. te Riele:** Iteration of number theoretic functions. Nieuw Arch. Wiskunde 1 (1983), 345-360.
- [13] B. Stewart: Sums of functions of digits. Can. J. Math. 12 (1960), 374-389.
- [14] S. Wagstaff: Iterating the product of shifted digits. Fibonacci Quart. 19 (1981), 340-347.