Random functions from coupled dynamical systems

Lucilla Baldini and Josef Eschgfäller
Università degli Studi di Ferrara
lucilla.baldini@unife.it \& esg@unife.it

Abstract

Let $f: T \longrightarrow T$ be a mapping and Ω be a subset of T which intersects every (positive) orbit of f. Assume that there are given a second dynamical system $\lambda: Y \longrightarrow Y$ and a mapping $\alpha: \Omega \longrightarrow Y$. For $t \in T$ let $\delta(t)$ be the smallest k such that $f^{k}(t) \in \Omega$ and let $t_{\Omega}:=f^{\delta(t)}(t)$ be the first element in the orbit of t which belongs to Ω. Then we define a mapping $F: T \longrightarrow Y$ by $F(t):=\lambda^{\delta(t)}\left(t_{\Omega}\right)$.

Keywords: Random number generator, pseudorandom sequence, weak attractor, coupled dynamical systems, Möbius transformations, finite fields.

1. Weak attractors

We use the notation $\bigcirc_{x} f(x)$, introduced in [7], for the mapping $x \longmapsto f(x)$. The symbol \bigcirc can be obtained in Latex with
\newcommand $\{\backslash$ Fun $\}$ \{\mathop\{\bigcirc\}\limits\}.
Standing hypothesis 1.1. Let T be a non-empty set and $f: T \longrightarrow T$ a mapping.

Definition 1.2. For a subset $A \subset T$ we put

$$
f^{*}(A):=\left\{t \in T \mid f^{k}(t) \in A \text { for some } k \in \mathbb{N}\right\}=\bigcup_{k=0}^{\infty} f^{-k}(A)
$$

Definition 1.3. A subset $\Omega \subset T$ is called a weak attractor (of f), if $f^{*}(\Omega)=T$, i.e., if for every $t \in T$ there exists $k \in \mathbb{N}$ such that $f^{k}(t) \in \Omega$. In this case for $t \in T$ we put

$$
\begin{aligned}
\delta(t) & :=\delta(t, \Omega, f):=\min \left\{k \in \mathbb{N} \mid f^{k}(t) \in \Omega\right\} \\
t_{\Omega} & :=f^{\delta(t)}(t)
\end{aligned}
$$

t_{Ω} is therefore the first element of Ω we reach from t using f.

Example 1.4. Let T be finite. It is well known that then T can be written as the disjoint union

$$
T=f^{*}\left(M_{1}\right) \sqcup \ldots \sqcup f^{*}\left(M_{m}\right)
$$

where M_{1}, \ldots, M_{m} are the minimal orbits of the dynamical system (T, f). On each M_{j} the restriction $f_{M_{j} \rightarrow M_{j}}$ is a bijection.
A subset $\Omega \subset T$ is a weak attractor iff $\Omega \cap M_{j} \neq \emptyset$ for every $j=1, \ldots, m$.
Remark 1.5. Let Ω be a weak attractor and $t \in T \backslash \Omega$.
Then $\delta(f(t))=\delta(t)-1$. Therefore δ assumes all elements of $\{0,1, \ldots, \delta(t)\}$ as values. Furthermore $\Omega=(\delta=0)$.

Proposition 1.6. Let $\epsilon: T \longrightarrow \mathbb{N}$ be a function which, for every $t \in T$, assumes all elements of $\{0,1, \ldots, \epsilon(t)\}$ as values. Then:
(1) $\Omega:=(\epsilon=0) \neq \emptyset$.
(2) There exists a mapping $g: T \longrightarrow T$ such that Ω is a weak attractor of g and $\epsilon(t)=\delta(t, \Omega, g)$ for every $t \in T$.

Proof. Easy. See Prop. 13.9 in [2].

2. Coupled dynamical systems

Standing hypothesis 2.1. Let the following data be given:
(1) A set T and a mapping $f: T \longrightarrow T$.
(2) A weak attractor Ω of f.
(3) A set Y and a mapping $\lambda: Y \longrightarrow Y$.
(4) A mapping $\alpha: \Omega \longrightarrow Y$.

We suppose that the sets T, Ω and Y be non-empty.
The triple of mappings (f, λ, α) is then called a coupled dynamical system.
Remark 2.2. In [2] a slightly more general concept of automatic generator (of pseudorandom functions) has been defined, mainly in order to include also automatic sequences (as defined for example in Allouche/Shallit [1]).

Proposition 2.3. For $t \in T$ let

$$
F(t):= \begin{cases}\alpha(t) & \text { if } t \in \Omega \\ \lambda(F(f(t))) & \text { if } t \notin \Omega\end{cases}
$$

In this way we obtain a well defined mapping $F: T \longrightarrow Y$ which extends α and which we call the pseudorandom function generated by the triple (f, λ, α).

Remark 2.4. In Proposition 2.3 for every $t \in T$ we have

$$
F(t)=\lambda^{\delta(t)}\left(\alpha\left(f^{\delta(t)}(t)\right)\right)=\lambda^{\delta(t)}\left(\alpha\left(t_{\Omega}\right)\right)
$$

Remark 2.5. If the mapping $\lambda: Y \longrightarrow Y$ is the identity, then $F(t)=\alpha\left(t_{\Omega}\right)$ for every $t \in T$.

Remark 2.6. The most studied classical random sequence generators derive from a mapping $\lambda: Y \longrightarrow Y$ which for every choice of an initial point $y_{0} \in Y$ gives rise to a sequence

$$
F:=\bigcirc_{n} \lambda^{n}\left(y_{0}\right): \mathbb{N} \longrightarrow Y
$$

This can (in a trivial way) be considered as a special case of Proposition 2.3: It suffices to set $T:=\mathbb{N}, \Omega:=\{0\}$, and

$$
f(n):= \begin{cases}n-1 & \text { if } n>0 \\ 0 & \text { if } n=0\end{cases}
$$

with $\alpha:=\bigcirc_{0} y_{0}: \Omega \longrightarrow Y$.
Then $\delta(n)=n$ for every $n \in \mathbb{N}$ and from Remark 2.4 we have $F(n)=\lambda^{n}\left(y_{0}\right)$ for every $n \in \mathbb{N}$.

Remark 2.7. In another trivial way one can obtain every mapping $F: T \longrightarrow Y$ with the construction of Proposition 2.3: We put $\Omega:=T, \alpha:=F$ with f and λ (both unused) chosen arbitrarily.

Remark 2.8. Let $a, b \in T \backslash \Omega$ be such that $f(a)=f(b)$.
Then $F(a)=F(b)$.
Proof. This follows from Proposition 2.3.
Lemma 2.9. Let $a, b \in T$ and $j, k \in \mathbb{N}$ be such that the following conditions hold:
(1) $j \leq \delta(a)$ and $k \leq \delta(b)$.

This means that $f^{r}(a) \notin \Omega$ for $0 \leq r<j$ and $f^{r}(b) \notin \Omega$ for $0 \leq r<k$.
(2) $j \leq k$.
(3) $f^{j}(a)=f^{k}(b)$.

Then $F(b)=\lambda^{k-j}(F(a))$.
Proof. Let $\left.c:=f^{j}(a)=f^{k} b\right)$ and $m:=\delta(c)$. Then

$$
\begin{aligned}
& \delta(a)=m+j \text { and } \delta(b)=m+k . \text { By condition (3) } \\
& f^{j+m}(a)=f^{k+m}(b)=: \omega \in \Omega
\end{aligned}
$$

thus

$$
F(a)=\lambda^{m+j}\left(\alpha\left(f^{m+j}(a)\right)\right)=\lambda^{m+j}(\alpha(\omega))
$$

and similarly

$$
\begin{aligned}
F(b) & =\lambda^{m+k}\left(\alpha\left(f^{m+k}(b)\right)\right) \\
& =\lambda^{m+k}(\alpha(\omega))=\lambda^{k-j+m+j}(\alpha(\omega)) \\
& =\lambda^{k-j}\left(\lambda^{m+j}(\alpha(\omega))\right)=\lambda^{k-j}(F(a))
\end{aligned}
$$

Remark 2.10. The mapping $\delta: T \longrightarrow \mathbb{N}$ itself can be considered as a pseudorandom mapping and as a special case of Proposition 2.3. For this put

$$
Y:=\mathbb{N}, \lambda:=\bigcirc_{n} n+1, \alpha:=\bigcirc_{\omega} 0: \Omega \longrightarrow \mathbb{N}
$$

Then $F(a)=\lambda^{\delta(a)}(0)=\delta(a)$ for every $a \in T$ and therefore $F=\delta$.

3. Examples

Standing hypothesis 3.1. In this section, for each coupled dynamical system $(f: T \longrightarrow T, \lambda: Y \longrightarrow Y, \alpha: \Omega \longrightarrow \Omega)$ we denote by F the function generated by the method of Proposition 2.3.
The examples have been calculated with Pari/GP ([102] und [103] in Baldini [2]).
For $a \in \mathbb{N}$ and $b \in \mathbb{N}+1$ we denote, as in Pari/GP, by $a \backslash b$ the integer quotient of a by b; e.g. $13 \backslash 5=2$. The remainder in the division is denoted by $a \bmod b$.
\mathbb{P} is the set of primes.

Remark 3.2. Let α be constant, say $\alpha(\omega)=y_{0}$ for every $\omega \in \Omega$. Then $F(t)=\lambda^{\delta(t)}\left(y_{0}\right)$ for every $t \in T$.
As in Proposition 1.6 we don't need to specify $f: T \longrightarrow T$ and $\Omega \subset T$ explicitly; is suffices that there is given a function $\delta: T \longrightarrow \mathbb{N}$ which for every $t \in T$ assumes all elements of $\{0,1, \ldots, \delta(t)\}$ as values.

Example 3.3. Let $T:=\mathbb{N}$ and $f: \mathbb{N} \longrightarrow \mathbb{N}$ be defined by

$$
f(n)= \begin{cases}n / 3 & \text { if } n \in 3 \mathbb{N} \\ (n+1) \backslash 2 & \text { if } n \in 3 \mathbb{N}+1 \\ n-2 & \text { if } n \in 3 \mathbb{N}+2\end{cases}
$$

Since $f(n)<n$ for every $n \geq 2$, we can choose the set $\Omega:=\{0,1,2,3\}$ as weak attractor. Define then $Y:=\{0,1\}, \alpha(n):=n \bmod 2, \lambda(y):=1-y$.
The following table gives the values of $F(n)$ for $n=0, \ldots, 319$.


```
0
```



```
1
```



```
1
```


Remark 3.4. We shall often subsume the items in Proposition 2.3 within a table of the following form:

T	\ldots
$f(n)$	\ldots
Ω	\cdots
Y	\cdots
$\alpha(n)$	\cdots
$\lambda(y)$	\cdots

Example 3.5. For $n \in \mathbb{N}+1$ we denote by $\tau(n)$ the number of (positive) divisors of n. Consider then

T	$\mathbb{N}+2$
$f(n)$	$\tau(n)$
Ω	$\{2\}$
Y	$\{0,1\}$
$\alpha(n)$	0
$\lambda(y)$	$1-y$

Observe that $\tau(2)=2$ and $2 \leq \tau(n)<n$ for $n \geq 3$, so that $\Omega:=\{2\}$ is indeed a weak attractor of f.
We calculate the values of $F(n)$ for $2 \leq n \leq 321$:

| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| :--- |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

Example 3.6. For $n \in \mathbb{N}+1$ we denote by $\sigma(n)$ the sum of all (positive) divisors of n. For $n \geq 2$ then $\sigma(n) \geq 1+n$, hence the mapping $\sigma-1$: $\mathbb{N}+2 \longrightarrow \mathbb{N}+2$ is well defined. The prime numbers are exactly the fixed points of $\sigma-1$:

$$
\mathbb{P}=\operatorname{Fix}(\sigma-1)
$$

It is not known whether all orbits of $\sigma-1$ are finite and whether every orbit ends in a prime. In Guy [8, p. 149], this conjecture is attributed to Erds; the final primes of the first orbits are listed on OEIS as sequence A039654.

If we put $T:=\mathbb{N}+2, f:=\sigma-1$ and assume the conjecture to be true, $\Omega:=\mathbb{P}$ becomes a weak attractor of f.

T	$\mathbb{N}+2$
$f(n)$	$\sigma(n)-1$
Ω	\mathbb{P}
Y	$\{0,1,2,3,4\}$
$\alpha(n)$	$n \bmod 5$
$\lambda(y)$	$(3 y+2) \bmod 5$

```
2 3 2 0 0 2 0 0 3 1 1 3 1 1 1 2 2 2 4 4 4 0 0 1 1 3 4 4 2 00 3 2 4 4 0 1 3 3 3 1 3 0 0 2 4 2 4 1
2 3 1 3 0 2 1 2 1 0 3 3 0 0 0 4 4 4 4 3 1 1 2 1 1 2 1 1 1 2 2 3 2 1 1 1 0 0 3 1 1 1 4 4 2 3 4 1 4
```



```
1 3 1 2 0 2 0 1 0 1 1 2 4 4 4 4 2 0 4 1 0 0 3 2 2 4 2 3 4 4 2 1 0 1 0 0 2 2 4 0 4 0
```



```
3 4 1 0 0 0 0 1 4 0 1 4 0 4 1 4 2 0 0 4 1 0 0 2 3 1 1 2 0 0 2 1 4 4 0 1 4 3 4 0 4 4 4 0 4 1 1
```


Lemma 3.7. Let $a, b \in \mathbb{N}+1$ and $a \neq b$. Then

$$
\max (|a-b|,(a+b) \backslash 2)<\max (a, b)
$$

Proof. We may assume $a>b$. By hypothesis $b>0$, hence

$$
|a-b|=a-b<a=\max (a, b)
$$

Also

$$
(a+b) \backslash 2 \leq \frac{a+b}{2}<\frac{a+a}{2}=a=\max (a, b)
$$

Corollary 3.8. Define $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$ by

$$
f(a, b):= \begin{cases}(a, a) & \text { if } b=0 \\ (b, b) & \text { if } a=0 \\ (|a-b|,(a+b) \backslash 2) & \text { otherwise }\end{cases}
$$

Then the diagonal $\Omega:=\{(n, n) \mid n \in \mathbb{N}\}$ is a weak attractor.
Let Y be another set. A map $\alpha: \Omega \longrightarrow Y$ can be identified with a map $\alpha_{0}: \mathbb{N} \longrightarrow Y$.
Given α_{0}, for every map $\lambda: Y \longrightarrow Y$ we obtain a map $F: \mathbb{N} \times \mathbb{N} \longrightarrow Y$.
Example 3.9.

T	$\mathbb{N} \times \mathbb{N}$
$f(n)$	as in Cor. 3.8
Ω	$\{(n, n) \mid n \in \mathbb{N}\}$
Y	$\{0,1,2,3\}$
$\alpha(n, n)$	$(3 n+2) \bmod 4$
$\lambda(y)$	$(3 y+1) \bmod 4$


```
1
```


We obtain a map F that can be considered as an infinite pseudorandom matrix, which is symmetric by construction.
The principal diagonal is the periodic sequence 2103210321032103....
Indeed we have $F(n, n)=\alpha(n, n)=(3 n+2) \bmod 4$ for all n.
Remark 3.10. Let $m \in \mathbb{N}+2$ and consider a coupled dynamical system $(f: T \longrightarrow T, \lambda: Y \longrightarrow Y, \alpha: \Omega \longrightarrow Y)$ in which $Y=\{0,1, \ldots, m-1\}$ and $\lambda(y)=(y+1) \bmod m$ for every $y \in Y$. For $0 \leq j \leq m-1$ let $\Omega_{j}:=\alpha^{-1}(j)$.

For $k \in \mathbb{N}$ and $y \in Y$ then $\lambda^{k}(y)=(y+k) \bmod m$ and therefore

$$
F(t)=(j+\delta(t)) \bmod m
$$

for $t \in \Omega_{j}$.
If in particular $\alpha=0$, then $F(t)=\delta(t) \bmod 2$ for every $t \in T$.
Example 3.11. We show that the Thue-Morse sequence can be obtained by the method indicated at the end of Remark 3.10. The sequence can be defined in the following way (cf. Berstel/Karhumki [3, p. 69]):

$$
x_{0}=0, \quad x_{2 n}=x_{n}, \quad x_{2 n+1}=1-x_{n}
$$

Let $T:=\mathbb{N}, \Omega:=\{0\}, Y:=\{0,1\}, \alpha(0)=0, \lambda(y)=1-y$ and define the mapping $f: \mathbb{N} \longrightarrow \mathbb{N}$ by

$$
f(n):= \begin{cases}n+1 & \text { if } n \text { is even } \\ n \backslash 2 & \text { otherwise }\end{cases}
$$

It is clear that then Ω is a weak attractor of f and that

$$
\begin{aligned}
\delta(0) & =0 \\
\delta(2 n) & =\delta(n)+2 \text { for every } n \geq 1 \\
\delta(2 n+1) & =\delta(n)+1 \text { for every } n \geq 0
\end{aligned}
$$

and therefore, by Remark 3.10,

$$
\begin{aligned}
F(0) & =0 \\
F(2 n) & =\delta(2 n) \bmod 2=\delta(n) \bmod 2=F(n) \\
F(2 n+1) & =(\delta(n)+1) \bmod 2=1-\delta(n) \bmod 2=1-F(n)
\end{aligned}
$$

This shows that $F(n)=x_{n}$ for every $n \in \mathbb{N}$.
The Thue-Morse sequence F can therefore be defined by the table

T	\mathbb{N}
$f(n)$	$n+1$ for n even
Ω	$n \backslash 2$ for n odd
Y	$\{0\}$
$\{(0)$	$\{0,1\}$
$\lambda(y)$	$1-y$

Example 3.12. Define $f: \mathbb{N}+1 \longrightarrow \mathbb{N}+1$ by

$$
f(n):= \begin{cases}1 & \text { if } n=1 \\ n-g(n) & \text { otherwise }\end{cases}
$$

where $g(n)$ is the greatest divisor $\neq n$ of n. Therefore, if n is prime, then $g(n)=1$ and $f(n)=n-1$.
The dynamical system $(\mathbb{N}+1, f)$ has been studied by Collatz (cf. Lagarias [10 p. 241]). For $n>1$ one has $f(n)<n$, therefore $\Omega:=\{1\}$ is a weak attractor of f.

T	$\mathbb{N}+1$
$f(n)$	1 if $n=1$
	$n-g(n)$ otherwise
$g(n)$	greatest divisor $\neq n$ of n
Ω	$\{1\}$
Y	$\{0,1\}$
$\alpha(n)$	0
$\lambda(y)$	$1-y$


```
0}1
```



```
0
1 0
```

Example 3.13. Mimicking Example 3.12, we define

$$
f(n):= \begin{cases}1 & \text { if } n \leq 1 \\ n-h(n) & \text { otherwise }\end{cases}
$$

where, for $n \geq 2, h(n)$ is the smallest divisor $\neq 1$ of n. Hence $f(p)=0$ if p is prime. We obtain a dynamical system (\mathbb{N}, f).

For $n>1$ one has $f(n)<n$, therefore $\Omega:=\{0,1\}$ is a weak attractor.

T	\mathbb{N}
$f(n)$	n if $n \leq 1$
	$n-h(n)$ otherwise
Ω	smallest divisor $\neq 1$ of n
Y	$\{0,1\}$
$\alpha(n)$	$n 0,1\}$
$\lambda(y)$	$1-y$


```
\(0 \begin{array}{llllllllllllllllllllllllllllllllllllllll}1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1\end{array}\)
```


Remark 3.14. In the following examples we use the b-adic representation of a natural number $n \in \mathbb{N}+1$, where $b \in \mathbb{N}+2$. We use the notation

$$
n=\left(a_{0}, a_{1}, \ldots, a_{k}\right)_{b}=a_{0}+a_{1} b+\ldots+a_{k} b^{k}
$$

where we require $a_{k} \neq 0$.
Let $P:\{0,1, \ldots, b-1\} \longrightarrow \mathbb{N}$ be a mapping. We define then $f: \mathbb{N}+1 \longrightarrow \mathbb{N}+1$ by $f(n):=\sum_{j=0}^{k} P\left(a_{j}\right)$. The dynamic properties of this type of functions have been studied by numerous authors, in particular by te Riele [12] and Stewart [13]. They are rather complicated, but in some cases one can find weak attractors, as we shall see in the following examples.

Example 3.15. In Remark 3.14 assume $b=10, P(a)=a^{2}$, so that
$f(n)=\sum_{j=0}^{k} a_{j}^{2}$.
Porges, in a paper cited in Stewart [13, p. 374] has shown that every orbit ends up in the fixed point 1 or in the cycle (41637588914542 20).

Therefore $\Omega:=\{1,37\}$ is a weak attractor.
We choose $Y:=\{0,1\}, \alpha(n)=n \bmod 2$ and $\lambda(y):=1-y$ and obtain a sequence F which begins with

| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| :--- |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |

Lemma 3.16. Let $b \in \mathbb{N}+2, P:\{0,1, \ldots, b-1\} \longrightarrow \mathbb{N}$ and $f: \mathbb{N}+1 \longrightarrow \mathbb{N}+1$ be defined as in Remark 3.14.
Then there exists $n_{0} \in \mathbb{N}+1$ such that $f(n)<n$ for every $n \geq n_{0}$.
Proof. We follow the proof of Theorem 1 in Stewart [13, p. 375].
Let $M:=\max (P(0), \ldots, P(b-1))$. Since $\lim _{r \rightarrow \infty} \frac{b^{r}}{r+1}=\infty$, there must exist $r_{0} \in \mathbb{N}$ such that $\frac{b^{r}}{r+1}>M$ for every $r \geq r_{0}$.
Set $n:=\left(a_{0}, \ldots, a_{k}\right)_{b} \in \mathbb{N}+1$ (with $a_{k} \neq 0$). Then $b^{k} \leq n$, and
$f(n)=\sum_{j=0}^{k} P\left(a_{j}\right) \leq(k+1) M<b^{k} \leq n \quad$ for $k \geq r_{0}$, thus $f(n)<n$ for $k \geq r_{0}$, that is, for $n \geq b^{r_{0}}$.

Corollary 3.17. Let f be defined as in Remark 3.14. Then:

(1) Every orbit of f is finite.
(2) There exists only a finite number of cycles of f and every orbit ends up in exactly one of these cycles.

Proof. (1) Choose n_{0} as in Lemma 3.16 and let $n \in \mathbb{N}+2$.
Each time when $f^{j}(n) \geq n_{0}$, after a finite number of steps from $f^{j}(n)$ one arrives at a value $<n_{0}$. But the set $\left\{1, \ldots, n_{0}-1\right\}$ is finite, therefore there have to exist repetitions in the set $\left\{f^{j}(n) \mid j \in \mathbb{N}\right\}$. This implies that the orbit of n is finite.
(2) Every cycle intersects the set $\left\{1, \ldots, n_{0}-1\right\}$; but the cycles of f are disjoint.

Example 3.18. Choose $b=10$ and $P(a)=a^{4}$ in Remark 3.14. In Chikawa a.o. [6] the authors show that the cycles of f are (1), (1634), (8208), (9474), (2178 6514) and (13139 67254338451411384179 9219).
Therefore we may choose $\Omega:=\{1,1634,8208,9474,2178,1138\}$.
Let $Y, \alpha: \Omega \longrightarrow Y$ and $\lambda: Y \longrightarrow Y$ be as in Example 3.15.

```
1 0
1
```



```
1
```



```
0
```

Example 3.19. For $n=\left(a_{0}, \ldots, a_{k}\right)_{10} \in \mathbb{N}+1$ let $f(n):=\left(a_{0}+a_{1}+\ldots+a_{k}\right)^{2}$. Mohanty/Kumar [11] show that every orbit of f ends up in one of the cycles (1), (81) and (169 256). We may therefore choose the weak attractor $\Omega:=\{1,81,169\}$.
Let $Y, \alpha: \Omega \longrightarrow Y$ and $\lambda: Y \longrightarrow Y$ be as in Example 3.15.

 $0 \begin{array}{lllllllllllllllllllllllllllllllllllllll}1\end{array}$

Example 3.20. For $n=\left(a_{0}, \ldots, a_{k}\right)_{10} \in \mathbb{N}+1$ let
$f(n):=\prod_{j=0}^{k}\left(a_{j}+1\right)$. In Wagstaff [14, p. 342], it is shown that every orbit ends up in one of the cycles (18) and (2 245678910). We choose $\Omega:=\{18,2\}$.

Let $Y, \alpha: \Omega \longrightarrow Y$ and $\lambda: Y \longrightarrow Y$ be as in Example 3.15.


```
1
```


Lemma 3.21. Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be any function.
Then $\Omega:=\{n \in \mathbb{N} \mid f(n) \geq n\}$ is a weak attractor of f.
Proof. Suppose that there exists $n \in \mathbb{N}$ such that $f^{k}(n) \notin \Omega$ for every $k \in \mathbb{N}$. By definition of Ω this implies that

$$
\begin{aligned}
f(n) & <n \\
f^{2}(n) & <f(n) \\
f^{3}(n) & <f^{2}(n)
\end{aligned}
$$

In this manner we obtain an infinite and strictly decreasing sequence of natural numbers

$$
n>f(n)>f^{2}(n)>f^{3}(n)>\ldots
$$

and this is impossible.
Corollary 3.22. Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be any function and $U: \mathbb{N} \longrightarrow \mathbb{N}$ be a mapping such that $U(n) \leq n$ for every $n \in \mathbb{N}$.
Then $\Omega^{\prime}:=\{n \in \mathbb{N} \mid f(n) \geq U(n)\}$ is a weak attractor of f.
Proof. $f(n) \geq n$ implies $f(n) \geq U(n)$. With Ω as in Lemma 3.21 we have $\Omega \subset \Omega^{\prime}$.

Corollary 3.23. Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be any function and $V: \mathbb{N} \longrightarrow \mathbb{N}$ be another mapping such that $V(n) \geq n$ for every $n \in \mathbb{N}$.
Then $\Omega^{\prime \prime}:=\{n \in \mathbb{N} \mid V(f(n)) \geq n\}$ is a weak attractor of f.

Proof. $f(n) \geq n$ implies $V(f(n)) \geq n$. With Ω as in Lemma 3.21 we have $\Omega \subset \Omega^{\prime \prime}$.

Example 3.24.

T	\mathbb{N}
$f(n)$	$\left(n^{n}+1\right) \bmod (2 n+1)$
Ω	$\{n \mid 3 f(n) \geq 2 n\}$
Y	$\{0,1\}$
$\alpha(n)$	$n \bmod 2$
$\lambda(y)$	$1-y$

$\left.01111000111001110111 \begin{array}{lllllllllllllllllllll}0\end{array}\right)$

 $010 \begin{array}{lllllllllllllllllllllllllllllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1\end{array} 0111$

 000100010100000101010101011100011101010101

Example 3.25.

T	$\mathbb{N}+2$
$f(n)$	$\left(13 n(n-1)(n-2)+\frac{n(n-1)}{2} \bmod (n+1)\right)$
Ω	$\{n \mid f(n) \geq n\}$
Y	$\{0,1\}$
$\alpha(n)$	$n \bmod 2$
$\lambda(y)$	$1-y$

Abstract

$0 \begin{array}{lllllllllllllllllllllllllllllllllllllll} & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1\end{array} 1$ $0 \begin{array}{lllllllllllllllllllllllllllllllllllllll}1\end{array}$

Proposition 3.26. Let $m=2^{k} \geq 4$ and $a, b \in \mathbb{N}+1$.
With $T:=\left\{0,1, \ldots, 2^{k}-1\right\}$ let $f: T \longrightarrow T$ be defined by
$f(n):=(a n+b) \bmod m$

Then the following conditions are equivalent:

(1) f is a cyclic permutation of T.
(2) $a \in 4 \mathbb{N}+1$ and b is odd.

Proof. This is well known, see e.g. Knuth [9].

Corollary 3.27. Let $k \in \mathbb{N}$ and $f_{k}:=\bigcirc_{x}(5 x+1) \bmod 2^{k}$.
Then f_{k} is a cyclic permutation of $\left\{0,1, \ldots, 2^{k}-1\right\}$.
Example 3.28. Since

$$
\mathbb{N}+1=\bigsqcup_{k=0}^{\infty}\left\{2^{k}, 2^{k}+1, \ldots, 2^{k}+2^{k}-1\right\}
$$

we can construct a function $f: \mathbb{N}+1 \longrightarrow \mathbb{N}+1$ by defining

$$
f\left(2^{k}+x\right):=2^{k}+\left((5 x+1) \bmod 2^{k}\right)
$$

for $x \in\left\{0,1, \ldots, 2^{k}-1\right\}$. By Corollary 3.27 the orbits of f are exactly the intervals $\left\{2^{k}, \ldots, 2^{k}+2^{k}-1\right\}$ and on each of these intervals f operates as a cyclic permutation.

We obtain a weak attractor of f, if we choose at least one element from each of these intervals. In particular

$$
\Omega:=\left\{2^{k} \mid k \in \mathbb{N}\right\}
$$

is a weak attractor.

T	$\mathbb{N}+1$
$f\left(2^{k}+x\right)$	$2^{k}+\left((5 x+1) \bmod 2^{k}\right)$
Ω	$\left\{2^{k} \mid k \in \mathbb{N}\right\}$
Y	$\{0,1,2\}$
$\alpha(n)$	$n \bmod 3$
$\lambda(y)$	$(y+1) \bmod 3$

| 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 1 | 2 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 1 |
| :--- |
| 0 | 1 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 2 |
| 1 | 2 | 1 | 2 | 0 | 0 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 0 | 2 | 1 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 |
| 0 | 0 | 0 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 1 | 0 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 1 |
| 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 0 | 0 | 1 | 2 | 0 | 2 | 1 | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 |
| 2 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | 2 | 0 | 2 | 0 | 1 | 2 | 2 | 0 | 1 | 0 | 0 | 2 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 2 | 1 | 2 | 0 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 2 | 0 | 1 | 2 | 1 | 0 |
| 1 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 0 | 2 | 2 | 2 |

Remark 3.29. Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be defined by

$$
f(n):= \begin{cases}1 & \text { for } n=0 \\ f(n \backslash 2) & \text { for } n \text { odd } \\ f(n / 2)+f(n / 2-1) & \text { for } n \text { even }>0\end{cases}
$$

In Calkin/Wilf [4] it is shown that the sequence of quotients $f(n) / f(n+1)$ contains every rational number >0 exactly once .

Remark 3.30. Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be defined as in Remark 3.29.
Then $f(n) \leq n / 2$ for every $n \geq 5$.
Proof. Induction on $n \geq 5$.

Since $f(5)=2, f(6)=3, f(7)=1, f(8)=4, f(9)=3, f(10)=5, f(11)=2$, we have $f(n) \leq n / 2$ for $5 \leq n \leq 11$, hence in particular for $n=5$.
$n-1 \longrightarrow n$: (i) Assume first that $n \geq 6$ is even.
Then $f(n)=f(n / 2)+f(n / 2-1)$.
If $n / 2-1 \geq 5$, by induction we have

$$
f(n) \leq \frac{n}{4}+\frac{n}{4}-\frac{1}{2}=\frac{n}{2}-\frac{1}{2} \leq \frac{n}{2}
$$

Otherwise $n=10,8,6$.
(ii) Suppose $n \geq 7$ is odd. Then $f(n)=f((n-1) / 2)$. If $\frac{n-1}{2} \geq 5$, then by induction

$$
f((n-1) / 2) \leq \frac{n-1}{4} \leq \frac{n}{2}
$$

Otherwise $n=11,9,7$.
Example 3.31. Let f be defined as in Remark 3.29. From Remark 3.30 it follows that $\Omega:=\{1,2\}$ is a weak attractor of f.

We can therefore define a coupled dynamical system by the table

T	\mathbb{N}
$f(n)$	1 for $n=0$
	$f(n \backslash 2)$ for n odd
Ω	$\{(n / 2)+f(n / 2-1)$ for n even >0
Y	$\{0,1\}$
$\alpha(n)$	$n \bmod 2$
$\lambda(y)$	$1-y$


``` \(\begin{array}{llllllllllllllllllllllllllllllllllllllll}1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\)
```


4. Möbius transformations on finite fields

Lemma 4.1. Let $K=G F(q)$ be a finite field of characteristic $\neq 2$ and $\alpha \in K \backslash 0$. Then the equation $x^{2}=\alpha$ has two distinct roots in $L:=G F\left(q^{2}\right)$.

Proof. We can choose an algebraic field extension of K in which the equation has a root β : $\beta^{2}=\alpha$.

We must show that $\beta \in L$, i.e., that $\beta^{q^{2}-1}=1$, being necessarily $\beta \neq 0$.
Since $q^{2}-1$ is even, we have

$$
\beta^{q^{2}-1}=\left(\beta^{2}\right)^{\frac{q^{2}-1}{2}}=\alpha^{\frac{q^{2}-1}{2}}=\alpha^{(q+1)(q-1) / 2}=\alpha^{2(q-1) / 2}=\alpha^{q-1}=1
$$

The second root is then $-\beta$. Finally $\beta \neq-\beta$, since char $K \neq 2$.
Corollary 4.2. Let $K=G F(q)$ be a finite field of characteristic $\neq 2$ and $b, c \in K$. Then the equation $x^{2}+b x+c=0$ has the solutions $x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}$, where by Lemma 4.1 we can calculate the square roots $\pm \sqrt{b^{2}-4 c}$ in $G F\left(q^{2}\right)$.

Proposition 4.3. Let $K=G F(q)$ be a finite field of characteristic $\neq 2$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(2, K)$.
Let $\alpha, \beta \in G F\left(q^{2}\right)$ be the roots of the characteristic polynomial $x^{2}-(a+d) x+a d-b c$ of A. Suppose that the multiplicative order of α / β in $G F\left(q^{2}\right)$ is $q+1$ (this implies that the characteristic polynomial is irreducible).
Define $f: K \longrightarrow K$ by

$$
f(t):= \begin{cases}\frac{a t+b}{c t+d} & \text { if } c t+d \neq 0 \\ a / c & \text { otherwise }\end{cases}
$$

Then f is a cyclic permutation of K.
Proof. Çeşmelioğlu/W. Meidl/A. Topuzoğlu [5, p. 597].
Remark 4.4. We use Pari/GP for verifying the hypotheses of Proposition 4.3 for the matrix $A:=\left(\begin{array}{ll}3 & 2 \\ 5 & 1\end{array}\right)$ and $K:=G F(1907)$.

The characteristic polynomial $x^{2}-4 x-7$ has the roots $\alpha:=2+\sqrt{11}$ and $\beta:=2-\sqrt{11}$ which must be calculated in $L:=G F\left(1907^{2}\right)$.

First we find a generator e of the field L :

```
q=1907; q2=q~2; e=ffgen(q2,'e)
```

then we find α and β with

```
r=sqrt(11+0*e); alfa=2+r; beta=2-r;
```

Now we can verify that the multiplicative order of α / β is equal to $1907+1=1908$ using

Example 4.5. We can thus apply Proposition 4.3 in order to obtain a coupled dynamical system:

T	$G F(1907)$
$f(t)$	$\frac{3 t+2}{5 t+1} \quad$ if $5 t+1 \neq 0$
	$3 / 5 \quad$ otherwise
Ω	$\{1,100,900\}$
Y	$\{0,1\}$
$\alpha(t)$	0
$\lambda(y)$	$1-y$

```
1
```



```
1
```



```
0
```


Here, after defining the fields K and L as in Remark 4.4, we obtained the first terms of the sequence F with

```
f (t) = {my (u);
t=t+0*e; u=5*t+1; if (u, (3*t+2)/u, 3/5)}
inomega (t) = t_pos(t, [1, 100, 900])
alfa (t) = 0
lam (y) = 1-y
F(t) = if (inomega(t), alfa(t), lam(F(f(t))))
t_fvo(F,[0..799],40)
```

using, as in the other examples, the functions t_pos and t_fvo from paritools available on felix.unife.it/++/paritools.

Concluding remark. The first author's thesis [2] contains more examples, graphical representations, Fourier transforms and tests.

References

[1] J. Allouche/J. Shallit: Automatic sequences. Cambridge UP 2003.
[2] L. Baldini: Analisi armonica e successioni automatiche generalizzate. Tesi LM Univ. Ferrara 2015.
[3] J. Berstel/J. Karhumäki: Combinatorics on words - a tutorial. Bull. EATCS 79 (2003), 178-228.
[4] N. Calkin/H. Wilf: Recounting the rationals. Am. Math. Monthly 107/4 (2000), 360-363.
[5] A. Çeşmelioğlu/W. Meidl/A. Topuzoğlu: On the cycle structure of permutation polynomials. Finite Fields Appl. 14 (2008), 593-614.
[6] K. Chikawa/K. Iseki/T. Kusakabe: On a problem by H. Steinhaus. Acta Arithmetica 7 (1962), 251-252.
[7] J. Eschgfäller: Almost topological spaces. Ann. Univ. Ferrara 30 (1984), 163-183.
[8] R. Guy: Unsolved problems in number theory. Springer 2004.
[9] D. Knuth: The art of computer programming. Volume 2. Addison-Wesley.
[10] J. Lagarias: The ultimate challenge - the $3 \mathrm{x}+1$ problem. AMS 2010.
[11] S. Mohanty/H. Kumar: Powers of sums of digits. Math. Magazine 52/5 (1979), 310-312.
[12] H. te Riele: Iteration of number theoretic functions. Nieuw Arch. Wiskunde 1 (1983), 345-360.
[13] B. Stewart: Sums of functions of digits. Can. J. Math. 12 (1960), 374-389.
[14] S. Wagstaff: Iterating the product of shifted digits. Fibonacci Quart. 19 (1981), 340-347.

