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Abstract

In this paper, we discuss an improvement of an algorithm to search for primes p
and coset-partitions of (Z/pZ)* that yield Ramsey algebras over Z/pZ. We also prove
an upper bound on the modulus p in terms of the number of cosets. We have, as a
corollary, that there is no prime p for which there exists a partition of (Z/pZ)* into 13
cosets that yields a 13-color Ramsey algebra. Thus A263308(13) = 0.

1 Introduction

In this paper, we continue the project begun in [5] and recently continued in [3, 11] of
constructing Ramsey algebras over Z/pZ using multiplicative cosets. A Ramsey algebra in

m colors is a partition of a set U x U into disjoint binary relations Id, Ay, ..., A,,_1 such
that

(II1.) for i # j, A;0 A; = Ide.

Here, Id = {(x,x) : x € U} is the identity over U, o is relational composition, ~! is relational
inverse, and ¢ is complementation with respect to U x U.

Ramsey algebras were first defined in [15] (but given no name). With the single exception
of an alternate construction of the 3-color algebra (see [13]), all known constructions use the
“guess-and-check” finite-field method of Comer, as follows: Fix m € Z*, and let Xy = H be
a multiplicative subgroup of F,of order (¢ —1)/m, where ¢ = 1 (mod 2m). Let Xy, ... X1
be its cosets; specifically, let X; = ¢'Xy = {g*™™ (mod p) : a € ZT}, where g is a primitive
root modulo p. Suppose the following conditions obtain:
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(ii.) X;+X; =F,\ Xi,
(iii.) fori# j, X; + X, = F,\ {0}.

Then define A; = {(z,y) € F, xF, : x —y € X;}. It is easy to check that (i.)-(iii.) imply
(I.)-(I1L.), and we get a Ramsey algebra. Condition (ii.) implies that all the X;’s are sum-
free. Consequently, the triangle-free Ramsey number R,,(3) is a bound on the size of primes
p such that there might be an m-color Ramsey algebra over Z/pZ.

Comer was able to construct m-color Ramsey algebras for m = 1,2,3,4,5 in 1983 [5]. In
2011, Maddux produced constructions for m = 6,7 using the same method as Comer but
with a 2011 computer [14]. Maddux failed to construct a Ramsey algebra for m = 8. In
2013, Manske and the author produced constructions over prime fields for all m < 400, with
the exceptions of m = 8 and m = 13. We were able to rule out m = 8 by checking all primes
up through the Ramsey bound R(3,3,3,3,3,3,3,3). Independently around that same time,
Kowalski [11] produced constructions for all m < 120 except for m = 8 and m = 13, and
found some constructions over non-prime fields. He also ruled out m = 8 over non-prime
fields by checking all prime powers up through the Ramsey bound. The case of m = 13 was
left open. In the present paper, we give constructions for all 401 < m < 2000 using prime
fields and prove an upper bound on p in terms of m that is much better than the Ramsey
bound, allowing us to rule out m = 13 for prime fields.

In Section 2, we state some results we’ll be assuming. In Section 3, we give a improvement
of the algorithm, using a recent insight. In Section 4, we prove bounds on p in terms of m.
The method of proof of the upper bound comes from additive number theory. The first idea
is that if a set is “unstructured” with respect to addition, then it should contain a solution
to x + y = z, and hence not be sum-free. The second idea is that subsets of a field cannot
be both additively structured and multiplicatively structured. Since X is a multiplicative
subgroup, it is highly structured, so it must be additively unstructured, i.e., its elements are
“randomly” distributed. This is an example of a so-called sum-product phenomenon. See
[8]. Chung and Graham first studied quasirandom subsets of Z/nZ in [4]. They showed that
several different measures of quasirandomness were equivalent. The measure that we will
use in Section 4 is that of having small nontrivial Fourier coefficients.

For more background on relation algebras, the reader is directed to any of [2, 10, 16].

2 Background from [3]

In order to give a more complete background, we repeat some lemmas from [3], condensed into
one. The following lemma shows that, while multiplicative subgroups may appear randomly
distributed, they and their cosets have some quite well-behaved sumset properties.

Lemma 1. Let m € Z* and let p = mk + 1 be a prime number, k even, and g a primitive
root modulo p. Fori € {0,1,...,m — 1}, define
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Xz' — {gz’ gm-i-i’ g2m+i’ o ’g(k—l)m-l—i} )
1. X is sum-free if and only if 1 ¢ (Xo + Xo);
2. If Xo+ Xo = (Z/pZ) \ Xo, then X; + X; = (Z/pZ) \ X; for alli € {1,2,...,m —1}.

3. If Xo+ X; = (Z/pZ) \ {0} for all i € {1,2,...,m —1}, then Vi # j, X; + X; =
(Z/pZ) \ {0}-

Lemma 1 tells us that the sumset structure of the X;’s has “rotational symmetry”, which
reduces the number of things that must be checked. In particular, it suffices to consider only
those set sums involving Xj.

3 Improvement of the algorithm from [3]

The following lemma affords us a way to check, given m and p =1 (mod 2m), whether the
m cosets of size ’%1 form a Ramsey algebra.

Lemma 2. Let m € Z* and let p = mk + 1 be a prime number, k even, and g a primitive
root modulo p. For i € {0,1,...,m — 1}, define

Xi — {gl’ gm+i7 92m+i’ . 7g(k—1)m+i} )
Then if (Xo + Xo) N X; # 0, then (Xo + Xo) 2 X;.

This lemma is very easy to prove and was apparently known to Comer, but it seems that
no one previously saw how to use it to get an algorithmic improvement.. The next corollary
justifies the algorithm presented in the psuedocode below it. The algorithm is a special case
of a more general one given in [1].

Corollary 3. Suppose (Xq— 1) N Xy =0, but for all i, j not both zero, (Xo — ¢°) N X; # 0.
Then the X;’s form a Ramsey algebra.



Data: A prime p, a divisor m of (p — 1)/2, a primitive root g modulo p
Result: A Boolean, telling whether the corresponding cosets structure is a Ramsey
algebra
Compute Xy = {¢*" (mod p):0<a < (p—1)/m};
Compute ¢/ — Xy (mod p) for each 0 < j < m;
if (1 — XQ) mX() 7é @ then
| return False
end
for 1< 1tom—1do
Xi={g""*" (mod p): 0 <a < (p—1)/m}
for j«1tom—1do
if (¢ — Xo) N X; = 0 then
| return False
end

end

end

return True . ) )
Algorithm 1: Fast algorithm for checking for Ramsey algebras

This algorithm is significantly faster. For example, Kowalski’s results (1 < m < 120,
skipping 8 and 13) can be reproduced in 59 seconds.

For each m between 1 and 2000, we have found the smallest prime modulus over which
Comer’s construction yields an m-color Ramsey algebra. The data are available in sequence
A263308.
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4 The Fourier transform, quasirandom sets, and a
Ramsey-like bound

Theorem 4. Let the m-color multiplicative-coset Ramsey algebra be constructible over Z/pZ.
Then for m > 6,
27’112—2m+1§p<m4

Proof. First we establish the lower bound by counting formal sums. Suppose p < 2m?—2m+
1. Since (p — 1)/2 must be divisible by m, and (p — 1)/m must be even, p < 2m? — 4m + 1.

We must have X, + X, = (Z/pZ)\Xo, so |Xo+ Xo| =p — (p — 1)/m; however, counting
formal sums we have

)=l

X+ Xo| < (L%lj)ﬂp;lj _

2

where the binomial coefficient is the number of sums of two distinct elements, L’%lj counts

the number of self-sums, % L’%lj is a lower bound on the number of these sums that result
in 0, and the 1 adds the identity back to the count.

Thus, it must be the case that

=)

mT+1Zp—(p—1)/m. (1)
Then one may check that if p = 2m? — 4m + 1, (1) fails to hold. Certainly, then, no smaller
modulus will suffice.

We now turn our attention to the upper bound. It will suffice to show that for p > m?,
Xp is not sum-free. We take as our starting point the ideas of Roth, who first used Fourier-
analytic techniques to count the number of solutions to a linear equation inside a set [17].
Fourier analysis in additive number theory has become a subfield in its own right since the
seminal work of Gowers [6, 7|, now sometimes called quadratic Fourier analysis. We need
only the “linear” Fourier analysis of Roth. We follow the development in [12].

Suppose we want to count the solutions to the equation x +y = z inside a set A C Z/pZ
with |A| = 0p. Let A be the number of solutions inside A. We have that

p k=0 0, = §é ! (mOd p)

Because of (2), we have

N = ZZZ Z S (3)

r€EA yeA zGA

Rearranging (3), we get
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where C'h denotes the characteristic function of A, and fdenotes the Fourier transform of

f

—_

hS]

fla)y =" flkye 7.

=0

ol

Now we can pull out the & = 0 term from (4):

(4) = })Ohm)?’ LS G Gha-n

If we selected elements from Z/pZ at random and placed them in A, then we’d expect
6°p® solutions to  +y — z = 0 in A. In light of this, we’ll call §°p* the main term, and
%Zi;i Cha(k)? - Cha(—k) the error term. The error term will measure how close (or far)
A is from being a “random” set. We now bound this error term.

Suppose 0 < a < 1 and |Cha(k)| < ap for all 0 # k € Z/pZ. In this case, we say that A



is a-uniform. Then

p—1 p—1
1ZC'hA(k)z Cha(=k)| < L nax |Cha(k)]| - ZChA(k)2‘
it p k=1

p—1 L
<a | Cha(k)
k=1
p—1
< ap Chy(k)?
k=1
< adp’,

where the second-to-last line is by Parseval’s identity.

Hence N > §°p? —adp®. So we want o < §2. By [18, Corollary 2.5], if H is a multiplicative
subgroup of Z/pZ, then H is a-uniform for o = p~'/2. It is easy to check that if p > m?,
then p~1/2 < §2. Therefore X is §>-uniform, so it contains a solution to z +y = z and hence
is not sum-free. !

Note that the upper bound given in Theorem 4 is significantly less than what one gets
by using the Ramsey number R,,(3), which is at least exponential in m.

Corollary 5. There is no 13-color multiplicative-coset Ramsey algebra constructible over
Z/pZ for any prime p. Hence A263308(13) = 0.

Proof. Let m = 13. Then by Theorem 4, p < 28561. We have verified that no such prime
yields a 13-color multiplicative-coset Ramsey algebra. O

Note that using the upper bound on R;3(3) from [9] would have required checking primes
up through 1.69 - 10%.

In Figure 3 below, one can see the maximum modulus of the nontrivial Fourier coefficients
of the characteristic function of X, over candidate primes p for m = 13.
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Figure 3: Normalized maximum modulus of nontrivial Fourier coefficients of C'h(Xy). The
red line is y = 1/§% = 1/169.

5 Further directions

While there has been significant computational progress on this problem in the last few
years, computation will never get us a proof that Ramsey algebras are constructable for all
sufficiently large m. We hope that the ideas in the proof of Theorem 4 are a significant step
in this direction. We now collect some open problems whose resolution would contribute to
such a proof.

Problem 1. Prove that for all m, there is a prime p =1 (mod 2m) between 2m? and m3.

Problem 2. For certain primes p significantly smaller than m?*, X, is not sum-free. Find
conditions on p and m that suffice for X, to be sum-free.

Problem 3. Improve the Ramsey-like upper bound in Theorem 4. For example, it would
seem reasonable to think that one could do better than 1/,/p-uniformity, which holds for all
subgroups, by taking into account that, for large m, the X;’s are large relative to p.
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