
Geometric and Information-Theoretic Properties of the Hoggar Lines

Blake C. Stacey1

1Department of Physics, University of Massachusetts Boston,
100 Morrissey Blvd., Boston, MA 02125, United States

(Dated: September 13, 2016)

We take a tour of a set of equiangular lines in eight-dimensional Hilbert space. This structure
defines an informationally complete measurement, that is, a way to represent all quantum states
of three-qubit systems as probability distributions. Investigating the shape of this representation
of state space yields a pattern of connections among a remarkable spread of mathematical con-
structions. In particular, studying the Shannon entropy of probabilistic representations of quantum
states leads to an intriguing link between the questions of real and of complex equiangular lines.
Furthermore, we will find relations between quantum information theory and mathematical topics
like octonionic integers and the 28 bitangents to a quartic curve.

I. INTRODUCTION

A set of equiangular lines is a collection of lines such
that the angle made by each pair of lines is equal. These
arrangements can be defined in real vector space Rd or
in complex vector space Cd. The outstanding question
is what the maximum size of such a set can be, as a
function of the dimension d. This question is relevant to
quantum physics, because the complex case corresponds
to a particular type of quantum measurement with im-
portant properties [1–13]. One moral of our story will be
that the real and the complex versions of the equiangular
line question can intertwine in unexpected ways.

A symmetric, informationally complete, positive-
operator valued measure—a SIC-POVM, or just a SIC—
is a set of d2 vectors |ψj〉 in a d-dimensional complex
Hilbert space whose inner products satisfy

|〈ψj |ψk〉|2 =
dδjk + 1

d+ 1
. (1)

It is often convenient to work with the rank-1 projection
operators defined from these states,

Πj = |ψj〉〈ψj |. (2)

When rescaled by the dimension, these operators sum to
the identity: ∑

j

1

d
Πj = I. (3)

Therefore, with this scaling, the operators Πj can serve
as the effects that comprise a general quantum measure-
ment, or POVM. The index j labels the possible out-
comes of an experiment that can, in principle, be carried
out. It follows from Eq. (1) that such a measurement is
informationally complete (IC). Given a probability distri-
bution over the outcomes of an IC measurement, we can
compute the probabilities for the outcomes of any other
measurement. The symmetric IC POVMs make the cal-
culations that interrelate different experiments take on a
remarkably simple form [7, 9].

One can prove that no more than d2 states in a d-
dimensional Hilbert space can be equiangular. That is,
the largest set of states for which

|〈ψj |ψk〉|2 = α (4)

whenever j 6= k has size d2. In turn, for a maximal
set the value of α is fixed by the dimension; it must be
1/(d+ 1). So, a SIC is a maximal equiangular set in Cd;
the question is whether they can be constructed for all
values of the dimension. Despite a substantial number of
exact solutions, as well as a longer list of high-precision
numerical solutions [4, 10, 11], the problem remains open.

The real vector space analogue to Eq. (4) can be ex-
pressed in terms of the Euclidean inner product 〈·, ·〉
in Rn. An equiangular set of unit vectors v̂j satisfies

〈v̂j , v̂k〉 = ±α (5)

for all j 6= k. Again, one can find an upper bound for
the possible size of such a set. In Euclidean space Rd, an
equiangular set can contain at most

N =

(
d+ 1

2

)
(6)

lines. However, unlike the bound of d2 in the complex
case, it is known that this bound is not reached in all di-
mensions [14, 15]. For example, in R7, one can construct(
8
2

)
= 28 equiangular lines, but this is also the best that

one can do in R8 and in R9.
The general plan for this essay is as follows. In Sections

II and III, we will see how SICs furnish a probabilistic
representation of quantum state space, and we will intro-
duce the particular SICs that will be our main focus of
interest. Recent work by Szymusiak and S lomczyński has
demonstrated the importance of these SIC solutions for
understanding the informational power of quantum mea-
surements [16]. We will touch on these calculations, in
the context of extremizing the Shannon entropy of proba-
bilistic representations for quantum states. These results
connect complex geometry, finite group theory and in-
formation theory. Next, in Section IV, we will use the
special properties of those SICs to simplify the equations
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that indicate the shape of quantum state space. Sec-
tion V will build on that development, showing how the
way SIC vectors embed into Hilbert space leads to com-
binatorial design theory. Teasing out the structures that
arise from an eight-dimensional SIC leads to an unfore-
seen connection between the real and the complex ver-
sions of the equiangular lines problem.

Section VI will study the pairing of two separate eight-
dimensional SICs, a pattern of interlocking geometrical
relationships that will lead, in Section VII, to another
application of combinatorial design theory. The results
will translate to probability and information theory in
Section VIII, where we will see what they imply for the
problem of distinguishing the consequences of different
quantum-mechanical hypotheses. Investigating this fur-
ther, we will arrive in Section IX at another connection
between real and complex equiangular lines.

II. SIC REPRESENTATIONS OF QUANTUM
STATES

In the textbook way of doing quantum theory, a quan-
tum state for a system is a positive semidefinite operator
ρ with unit trace. For a d-dimensional system (a qudit), ρ
can be written as a d×d matrix of complex numbers. The
set of all valid density matrices ρ is a convex set whose ex-
treme points are the rank-1 projection operators. These
extreme points are also known as pure states; states that
are not pure are designated mixed.

Given a density matrix ρ and a POVM {Ei}, we find
the probability of outcome i by using the Born rule:

Prob(i) = tr(ρEi). (7)

If the POVM is informationally complete, we can recon-
struct ρ entirely from these probabilities. In the case of
a SIC [7], we can say that

ρ =
∑
i

(
(d+ 1)p(i)− 1

d

)
Πi, (8)

where

p(i) =
1

d
tr(ρΠi). (9)

We will call the probability distribution p(i) the SIC rep-
resentation of the quantum state ρ.

Let us suppose we have a SIC solution for some di-
mension d. (In the next section, we will examine some
examples in detail.) A state is pure if and only if its
SIC representation satisfies the following two conditions.
First, it must meet the quadratic constraint∑

j

p(j)2 =
2

d(d+ 1)
. (10)

Second, it must satisfy the QBic equation,∑
jkl

Cjklp(j)p(k)p(l) =
d+ 7

(d+ 1)3
, (11)

where we have introduced the triple products,

Cjkl = Re tr(ΠjΠkΠl). (12)

If two or more indices are equal, this reduces to

tr(ΠjΠk) =
dδjk + 1

d+ 1
. (13)

The set of all valid states is the convex hull of the prob-
ability distributions that satisfy Eqs. (10) and (11).

The quadratic constraint (10) has a considerably sim-
pler structure than the QBic equation, so we investigate
the former first. One important consequence is an upper
bound on the number of entries in p(i) that can equal
zero [17]. Normalization implies that

1 =

(∑
i

p(i)

)2

. (14)

Writing n0 for the number of zero-valued entries in p(i),
and applying the Cauchy–Schwarz inequality,(∑

i

p(i)

)2

≤ (d2 − n0)
∑

{i|p(i) 6=0}

p(i)2. (15)

Consequently,

1 ≤ (d2 − n0)
2

d(d+ 1)
. (16)

Rearranging this, we find that

n0 ≤
d(d− 1)

2
=

(
d

2

)
. (17)

When this bound was first derived, it was conjectured
that one could improve upon it [17]. This bound can
be reached in dimension 3. Note that when d = 3, the
binomial coefficient

(
d
2

)
reduces to d. It was conjectured

that the true bound would turn out to be d in general.
However, this is not the case [18]. In this paper, we
will find examples in d = 8 where the number of zeros
is
(
8
2

)
= 28. Therefore, the bound deduced from the

Cauchy–Schwarz inequality is the best one possible in
general.

Since we have probability distributions, we can com-
pute Shannon entropies. Of particular interest are the
pure states which extremize the Shannon entropy of their
SIC representations. It turns out (and the proof is not
too long) that the pure states which maximize the Shan-
non entropy of their SIC representations are the SIC pro-
jectors {Πi} themselves.1

1 I first learned of this from unpublished notes by Huangjun Zhu,
written in 2013.
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What about minimizing the Shannon entropy? Imag-
ine a probability distribution, not necessarily one corre-
sponding to a quantum state. Under the constraint that∑
i p(i)

2 is fixed,

∑
i

p(i)2 =
1

N
, (18)

then it can be shown [16] that the distributions of mini-
mum entropy take the form(

1

N
, · · · , 1

N
, 0, · · · , 0

)
. (19)

Exactly N entries are nonzero, and the others all vanish.
If we take

N =
d(d+ 1)

2
=

(
d+ 1

2

)
, (20)

then we see that a probability distribution with N non-
vanishing, uniform entries is a pure state that minimizes
the Shannon entropy—provided that it corresponds to a
valid pure state. In other words, the minimizers we seek
are those permutations of Eq. (19) that satisfy the QBic
equation.

III. CONSTRUCTING SICS USING GROUPS

All known SICs have an additional kind of symmetry,
above and beyond their definition: They are group co-
variant. Each SIC can be constructed by starting with
a single vector, known as a fiducial vector, and acting
upon it with the elements of some group. It is not known
whether or not a SIC must be group covariant. Possi-
bly, because group covariance simplifies the search proce-
dure [4, 11], the fact that we only know of group-covariant
SICs is merely an artifact. (However, we do have a proof
that all SICs in d = 3 are group covariant [19].)

In all cases but one, namely the Hoggar SIC we will
define below, the group that generates a SIC from a fidu-
cial is an instance of a Weyl–Heisenberg group. We can
define this group as follows. First, fix a value of d, and
let ωd = e2πi/d. Then, construct the shift and phase
operators

X|j〉 = |j + 1〉, Z|j〉 = ωjd|j〉, (21)

where the shift is modulo d. The elements of the Weyl–
Heisenberg group in dimension d are products of powers
of X and Z, together with phase factors that depend on
the dimension. For many purposes, those phase factors
can be neglected.

In d = 2—that is, for a system comprising a single
qubit—a SIC is simply a tetrahedron, inscribed in the
Bloch sphere [2]. (This configuration was described by
Feynman, in a 1987 festschrift for Bohm [20].) Let r

and s be signs, and let σx, σy and σz denote the Pauli
matrices. Then, the four pure states

Πr,s =
1

2

(
I +

1√
3

(rσx + sσy + rsσz)

)
(22)

define a tetrahedron. Each point (x, y, z) lying within the
unit ball (Bloch ball) defines a valid quantum state. The
SIC representation of this state is the probability vector
whose components are

p(r, s) =
1

4
+

√
3

12
(sx+ ry + srz) . (23)

Given the tetrahedron (22), we can define another, re-
lated to the first by inversion. Together, the two tetrahe-
dra form a stellated octahedron, inscribed in the Bloch
sphere. The SIC representations of the vertices of the
second tetrahedron are the vector(

0,
1

3
,

1

3
,

1

3

)
(24)

and its permutations.
In what follows, we will make substantial use of two

SICs. One of them is the Hesse SIC in d = 3, which we
construct by applying the Weyl–Heisenberg group to the
fiducial ∣∣∣ψ(Hesse)

0

〉
=

1√
2

(0, 1,−1)T. (25)

The other lives in d = 8 and is designated the Hog-
gar SIC. (The construction was first devised by Hog-
gar [21, 22] by starting with 64 nonequiangular diagonals
through the vertices of a quaternionic polytope, which
become 64 equiangular lines when converted to complex
space. Hoggar’s result was among the first discoveries of
a maximal set of complex equiangular lines [23, pp. 731–
33].) Actually, we have multiple choices of fiducial in this
case, yielding distinct sets of d2 = 64 states. However,
all of these sets have the same symmetry group, and they
are equivalent to one another up to unitary or antiuni-
tary transformations. For brevity, then, we will refer to
“the” Hoggar SIC [24].

A fiducial for the Hoggar SIC [25] can be written as
follows:

|ψ0〉 ∝ (−1 + 2i, 1, 1, 1, 1, 1, 1, 1)T. (26)

Upon this, we act with the elements of the group that
is the tensor product of three copies of the d = 2 Weyl–
Heisenberg group:

k = (k0, k1, . . . , k5), Dk = Xk0Zk1 ⊗Xk2Zk3 ⊗Xk4Zk5 .
(27)

Given a tetrahedral SIC, we can define a SIC represen-
tation of state space. Minimizing the Shannon entropy
over pure states, as we discussed earlier, yields the four
states of the counterpart tetrahedron. Performing the
same procedure with the Hesse SIC, we find that the pure
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states that minimize the Shannon entropy are twelve in
number. They form a complete set of Mutually Unbiased
Bases [18]. It is natural to ask what happens similarly
for the Hoggar SIC; we will investigate this in a later
section.

IV. SIMPLFYING THE QBIC EQUATION

A quantum system for which d = 3 is known as a
qutrit. In d = 3, we can simplify the QBic equation (11)
considerably, using the Hesse SIC [18, 26, 27]. In the
Hesse SIC representation of qutrit state space, the QBic
equation can be reduced to∑

i

p(i)3 − 3
∑

(ijk)∈S

p(i)p(j)p(k) = 0, (28)

where list S is a set of index triples (ijk) which can be
constructed as the lines in a discrete affine plane of nine
points [18, 26, 27]. This fact is quite handy when working
with qutrit states, and it is a consequence of the triple
products of the Hesse SIC states taking a simple form.
In turn, the structure of the triple products simplifies be-
cause the Hesse SIC has the property that its symmetry
group acts doubly transitively. This is a kind of sym-
metry beyond the definition of a SIC and beyond group
covariance: Using unitary operators that map the Hesse
SIC to itself, we can send any pair of states in the Hesse
SIC to any other.

Zhu has proved [28] that the only SICs whose sym-
metry groups act doubly transitively are the tetrahedral
SICs in d = 2, the Hesse SIC in d = 3 and the Hoggar SIC
in d = 8. In d = 2, the QBic equation simplifies so far
that it becomes redundant, and the quadratic constraint
is sufficient to define the state space. As we have seen,
the QBic equation also simplifies for the Hesse SIC, in a
way that brings discrete geometry into the picture. It is
reasonable to guess that something similar will happen
in dimension d = 8.

When in dimension d = 8, using the Hoggar SIC, the
number of distinct values the Cjkl take in this case is
quite small: When the three indices are different, they
can only be 0 or ±1/27.

Let S+ denote the set of index triples (jkl) for which
Cjkl = 1/27, and likewise, let S− denote that set for
which Cjkl = −1/27. We cull duplicates from these lists,
so that, for example, if (jkl) belongs in S+, we do not
also include its permutations (kjl), (lkj) and so on. The
sizes of these sets are

|S+| = 16128 = 28327, |S−| = 4032 = 26327. (29)

Simplifying the QBic equation (11) for the special case
of the Hoggar SIC proceeds by fairly straightforward al-
gebra. The only bit of moderate cleverness required is a

rearrangement by means of normalization:∑
j

p(j)2
∑
l 6=j

p(l) =
∑
j

p(j)2 [1− p(j)]

=
∑
j

p(j)2 −
∑
j

p(j)3. (30)

The result of these manipulations is that a pure state
must satisfy

∑
j

p(j)3+
1

3

∑
S+

p(j)p(k)p(l)−
∑
S−

p(j)p(k)p(l)

 =
11

648
.

(31)
The remaining challenge is to characterize the sets S+

and S−.

V. TRIPLE PRODUCTS AND
COMBINATORIAL DESIGNS

Group covariance tells us that any Cjkl can be writ-
ten as C0mn for some m and n. This implies a d2-fold
degeneracy among the triple products. In our case, we
know that the sizes of S+ and S− must be multiples of 64.
And, in fact,

|S+| = 64 · 4 · 327, |S−| = 64 · 327. (32)

In forming the triple product C0mn, we have(
63

2

)
=

63 · 62

2
= 1953 (33)

ways of choosing the subscripts m and n. We find that

|S−|
64

=
1

31

(
63

2

)
,
|S+|
64

=
4

31

(
63

2

)
. (34)

It is now time to go into the group theory of SIC struc-
tures in more detail. We define the multipartite Weyl–
Heisenberg group in a prime-power dimension pn to be
the tensor product of n copies of the Weyl–Heisenberg
group in dimension p. The Clifford group in dimension
pn is the group of unitaries that stabilize the multipar-
tite Weyl–Heisenberg group. The order of the Clifford
group [28] is

pn
2+2n

n∏
j=1

(p2j − 1). (35)

Therefore, in dimension 8 = 23, the Clifford group has
order

23
2+2·3

3∏
j=1

(22j − 1) = 215 · 3 · 15 · 63 = 215 · 34 · 5 · 7

= 29 · 32 · (|S+|+ |S−|). (36)
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The symmetry group of the Hoggar SIC is a subgroup
of the Clifford group with order

64 · 6048 = 211 · 33 · 7 = 24|S+| = 96|S−|. (37)

The factor of 64 = 26 comes from the triple-qubit Pauli
group. Take any vector from the Hoggar SIC, and con-
sider those unitaries in the symmetry group that leave
that vector fixed while permuting the others. These form
the stabilizer subgroup of that vector. For any vector in
the Hoggar SIC, the stabilizer subgroup is isomorphic to
the projective special unitary group PSU(3, 3), which
has 6048 elements. This explains the other factor in
Eq. (37).2

Let N+
k be the number of triples in the set S+ that

contain the value k, and likewise for N−k and S−. One
finds that

N−k = 189, N+
k = 756 ∀k. (38)

These values factorize as

N−k = 33 · 7, N+
k = 22 · 33 · 7. (39)

Furthermore, if we let N±kl denote the number of triples
in S+ (respectively, S−) that contain the pair (k, l), we
obtain

N−kl = 6, N+
kl = 24, ∀k, l. (40)

This leads us into combinatorial design theory. A bal-
anced incomplete block design (BIBD) is a collection of v
points and b blocks, such that there are k points within
each block, and r blocks contain any given point. Con-
sistency requires that

bk = vr. (41)

The final parameter, λ, specifies the number of blocks
containing any two specific points. This constant must
satisfy

λ(v − 1) = r(k − 1). (42)

In a symmetric design, b = v, and so r = k. Any two
blocks meet in the same number of points, and that num-
ber is λ. Ryser’s theorem [33] establishes that this is an
if-and-only-if relationship.

2 If one constructs the Hoggar SIC as Zhu does, then its fiducial
vector’s stabilizer group is generated by his unitary operators U7

and U12. Construct the new unitaries Ua = U12U7 and Ub = U2
12.

These satisfy the relations for the generators of PSU(3, 3) as pre-
sented in the Atlas of Finite Group Representations [29]. Also,
the conjugacy classes in Zhu’s Table 10.1 can be matched with
those for PSU(3, 3) computed, for example, using the gap soft-
ware [30]. The group PSU(3, 3), as well as the stabilizer groups
for the other doubly-transitive SICs, can all be constructed from
the octavian integers [13, 31]. As Baez notes, “Often you can
classify some sort of gizmo, and you get a beautiful systematic
list, but also some number of exceptions. Nine times out of 10
those exceptions are related to the octonions” [32].

The set S− contains 4032 “blocks,” where each block is
made of three points drawn from a set of 64 possibilities.
We found earlier that each point occurs in 189 different
blocks, and that each pair of points occurs in 6 different
blocks. Therefore, S− is a BIBD with

v = 64, b− = |S−| = 4032, k = 3, r− = 189, λ− = 6.
(43)

Likewise, S+ is a BIBD with

v = 64, b+ = |S+| = 16128, k = 3, r+ = 756, λ+ = 24.
(44)

Referring back to Eq. (37), we have that

b± = |S±| =
6048v

4λ∓
=

6048v

4

λ±
λ−λ+

=
6048v

576
λ± = 672λ±.

(45)
Zhu proves that the Hoggar SIC is “doubly transitive,”

i.e., for any distinct pair of vectors, there is a symmetry
operation that takes it to any other distinct pair [28].
This has implications for the structure coefficient matri-
ces Ci, defined by

(Ci)jk = Cijk. (46)

Group covariance means that

Cijk = C0j′k′ (47)

for some j′ and k′. So, the entries in all the matrices {Ci}
are elements of the matrix C0. The additional require-
ment that the action of the symmetry group is doubly
transitive means that if we want to understand the triple
products Cijk, we only need to look at C01k, because any
triple of distinct indices (ijk) can be mapped to some
(01k′), leaving the triple product invariant.

We expect to see some values occur in sets of six, or
multiples of six. Why? Because the triple product func-
tion is completely symmetric:

Cijk = Cjki = Ckij = Cjik = Ckji = Cikj . (48)

By applying unitaries in the symmetry group, we can
turn the first pair of indices into ij across the board:

Cijk = Cijσ1(i) = Cijσ2(j) = Cijσ3(k) = Cijσ4(i) = Cijσ5(j).
(49)

Here, the {σ1, . . . , σ5} are permutations of the set of in-
dices {0, . . . , 63}. They are defined by relations of the
form

σ1(j) = i, σ1(k) = j. (50)

Unless these permutations happen to align in such a way
that, for example, σ4(i) = σ5(j), we will have six ele-
ments in the jth row of the matrix Ci, all equal.

Explicit computation bears this idea out. We need the
values of C01k, where the subscripts “0” and “1” refer to
the first and second projectors in the ordering defined by
Eq. (27). Note that two entries will be the trivial value,
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1/(d+ 1). We can display the results by arranging them
in a 4× 4× 4 cube. Define the sequence

σ = {I, σz, σx, σxσz}. (51)

Then, interpreting the index k as an ordered tuple
(k0, k1, . . . , k5), we have

C01k = Re tr(Π0Π1DkΠ0D
†
k), (52)

where

Dk = σk1+2k0 ⊗ σk3+2k2 ⊗ σk5+2k4 . (53)

We can therefore display C01k for all k in a three-
dimensional cube, which is portrayed in Figure 1.

FIG. 1: Visual representation of C01k for the Hoggar SIC.
Small dots indicate C01k = 0. Large spheres (red) indicate
the trivial value, C01k = 1/9. Intermediate spheres (yellow)
indicate C01k = 1/27, and the six slightly smaller spheres
(blue) stand for C01k = −1/27.

The pairing of values follows from the facts that C01k =
C10k by symmetry and

D2
1 = (I ⊗ I ⊗ Z)2 = I ⊗ I ⊗ I. (54)

This makes the triple product insensitive to a Z factor
on one qubit. However, if the displacement operator in-
cludes a factor of X on that qubit, then the triple product
C01k vanishes. Inspection reveals that among the non-
vanishing values, C01k = −1/27 when the displacement
operator Dk includes only factors of X, apart from the
third qubit, which is insensitive to Z.

Define the complex triple products

Tjkl = 〈ψj |ψk〉〈ψk|ψl〉〈ψl|ψj〉 = tr(ΠjΠkΠl). (55)

Up until now, we have taken the real part of this quan-
tity. We can instead scale by the magnitude to obtain a
phase [5]:

T̃jkl =
Tjkl
|Tjkl|

= eiθjkl . (56)

It follows from the definition of Tjkl that, in general,

eiθmjkeiθmkleiθmlj = eiθjkl . (57)

For the Hoggar SIC, θjkl takes the values 0, π and ±π/2.
Note that the definition of a SIC implies that

〈ψj |ψk〉 =
1√
d+ 1

eiθjk (58)

for some angles θjk. This two-index object is related to
the three-index object θjkl by

eiθjkl = eiθjkeiθkleiθlj . (59)

With this relation, we can understand more about the
triple products Cjkl using the following sneaky trick. The
operators X and Z are Hermitian, but XZ is not. We
can fix this by defining

Y = iXZ, (60)

which is a Hermitian operator (and equal to the familiar
Pauli matrix σy). A tensor-product operator like X⊗Z⊗
XZ will not be Hermitian, but X ⊗ Z ⊗ Y will be. So,
by introducing appropriate phase factors, we can fix up
the Weyl–Heisenberg displacement operators Dk so that
they are Hermitian matrices. The phase with which we
modify Dk includes a factor of i for every instance of Y
in the tensor product:

D̂k = (−eiπ/d)#(Y )Dk. (61)

These operators serve just as well for generating a SIC.
But notice: Our displacement operators are now Her-

mitian matrices, that is, quantum observables, and their
expectation values are real. Conseqently, for any D̂k,

〈ψ0|D̂k|ψ0〉 ∈ R. (62)

In turn, this implies that

eiθ0k = ±1. (63)

Denote by S0 the set of all triples (jkl) for which Cjkl
vanishes. For these triples, it must be the case that Tjkl
is pure imaginary. Let us focus on the case j = 0, with
k 6= 0 and l 6= 0. Here, the only place a factor of i can
enter is the middle:

eiθ0kl = eiθ0keiθkleiθl0 . (64)

The middle factor is the phase of the inner product

〈ψk|ψl〉 = 〈ψ0|D̂†kD̂l|ψ0〉. (65)

This can yield an imaginary part for some values of k and
l, thanks to the phase factors we introduced to obtain
Hermiticity. Write {·, ·} for the symplectic form

{a, b} = a1b0 − b1a0. (66)

Then the phase we obtain is

(−i){(k0,k1),(l0,l1)}+{(k2,k3),(l2,l3)}+{(k4,k5),(l4,l5)}. (67)
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If we fix the index k, say to

(k0, k1, k2, k3, k4, k5) = (0, 0, 0, 0, 0, 1), (68)

then the phase contribution will be an imaginary number
for exactly 32 of the 64 possible choices of the index l.
These are the values for which C01l = 0.

If we define the matrix

Ω = I3×3 ⊗
(

0 −1
1 0

)
, (69)

then we can write the exponent in Eq. (67) as

f(k, l) = kΩ lT, (70)

where we are interpreting k and l as row vectors of six
elements each. The matrix Ω is invertible and antisym-
metric, so f(k, l) is a symplectic bilinear form.

Let us consider again the three-index angle tensor θjkl.
We know that

eiθjkl = ±i, for (jkl) ∈ S0. (71)

If (mjk), (mkl) and (mlj) are three triples in S0, then

eiθjkl = ±i. (72)

That is, (jkl) must then be a member of S0, too. On
the other hand, if (mjk), (mkl) and (mlj) are all outside
of S0, then eiθjkl is the product of three real numbers,
and so it must be real itself. Therefore, if (mjk), (mkl)
and (mlj) are in the complement of S0, then so is (jkl).

This means that S0 qualifies as a two-graph. Much
studied in discrete mathematics, a two-graph can be de-
fined [34] as a set T of triples such that

(pqr), (pqs), (prs) ∈ T ⇒ (qrs) ∈ T, (73)

and likewise for the complement of T .
One application of two-graphs is generating sets of

equiangular lines in real vector spaces. Pick a point in Rd,
and draw a set of lines through it, such that any two
meet at an angle whose cosine is ±α (with α 6= 0). For
some triples of those intersecting lines, the product of the
cosines will be negative, and for others, it will be positive.
The triples for which the product is negative constitute a
two-graph. Going in the other direction, any two-graph
can be formulated in this way.

Notice what has happened here: We started with a
set of complex equiangular lines, the Hoggar SIC, and
in considering the additional symmetries that set enjoys
above and beyond its definition, we have arrived at real
equiangular lines.

This will happen again.
Two-graphs have been taxonomied to an extent, with

the aid of the classification theorem for finite simple
groups. Those two-graphs with doubly transitive auto-
morphism groups were classified by Taylor [35]. Our set
S0 is Taylor’s example B.xi, the two-graph on 64 vertices
whose automorphism group contains PSU(3, 3).

Knowing the automorphism group of this two-graph,
we can find the stabilizer of any pair of vertices. This will
be the subgroup whose action leaves that pair fixed. For
example, automorphisms in the stabilizer subgroup of the
pair (0, 1) will send the triple (01k) to the triple (01k′).
Taylor [35] observes that the stabilizer of two points in
a triple has orbits of length 6, 24 and 32 on the remain-
ing points. Combining this with Zhu’s observation [24]
that two triples in the Hoggar SIC can be mapped to
each other by a symmetry operation if and only if they
have the same triple product, and we see a combinatorial
origin of the patterns we observed in Figure 1.

Given a two-graph T , one can construct a regular
graph G that embodies its structure in the following man-
ner [35]. Copy over the list of vertices from T to G. Then,
select a vertex v of the two-graph T , and draw the edges
of G so that u and w are neighbors whenever (uvw) ∈ T .
Let A be the Seidel adjacency matrix of the graph G.
This matrix is constructed so that Auw = −1 if u and w
are adjacent, Auw = 1 if they are not, and Auu = 0 on the
diagonal. Suppose that the smallest eigenvalue of A is λ,
and this eigenvalue occurs with multiplicity m. Then,
M = I− (1/λ)A is a symmetric, positive definite matrix,
and the rank of M will be the number |A| of vertices in
the graph minus the multiplicity m. Consequently, M
can be taken as the Gram matrix for a set of vectors

{v1, v2, . . . , v|A|}, (74)

with each vector living in R|A|−m.
In our case, the matrix A has only two eigenvalues: 7,

with multiplicity 36; and −9, with multiplicity 28. This
means that M is the Gram matrix for a set of equiangular
lines (as it should be, since we derived G from a two-
graph).

From the triple-product structure of the Hoggar SIC,
we have arrived at a set of 64 equiangular lines in R36.

The numbers 28 and 36 will recur in the next develop-
ments.

VI. THE TWIN OF THE HOGGAR SIC

Now, we investigate the eight-dimensional analogue of
what happens when we minimize the Shannon entropy
for qubit pure states.

The “twin Hoggar SIC” can be constructed by apply-
ing the triple-Pauli displacement operators to the fiducial
vector ∣∣∣ψ̃0

〉
∝ (−1− 2i, 1, 1, 1, 1, 1, 1, 1)T. (75)

This is related to our original fiducial vector, Eq. (26),
by complex conjugation.

In the SIC representation defined by the original Hog-
gar lines, the vectors comprising the “twin Hoggar SIC”
have (8 − 1)8/2 = 28 elements equal to zero, and the
other (8 + 1)8/2 = 36 elements equal to 1/36 [16]. Con-
sequently, the Hoggar lines provide a counterexample to
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1110111011100001111011101110000111101110111000010001000100011110
1101110111010010110111011101001011011101110100100010001000101101
1011101110110100101110111011010010111011101101000100010001001011
0111011101111000011101110111100001110111011110001000100010000111

TABLE I: Four SIC representations of states from the twin Hoggar lines, written as bit sequences.

the conjecture that the best upper bound on the num-
ber of zero-valued entries in dimension d is just d. The
bound d(d− 1)/2 deduced from the Cauchy–Schwarz in-
equality [17] is, actually, tight. Furthermore, the states
of the twin Hoggar SIC minimize the Shannon entropy
of their SIC representations, as we discussed above. One
can, in fact, find the the twin Hoggar SIC-set by testing
all the states of the form (19) to see which ones satisfy
the QBic equation.

For any vector p in the twin Hoggar SIC set,∑
j

p(j)3 = 36

(
1

36

)2

=
1

1296
. (76)

Eq. (31) then becomes

1

1296
+

1

3

∑
S+

p(j)p(k)p(l)−
∑
S−

p(j)p(k)p(l)

 =
11

648
.

(77)
The bracketed sum must therefore equal∑

S+

p(j)p(k)p(l)−
∑
S−

p(j)p(k)p(l)

 =
7

144
. (78)

Furthermore, any product p(j)p(k)p(l) that does not
evaluate to zero must equal

p(j)p(k)p(l) =

(
1

36

)3

=
1

46, 656
. (79)

From this, we can calculate the net number of contribu-
tions that the sums over S+ and S− must make, if the
state is to be valid:

7
144
1

46,656

= 2, 268 = 22347 =
3(|S+| − |S−|)

24
. (80)

If πi and πj are two projectors in the twin set, then

tr(πiπj) = d(d+ 1)
∑
k

pi(k)pj(k)− 1 =
1

d+ 1
. (81)

Therefore, ∑
k

pi(k)pj(k) =
d+ 2

d(d+ 1)2
=

5

324
. (82)

Now, each element in pi is either 0 or 1/36, and likewise
for pj . Let n denote the number of overlapping nonzero
entries in these two vectors. We know that

n

(
1

36

)2

=
5

324
, (83)

and so

n = 20. (84)

This result will be important for understanding the twin
Hoggar SIC using combinatorial design theory.

VII. COMBINATORIAL DESIGNS FROM THE
TWIN HOGGAR SIC

We have a set of d2 = 64 “blocks,” each one of which
essentially is a binary string of length 64. And each block
contains exactly 36 of the nonzero entries that a length-
64 block could in principle contain. We can think of this
as there being 64 “points,” and each block contains 36 of
them. Table I gives examples of four such blocks.

If we fix v = b = 64 and k = 36, then

λ · 63 = 36 · 35 ⇒ λ = 20. (85)

This is just what we found before when we calculated the
number of overlapping 1s in any pair of vectors in the
twin Hoggar set. Therefore, the twin Hoggar SIC defines
a symmetric design. Specifically, it is a “2-(64,36,20)
design.”

If we apply a not to each of our bit-strings, then we
arrive at a new design. Generally, the complement of a
design is found by replacing each block with its comple-
ment: The points that were included in a block are now
excluded, and vice versa. The new design has parameters

v′ = v, b′ = b, k′ = v−k, r′ = b−r, λ′ = λ+b−2r. (86)

The complement to our Hoggar design therefore satisfies

v′ = b′ = 64, k′ = r′ = 28, λ′ = 12. (87)

Therefore, we can designate it a “2-(64,28,12) design.”
The existence of a symmetric design with parameters

(v, k, λ) = (4u2, 2u2 − u, u2 − u) (88)

is known to be equivalent to the existence of a regular
Hadamard matrix possessing dimensions 4u×4u. Setting
u = 4, we find that the complement of the Hoggar design
meets the Hadamard criterion. The incidence matrix of
the design can be transformed into a regular Hadamard
matrix by simple substitutions.

The complement of the Hoggar design is equivalent to
an orthogonality graph for the Hoggar SIC and its twin.
In an orthogonality graph, vertices stand for states, and
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vertices are linked by an edge if the corresponding states
are orthogonal. If a point Vi lies within block Bj , then
the ith vector in the Hoggar SIC is orthogonal to the
jth vector in the twin SIC. This can be visualized as a
bipartite graph containing two sets of 64 vertices apiece,
where each vertex in the first set is linked to 28 vertices
in the second set.

We can generate the Hoggar design in another way
by the following procedure. Start with this Hadamard
matrix:

H2 =

 −1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (89)

Construct the tensor product of three copies of H2:

H6 = H2 ⊗H2 ⊗H2. (90)

Then, use this to create an incidence matrix by replacing
all the entries that equal −1 with 0:

M =
H6 + 1

2
. (91)

The resulting 64 × 64 array is the incidence matrix of
the Hoggar design, containing all the same rows as the
(appropriately renormalized) SIC representations of the
twin set. This ties us firmly into the literature on combi-
natorial designs: The Hoggar design is a symplectic de-
sign on 64 points.3 A symplectic design [36–38], denoted
S ε(2m) with m a positive integer and ε = ±1, is a BIBD
with

b = v = 22m, k = 22m−1 + ε2m−1, λ = 22m−2 + ε2m−1.
(92)

The object that we found by way of SIC-POVMs is ex-
actly S 1(2m) for m = 3. Symplectic designs for larger
m can be constructed by taking the tensor product of m
copies of the Hadamard matrix H2.

That is how to construct the symplectic designs
S ±(6), as combinatorial geometries. Does the matrix
H2 have a meaning in quantum physics? In fact, it does.
In qubit state space, a SIC is a tetrahedron inscribed
within the Bloch sphere. Finding the minimum-entropy
pure states, as we did for the Hoggar SIC, they turn
out to form a second tetrahedron, dual to the first. To-
gether, the two SICs constitute a stellated octahedron in
the Bloch-sphere representation. Each projector in the
new SIC is orthogonal to exactly one of the four projec-
tors in the original SIC. Let J4×4 be the 4 × 4 matrix
whose entries are all 1. Then, up to normalization, the

3 While these notes were in preparation, Szymusiak and
S lomczyński updated an earlier arXiv paper of theirs with an
independent derivation of this point [16].

SIC representations of the four new projectors can be
written as the rows of the matrix 0 1 1 1

1 0 1 1
1 1 0 1
1 1 1 0

 = J4×4 − I4×4. (93)

This is clearly just the Hadamard matrix H2, shifted and
rescaled. So, the structure of orthogonalities between the
Hoggar SIC and its twin is, essentially, the tensor product
of three copies of the analogous structure for a qubit SIC.

An automorphism of a symmetric design is a permu-
tation of the points that preserves the block structure,
sending blocks to blocks. The symplectic designs admit
2-transitive automorphism groups. That is, the automor-
phism group of a symplectic design S ε(2m) contains per-
mutations that map any pair of points to any other pair
of points. Furthermore, the automorphism group of a
design is 2-transitive for points if and only if it is so for
blocks as well. Therefore, the automorphism group of a
symplectic design includes transformations that can map
any pair of blocks to any other pair of blocks.

The symmetric difference of two sets is defined to be
the set of those elements contained in their union but not
their intersection. For example,

{John,Paul,George} 	 {George,Ringo}
= {John,Paul,Ringo}. (94)

If the symmetric difference of any three blocks in a design
is either a block or the complement of a block, then that
design is said to have the symmetric difference property.
If a design enjoys the symmetric difference property, then
that design or its complement meets the following condi-
tion [39] on its parameters:

v = 22m, k = 22m−1 − 2m−1, λ = 22m−2 − 2m−1. (95)

The complement of the Hoggar design satisfies these con-
ditions with m = 3.

The 64-point designs with the symmetric difference
property can be completely classified [39]. There exist
four inequivalent such designs, distinguished by their au-
tomorphism groups [37]. The symplectic design, which
we found by way of the Hoggar SIC, is the most symmet-
ric: It is the only one of the four whose automorphism
group is 2-transitive.

Let F2 denote the finite field of order two, and let
Sp(2m,F) denote the group of 2m× 2m symplectic ma-
trices over the field F. Then, the automorphism group of
the symplectic design S 1(6) is isomorphic to

G = (Z2)6 × Sp(6,F2). (96)

The stabilizer of any point is Sp(6,F2).
The original SIC and the twin SIC have the same sym-

metry group. Let Πi be a projector in the original set
and πi a projector in the twin set. Suppose that g is
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an element of the symmetry group that takes πj to πk.
Then

tr(Πiπk) = tr(Πigπjg
†) = tr(g†Πigπj). (97)

So, the SIC representation of πj is just the SIC repre-
sentation of πk, with the entries permuted. Any ele-
ment of the Hoggar SIC’s symmetry group corresponds
to a permutation that preserves the combinatorial design
structure. However, the converse is not true: Not all ele-
ments in the automorphism group G can be implemented
by unitaries that belong to the Hoggar SIC’s symmetry
group. This is a restatement of the fact that the symme-
try group of the Hoggar SIC is a proper subgroup of the
triple-qubit Clifford group.

VIII. POST-PEIERLS COMPATIBILITY

A quantum state can be thought of as a hypothesis for
how a quantum system will behave when experimented
upon. When are two such hypotheses different in a mean-
ingful way? One way of quantifying this is the idea of
compatibility between quantum states. Two quantum
states ρ and ρ′ are post-Peierls incompatible if a mea-
surement exists that meets the following condition [40].
Let the measurement outcomes be labeled by j, so that
the operators {Ej} form a POVM,∑

j

Ej = I. (98)

The probabilities for the outcomes are computed using
the Born rule:

q(j) = tr(ρEj), q
′(j) = tr(ρ′Ej). (99)

If one can devise a measurement {Ej} such that for any
outcome j, at least one of q(j) or q′(j) is zero, then the
states ρ and ρ′ are post-Peierls (PP) incompatible. This
can naturally be generalized to the question of compati-
bility among three or more states.

Is it possible for quantum states to be PP incompatible
with respect to a SIC measurement? Yes, but not if we
only consider two states at a time. For example, these
are three valid states for the Hesse SIC representation in
dimension d = 3.(

0, 0, 0, 16 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

)
;(

1
6 ,

1
6 ,

1
6 , 0, 0, 0,

1
6 ,

1
6 ,

1
6

)
;(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 , 0, 0, 0

)
.

(100)

Note that there is exactly one zero in each column. In
other words, for each outcome of the Hesse SIC, exactly
one of these three states assigns that outcome a proba-
bility of zero.

This is a situation where the relationship among three
entities is not clearly apparent from the relationships

within each pair. In such a case, it can be helpful to por-
tray the configuration diagramatically [41–43]. We do so
in Figure 2. Each circle in Figure 2 stands for one of the
three states given in Eq. (100). The numbers contained
within a circle are the labels of the outcomes that are
consistent with that state. Note that these outcomes are
only written in the areas where two circles overlap. No
outcome belongs to a single state alone, and no outcome
belongs to all three.

FIG. 2: Pictorial representation of the hypotheses defined in
Eq. (100). Each circle corresponds to a quantum state. The
numbers indicate the outcomes that are consistent with that
state, i.e., the outcomes for which that state implies nonzero
probability.

Suppose we have three pure states in dimension d = 3.
We denote them by |ψ〉, |ψ′〉 and |ψ′′〉. These can be
considered as three different hypotheses that an agent
Alice is willing to entertain about a quantum system. If
they are PP incompatible, then there exists some mea-
surement that Alice can perform such that for any out-
come of that measurement, at least one of the three hy-
potheses deems that outcome impossible. If we specialize
to von Neumann measurements, then we can give a cri-
terion for “PP-ODOP” compatibility (One-Dimensional,
Orthogonal Projectors). A necessary and sufficient con-
dition [18, 40] for three pure states in d = 3 to be PP-
ODOP incompatible is for the following inequalities to
be satisfied. First,

|〈ψ|ψ′〉|2 + |〈ψ′|ψ′′〉|2 + |〈ψ′′|ψ〉|2 < 1, (101)

and second,(
|〈ψ|ψ′〉|2 + |〈ψ′|ψ′′〉|2 + |〈ψ′′|ψ〉|2 − 1

)2
≥ 4 |〈ψ|ψ′〉|2 |〈ψ′|ψ′′〉|2 |〈ψ′′|ψ〉|2 .

(102)

Consider what happens if the three states are drawn
from a SIC set. No set of three vectors can span more
than three dimensions, so even though our states natu-
rally live in a higher-dimensional Hilbert space, we press
forward and use the three-dimensional criterion. In that
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case,

|〈ψ|ψ′〉|2 = |〈ψ′|ψ′′〉|2 = |〈ψ′′|ψ〉|2 =
1

d+ 1
. (103)

The first inequality becomes

3

d+ 1
< 1, (104)

and the second inequality becomes(
3

d+ 1
− 1

)2

≥ 4

(d+ 1)3
. (105)

We can simplify the latter expression to

(d− 2)2 ≥ 4

d+ 1
. (106)

Both inequalities are satisfied simultaneously for d ≥ 3.
The three-dimensional criterion tells us that there is

some von Neumann measurement with respect to which
the three states drawn from the SIC set are incompatible.
Yet the SIC is itself a measurement, and with respect to
that measurement, the three states are entirely compati-
ble. In the representation that the SIC itself defines, the
states |ψ〉, |ψ′〉 and |ψ′′〉 all have the form

ek(i) =
1

d(d+ 1)
+

1

d+ 1
δik (107)

for some values of k, and these vectors contain no zeros
at all. We have here a rather cute situation. Classi-
cally, an “informationally complete measurement” would
be something like an experiment that discovers the exact
values of all the positions and momenta of the particles
comprising a system. We tend to think of any other
measurement as a coarse-graining of that one, a mea-
surement that throws away some of the information that
is, in principle, available. And throwing away informa-
tion makes classical configurations harder to distinguish
from one another. If we can rule out a hypothesis using
a clumsy, imprecise measurement, then surely we could
do so using a maximally informative one! How could a
measurement that is less exhaustive be better at ruling
out a hypothesis?

This is indicative of the way in which quantum physics
runs counter to classical intuition. An informationally
complete quantum measurement is not the determination
of the values of all hidden variables, or the narrowing of
a Liouville density to a delta function. A vector in a
SIC representation is not a probability distribution over
a putative hidden-variable configuration space. And we
do not calculate the probabilities for outcomes of other
experiments merely by blurring over IC ones.

The double-transitivity of the Hoggar SIC simplifies
the structure of the triple products, as we saw above. It
does the same for considerations of PP compatibility [40],
as well.

Any two SIC vectors are PP compatible. However, a
set of three SIC vectors when taken together can be PP
incompatible. In dimension 3, the measurements that re-
veal PP incompatibility for the Hesse SIC are a collection
of vectors originally known for other reasons: They com-
prise four Mutually Unbiased Bases (MUB) [18]. What
about with the Hoggar SIC?

Use one set of Hoggar lines to define a SIC representa-
tion of state space, and translate the twin Hoggar lines
into this representation. Any two projectors in the twin
Hoggar set will be pairwise PP compatible. Direct com-
putation shows that any set of three distinct projectors
will also be compatible, in the sense that the Hoggar SIC
measurement itself will not reveal any incompatibility.
However, a set of four lines from the twin Hoggar set
can be PP-POVM incompatible, with that incompatibil-
ity revealed by the original Hoggar SIC-POVM itself. We
will refer to this as “PP-H incompatibility.” For exam-
ple, in Table I we gave the SIC representations of four
lines from the twin Hoggar set.

As we noted earlier, a “1” in a bitstring means that
the entry in that place is the nonzero value appropriate
for the dimension, which here is 1/36. A “0” means that
the vector is zero in that slot.

There is at least one 0 in each column, meaning that
for every possible outcome of the Hoggar SIC-POVM,
one of these four state assignments deems that outcome
impossible. However, if we leave out any of the four rows,
this is no longer true.

We illustrate this in Figure 3. Each ellipse stands for
a state vector, that is, for a row in Table I. The cen-
tral region, where all four ellipses overlap, contains no
outcomes.

FIG. 3: Venn diagram for the set of four states from the
twin Hoggar SIC given in Table I. Each ellipse stands for a
quantum state. Labels indicate the number of outcomes of the
Hoggar SIC for which that state implies nonzero probability.
The shaded regions, where exactly three of the four ellipses
overlap, contain 10 outcomes. Each ellipse contains three such
regions, as well as a region all to itself. In total, each ellipse
contains a value of 36. The central region, where all four
ellipses intersect, contains 0. (Figure based on [44].)

There are lots of other examples; we do, after all, have
64 vectors to choose from. However, we should be able
to simply the problem, and understand what’s going on
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by considering only a subset of all those combinations.
Why?

If we apply the same permutation to the four rows
shown above, the columns still line up, meaning that
there is still at least one zero in each column. Conse-
quently, the transformed states will also be PP-H incom-
patible.

Because we can take any distinct pair (πj , πk) to the
pair (π0, π1), then we should be able to understand the
PP-H compatibility properties of all quadruples by work-
ing out what happens with (π0, π1, πm, πn).

We now apply our knowledge of combinatorial design
theory. Let Bi denote the bitstring representation of the
state πi in the twin Hoggar SIC. These 64 sequences,
which we can think of as the rows in a square matrix,
form a symmetric design, as we showed earlier, and this
design has the symmetric difference property. In terms of
bitstrings, the symmetric difference Bi	Bj is equivalent
to an xor operation:

(Bi 	Bj)(n) = Bi(n) xor Bj(n). (108)

This is readily verified, and implies the convenient fact
that the symmetric difference is associative:

(Bi 	Bj)	Bk = Bi 	 (Bj 	Bk). (109)

In Table II, we show the values resulting from applying
xor symmetrically to three bits, and the complementary
values.

a b c a xor b xor c not(a xor b xor c)

0 0 0 0 1

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 0

TABLE II: The xor of three bits, and its complement.

Because the Hoggar design has the symmetric dif-
ference property, the symmetric difference of any three
blocks is either a block or the complement of a block.
Suppose that the symmetric difference of Bi, Bj and Bk
is the complement of Bl. Then Bl is the complement of
Bi 	 Bj 	 Bk. We can find each element of Bl by lo-
cating the proper row in Table II. It follows that for all
n ∈ {0, . . . , 63}, the set

{Bi(n), Bj(n), Bk(n), Bl(n)} (110)

contains either 1, 2 or 3 zeroes. That is, these elements
are never all zero, nor are they all ever one. Consequently,
a measurement of the Hoggar SIC-POVM reveals PP-H
incompatibility among the four states {πi, πj , πk, πl} in
the twin Hoggar SIC.

What else can we say about the symmetric differences
of the blocks {Bi}? Each Bi 	 Bj for a distinct pair
i 6= j is a list of positions where exactly one of Bi(n) and
Bj(n) equals one. By direct computation, we find that
each such list is 32 items long. We can pick a pair of
distinct blocks in 2,016 different ways. However, not all
choices yield different lists of positions. In fact, only 126
lists occur. This is a consequence of a result noticed by
Kantor [36]: The symmetric differences in the symplec-
tic designs S (2m) correspond to the hyperplanes in the
2m-dimensional discrete affine space on the finite field
of order 2, denoted F2. In the case m = 3, there are
126 such hyperplanes, each containing 25 = 32 points.
Each hyperplane is the symmetric difference of 16 differ-
ent choices of block pairs.

From Kantor’s work, we can also extract a criterion
for when a set of three blocks {Bi, Bj , Bk} will be part
of a PP-H-incompatible quadruple. As we deduced, this
occurs when the symmetric difference of the three blocks
is the complement of a block. The quantity

|(Bi 	Bj) ∩Bk| (111)

equals either 16 or 20, depending on the choice of blocks.
When it equals 16, the symmetric difference of the three
blocks is itself a block. On the other hand, when it equals
20, then the symmetric difference is the complement of
a block, and we have the incompatibility we seek. This
can be interpreted in terms of another affine space on
the finite field F2. In this space, the points are the 64
bitstrings of the twin Hoggar SIC. For a fixed Bi and Bj
with j 6= i, the set of all Bk such that

|(Bi 	Bj) ∩Bk| = 16 (112)

defines a hyperplane in this affine space. Points that lie
outside this hyperplane correspond to bitstrings which,
together with Bi and Bj , can form part of a PP-H-
incompatible quartet.

This construction also tells us about the triple prod-
ucts, in a way that relates back to our symplectic bilinear
form, Eq. (70). Consider the quartet formed by Bi, Bj ,
Bk and their symmetric difference. If this quartet is PP-
H incompatible, then

Re tr(ΠiΠjΠk) = Re tr(πiπjπk) = 0. (113)

In dimension 3, the triple products of the Hesse SIC de-
pend on whether or not three points are collinear [18].
Now, we see that in dimension 8, triple products depend
upon whether three points lie in the same hyperplane.

In fact, the implication works both ways: If (ijk) ∈ S0,
then Bi, Bj and Bk can be extended to form a PP-H-
incompatible quartet.

IX. DEEPER INTO THE BITSTRINGS

The bit Bj(n) will be 0 if the inner product

tr(Πnπj) = tr(DnΠ0D
†
nDjπ0D

†
j) (114)
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vanishes. Here, the displacement operators Dn and Dj

are built from tensor products of the Pauli matrices. Note
that we can use the cyclic property of the trace to reduce
the problem to investigating inner products of the form

tr(Π0Dmπ0D
†
m). (115)

The product Π0π0 is a symmetric matrix. If we want the
trace to vanish, we should try introducing an asymmetry
somehow.

Of the four Pauli matrices, three (counting the iden-
tity) are symmetric. Only Y , which is proportional to
the product XZ, is antisymmetric. We therefore make
the educated guess that the inner product will vanish if
the displacement operator Dm involves an odd number of
factors of the Pauli matrix Y . This happens in 28 out
of the 64 possible displacement operators Dm, which is
the number we’re looking for. Why 28? If we want one
factor of Y , we have three places to put it, and we have
32 = 9 choices for the other two factors. This gives us
27 possible operators. Then, the operator Y Y Y is also
antisymmetric, making a total of 28.

It is straightforward to check that these zeros fall in
the correct places to reproduce the first row of Table I.

The displacement operator Dm will be antisymmetric
if a certain sum has odd parity:

m0m1 +m2m3 +m4m5 = 1 mod 2. (116)

This construction for picking 28 configurations out of
64 also arises in the study of bitangents to quartic
curves [45]. Take the plane R2, and define a curve on
the plane by a fourth-degree equation in two variables.
Such a curve can have as many as 28 bitangent lines, i.e.,
lines that are tangent to the curve at exactly two places.
By extending to the complex projective plane, one can
always find a full set of 28 bitangents. Each one is labeled
by a set of binary coordinates satisfying Eq. (116).

Rather unexpectedly, then, the study of SICs has made
contact with the theory of algebraic curves!

Consider the elements of the index k that indicate the
powers to which we raise X when constructing Dk, that
is, the ordered triple (k0, k2, k4). This triple can take
eight different values, seven of them nonzero. Likewise,
we have seven nonzero possibilities for (k1, k3, k5). Let
us group the possibilities for these two ordered triples
according to when the dot product has even parity:

k0k1 + k2k3 + k4k5 = 0 mod 2. (117)

For each choice of (k1, k3, k5), there are three choices for
(k0, k2, k4) that satisfy Eq. (117).

(k0, k2, k4) (k1, k3, k5)

010, 011, 001 100

001, 101, 100 010

010, 110, 100 001

001, 111, 110 110

010, 111, 101 101

011, 111, 100 011

110, 101, 011 111

(118)

This configuration has a name. The choices for
(k0, k2, k4) label the points of the Fano plane, and
(k1, k3, k5) label the lines. The Fano plane has seven
points and seven lines. Each point lies on three lines,
and each line contains three points. A line and a point
of the Fano plane are incident if and only if their coordi-
nates satisfy Eq. (117).

In the Fano plane, there are 28 ways to select a point
and a line not incident with it: For each point, four of
the seven lines do not go through that point, and we have
seven ways to choose a point. In discrete geometry, a flag
is the combination of a line and a point lying on that line,
and an anti-flag is a line with a point lying off that line.
So, there are 28 anti-flags in the Fano plane, and for each
of them, the dot product of the point and line labels has
odd parity. That is, for each anti-flag, the label of the
point and the label of the line satisfy Eq. (116).

Look back at Table I. Each occurrence of the bit 0 is
an anti-flag in a Fano plane! We use the powers to which
we raise X to pick a point, and the powers to which we
raise Z to pick a line (or vice versa). If the point lies off
the line, we write a 0. All other bits in the sequence, we
set to 1.

We have not yet exhausted the numerology of the in-
teger 28. The bitangents to a quartic curve can also be
identified [46, 47] with pairs of opposing vertices in the
Gosset polytope 321, an object living in R7 that is related
to the Lie algebra E7. We can construct this polytope in
the following way [48]. Start with the two vectors

(3, 3,−1,−1,−1,−1,−1,−1) and (−3,−3, 1, 1, 1, 1, 1, 1),
(119)

which both live in R8. Permute the entries of these vec-
tors in all possible ways. This creates 56 vectors in R8.
All of them are orthogonal to the vector

(1, 1, 1, 1, 1, 1, 1, 1), (120)

so they actually all fit into R7. These are the vertices of
the Gosset polytope. Each pair of opposite vectors de-
fines a line through the origin, yielding 28 lines. . . which
turn out to be equiangular.

We have here another unforeseen relation between the
complex and the real versions of the equiangular lines
question. Starting with one maximal set of complex
equiangular lines, we construct another. The fact of a
vector in one set being orthogonal to a vector in the other
corresponds to a real line in a maximal equiangular set
thereof.

X. CONCLUDING REMARKS

SICs are a confluence of multiple topics in mathemat-
ics. Weyl–Heisenberg SIC solutions in dimensions larger
than 3 turn out to have deep number-theoretic proper-
ties, connecting quantum information theory to Hilbert’s
twelfth problem [11]. The other known SIC solutions,
which we have termed the sporadic SICs, relate by way
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of group theory to sphere packing and the octonions [13].
By asking a physicist’s question—“Given this constraint,
which states maximize and minimize the entropy?”—we
launched ourselves into symplectic designs, two-graphs,
bitangents to quartic curves and Gosset polytopes. Pro-
longed exposure to the SIC problem makes one suspect
that the interface between physics and mathematics does
not have the shape that one first expected.

For each of the SICs with doubly transitive symmetry
groups, the pure states that minimize the Shannon en-
tropy of the SIC representation are related to equiangular
real lines. In dimension 2, they form a SIC [16], which
is a tetrahedron in the Bloch ball, and that yields four
real lines. In dimension 3, they form 12 MUB states [18].
Picking one state from each MUB, we obtain four equian-
gular lines in nine-dimensional real space. (There are 81
ways to do this.) And in dimension 8, the procedure
yields the twin Hoggar SIC, which is equivalent to 64
equiangular lines in C8. Furthermore, when we consider
the relation between the original SIC and its twin, we
find a set of 28 lines, which are a maximal set for 7- or
8-dimensional real vector space. And, as we remarked be-
fore, the triple-product structure of the Hoggar SIC leads
to a two-graph on 64 vertices, which is itself equivalent

to a set of equiangular lines in R36.

That the solutions to the real and complex versions of
the equiangular lines problem should be related in this
way is rather surprising.

To draw this essay to a close, we should note that
the Hoggar SIC provides a rather clean and elemen-
tary introduction to several mathematical structures that
have been employed in the study of three-qubit quantum
systems [49]. For example, we encountered the group
PSU(3, 3): It was (up to isomorphism) simply the group
of transformations that permute the vectors in the Hog-
gar SIC while leaving the fiducial untouched. This group
has also appeared [50] in studies of Bell–Kochen–Specker
phenomena, that is, of the nonclassical meshing together
of probability assignments [7, 9, 18, 51, 52]. Likewise,
the sorting of tensor products of Pauli operators into
symmetric and antisymmetric matrices has been invoked
in other problems [53]. We remarked upon the appear-
ance of a polytope related to an exceptional Lie algebra;
this, too, is a type of structure pertinent to Bell–Kochen–
Specker phenomena in three-qubit systems [54, 55]. All
this suggests that more ideas might yet be grown from
the Hoggar SIC.
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