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Abstract

In decision making, preference orderings are orderings of aset of items according to
the preferences (ofjudges). Such orderings arise in a variety of domains, including group
decision making and support systems, consumer marketing, voting and recommendation
systems. Measuring the consensus and extracting the consensus patterns in a set of pref-
erence orderings are key to these areas. In this paper we dealwith the representation of
sets of preference orderings, the quantification of the degree to which judges agree on their
ordering of the items (i.e. the concordance), and the efficient, meaningful description of
such sets.

We propose to represent the orderings in a subsequence-based feature space and present
a new algorithm to calculate the size of the set of all common subsequences - the basis of a
quantification of concordance, not only for pairs of orderings but also for sets of orderings.
The new algorithm is fast and storage efficient with a time complexity of onlyO(Nn2) for
the orderings ofn items byN judges and a space complexity of onlyO(min{Nn, n2}).

Also, we propose to represent the set of allN orderings through a smallest set of
covering preferences and present an algorithm to constructthis smallest covering set.

Index Terms

Concordance, kernel function, preference orderings, the smallest covering set, all com-
mon subsequences, feature space

I. INTRODUCTION

In decision making, preference orderings arise whenever items are ordered with
respect to their relative preference scores. Preference orderings can therefore be used
to describe preferences over a set of items. Such orderings exist in a variety of domains,
including group decision making and support systems, consumer marketing, voting and
recommendation systems. For example, in a group decision making system, experts
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(or judges) use preference orderings to express their preferences over a set of items
[1], [2], [3], [4], [5], [6].

Formally, letΣ = {σ1, σ2, . . . , σn} denote a set of items, an alphabet, of size|Σ| = n
and letσi ≻ σj denote the fact that a judge prefersσi to σj . Then, given the task of
transitively ordering all items fromΣ, the judge will generate a chain of preferences

σi1 ≻ σi2 ≻ . . . ≻ σin

wherei1, . . . in denotes some permutation of[n]. Here, we drop the preference ordering
relation≻, resulting in ann-long sequence

x = x1 . . . xn = σi1σi2 . . . σin

over Σ that represents the preference ordering of some judgei. Thus, if N judges
each order (the same)n items, a setX = {x, y, . . .} with |X| = N of such preference
ordering representing sequences arises. As we assume that the preference orderings are
transitive, each item, i.e. each symbol fromΣ, occurs at most once in each sequence.
Later, we will relax the assumption that preference orderings are strict and allow
for weak orderings, i.e. for a transitive equivalence relation that arises whenever a
judge does not prefer either of two items over the other. In such cases, we will say
that “ties” occur in the orderings. In the sequel, we will usethe terms “sequence”,
“ordering sequence” and “preference ordering” as referring to the same concept. Most
often, when different judges rank the same items according to their preferences, the
preference orderings will not fully coincide and some orderings may be the full adverse
of other orderings. When analyzing sets of preference orderings, it is convenient to
have some quantification of the degree to which the differentpreference orderings
agree or do not agree. Many different quantifications have been proposed [7], [8], [9],
[10], [11], [12], [13], [14], [15] and most of these are only suitable to quantify the
concordance between two judges.

A popular quantification of the concordance or similarity between categorical se-
quences derives from micro-biology and was already proposed in the sixties of the
previous century: the so-called edit-distance [16], [17] and its dual, the length ofthe
longest common subsequences(for short “lcs”). The smaller the edit-distance, the
longer the lcs and the greater the concordance or similaritybetween the pertaining
sequences. Many different algorithms have been proposed [18], [19], [20], [21] to
calculate the length of the lcs (llcs).

A second, more subtle way to quantify concordance is throughthe number of
all common subsequences(abbreviated as “nacs”) instead of only using the lcs.
Algorithms to evaluate nacs for pairs of sequences have beenproposed in [13], [14],
[22] and an algorithm to evaluate nacs for sets of orderings has been proposed in [12].

There are several reasons to prefer nacs to llcs as a measure of concordance. The
first reason is that, given two sequencesx and y, an lcs ofx and y may not be a
unique sequence. For example, the lcs’s ofx = abcd and y = bacd are {acd, bcd},
both satisfyingllcs(x, y) = 3. So, we see that two sets of sequences may have the
same llcs while at the same time, one set may have many more distinct lcs’s than the
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TABLE I: lcs’s and llcs’s of two small sets of orderings, showing that llcs violates
the axiom stated in (2).

sequences lcs’s llcs
X = {adbc, dacb} {ab, dc, ac} 2
Y = {abcd, cadb} {ab, ad, cd} 2
X ∪ Y {ab} 2

other set. In such cases, we would be inclined to consider theset with the most lcs’s
as the one with the highest concordance. We know that the set of distinct lcs’s may
be quite big [23]: the maximum number ofk-long common subsequencesf(n, k) of
a pair ofn-long sequences amounts to

f(n, k) =

k−1
∏

i=0

⌊

n+ i

k

⌋

. (1)

For example, Equation (1) yieldsf(20, 7) = 1458. Therefore, quantifying the concor-
dance of a set of orderings through assessing llcs may not be very convincing when
the number of lcs’s in the one set is much bigger than the same quantity in the other
set. These problems do not arise when one uses nacs instead ofllcs.

A second reason not to use llcs as a quantification of concordance derives from a
general principle that we believe every measure of concordance should adhere to. Let
X andY denote two sets of orderings and letC(·) denote a measure of concordance.
ThenC should satisfy the following axiom:

C(X) ≥ C(X ∪ Y ), equality holding iff Y ⊆ X. (2)

In caseX 6⊂ Y , Axiom (2) states that concordance will never increase by adding more
distinct orderings [12]. So, even small changes in the composition of the pertaining
sets will be reflected in the value ofC(·). The reader notes that the axiom pertains to
sets, which means that the multiplicity of certain orderings in acollection or multiset
will not affect the concordance in the corresponding set. So, eventual decision making,
i.e. the creation of consensus, is separated from the evaluation of concordance. Now
consider Table I, where we have two setsX and Y with X ∩ Y = ∅. We see that
llcs as a measure of concordance fails the axiom (2) because we have thatllcs(X) =
llcs(Y ) = llcs(X ∪ Y ). It is not difficult to see that nacs indeed satisfies the axiom
embodied in Axiom (2). Furthermore, llcs only uses part of the information about
common subsequences since not all common subsequences are part of an lcs. For
example, withx = abcd andy = adbc, the common subsequencead is not contained
in the lcsabc.

It is therefore clear that nacs is a preferred quantity to construct a concordance
measure from.

However useful a measure of concordance may be, it does not explain what issues,
i.e. what subsets of items cause the observed (lack of) concordance. Such insights
require a summary description of the preference data that issparse and informative.
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Thereto, we propose to use thesmallest covering set(SCS for short): the smallest
set of orderings to which all common patterns of the data belong. We present an
algorithm that constructs precisely this set.

To attain these goals, the paper is structured as follows: inSection 2, we present
the basic concepts and notation that we use in the paper. In Section 3, we discuss
the subsequence-based feature space and a generalized kernel to measure its density:
the number of common subsequences of all the preference orderings. In Section 4,
we present the new algorithm to calculate nacs for pairs of and sets of sequences
and also discuss tie-handling. In Section 5, we introduce the concept of the smallest
covering set as a descriptive tool and an algorithm to construct that set. In Section 6,
we summarize, discuss and conclude.

II. PRELIMINARIES

This section presents most of the notation and basic concepts that are used in the
paper.

Let Σ = {σ1, . . . , σ|Σ|} be an alphabet with|Σ| symbols. Ann-long sequence
x = x1x2 · · ·xn overΣ is obtained by concatenatingn symbols fromΣ, i.e, xi ∈ Σ.
The length ofx equals the number of symbols inx, denoted by|x| = n. Σ∗ denotes the
Kleene-star of the alphabet [24], i.e. the set of all finite strings that can be constructed
by concatenation fromΣ.

A k-long sequencey = y1y2 · · · yk is a subsequenceof sequencex, denoted by
y ⊑ x, if y can be obtained by deleting|x| − k, symbols fromx, wherek ∈ [0, |x|].
For example, letx = abcac andy = aba, then obviously,aba ⊑ abcac. Clearly,cb 6⊑ x.
Using the boundaries ofk, we see thatx ⊑ x and that there exists an empty sequence
ǫ ⊑ x with |ǫ| = 0. We writeS(x) to denote the set of all non-empty subsequences
of x. In the rest of the paper, we will be dealing with non-empty subsequences.

Let y = y1y2 · · · yk be a subsequence ofx = x1x2 · · ·xn, y is a substringof x if
there exist two subsequencesu, v ⊑ x such thatx = uyv. We writexi to denote the
substringx1x2 · · ·xi of x for i ∈ [1, n].

For any two sequencesx and y, z is a non-emptycommon subsequenceof x and
y if z ∈ S(x) ∩ S(y); we write z ⊑ (x, y) to denote this fact and writeS(x, y) =
S(x)∩S(y) for the set of all common non-empty subsequences ofx andy. We write
κ(x, y) = |S(x, y)| to denote the the cardinal of that set.

We useS(x : u) to denote the set of all subsequences ofx with suffix u. So,
S(x : u) consists of all subsequences ofx that end onu. We also writeS(x, y : u) =
S(x : u) ∩ S(y : u), to denote the set of all common subsequences with suffixu.

Let ℓ(x, y) (or ℓ for short) denote the length of the longest common subsequence
of S(x, y), i.e, ℓ = max{|s| : s ∈ S(x, y)}. We also useL(x, y) to denote the set of
all the longest common subsequences ofx andy, i.e, ∀z ∈ L(x, y), |z| = ℓ(x, y).

Analogously, we useS(X), S(X : σ), L(X) andℓ(X) to denote the corresponding
quantities for a setX of sequences, when|X| ≥ 2.
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The smallest covering setC(X) of X is coveringS(X) if ∀u, v ∈ C(X), u 6⊑ v
and v 6⊑ u, and, ∀z ∈ S(X), there exists anu ∈ C(X) such thatz ⊑ u. This
amounts to saying that each common subsequence inS(X) is a subsequence of at
least one sequence inC(X). For example, letX = {abcd, adbc}. Then S(X) =
{a, b, c, d, ab, ac, ad, bc, abc} andC(X) = {ad, abc}.

A tie occurs whenever a judge states thatσi ⊁ σj andσj ⊁ σi for items fromΣ.
A tie is interpreted as if a judge cannot decide which ofσi and σj to prefer. Ties
create a partitioning of the alphabetΣ, such that items from the same part cannot be
ordered while elements from different parts are orderable.

III. CONCORDANCE IN SUBSEQUENCE SPACE

In kernel methods, subsequences are widely used as featuresto map sequences into
higher dimensional spaces, in order to find efficient and effective ways to analyze
those sequences [25], [12], [13], [26], [22]. LetX = {x, y, . . .} be a finite set of
sequences with|X| = N and letF = F(X) denote the set of all subsequences of
the sequences ofX:

F =
⋃

x∈X

S(x) = {z1, z2, . . . , z|F(X)|}

We can map any sequencex ∈ X to a feature vector with features defined by the
subsequences inF :

φ(x) =
(

f(z1 ⊑ x), f(z2 ⊑ x), · · · , f(z|F| ⊑ x)
)

(3)

Of course, different definitions of the coordinatesf(zi ⊑ x) lead to different mappings
φ(·) of the feature space [14]. Here, it is convenient to set

f(zi ⊑ x) =

{

1 if zi ⊑ x

0 otherwise
(4)

since then, the nacsκ(x, y) = |S(x, y)| can be expressed as the inner product of the
feature vectorsφ(x) andφ(y):

κ(x, y) = 〈φ(x), φ(y)〉 =
∑

zi∈F

f(zi ⊑ x)f(zi ⊑ y) (5)

To generalize to bigger sets of preference orderings, we generalize the inner product
to

κ(X) = 〈φ(x), φ(y), · · · , 〉

=
∑

zi∈F

∏

x∈X

f(zi ⊑ x) (6)

as already proposed in [12]. Properties of this generalizedinner product were studied
in [27], [28]. Clearly, we have that

κ(X) = |S(X)| = |
⋂

x∈X

S(x)|
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Both κ(x, y) andκ(X) are not bound from above. Thereto, a straightforward gener-
alization of the cosine similarity is useful:

0 ≤ κ̂(X) =
κ(X)

|X|
√
∏

x∈X κ(x, x)
≤ 1.

Various types of algorithms have been proposed to calculateκ(x, y). In [22], [13],
various dynamic programming algorithms have been proposedand these algorithms all
have a time complexity ofO(n2). However, none of these algorithms is easily adapt-
able to weighting the subsequences according to propertieslike length, the presence
and size of gaps, duration or run-lengths or weighting of properties of the symbols
of the alphabet. More versatile types of algorithms have been proposed in [29] and
in [14], adaptable to a broad range of properties of the subsequences, to weighting of
the characters of the alphabet and to efficiently handling run-lengths.

IV. EVALUATING κ(X)

To calculateκ(X), we begin with the algorithm that calculatesκ(x, y), a special
case ofκ(X) when |X| = 2.

A. Calculatingκ(x, y)
The set of all common subsequencesS(x, y) can be partitioned into|Σ| subsets of

sequences that each end on a particular symbol fromΣ or, equivalently, a particular
symbol from the sequencex:

S(x, y) =

|x|
⋃

j=1

S(x, y : xj). (7)

Since each subsequence ofS(x, y) belongs to precisely one of the parts, we have that

κ(x, y) =

|x|
∑

j=1

|S(x, y : xj)|. (8)

The latter sum would be easy to calculate when we would know how to calculate
a particular summand from the previously calculated summands. This would require
that we know the value of the first summand beforehand. And indeed, we do:

|S(x, y : x1)| =

{

1 if x1 ⊑ y,

0 if x1 6⊑ y,
(9)

sincex1 is the only1 subsequence ofx that ends onx1. So, we see that it is convenient
to know if and where the symbols ofx occur iny. Therefore, the algorithm starts to
create an indicator-arraŷı(y, xj), j ∈ [0, |x|]:

ı̂(y, xj) =

{

k if yk = xj ,

∞ if xj 6⊑ y.
(10)

1We do not count the empty subsequenceǫ since it belongs to all sequences and therefore bears no information
on concordance.
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Algorithm 1: Pseudo-code for Lemma 1 to calculateκ(x, y) – the number of all
common subsequences inx andy

Data: Sequencesx andy
Result: κ(x, y)

1 m = |x|, n = |y|;
2 Let M andI be (m+ 1)-long arrays;
3 for i← 1 to m do
4 I[i] =∞;
5 for j ← 1 to n do
6 if xi = yj then
7 I[i] = j;
8 break;
9 end

10 end
11 end
12 M [0] = 1;
13 for j ← 1 to m do
14 M [j] = 0;
15 if I[j] 6=∞ then
16 for i← 0 to j − 1 do
17 if I[j] > I[i] then
18 M [j]+ =M [i]
19 end
20 end
21 end
22 end
23 return

∑m

j=0
M [j];

It is convenient to havêı(y, x0) = 0, since we exploit the convention that for any
sequencex, x0 = ǫ. The procedure that defines the arrayı̂(y, xj) is in the lines 3 - 11
of the pseudo-code of Algorithm 1 and clearly, this part has time complexityO(n2).
Let us now considerS(x, y : xm) for some1 < m ≤ |x|. Clearly, the subsequences
in this set can be partitioned again:

S(x, y : xm) = {xm}
m−1
⋃

j=1

S(x, y : xjxm). (11)

The common subsequences that end onxjxm can be constructed from all common
subsequences that end onxj by right-concatenating them withxm if xjxm ⊑ y too.
The conditionxjxm ⊑ y is important since whenxjxm 6⊑ y, common subsequences
that end onxjxm do not exist and thusS(x, y : xjxm) = ∅ or, equivalently,|S(x, y :
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xjxm)| = 0. So, we rewrite Eq. (11) asS(x, y : xm) =

{xm} ∪
{

zxm : z ∈
{

⋃

j∈J

S(x, y : xj)
}}

(12)

whereJ = {i : (i ≤ m− 1) ∧ (xixm ⊑ y)}. From the last equation, it follows that

|S(x, y : xm)| = 1 +
m−1
∑

j=1

|S(x, y : xj)| × τ(xjxm ⊑ y) (13)

whereinτ(·)is a truth-function:τ(·) = 1 precisely if the expression in its argument is
true andτ(·) = 0 otherwise.

So, if we want to calculateS(x, y : xm) from its predecessors, we need a practical
way of deciding on the value of the truth-functionτ , i.e. of deciding whether or not
xjxm ⊑ y. If xjxm ⊑ y, xj should precedexm in y and if this is not the case,
xjxm 6⊑ y. The required precedence can be derived from the positions of xj andxm
in y: if ı̂(y, xj) < ı̂(y, xm), xj must precedexm. So,

τ(xjxm ⊑ y) = τ
(

ı̂(y, xm)− ı̂(y, xj) > 0
)

(14)

and this yields a calculable expression

|S(x, y : xm)| = 1 +

m−1
∑

j=1

(

|S(x, y : xj)|

× τ
(

ı̂(y, xm)− ı̂(y, xj) > 0
)

)

(15)

The reader notes that the compound condition on the set-union operator of Equation
(12) is reflected in the range of the summation operator and the truth-function ap-
pearing in Equation (15). The above reasoning, embodied in Eqs. (8), (9) and (15),
justifies the following lemma

Lemma 1. Letx, y ∈ Σ∗ be two sequences. Then the number of all common non-empty
subsequences ofx and y is given by

κ(x, y) =

|x|
∑

m=1

κ(x, y : xm) (16)

with
κ(x, y : x1) = τ

(

|y|+ 1− ı̂(y, x1) > 0
)

(17)

and, form > 1,

κ(x, y : xm) =1 +

m−1
∑

j=1

κ(x, y : xj)

× τ
(

ı̂(y, xm)− ı̂(y, xj) > 0
)

. (18)

Proof: By induction.
Lemma 1 implies an algorithm withO(n2) time complexity but onlyO(n) space

complexity, more efficient than dynamic programming approaches in [13], [22]. The
pseudo-code for Lemma 1 is presented in Algorithm 1.
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Algorithm 2: Pseudo-code for Theorem 1 to calculate concordance inX and for
Corollary 1 to calculate the length of the longest common subsequence inX.

Data: A set of sequencesX = {x1, · · · , xN}
Result: κ(X), ℓ(X),L(X)
/* Initialization */

1 m = |x1|;
2 ϕ[i] = 0, ψ[i] = 0 for ∀i ∈ [m];

3 IN×m =
(

I[k][j] =∞
)

N×m
;

4 Tm×m =
(

T [i][j] = 0
)

m×m
;

5 for j ← 1 to m do
6 I[1][j] = j;
7 for k ← 2 to N do
8 I[k][j] =∞;
9 for i← 1 to |xk| do

10 if x1j = xki then
11 I[k][j] = i;
12 break;
13 end
14 end
15 end
16 end
17 for j ← 1 to m do
18 for i← 1 to j do
19 T [j][i] = 1;
20 for k ← 2 to N do
21 if I[k][i] > I[k][j] or I[k][j] =∞ then
22 T [j][i] = 0;
23 break;
24 end
25 end
26 end
27 end
/* End of initialization */

28 ϕ[1] = ψ[1] = T [1][1] ;
29 for j ← 2 to m do
30 ϕ[j] = T [j][j]×

(
∑j−1

i=1
ϕ[i]× T [j][i]

)

;
31 ψ[j] = T [j][j]×

(

1 + max{T [j][i]× ψ[i] : 1 ≤ i < j}
)

;
32 end
33 κ(X) =

∑m

j=1
ϕ[j];

34 ℓ = max1≤j≤m ψ[j];
35 returnκ(X), ℓ ;
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B. Calculatingκ(X)

To deal with bigger sets of preference orderings, we have to refine our notation:
instead of writingX = {x, y, . . .}, we now explicitly index the sequences inX by
writing X = {x1, x2, . . . , xN} and xi = xi1xi2 . . . xin. Without loss of generality,
we compare all sequencesxi, i ∈ [2, N ], with sequencex1. Now we first generalize
Equation (8):

κ(X) =

|x1|
∑

m=1

κ(X : x1m) (19)

and Equation (9):
κ(X : x11) = τ

(

∧

i∈[2,N ]

x11 ⊑ xi
)

(20)

which generalizes Equation (9). Furthermore, we generalize Equation (13) to

κ(X : x1m)| =1 +

m−1
∑

j=1

κ(X : x1j)

× τ
(

∧

i∈[2,N ]

x1jx1m ⊑ xi
)

(21)

All that is required to make the above expressions calculable is an efficient way to
evaluate the truth-functions of Equations (20) and (21):

τ
(

∧

i∈[2,N ]

x11 ⊑ xi
)

=

N
∏

i=2

τ
(

|xi|+ 1− ı̂(xi, x11) > 0
)

(22)

and we write

τ
(

∧

i∈[2,N ]

x1jx1m ⊑ xj
)

=
N
∏

i=2

τ
(

ı̂(xi, x1j)− ı̂(xi, x1m) > 0
)

(23)

Therewith, we arrive at

Theorem 1. LetX = {x1, x2, . . . , xN} denote a set of preference orderings. Then the
number of all non-empty common subsequences ofX is given by

κ(X) =

|x1|
∑

m=1

κ(X : x1m), (24)

with

κ(X : x11) =

N
∏

i=2

τ
(

(|xi|+ 1− ı̂(xi, x11)) > 0
)

(25)

and, for 1 < m ≤ |x1|, κ(X : x1m) = 1+

m−1
∑

j=1

κ(X : x1j)
N
∏

i=2

τ
(

(

ı̂(xi, x1j)− ı̂(xi, x1m)
)

> 0
)
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Proof: By induction.
Of course, a practical implementation of the algorithm implied by Theorem (1)

requires preprocessing to calculate the products of the truth-functions as appear in the
Theorem. Algorithm 2 shows the pseudo-code for an implementation of Theorem 1.
During the initialization, firstly anN × m matrix I = (I)N×m is build to store the
position indicators:Iij = ı̂(xi, x1j). In the second initialization phase, this array will
be used in the construction of the matrixT = (T )m×m containing the truth-function
products. In particular,T is constructed according to the following rules:

Tkj =











1 if (k = j) ∧ (∀i : x1j ⊑ xi)

1 if (k < j) ∧ (∀i : x1kx1j ⊑ xi)

0 otherwise

(26)

Thus, whenTjj = 1, this implies thatx1j , the j th character ofx1, occurs in all other
sequences too and whenTkj = 1, this implies that the subsequencex1kx1j occurs in
all sequences. We will use this truth-table in the next subsection to find the longest
common subsequences (lcs’s) and their length, the llcs.
The following example shows how to use Algorithm 2 and Theorem 1 to calculate
κ(X).

Example 1 (Theorem 1). GivenX = {x1 = abcde, x2 = abdce, x3 = bdce} , we set
x = x1 and letI = (̂ıkj), where

I =





1 2 3 4 5
1 2 4 3 5
∞ 1 3 2 4



 T =













0 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 1 1 1 1













Table II then shows how to calculateκ(X : x1j) andκ(X) with the algorithm implied
by Theorem 1, Therefore, from Table II, we see thatκ(X) = 0 + 1 + 2 + 2 + 6 = 11.

TABLE II: Example of calculatingκ(X) for X = {x1 = abcde, x2 = abdce, x3 =
bdce} with Algorithm 2

j x1j κ(X : x1j) = |S(X : x1j)| S(X : x1j)

1 a 1× 0 = 0 ∅
2 b 1× 1 + 0× 0 = 1 {b}
3 c 1× 1 + 0× 0 + 1× 1 = 2 {c, bc}
4 d 1× 1 + 0× 0 + 1× 1 + 2× 0 = 2 {d, bd}
5 e 1× 1 + 0× 0 + 1× 1 + 2× 1 + 2× 1 = 6 {e, be, ce, bce, de, bde}

C. κ(X) for preference orderings with ties

When judges are unable to order certain subsets of the items from the alphabet, ties
arise: within a “tie” the items appearing in it cannot be ordered with respect to each
other. Sequences with ties are easily represented through “bucket strings”: sequences
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of small non-empty “buckets” or “sets” of items and the buckets are ordered. A bucket
string, generated by theith judge might then look like, for example

bi = bi1, . . . , bik = {a, b}{c}{d, e, f},

implying that judgei preferred botha andb over c but could not ordera andb. Only
minor changes to the algorithms presented so far, suffice to allow for dealing with
these bucket strings.

In order to handle such bucket stringbi = bi1 · · · bik with n symbols, we introduces
a labeling sequenceti = ti1 · · · tin, and for each symbolσ in bi, whose corresponding
position isj in ti, we let tij = l if the symbolσ ∈ bil. For example, the bucket string
of bi = {a, b}{c}{d, e, f} has its labeling sequenceti:

bi {a b} {c} {d e f }
ti 1 1 2 3 3 3

With ti, we can easily rewrite Theorem 1 for a set of ordering sequences with ties.
Here, because of lack of space, we leave these minor changes to the reader.

V. THE SMALLEST COVERING SET AND ITS CONSTRUCTION

Assuming concordance is high enough, it becomes interesting to scrutinizeX in
some more detail. This may be done by analyzing the density ofthe vector-space in
which the orderings have been represented through the subsequences. Such an analysis
would then use the distances between these vectors: given the κ(x, y), such distances
are easily obtained sinced(x, y) =

√

2n+1 − 2− 2κ(x, y) is a Euclidean metric and
the averages̄dx =

∑

y d(x, y)/(N − 1) could be used to isolate “outlier-judges”.
Alternatively, one could compute the distancesd

(

c, φ(x)
)

to the centroidc of the
vector-space. The latter method was described in [12], [25].

Another way of analyzing what is common to the preference orderings in X,
is to create a set of (sub-)sequences that is in some sense “characteristic” for this
commonality. An obvious candidate for such a set is the set ofall longest common
subsequences. However, not all common subsequences are part of an lcs and hence it
is interesting to discuss and calculate the broader conceptof a smallest covering set.
As will appear below, the set of all lcs’s is a subset of that covering set.

A covering set ofX is a setV(X) of sequences such that ifx ∈ S(X), then
∃y ∈ V(X) such thatx ⊑ y. So, a covering set consists of sequences that “represent”
all that is common to the sequences in the setX. However, this definition is so broad
that it even allows forS(X) itself as a covering set. Therefore it is interesting to look
at the Smallest Covering SetC(X). A covering set that is smallest contains as few of
these covering subsequences as possible. Formally,C(X) ⊂ S(X) such that

C. 1 if x ∈ S(X), then∃z ∈ C(X) such thatx ⊑ z,
C. 2 |C(X)| is as small as possible.

For example, letX = {abcde, eadbc, aedbc}. ThenS(X) = {a, b, c, d, e, ab, ac, ad, bc, abc}
and C(X) = {abc, ad, e}. Every common subsequence ofX is also a subsequence
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of at least one sequence inC(X), the sequences inC(X) are not subsequences of
each other and the number of sequences inC(X) cannot be reduced without violating
property C1.

In this example, the first element ofC(X) is abc and sinceabc is an lcs ofX, it
should be part ofSCS because requirement C2 must be satisfied. When two sequences
are lcs’s of a set of sequences, they cannot be a subsequence of each other, for if they
were, one of them would not be longest. Therefore, we must have thatall lcs’s belong
to SCS. Furthermore, we note that in the above example, bothad and e belong to
C(X): they are common to all sequences inX and are not a subsequence of each
other or a subsequence of the lcs’s. So, it appears thatC(X) consists of all lcs’s ofX
and all common subsequences ofX that are not part of an lcs. So, the sequences in
the SCS have an unequivocal interpretation and thus, the SCSis a useful analytical
tool. We now focus on the problem of generating the setC(X).

As already explained, all lcs’s ofX must be contained in the SCS:

L(X) ⊆ C(X) ⊆ S(X).

The construction of the SCS therefore starts with the construction ofL(X). C(X) =
L(X) precisely when all sequences inS(X) are subsequences of at least one lcs in
L(X). But if this is not the case, i.e. when there existy ∈ S(X) such that6 ∃z ∈ L(X)
with y ⊑ z, we have to construct additional sequences in order to fulfill the coverage
requirement C1. These additional sequences must be shorterthan the lcs’s and perhaps
just consist of one single symbol from the alphabet.

Suppose that for someu ∈ S(X) we have that thisu is not a subsequence of
any of the lcs’s ofX. Then u contains at least one symbolσ that does not occur
in any of the lcs’s ofX. For suppose, on the contrary, that all characters of thisu
are contained in some lcs and letu = u1u2 . . . u|u|. Then there must exist sequences
v1, . . . v|u|+1 ∈ S(X), possibly empty, such that

v1u1v2u2 . . . v|u|u|u|v|u|+1 ∈ L(X) (27)

So,u must be contained in at least onelcs of X, contrary to our hypothesis. Therefore,
this u, not occurring in any of the lcs’s, must contain at least one symbol that does
not occur in any of the lcs’s. If we find symbols that do not occur in any of the lcs’s,
then this is a sure sign that we have to find more sequences to construct the SCS than
just the lcs’s. To find these sequences, a good starting pointis a symbol not occurring
in any of the lcs’s and that is precisely what the Algorithm 3 does.

The algorithm starts by generating the setA in Line 4. Then it constructs a set̄Λ
of symbols that do not occur in any of the lcs’sΛ̄ = {σ ∈ D : σ 6⊑ x ∈ A}. If this
set is not empty, it picks a symbolλ from it and then builds a setB of sequences
that containλ, are common toX and are as long as possible (“alap”):

B = {v = v1λv2 : (v ∈ S(X)) ∧ (λ ∈ Λ̄) ∧ (v is alap)} (28)

ThenA is set toA ∪ B, Λ̄ is updated and a newB is constructed, etc. As soon as
Λ̄ = ∅, the algorithm returnsC(X) = A. In Algorithm 3, it is assumed that there
are feasible algorithms to constructL(X) and the setB as defined in Equation (28).
Therefore, we will deal with these two problems in the next two subsections.
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Algorithm 3: Returns the smallest covering set of a set of preference orderings
Data: A set of preference orderingsX.
Result: C(X)

1 n = |x1i|;
2 D = {x1i : (i ∈ [n]) ∧ (Tii = 1)};
3 ω(i) = 1, ∀i ∈ [n];
4 A = L(X) ;
5 Λ = {σ : σ ⊑ x ∈ A};
6 Λ̄ = D\Λ;
7 while Λ̄ 6= ∅ do
8 B = {v = v1λv2 : (v1, v2 ∈ S(X)) ∧ (λ ∈ Λ̄) ∧ (v is alap)};
9 ω(i) = 0 for λ = x1i ;

10 A = A ∪ B;
11 Λ = {σ : σ ⊑ x ∈ A};
12 Λ̄ = D\Λ;
13 end
14 return C(X) = A;

A. ConstructingL(X)

Let x ∈ L(X). Thenx cannot be elongated to a sequence that is still common to
the sequences inX and it must have a length|x| = ℓ(X). On the other hand, if a
sequence has lengthℓ(X), it must belong toL(X).

Let n = |x1|. ClearlyL(X) can be partitioned into subsets that are determined by
the symbols inΣ:

L(X) =
⋃

i∈[n]

L(X : x1i) (29)

These subsets can be constructed by calculating the lengthsof the longest common
subsequences that end on each of the symbols fromΣ; the longest of these lengths
then equalsℓ(X). Therefore, we first create an|x1|-long arrayψ = ψ(1), . . . , ψ(n)
such that

ψ(i) = max{|ux1i| : ux1i ∈ S(X)}. (30)

So,ψ(i) equals the length of the longest common subsequence that ends on the symbol
x1i andmax{ψ(i) : i ∈ [n]} = ℓ(X). To calculate theψ(i), we use the recursion from
Corollary 1 below.

Corollary 1. LetX denote a set of preference orderings, letT denote the truth-table
as defined in Equation(26) and let the arrayψ be defined as in Equation(30). Then
ψ(i) =

{

0 if Tii = 0

1 +max{0, Tij · ψ(j) : 1 ≤ j < i} otherwise
(31)
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and ℓ(X) = max{ψ(i) : 1 ≤ i ≤ n}

Proof: By induction, usingψ(1) ≤ 1.
The algorithm implied in Corollary 2 has been integrated in Algorithm 2.
Given that we have calculatedψ, we can actually construct the setL(X): we start

by picking a symbolx1i such thatψ(i) is maximal. Now we say thatx1i is a candidate-
lcs which we will elongate until elongation is not possible anymore. Prefixingx1i is
appropriate withx1j when all three ofj < i, ψ(j) = ψ(i) − 1 and x1jx1i ∈ S(X)
hold. Once appropriate prefixes have been found, one searches for new appropriate
prefixes, etc.

Therefore, we define a set of all possible prefixes forx1i

Pi =
{

j : (1 ≤ j < i) ∧
(

ψ(j) = ψ(i)− 1
)

∧ (Tij = 1)
}

(32)

The idea of this recursive process, to return a set of subsequences, is formalized by

Θ(i, u) =























∅ if ω(i) = 0
{

Θ(j, x1ju) : ∀j ∈ Pi

}

if
(

(ω(i) 6= 0)

∧(Pi 6= ∅)
)

{

u
}

otherwise

(33)

where, for reasons to be explained in the next subsection, the recursion in Equation
(33) includes the testing of an indicator functionω(i). Here, we assume thatω(i) = 1
for all i ∈ [n]; later we will relax this assumption.

The functionΘ operates on an index-sequence pair(i, u) where i is the index in
x1 of the first symbol inu. If u can be appropriately prefixed, i.e. according to the
constraints in its definition, it will return a set of new index-sequence pairs that will
be tested for their prefixability. If the sequence in its argument cannot be prefixed, it
will be returned byΘ. So ultimately,Θ will return a set of sequences. We use this
recursive function for a “Depth First Search” [30] along thebranches of the prefix-tree
of sequences that constitute theL(X). We express these ideas in Corollary 2.

Corollary 2. Let X denote a set of preference orderings, let the arrayψ be defined
as in Equation(30) and let the functionΘ be defined as in Equation(33). Then, with

R = {i : ψ(i) = ℓ(X)}, (34)

we have that
L(X) = {Θ(i, u) : (i ∈ R) ∧ (u = x1i)}. (35)

Proof: By induction.
According to Corollary 2, the construction ofL(X) starts with the root-setR that,

with its argument indices, points to the end-symbols of the lcs’s, elongates and finally
returnsL(X). The algorithm implied by Corollary 2 is shown in Algorithm 4. Example
2 applies Corollary 2 to the set of sequences previously used.
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Example 2. Let X = {x1 = abcde, x2 = abdce, x3 = bdce}. Then

T =













0 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 1 1 1 1













, ψ = (0, 1, 2, 2, 3)

andR = {5}, hence

L(X) =

{Θ(5, e)}

= {{Θ(3, ce)}, {Θ(4, de)}}

= {{Θ(2, bce)}, {Θ(2, bde)}}

= {{bce}, {bde}}

= {bce, bde}.

Algorithm 4: FunctionΘ to construct theL(X)

Data: sequencex1, arraysψ, ω, set of integersR
Input: integeri, sequenceu
Output: L(X)

1 LCS = ∅;
2 for i ∈ R do
3 u← x1i;
4 A = ∅;
5 for j ← 1 to i do
6 if

(

ψ(j) = ψ(i)− 1
)

∧ (Tij = 1) then
7 v ← x1ju;
8 A← A ∪ {Θ(j, v)};
9 end

10 end
11 if A = ∅ then
12 LCS ← LCS ∪ {u};
13 else
14 LCS ← LCS ∪ A;
15 end
16 end
17 return LCS
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B. FromL(X) to C(X)

Given that theL(X) is constructed, we now have to find a way to construct the
setB as defined in Equation (28).B consists of sequences that contain at least one
symbol that is not already part of the sequences that have been labeled as belonging
to SCS.

The solution is a bit analogous to that of finding all lcs’s: webegin with one such
symbol, sayx1k not occurring in any lcs, find all the longest prefixes throughΘ(·)
and then find all the longest postfixes of the results ofΘ(·). All combinations of such
a postfix and a prefix will be a sequence that belongs to the SCS as well.

Only, there is one complication. If we construct all common subsequences that
containx1k ∈ Λ̄ and that are alap, some of these common subsequences might contain
one or more other characters that do not occur in an lcs either, i.e are contained
in Λ̄ too. Let x1m be such a character and suppose that we just constructed all
the alap sequences containingx1k. When we now start finding all such sequences
containingx1m, we will inevitably find some that also containx1k and such alap
common subsequences must have been found already. Therefore, we will have to
keep track of the symbols inΣ that were already dealt with, i.e. for which we already
constructed all common subsequences that contain these symbols. To do just that, let
n = |x1|, we define the arrayω = (ω1 . . . , ωn) with ω(i) = 1 whenx1i is still allowed
as a symbol in the construction process, otherwise we setω(i) = 0.

Finding longest postfixes is analogous to finding longest prefixes throughΘ. To do
just that, we define

Qi = {j : (i < j ≤ n) ∧ (Tji = 1)} (36)

to record all possible postfixes afterx1i and define a recursive functionΥ:

Υ(i, u) =























∅ if ω(i) = 0
{

Υ(j, ux1j) : ∀j ∈ Qi

}

if (ω(i) 6= 0)

∧(Qi 6= ∅)
{

u
}

otherwise

(37)

The recursiveΘ(i, u) andΥ(i, u) can be used to obtainv1 and v2, respectively, as
shown in Equation (28). With these two recursive functions,assuming thatλ ∈ Λ̄
occurs ati-th position inx1, then we rewrite Equation (28) as

B =
{

Υ
(

i,Θ(i, u)
)

: (x1i = λ) ∧ (λ ∈ Λ̄)
}

. (38)

With Corollary 2 and Equation (38), we illustrate how Algorithm 3 works with the
calculations implied by Equation (37) in Example 3:
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Example 3. We useX = {x1 = abcdef, x2 = acfbde, x3 = abdcfe} as our toy
data set and list all its common subsequences:

S(X)={ a,b,c,d,e,f
ab,ac,ad,ae,af,bd,be,ce,cf,de
abd,abe,ace,acf,ade,bde
abde }

We will now constructC(X). First we generateL(X). Preprocessing yields

T =

















1
1 1
1 0 1
1 1 0 1
1 1 1 1 1
1 0 1 0 0 1

















andψ = (1, 2, 2, 3, 4, 3) ,

which is sufficient forΘ:

Θ(5, e) = {Θ(4, de)} = {Θ(2, bde)}

= {Θ(1, abde)} = {abde} = L(X).

Then, we conclude that̄Λ = {c, f} and thus thatω = (1, 1, 1, 1, 1, 1). We start
processingc (the reader might check that starting withf would make no difference
for the final result):

Θ(3, c) = {Θ(1, ac)} = {ac}.

Next, we evaluate
Υ(3, ac) = {Υ(5, ace),Υ(6, acf)} = {ace, acf}

and setω = (1, 1, 0, 1, 1, 1) since all alap subsequences that containx13 = c have
been constructed. Finally, we processf and find

Θ(6, f) = {Θ(3, cf)} = ∅

since ω(3) = 0: indeed, we already foundacf . So, we conclude thatC(X) =
{abde, ace, acf}. The reader also nodes that the order of applyingΘ or Υ to the
elements of̄Λ, is immaterial.

VI. CONCLUSION

Concordance has been quantified in many ways, most of these using only a small
fraction of the information available in preference orderings. We proposed to use the
nacs as the basis for evaluating concordance: it uses all of the available information,
it is a metric similarity [31] in case it is applied to pairs oforderings, the complexity
of its calculation is only of orderO(Nn2) and at the same time provides for the
preprocessing that allows for efficient calculation of the Smallest Covering Set. The
SCS is a valuable, easy to compute descriptive tool in the analysis of concordance
and may help group leaders in creating consensus in group decision making. The
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algorithms in the paper have been implemented in Python and made available on
Github (https://github.com/zhiweiuu/secs).

As a descriptive tool for sets of sequences, SCS could be veryuseful in applications
where sequences have repeating symbols: in web browsing where the same page is
visited again, in social demography and career analysis where certain events may
happen repeatedly and in the analysis of strands of peptideswhich consist of only a
few elementary building blocks. Therefore, we will extend our research to algorithms
for bigger sets of sequences with extended runs of the same symbols and to develop
further methods and tools for the analysis of the SCS.
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