
LAGRANGE INVERSION

IRA M. GESSEL∗

Abstract. We give a survey of the Lagrange inversion formula, including different versions
and proofs, with applications to combinatorial and formal power series identities.

1. Introduction

The Lagrange inversion formula is one of the fundamental formulas of combinatorics. In
its simplest form it gives a formula for the power series coefficients of the solution f(x) of
the function equation f(x) = xG(f(x)) in terms of coefficients of powers of G. Functional
equations of this form often arise in combinatorics, and our interest is in these applications
rather than in other areas of mathematics.

There are many generalizations of Lagrange inversion: multivariable forms [28], q-analogues
[22, 23, 25, 71] noncommutative versions [6, 7, 23, 56] and others [29, 43, 45]. In this paper we
discuss only ordinary one-variable Lagrange inversion, but in greater detail than elsewhere
in the literature.

In section 2 we give a thorough discussion of some of the many different forms of Lagrange
inversion, prove that they are equivalent to each other, and work through some simple
examples involving Catalan and ballot numbers. We address a number of subtle issues that
are overlooked in most accounts of Lagrange inversion (and which some readers may want
to skip). In sections 3 we describe applications of Lagrange inversion to identities involving
binomial coefficients, Catalan numbers, and their generalizations. In section 4, we give
several proofs of Lagrange inversion, some of which are combinatorial.

A number of exercises giving additional results are included.
An excellent introduction to Lagrange inversion can be found in Chapter 5 of Stanley’s

Enumerative Combinatorics, Volume 2. Other expository accounts of Lagrange inversion
can be found in Hofbauer [35], Bergeron, Labelle, and Leroux [5, Chapter 3], Sokal [68], and
Merlini, Sprugnoli, and Verri [51].

1.1. Formal power series. Although Lagrange inversion is often presented as a theorem of
analysis (see, e.g., Whittaker and Watson [76, pp. 132–133]), we will work only with formal
power series and formal Laurent series. A good account of formal power series can be found
in Niven [55]; we sketch here some of the basic facts. Given a coefficient ring C, which
for us will always be an integral domain containing the rational numbers, the ring C[[x]] of
formal power series in the variable x with coefficients in C is the set of all “formal sums”∑∞

n=0 cnx
n, where cn ∈ C, with termwise addition and multiplication defined as one would

expect using distributivity:
∑∞

n=0 anx
n ·
∑∞

n=0 bnx
n =

∑∞
n=0 cnx

n, where cn =
∑n

i=0 aibn−i.
Differentiation of formal power series is also defined termwise. A series

∑∞
n=0 cnx

n has a
multiplicative inverse if and only if c0 is invertible in C. We may also consider the ring of
formal Laurent series C((x)) whose elements are formal sums

∑∞
n=n0

cnx
n for some integer

n0, i.e., formal sums
∑∞

n=−∞ cnx
n in which only finitely many negative powers of x have
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nonzero coefficients. Henceforth will omit the word “formal” and speak of power series and
Laurent series.

We can iterate the power series and Laurent series ring constructions, obtaining, for ex-
ample the ring C((x))[[y]] of power series in y whose coefficients are Laurent series in x.
In any (possibly iterated) power series or Laurent series ring we will say that a set {fα} of
series is summable if for any monomial m in the variables, the coefficient of m is nonzero in
only finitely many fα. In this case the sum

∑
α f is well-defined and we will say that

∑
α fα

is summable. If we write
∑

α fα as an iterated sum, then the order of summation is irrele-
vant. If f(x) =

∑
n cnx

n is a Laurent series in C((x)) and u ∈ C, where C may be a power
series or Laurent series ring, then we say that that the substitution of u for x is admissible
if f(u) =

∑
n cnu

n is summable, and similarly for multivariable substitutions. Admissible
substitutions are homomorphisms. If u is a power series or Laurent series g(x) then f(g(x)),
if summable, is called the composition of f and g. If f(x) = c1x + c2x

2 + · · · , where c1 is
invertible in C, then there is a unique power series g(x) = c−11 x+ · · · such that f(g(x)) = x;
this implies that g(f(x)) = x. We call g(x) the compositional inverse of f(x) and write
g(x) = f(x)〈−1〉. For simplicity, we will always assume that if f(x) = c1x+ c2x

2 + · · · , where
c1 6= 0 then c1 is invertible. (Since C is an integral domain, we can always adjoin c−11 to C
if necessary.)

The iterated power series rings C[[x]][[y]] and C[[y]][[x]] are essentially the same, in that
both consist of all sums

∑
m,n≥0 cm,nx

myn. We may therefore write C[[x, y]] for either of these

rings. However, the iterated Laurent series rings C((x))[[y]], C((y))[[x]], and C[[y]]((x))
are all different: in the first we have (x − y)−1 =

∑∞
n=0 y

n/xn+1, in the second we have
(x− y)−1 = −

∑∞
n=0 x

n/yn+1, and in the third x− y is not invertible.
It is sometimes convenient to work with power series in infinitely many variables; for

example, we may consider the power series
∑∞

n=0 rnt
n where the rn are independent inde-

terminates. Although we don’t give a formal definition of these series, they behave, in our
applications, exactly as expected.

We use the notation [xn] f(x) to denote the coefficient of xn in the Laurent series f(x).
An important fact about the coefficient operator that we will use often, without comment,
is that [xn]xkf(x) = [xn−k] f(x).

The binomial coefficient
(
a
k

)
is defined to be a(a−1) · · · (a−k+ 1)/k! if k is a nonnegative

integer and 0 otherwise. Thus the binomial theorem (1 + x)a =
∑∞

k=0

(
a
k

)
xk holds for all a.

2. The Lagrange inversion formula

2.1. Forms of Lagrange inversion. We will give several proofs of the Lagrange inversion
formula in section 4. Here we state several different forms of Lagrange inversion and show
that they are equivalent.

Theorem 2.1.1. Let R(t) be a power series not involving x. Then there is a unique power
series f = f(x) such that f(x) = xR(f(x)), and for any Laurent series φ(t) and ψ(t) not
involving x and any integer n we have

[xn]φ(f) =
1

n
[tn−1]φ′(t)R(t)n, where n 6= 0, (2.1.1)

[xn]φ(f) = [tn]
(
1− tR′(t)/R(t)

)
φ(t)R(t)n, (2.1.2)

2



φ(f) =
∑
n

xn [tn](1− xR′(t))φ(t)R(t)n, (2.1.3)

[xn]
ψ(f)

1− xR′(f)
= [tn]ψ(t)R(t)n, (2.1.4)

[xn]
ψ(f)

1− fR′(f)/R(f)
= [tn]ψ(t)R(t)n. (2.1.5)

We show here these formulas are equivalent in the sense that any one of them is easily
derivable from any other; proofs of these formulas are given in section 4. It is clear that
(2.1.4) and (2.1.5) are equivalent since x = f/R(f). Taking ψ(t) = (1 − tR′(t)/R(t))φ(t)
shows that (2.1.2) and (2.1.5) are equivalent.

To derive (2.1.3) from (2.1.4), we rewrite (2.1.4) as

ψ(f)

1− xR′(f)
=
∑
n

xn [tn]ψ(t)R(t)n. (2.1.6)

Until now, we have assumed that φ(t) and ψ(t) do not involve x. We leave it to the reader
to see that in (2.1.6) this assumption can be removed. Then (2.1.3) follows from (2.1.6) by
setting ψ(t) = (1− xR′(t))φ(t), and similarly (2.1.6) follows from (2.1.3).

Although we allow R to be an arbitrary power series in Theorem 2.1.1, if R has constant
term 0 then f(x) = 0, so we may assume now that R has a nonzero constant term, and
thus f and R(f) are nonzero. Then the equation f(x) = xR(f(x)) may be rewritten as
f/R(f) = x. So if we set g(t) = t/R(t) then we have g(f) = x, and thus g = f 〈−1〉. It
is sometimes convenient to rewrite the formulas of Theorem 2.1.1 using g, rather than R.
Since 1 − tR′(t)/R(t) = tg′(t)/g(t), formula (2.1.2) takes on a slightly simpler form (which
will be useful later on) when expressed in terms of g rather than R:

[xn]φ(f) = [tn−1]φ(t)
g′(t)

g(t)

(
t

g(t)

)n
= [t−1]

φ(t)g′(t)

g(t)n+1
, (2.1.7)

For future use, we note also the corresponding form for (2.1.5):

[xn−1]
ψ(f)

fg′(f)
= [tn]ψ(t)

(
t

g(t)

)n
= [t0]

ψ(t)

g(t)n
. (2.1.8)

To show that (2.1.1) and (2.1.2) are equivalent, using (2.1.7) in place of (2.1.2), we show
that

[t−1]
φ′(t)

g(t)n
= n [t−1]

φ(t)g′(t)

g(t)n+1
(2.1.9)

But
φ′(t)

g(t)n
− nφ(t)g′(t)

g(t)n+1
=
d

dt

φ(t)

g(t)n
,

and the coefficient of t−1 in the derivative of any Laurent series is 0, so (2.1.9) follows. This
shows that (2.1.1) and (2.1.2) are equivalent if n 6= 0. If φ is a power series, then the
coefficient of x0 in φ(f) is simply the constant term in φ, but if φ is a more general Laurent
series, then the constant term in φ(f) is not so obvious, and cannot be determined by (2.1.1).
In equation (2.2.8) we will give a formula for the constant term in φ(f) for all φ.
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The case φ(t) = tk of (2.1.1), with R(t) = t/g(t) may be written

[xn] fk =
k

n
[tn−k]

(
t

g(t)

)n
=
k

n
[t−k] g(t)−n. (2.1.10)

In other words, if g = f 〈−1〉, and for all integers k, fk =
∑

n an,kx
n and gk =

∑
n bn,kx

n then

an,k =
k

n
b−k,−n (2.1.11)

for n 6= 0. Equation (2.1.11) is known as the Schur-Jabotinsky theorem. (See Schur [66,
equation (10)] and Jabotinsky [37, Theorem II].)

2.2. Polynomials. We now give a slightly more general form of Lagrange inversion based
on the fact that if two polynomials agree at infinitely many values than they are identically
equal. This will imply that to prove our Lagrange formulas for all n, it is sufficient to prove
them in the case in which n is a positive integer. (Some proofs require this restriction.)

By linearity, the formulas of Section 2.1 are implied by the special cases in which φ(t)
and ψ(t) are of the form tk for some integer k, and these special cases (especially k = 0 and
k = 1) are particularly important. These special cases of (2.1.1), (2.1.4), and (2.1.5) are
especially useful and may be written

[xn] fk =
k

n
[tn−k]R(t)n, where n 6= 0, (2.2.1)

[xn]
fk

1− xR′(f)
= [tn−k]R(t)n. (2.2.2)

[xn]
fk

1− fR′(f)/R(f)
= [tn−k]R(t)n. (2.2.3)

In these formulas, let us assume that R(t) has constant term 1. (It is not hard to modify
our approach to take care of the more general situation in which the constant term of R(t)
is invertible.) Then the coefficient of x in f(x) is 1, so f(x)/x has constant term 1. If we set
n = m+ k in (2.2.1), (2.2.2), and (2.2.3) then the results may be written

[xm](f/x)k =
k

m+ k
[tm]R(t)m+k, where m+ k 6= 0, (2.2.4)

[xm]
(f/x)k

1− xR′(f)
= [tm]R(t)m+k (2.2.5)

[xm]
(f/x)k

1− fR′(f)/R(f)
= [tm]R(t)m+k. (2.2.6)

It is easy to see that in each of these equations, for fixed m both sides are polynomials in k.
Thus if these equalities hold whenever k is a positive integer, then they hold as identities of
polynomials in k. Moreover, although (2.2.4) is invalid for k = −m, if m > 0 we may take
the limit as k → −m with l’Hôpital’s rule to obtain

[xm](f/x)−m = [x0] f−m = −m [tm] logR. (2.2.7)

(Note that (2.2.7) does not hold for m = 0.) By linearity, (2.2.7) yields a supplement to
(2.1.1) that takes care of the case n = 0:

[x0]φ(f) = [t0]φ(t) + [t−1]φ′(t) logR. (2.2.8)

4



We can also differentiate (2.2.4) with respect to k and then set k = 0 to obtain

[xm] log(f/x) =
1

m
[tm]R(t)m, for m 6= 0. (2.2.9)

Returning to (2.2.1)–(2.2.3), we see that if they hold when n and k are positive integers,
then they also hold when n and k are arbitrary integers. (Note that if n < k then everything
is zero.)

2.3. A simple example: Catalan numbers. The Catalan numbers Cn may defined by
the equation

c(x) = 1 + xc(x)2 (2.3.1)

for their generating function c(x) =
∑∞

n=0Cnx
n. The quadratic equation (2.3.1) has two

solutions,
(
1±
√

1− 4x
)
/(2x), but only the minus sign gives a power series, so

c(x) =
1−
√

1− 4x

2x
.

Unfortunately (2.3.1) is not of the form f(x) = xR(f(x)), so we cannot apply directly any
of the versions of Lagrange inversion that we have seen so far.

One way to apply Lagrange inversion is to set f(x) = c(x)− 1, so that f = x(1 + f)2. We
may then apply Theorem 2.1.1 to the case R(t) = (1 + t)2. The equation f = x(1 + f)2 has
the solution

f(x) = c(x)− 1 = xc(x)2 =
1−
√

1− 4x

2x
− 1.

Then (2.1.1) with φ(t) = (1 + t)k gives for n > 0

[xn] c(x)k = [xn](1 + f)k =
1

n
[tn−1] k(1 + t)k−1(1 + t)2n

=
k

n
[tn−1]

(
2n+ k − 1

n− 1

)
.

Thus since the constant term in c(x)k is 1, we have

c(x)k = 1 +
∞∑
n=1

k

n

(
2n+ k − 1

n− 1

)
xn.

The sum may also be written

c(x)k =
∞∑
n=0

k

2n+ k

(
2n+ k

n

)
xn =

∞∑
n=0

k

n+ k

(
2n+ k − 1

n

)
xn. (2.3.2)

These formulas are valid for all k except where n = −k/2 in the first sum in (2.3.2) or
n = −k in the second sum in (2.3.2). These coefficients are called ballot numbers, and for
k = 1 (2.3.2) gives the usual formula for the Catalan numbers, Cn = 1

n+1

(
2n
n

)
.
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Equation (2.1.2) with φ(t) = (1 + t)k gives a formula for the ballot number as a difference
of two binomial coefficients,

[xn] c(x)k = [tn]
1− t
1 + t

(1 + t)k(1 + t)2n

= [tn](1− t)(1 + t)2n+k−1

=

(
2n+ k − 1

n

)
−
(

2n+ k − 1

n− 1

)
,

and equation (2.1.3) with φ(t) = (1 + t)k gives another such formula,

c(x)k =
∑
n

xn [tn]
(
(1 + t)2n+k − 2x(1 + t)2n+k+1

)
=
∑
n

xn
[(

2n+ k

n

)
− 2

(
2n+ k − 1

n− 1

)]
.

Finally, (2.2.9) gives

[xm] log(f/x) = [xm] 2 log c(x) =
1

m
[tm](1 + t)2m =

1

m

(
2m

m

)
,

so

log c(x) =
∞∑
m=1

1

2m

(
2m

m

)
xm.

Since R(t) = (1 + t)2, we have R′(t) = 2(1 + t), so 1 − xR′(f) = 1 − 2xc(x) =
√

1− 4x.
Thus (2.1.4), with ψ(t) = (1 + t)k gives

[xn]
c(x)k√
1− 4x

= [tn](1 + t)k(1 + t)2n =

(
2n+ k

k

)
,

so

c(x)k√
1− 4x

=
∞∑
n=0

(
2n+ k

k

)
xn. (2.3.3)

Equating coefficients of xn in c(x)kc(x)l = c(x)k+l, and using (2.3.2), gives the convolution
identity ∑

i+j=n

k

2i+ k

(
2i+ k

i

)
· l

2j + l

(
2j + l

j

)
=

k + l

2n+ k + l

(
2n+ k + l

n

)
.

Similarly using (2.3.2) and (2.3.3) we get∑
i+j=n

k

2i+ k

(
2i+ k

i

)(
2j + l

j

)
=

(
2n+ k + l

n

)
.

These convolution identities are special cases of identities discussed in section 3.3.

Exercise 2.3.1. Derive these formulas for c(x) in other ways by applying Lagrange inversion
to the equations f = x/(1− f) and f = x(1 + f 2).
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2.4. A generalization. There is another way to apply Lagrange inversion to the equation
c(x) = 1 + xc(x)2 that, while very simple, has far-reaching consequences. Consider the
equation

F = z(1 + xF 2) (2.4.1)

where we think of F as a power series in z with coefficients that are polynomials in x. We
may apply (2.2.1) to (2.4.1) to get

[zn]F k =
k

n
[tn−k](1 + xt2)n.

The right side is 0 unless n− k is even, and for n = 2m+ k we have

[z2m+k]F k =
k

2m+ k
[t2m](1 + xt2)2m+k =

k

2m+ k

(
2m+ k

m

)
xm.

Thus we have (if k is an integer but not a negative even integer)

F k =
∞∑
m=0

k

2m+ k

(
2m+ k

m

)
xmz2m+k. (2.4.2)

Now let c be the result of setting z = 1 in F (an admissible substitution), so by (2.4.2), we
have

ck =
∞∑
m=0

k

2m+ k

(
2m+ k

m

)
xm

and by (2.4.1) we have c = 1 + xc2. Moreover, as we have seen before, c = 1 + xc2 has a
unique power series solution.

The same idea works much more generally, but we must take care that the substitution is
admissible. For example, we can solve f = x(1 + f) by Lagrange inversion, but we cannot
set x = 1 in the solution.

The case in which the coefficients of R(t) are indeterminates is easy to deal with.

Theorem 2.4.1. Suppose that R(t) =
∑∞

n=0 rnt
n, where the rn are indeterminates. Then

there is a unique power series f satisfying f = R(f). If φ(t) is a power series then

φ(f) = φ(0) +
∞∑
n=1

1

n
[tn−1]φ′(t)R(t)n, (2.4.3)

and for any Laurent series φ(t) and ψ(t) we have

φ(f) = [t0]φ(t) + [t−1]φ′(t) log(R/r0) +
∑
n6=0

1

n
[tn−1]φ′(t)R(t)n, (2.4.4)

φ(f) =
∑
n

[tn]
(
1− tR′(t)/R(t)

)
φ(t)R(t)n =

∑
n

[tn](1−R′(t))φ(t)R(t)n, (2.4.5)

ψ(f)

1−R′(f)
=

ψ(f)

1− fR′(f)/R(f)
=
∑
n

[tn]ψ(t)R(t)n. (2.4.6)

In (2.4.5) and (2.4.6) the sum is over all integers n.
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Proof. These formulas follow from equations (2.1.1) to (2.1.5) on making the admissible
substitution x = 1, where for (2.4.4) we have included the correction term given by (2.2.8),
modified to take into account that the constant term of R(t) is r0 rather than 1. Uniqueness
follows by equating coefficients of the monomials ri00 r

i1
1 · · · on both sides of f = R(f), which

gives a recurrence that determines them uniquely. �

We would like to relax the requirement in Theorem 2.4.1 that the rn be indeterminates.
To do this, we can take any of the formulas of Theorem 2.4.1 and apply any admissible
substitution for the rn. For example, the following result, while not the most general possible,
is sometimes useful.

Theorem 2.4.2. Suppose that R(t) =
∑∞

n=0 rnt
n, where the coefficients lie in some power

series ring C[[u1, u2, . . . ]], and that each rn with n > 0 is divisible by some ui. Then there is
a unique power series f satisfying f = R(f), and formulas (2.4.3) to (2.4.6) hold. �

We note that more generally, any admissible substitution will yield a solution of f = R(f)
to which these formulas hold, but uniqueness is not guaranteed. For example, the equation
f = x+ yf 2 has the unique power series solution,

f =
1−
√

1− 4xy

2y
=
∞∑
n=0

1

n+ 1

(
2n

n

)
xn+1yn.

The admissible substitution y = 1 gives f = 1
2
(1−
√

1− 4x) as a power series solution of the
equation f = x + f 2. However, the equation f = x + f 2 has another power series solution,
f = 1

2
(1 +

√
1− 4x).

Exercise 2.4.3. The equation f = x+f 2 has two power series solutions, f = 1
2
(1±
√

1− 4x).
However, according to Theorem 2.1.1, the equivalent equation f = x/(1 − f) has only one
power series solution. Explain the discrepancy.

2.5. Explicit formulas for the coefficients. It is sometimes useful to have an explicit
formula for the coefficients of fk where f = xR(f). With R(t) =

∑∞
n=0 rnt

n, if we expand
R(t)n by the multinomial theorem then (2.2.1) gives

fk =
∑

n0+n1+···=n
n1+2n2+3n3+···=n−k

k
(n− 1)!

n0!n1! . . .
rn0
0 r

n1
1 · · ·xn. (2.5.1)

We might also want to express the coefficients of fk in terms of the coefficients of g = f 〈−1〉.
Suppose that g(x) = x− g2x2 − g3x3 − · · · , where the minus signs and the assumption that
the coefficient of x in g is 1 make our formula simpler with no real loss of generality. Then
(2.2.1) gives

[xm]fk =
k

m
[tm−k]

(
1

1− g2t− g3t2 − · · ·

)m
.

Expanding by the binomial theorem and simplifying gives

fk =
∑

n2+n3+···=n−m
n2+2n3+···=m−k

k
(n− 1)!

m!n2!n3! · · ·
gn2
2 g

n3
3 · · ·xm

8



where the sum is over all m, n, and n2, n3, . . . satisfying the two subscripted equalities. If
we replace m with n0 then we may write the formula as

fk =
∑

n0+n2+n3+···=n
2n2+3n3+···=n−k

k
(n− 1)!

n0!n2!n3! · · ·
xn0gn2

2 g
n3
3 · · · (2.5.2)

and we see that the coefficients here are exactly the same as the coefficients in (2.5.1) (with
n1 = 0).

Exercise 2.5.1. Explain the connection between (2.5.1) and (2.5.2) without using Lagrange
inversion.

2.6. Derivative formulas. Lagrange inversion, especially in its analytic formulations, is
often stated in terms of derivatives. We give here several derivative forms of Lagrange
inversion.

Theorem 2.6.1. Let G(t) =
∑∞

n=0 gnt
n, where the gi are indeterminates. Then there is a

unique power series f satisfying

f = x+G(f)

and for any power series φ(t) and ψ(t) we have

φ(f) =
∞∑
m=0

dm

dxm

(
φ(x)

(
1−G′(x)

)G(x)m

m!

)
, (2.6.1)

φ(f) = φ(x) +
∞∑
m=1

dm−1

dxm−1

(
φ′(x)

G(x)m

m!

)
, (2.6.2)

and
ψ(f)

1−G′(f)
=

∞∑
m=0

dm

dxm

(
ψ(x)

G(x)m

m!

)
. (2.6.3)

Proof. We first prove (2.6.3). By (2.4.6) we have

ψ(f)

1−G′(f)
=
∞∑
n=0

[tn]ψ(t)(x+G(t))n =
∞∑
m=0

∞∑
n=0

[tn]

(
n

m

)
xn−mψ(t)G(t)m.

So to prove (2.6.3), it suffices to prove that

dm

dxm

(
ψ(x)

G(x)m

m!

)
=
∞∑
n=0

[tn]

(
n

m

)
xn−mψ(t)G(t)m.

We show more generally, that for any power series α(t) we have

dm

dxm
α(x)

m!
=
∞∑
n=0

[tn]

(
n

m

)
xn−mα(t). (2.6.4)

But by linearity, it is sufficient to prove (2.6.4) for the case α(t) = tj, where both sides are
equal to

(
j
m

)
xj−m.

Next, (2.6.1) follows from (2.6.3) by taking ψ(t) = (1−G′(t))φ(t).

9



Finally, we derive (2.6.2) from (2.6.1). Writing D for d/dx, φ for φ(x) and G for G(x), we
have

Dm

(
φ
Gm

m!

)
= Dm−1

(
D(φGm)

m!

)
= Dm−1

(
φ′
Gm

m!
+ φG′

Gm−1

(m− 1)!

)
.

Thus

Dm−1
(
φ′
Gm

m!

)
= Dm

(
φ
Gm

m!

)
−Dm−1

(
φG′

Gm−1

(m− 1)!

)
,

so

φ+
∞∑
m=1

Dm−1
(
φ′
Gm

m!

)
=

∞∑
m=0

Dm

(
φ
Gm

m!

)
−
∞∑
m=0

Dm

(
φG′

Gm

m!

)
. �

As before, applying an admissible substitution allows more general coefficients to be used.
As an application of these formulas, let us take G(x) = zH(x) and consider the formula

φ(f) · ψ(f)

1− zH ′(f)
=

φ(f)ψ(f)

1− zH ′(f)
.

Applying (2.6.2) and (2.6.3) to the left side and (2.6.3) to the right, and then equating
coefficients of zn gives the convolution identity

n∑
m=0

(
n

m

)
dm−1

dxm−1
(φ′(x)H(x)m)

dn−m

dxn−m
(
ψ(x)H(x)n−m

)
=
dn

dxn
(
φ(x)ψ(x)H(x)n

)
(2.6.5)

and similarly, expanding φ(f)ψ(f) in two ways using (2.6.2) gives
n∑

m=0

(
n

m

)
dm−1

dxm−1
(φ′(x)H(x)m)

dn−m−1

dxn−m−1
(
ψ′(x)H(x)n−m

)
=
dn−1

dxn−1
(
(φ(x)ψ(x))′H(x)n

)
.

(2.6.6)
Here dm−1φ′(x)/dxm−1 for m = 0 is to be interpreted as φ(x). Formulas (2.6.5) and (2.6.6)
were found by Cauchy [10]; a formula equivalent to (2.6.5) had been found earlier by Pfaff
[58]. A detailed historical discussion of these identities and generalizations has been given
by Johnson [40]; see also Chu [12, 14] and Abel [2]. Our approach to these identities has
also been given by Huang and Ma [36].

Exercise 2.6.2. With the notation of Theorem 2.6.1, show that for any positive integer k,

G(f)k =
∞∑
m=0

k

(m+ k)m!

dm

dxm
G(x)m+k.

3. Applications

In this section we describe some applications of Lagrange inversion.

3.1. A rational function expansion. It is surprising that Lagrange inversion can give
interesting results when the solution to the equation to be solved is rational.

We consider the equation
f = 1 + a+ abf,

with solution

f =
1 + a

1− ab
.

10



We apply (2.4.6) with R(t) = 1 + a + abt and ψ(t) = tr(1 + bt)s. Here we have 1 + bf =
(1 + b)/(1− ab) and 1−R′(f) = 1− ab. Then

(1 + a)r(1 + b)s

(1− ab)r+s+1
=
∑
n

[tn]tr(1 + bt)s(1 + a+ abt)n

=
∑
n,i

[tn]

(
n

i

)
aitr(1 + bt)s+i

=
∑
n,i,j

[tn]

(
n

i

)
ai
(
s+ i

j

)
bjtr+j

=
∑
i,j

(
r + j

i

)(
s+ i

j

)
aibj.

For another approach to this identity, see Gessel and Stanton [26].

3.2. The tree function. In applying Lagrange inversion, the nicest examples are those in
which the series R(t) has the property that there is a simple formula for the coefficients of
R(t)n, and these simple formulas usually come from the exponential function or the binomial
theorem. In this section we discuss the simplest case, in which R(t) = et. Later, in section
3.5, we discuss a more complicated example involving the exponential function.

Let T (x) be the power series satisfying

T (x) = xeT (x).

Equivalently, T (x) = (xe−x)〈−1〉 and thus T (xe−x) = x. Then by the properties of exponen-
tial generating functions (see, e.g., Stanley [70, Chapter 5]), T (x) is the exponential gener-
ating function for rooted trees and eT (x) = T (x)/x is the exponential generating function for
forests of rooted trees. We shall call T (x) the tree function and we shall call F (x) = eT (x)

the forest function The tree function is closely related to the Lambert W function [16, 17]
which may be defined by W (x) = −T (−x). Although the Lambert W function is better
known, we will state our results in terms of the tree and forest functions.

Applying (2.2.1) with R(t) = et gives

T (x) =
∞∑
n=1

nn−1
xn

n!
(3.2.1)

and more generally,

T (x)k

k!
=
∞∑
n=k

knn−k−1
(
n

k

)
xn

n!
(3.2.2)

for all positive integers k, and

F (x)k = ekT (x) =
∞∑
n=0

k(n+ k)n−1
xn

n!
(3.2.3)

for all k. Equation (3.2.2) implies that there are knn−k−1
(
n
k

)
forests of n rooted trees on

n vertices and equation (3.2.3) implies that there are k(n + k)n−1 forests with vertex set
{1, 2, . . . , n+ k} in which the roots are 1, 2, . . . , k.

11



An interesting special case of (3.2.3) is k = −1, which may be rearranged to

F (x) =

(
1−

∞∑
n=1

(n− 1)n−1
xn

n!

)−1
. (3.2.4)

Equation (3.2.4) may be interpreted in terms of prime parking functions [70, Exercise 5.49f,
p. 95; Solution, p. 141].

Applying (2.2.6) gives

F (x)k

1− T (x)
=
∞∑
n=0

(n+ k)n
xn

n!
. (3.2.5)

A. Lacasse [46, p. 90] conjectured an identity that may be written as

U(x)3 − U(x)2 =
∞∑
n=0

nn+1x
n

n!
, (3.2.6)

where

U(x) =
∞∑
n=0

nn
xn

n!
.

Proofs of Lacasse’s conjecture were given by Chen et al. [11], Prodinger [59], Sun [73], and
Younsi [80]. We will prove (3.2.6) by showing that both sides are equal to T (x)/(1−T (x))3.

To do this, we first note that the right side of (3.2.6) is

d

dx

∞∑
n=0

(n− 1)n
xn

n!
=
d

dx

e−T (x)

1− T (x)
=
e−T (x)T (x)T ′(x)

(1− T (x))2
. (3.2.7)

Differentiating (3.2.1) with respect to x gives

T ′(x) =
∞∑
n=0

(n+ 1)n
xn

n!
,

which by (3.2.5) is equal to eT (x)/(1 − T (x)). Thus (3.2.7) is equal to T (x)/(1 − T (x))3.
But by (3.2.5), U(x) = 1/(1 − T (x)) from which it follows easily that U(x)3 − U(x)2 =
T (x)/(1− T (x))3.

The series T (x) and U(x) were studied by Zvonkine [79], who showed that DkU(x) and
DkU(x)2, where D = xd/dx, are polynomials in U(x).

The series
∑∞

n=0(n + k)n+mxn/n!, where m is an arbitrary integer, can be expressed in
terms of T (x). (The case k = 0 has been studied by Smiley [67].) We first deal with the
case in which m is negative.

Theorem 3.2.1. Let l be a positive integer. Then for some polynomial pl(u) of degree l− 1,
with coefficients that are rational functions of k, we have

∞∑
n=0

(n+ k)n−l
xn

n!
= ekT (x)pl(T (x)). (3.2.8)

12



The first three polynomials pl(u) are

p1(u) =
1

k
,

p2(u) =
1

k2
− u

k(k + 1)
,

p3(u) =
1

k3
− (2k + 1)

k2(k + 1)2
u+

u2

k(k + 1)(k + 2)
.

Before proving Theorem 3.2.1 let us check (3.2.8) for l = 1 and l = 2. The case l = 1 is
equivalent to (3.2.3). For l = 2, we have

ekT (x) = F (x)k = k

∞∑
n=0

(n+ k)n−1
xn

n!

and

ekT (x)T (x) = F (x)k · xF (x) = xF (x)k+1

= x(k + 1)
∞∑
n=0

(n+ k + 1)n−1
xn

n!

= (k + 1)
∞∑
n=0

n(n+ k)n−2
xn

n!
.

Thus

ekT (x)
(

1

k2
− T (x)

k(k + 1)

)
=

1

k

∞∑
n=0

(
(n+ k)n−1 − n(n+ k)n−2

)xn
n!

=
∞∑
n=0

(n+ k)n−2
xn

n!
.

The general case can be proved in a similar way. (See Exercise 3.2.4.) However, it is
instructive to take a different approach, using finite differences (cf. Gould [31]), that we we
will use again in section 3.3.

Let s be a function defined on the nonnegative integers. The shift operator E takes s to
the function Es defined by (Es)(n) = s(n + 1). We denote by I the identity operator that
takes s to itself and by ∆ the difference operator E − I, so (∆s)(n) = s(n + 1) − s(n). It
is easily verified that if s is a polynomial of degree d > 0 with leading coefficient L then
∆s is a polynomial of degree d − 1 with leading coefficient dL, and if s is a constant then
∆s = 0. The kth difference of s is the function ∆ks. Thus if s is a polynomial of degree d
with leading coefficient L then ∆ks = 0 for k > d and ∆ds is the constant d!L.

Since the operators E and I commute, we can expand ∆k = (E − I)k by the binomial
theorem to obtain

(∆ks)(n) =
k∑
i=0

(−1)k−i
(
k

i

)
s(n+ i).

We may summarize the result of this discussion in the following lemma.
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Lemma 3.2.2. Let s be a polynomial of degree d with leading coefficient L. Then

k∑
i=0

(−1)k−i
(
k

i

)
s(n+ i)

is 0 if k > d and is the constant d!L for k = d. �

Proof of Theorem 3.2.1. If we set x = ue−u in Theorem 3.2.1 and use the fact that T (ue−u) =
u we see that Theorem (3.2.1) is equivalent to the formula

e−ku
∞∑
n=0

(n+ k)n−l
(ue−u)n

n!
= pl(u).

We have

e−ku
∞∑
n=0

(n+ k)n+m
(ue−u)n

n!
=
∞∑
n=0

(n+ k)n+m
un

n!
e−(n+k)u

=
∞∑
j=0

uj

j!

j∑
n=0

(−1)j−n
(
j

n

)
(n+ k)j+m

(3.2.9)

If m = −l is a negative integer and j ≥ l then (n+ k)j+m = (n+ k)j−l is a polynomial in n
of degree less than j, so the inner sum in (3.2.9) is 0. Thus (3.2.8) follows, with

pl(u) =
l−1∑
j=0

uj

j!

j∑
n=0

(−1)j−n
(
j

n

)
(n+ k)−(l−j). �

We cannot set k = 0 in (3.2.8), since the n = 0 term on the left is k−l. However it is not
hard to evaluate

∑∞
n=1 n

n−lxn/n!.

Theorem 3.2.3. Let ql(u) be the result of setting k = 1 in pl(u). Then

∞∑
n=1

nn−l
xn

n!
= T (x)ql(T (x)).

Proof. We have
∞∑
n=1

nn−l
xn

n!
= x

∞∑
n=0

(n+ 1)n−l
xn

n!

By (3.2.8) with k = 1 this is

xeT (x)ql(T (x)) = T (x)ql(T (x)).

�

Exercise 3.2.4. Prove Theorem 3.2.1 by finding a formula for the coefficient tj(n) of xn/n!
in ekT (x)T (x)j and showing that (n + k)n−l can be expressed as a linear combination, with
coefficients that are rational functions of k, of t0(n), . . . , tl−1(n).

Next we consider
∑∞

n=0(n+ k)n+mxn/n! where m is a nonnegative integer. (We evaluated
the case k = 0,m = 1 in our discussion of Lacasse’s conjecture.)
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Theorem 3.2.5. Let m be a nonnegative integer. Then there exists a polynomial rm(u, k),
with integer coefficients, of degree m in u and degree m in k, such that

∞∑
n=0

(n+ k)n+m
xn

n!
= ekT (x)

rm(T (x), k)

(1− T (x))2m+1
.

The first three polynomials rm(u, k) are

r0(u, k) = 1,

r1(u, k) = k + (1− k)u,

r2(u, k) = k2 + (1 + 3k − 2k2)u+ (2− 3k + k2)u2.

Proof sketch. We give here a sketch of a proof that tells us something interesting about the
polynomials rm(u, k); for a more direct approach see Exercise 3.2.6.

As in the proof of Theorem 3.2.1 we set x = ue−u and consider the sum on the left side of
(3.2.9).

Following Carlitz [9], we define the weighted Stirling numbers of the second kind R(n, j, k)
by

R(n, j, k) =
1

j!

j∑
i=0

(−1)j−i
(
j

i

)
(k + i)n,

so that
∞∑
n=0

R(n, j, k)
xn

n!
= ekx

(ex − 1)j

j!
. (3.2.10)

(For k = 0, R(n, j, k) reduces to the ordinary Stirling number of the second kind S(n, j).)
Equation (3.2.10) implies that the R(n, j, k) is a polynomial in k with integer coefficients.
Then (3.2.9) is equal to

∑∞
j=0R(j + m, j, k)uj. It is not hard to show that for fixed m,

R(j +m, j, k) is a polynomial in j of degree 2m.
Thus

∞∑
j=0

R(j +m, j, k)uj =
rm(u, k)

(1− u)2m+1

for some polynomial rm(u, k) of degree at most 2m.
We omit the proof that rm(u, k) actually has degree m in u. �

For k = 1, the coefficients of rm(u, 1) are positive integers, sometimes called second-order
Eulerian numbers ; see, for example, [32, p. 270] and [24].

Exercise 3.2.6. Give an inductive proof of Theorem 3.2.5 using the fact that if W (m, k) =∑∞
n=0(n+ k)n+mxn/n! then dW (m, k)/dx = W (m+ 1, k + 1).

We can get convolution identities by applying (3.2.3) and (3.2.5) to

F (x)k+l

1− T (x)
= F (x)k

F (x)l

1− T (x)

and

F (x)k+l = F (x)kF (x)l.
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The first identity yields

(n+ k + l)n =
n∑
i=0

(
n

i

)
k(i+ k)i−1(n− i+ l)n−i.

and the second yields

(k + l)(n+ k + l)n−1 =
n∑
i=0

(
n

i

)
k(i+ k)i−1l(n− i+ l)n−i−1.

Note that these are identities of polynomials in k and l. If we set k = x and l = y−n in the
first formula we get the nicer looking

(x+ y)n =
n∑
i=0

(
n

i

)
x(x+ i)i−1(y − i)n−i. (3.2.11)

Replacing x with x/z and y with y/z in (3.2.11), and multiplying through by zn gives the
homogeneous form

(x+ y)n =
n∑
i=0

(
n

i

)
x(x+ iz)i−1(y − iz)n−i (3.2.12)

which was proved by N. H. Abel in 1826 [1]. Note that for z = 0, (3.2.12) reduces to the
binomial theorem. Riordan [64, pp. 18–27] gives a comprehensive account of Abel’s identity
and its generalizations, though he does not use Lagrange inversion.

Exercise 3.2.7. (Chu [13].) Prove Abel’s identity (3.2.11) using finite differences. (Start
by expanding (y − i)n−i = [(x+ y)− (x+ i)]n−i by the binomial theorem.)

3.3. Fuss-Catalan numbers. The Fuss-Catalan (or Fuß-Catalan) numbers of order p (also
called generalized Catalan numbers) are the numbers 1

pn+1

(
pn+1
n

)
= 1

(p−1)n+1

(
pn
n

)
, which re-

duce to Catalan numbers for p = 2. They were first studied by N. Fuss in 1791 [21]. As we
shall see, they are the coefficients of the power series cp(x), satisfying the functional equation

cp(x) = 1 + xcp(x)p, (3.3.1)

or equivalently,

cp(x) =
1

1− xcp(x)p−1
,

as was shown using Lagrange inversion by Liouville [49].
An account of these generating functions can be found Graham, Knuth, and Patashnik

[32, pp. 200–204].
It follows easily from (3.3.1) that

cp(x)− 1 = xcp(x)p =

(
x

(1 + x)p

)〈−1〉
, (3.3.2)

xcp(x)p−1 =
(
x(1− x)p−1

)〈−1〉
,

xcp(x
p−1) = (x− xp)〈−1〉,

and

c′p(x) =
cp(x)p

1− pxcp(x)p−1
.
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Lagrange inversion gives

cp(x)k =
∞∑
n=0

k

pn+ k

(
pn+ k

n

)
xn (3.3.3)

for all k. With R(t) = 1 + xtp we have R′(t) = pxtp−1 so

1−R′(cp(x)) = 1− pxcp(x)p−1 = 1− p(cp(x)− 1)/cp(x) = 1− p+ pcp(x)−1,

and thus by (2.4.6),

∞∑
n=0

(
pn+ k

n

)
xn =

cp(x)k

1− pxcp(x)p−1
=

cp(x)k+1

1− (p− 1)(cp(x)− 1)
. (3.3.4)

Equivalently,
∞∑
n=0

(
pn+ k

n

)(
x

(1 + x)p

)n
=

(1 + x)k+1

1− (p− 1)x

and
∞∑
n=0

(
pn+ k

n

)(
x(1− x)p−1

)n
=

1

(1− px)(1− x)k
.

The convolution identities obtained from (3.3.3) and (3.3.4), known as Rothe-Hagen iden-
tities [65, 33, 30] are∑

i+j=n

k

pi+ k

(
pi+ k

i

)
· l

pj + l

(
pj + l

j

)
=

k + l

pn+ k + l

(
pn+ k + l

n

)
.

and ∑
i+j=n

k

pi+ k

(
pi+ k

i

)(
pj + l

j

)
=

(
pn+ k + l

n

)
.

Exercise 3.3.1. Show that c−p(x) = 1/cp+1(−x).

Exercise 3.3.2. Prove that cp+q(x) = cp
(
xcp+q(x)q

)
(a) combinatorially (b) algebraically

(c) using Lagrange inversion.

Exercise 3.3.3. Prove that (
xcp(x

a)b
)〈−1〉

= xcab−p+1(−xa)b

(a) algebraically (b) using Lagrange inversion. In particular, as noted by Dennis Stanton, if
f(x) = xc(x)3 then f(x)〈−1〉 = −f(−x).

Exercise 3.3.4. (Mansour and Sun [50, Example 5.6], Sun [72].) Show that

1

1− x
c3

(
x2

(1− x)3

)
= c2(x).

Exercise 3.3.5. Prove (3.3.3) and (3.3.4) by finite differences.

Exercise 3.3.6. (Chu [13].) Prove the Hagen-Rothe identities by finite differences.
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Next, we prove Jensen’s formula [39]
n∑
l=0

(
j + pl

l

)(
r − pl
n− l

)
=

n∑
i=0

(
j + r − i
n− i

)
pi. (3.3.5)

By (3.3.4) we have
∞∑
l=0

(
pl + j

l

)
xl
∞∑
m=0

(
pm+ k

m

)
xm =

cp(x)j+k

(1− pxcp(x)p−1)2

=
cp(x)j+k

1− pxcp(x)p−1

∞∑
i=0

pixicp(x)(p−1)i

=
∞∑
i=0

pixicp(x)j+k+(p−1)i

1− pxcp(x)p−1

=
∞∑
i=0

pixi
∞∑
m=0

(
pm+ j + k + (p− 1)i

m

)
xm

=
∞∑
n=0

xn
n∑
i=0

(
pn+ j + k − i

n− i

)
pi.

Equating coefficients of xn on both sides gives
n∑
l=0

(
pl + j

l

)(
p(n− l) + k

n− l

)
=

n∑
i=0

(
pn+ j + k − i

n− i

)
pi.

Setting k = r − pn gives (3.3.5).
We also have analogues of Theorems 3.2.1 and 3.2.5 for Fuss-Catalan numbers.

Theorem 3.3.7. Let i and j be nonnegative integers with i < j. Then
∞∑
n=0

(pn+ i)!

n! ((p− 1)n+ j)!

xn

(1 + x)pn+i+1

is a polynomial ui,j(x) in x of degree j − i− 1.

Proof. We have
∞∑
n=0

(pn+ i)!

n! ((p− 1)n+ j)!

xn

(1 + x)pn+i+1

=
∞∑
n=0

(pn+ i)!

n! ((p− 1)n+ j)!
xn

∞∑
l=0

(−1)l
(
pn+ i+ l

l

)
xl

=
∞∑
m=0

xm
m∑
n=0

(pn+ i)!

n! ((p− 1)n+ j)!
(−1)m−n

(
(p− 1)n+ i+m

m− n

)
.

For m ≥ j − i, the coefficient of xm may be rearranged to(
m− (j − i)

)
!

m!

m∑
n=0

(−1)m−n
(
m

n

)(
(p− 1)n+ i+m

m− (j − i)

)
.
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The sum is the mth difference of a polynomial of degree less than m and is therefore 0. For
m = j − i− 1, the coefficient of xj−i−1 reduces to

1

m!

m∑
n=0

(−1)m−n
(
m

n

)
1

(p− 1)n+ j
,

which is nonzero by the well-known identity

m∑
n=0

(−1)n
(
m

n

)
a

n+ a
=

(
m+ a

a

)−1
,

so the degree of the polynomial is not less than j − i− 1. �

The first few values of these polynomials are

ui,i+1(x) =
1

i+ 1

ui,i+2(x) =
1

(i+ 1)(i+ 2)
− p− 1

(i+ 2)(p+ i+ 1)
x

ui,i+3(x) =
1

(i+ 1)(i+ 2)(i+ 3)
− (p− 1)(p+ 2i+ 4)

(i+ 2)(i+ 3)(p+ i+ 1)(p+ i+ 2)
x

+
(p− 1)2

(i+ 3)(p+ i+ 2)(2p+ i+ 1)
x2

As a simple example of Theorem 3.3.7, the number of 2-stack-sortable permutations of
{1, 2, . . . , n} is

an = 2
(3n)!

(n+ 1)! (2n+ 1)!
= 4

(3n)!

n! (2n+ 2)!

(see [57, Sequence A000139]), so by Theorem 3.3.7, with p = 3, i = 0, and j = 2,∑∞
n=0 anx

n/(1 + x)3n+1 is a polynomial of degree 1, which is easily computed to be 2 − x.
Then by (3.3.2), we find that

∞∑
n=0

anx
n = 3c3(x)− c3(x)2,

which can be checked directly from (3.3.3).
There is a result similar to Theorem 3.3.7 for i ≥ j, which we state without proof.

Theorem 3.3.8. Let i and j be nonnegative integers with i ≥ j. Then

(1− (p− 1)x)2(i−j)+1

∞∑
n=0

(pn+ i)!

n! ((p− 1)n+ j)!

xn

(1 + x)pn+i+1

is a polynomial in x of degree at most i− j. �

Exercise 3.3.9. Prove Theorem 3.3.8.
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3.4. Narayana and Fuss-Narayana numbers. The Narayana numbers may be defined
by N(n, i) = 1

n

(
n
i

)(
n
i−1

)
for n ≥ 1. They have many combinatorial interpretations, in terms

of Dyck paths, ordered trees, binary trees, and noncrossing partitions.
It is not hard to see from the formula for Narayana numbers that N(n, i) = N(n, n+1−i).

A generating function for the Narayana that exhibits this symmetry is given by the solution
to the equation

f = (1 + xf)(1 + yf). (3.4.1)

Lagrange inversion gives

fk =
∞∑
n=0

k

n
[tn−k](1 + xt)n(1 + yt)n

=
∞∑
n=0

k

n
[tn−k]

∑
i,j

(
n

i

)(
n

j

)
xiyjti+j

=
∞∑

i,j=0

k

i+ j + k

(
i+ j + k

i

)(
i+ j + k

j

)
xiyj.

In particular

f =
∞∑

i,j=0

1

i+ j + 1

(
i+ j + 1

i

)(
i+ j + 1

i+ 1

)
xiyj

=
∞∑
n=1

n−1∑
i=0

N(n, i+ 1)xiyn−i−1.

Equation (3.4.1) can be solved explicitly to give

f =
1− x− y −

√
(1− x− y)2 − 4xy

2xy
.

Exercise 3.4.1. Prove that

(1 + xf)r(1 + yf)s√
(1− x− y)2 − 4xy

=
∑
i,j

(
r + i+ j

i

)(
s+ i+ j

j

)
xiyj

and

(1 + xf)r(1 + yf)s =
∑
i,j

[(
r + i+ j − 1

i

)(
s+ i+ j

j

)
−
(
r + i+ j

i

)(
s+ i+ j − 1

j − 1

)]
xiyj

=
∑
i,j

rs+ ri+ sj

(r + i+ j)(s+ i+ j)

(
r + i+ j

i

)(
s+ i+ j

j

)
xiyj.

The first formula is equivalent to a well-known generating function for Jacobi polynomials;
see Carlitz [8].

We may generalize (3.4.1) to

f = (1 + x1f)r1(1 + x2f)r2 · · · (1 + xmf)rm , (3.4.2)

20



for which Lagrange inversion gives

fk =
∞∑
n=k

∑
i1+···+im=n−k

k

n

(
r1n

i1

)
· · ·
(
rmn

im

)
xi11 · · ·ximm . (3.4.3)

These numbers reduce to Catalan numbers for k = m = 1, r1 = 2 and to Narayana numbers
for k = 1,m = 2, r1 = r2 = 1. For k = 1,m = 2, r1 = 1 they are sometimes called Fuss-
Narayana numbers; see Armstrong [3], Cigler [15], Edelman [19], Eu and Fu [20], and Wang
[75]. The numbers for k = 1, ri = 1 for all i have been called generalized Fuss-Narayana
numbers by Lenczewski and Sa lapata [48]; they have also been studied by Edelman [19],
Stanley [69], and Xu [78]. The case k = 1,m = 3, r2 = −r1, r3 = 1 of these numbers was
considered by Krattenthaler, [44, equation (31)]. We note that if r1 = · · · = rm, then f
is a symmetric function of x1, . . . , xm, and this symmetric function arises in the study of
algebraic aspects of parking functions [69].

If we set ri = −si in (3.4.2) and replace xi with −xi, and f with g, then (3.4.2) becomes

g =
1

(1− x1g)s1(1− x2g)s2 · · · (1− xmg)sm
, (3.4.4)

and, with the formula
(−a
i

)
= (−1)i

(
a+i−1
i

)
, (3.4.3) becomes

gk =
∞∑
n=k

∑
i1+···+im=n−k

k

n

(
s1n+ i1 − 1

i1

)
· · ·
(
smn+ im − 1

im

)
xi11 · · ·ximm . (3.4.5)

These numbers reduce to Catalan numbers for k = m = s1 = 1. For s1 = · · · = sm = 1 they
have been considered by Aval [4] and (for k = 1) by Stanley [69].

Of special interest are the cases of (3.4.2) that reduce to a quadratic equation, since in
these cases there are simple explicit formulas for f . If we take m = 1, r1 = r2 = 1, and
r3 = −1 then with a change of variable names and one sign we have

f =
(1 + xf)(1 + yf)

1− zf
,

with the solution

f =
1− x− y −

√
(1− x− y)2 − 4xy − 4z

2(xy + z)
,

and (3.4.3) gives

fk =
∞∑
n=k

∑
i1+i2+i3=n−k

k

n

(
n

i1

)(
n

i2

)(
n+ i3 − 1

i3

)
xi1yi2zi3 .

Another case of (3.4.2) that reduces to a quadratic is f =
√

(1 + xf)(1 + yf); we leave the
details to the reader.

3.5. Raney’s equation. G. Raney [62] considered the equation

f =
∞∑
m=1

Ame
Bmf , (3.5.1)
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in which f is a power series in the indeterminates Am and Bm. He used Prüfer’s corre-
spondence to give a combinatorial derivation of a formula for the coefficients in this power
series.

We can use Lagrange inversion to give a formula for the coefficients of f .

Theorem 3.5.1. Let f be the power series in Am and Bm satisfying (3.5.1), and let k be
a positive integer. Let i1, i2, . . . and j1, j2, . . . be nonnegative integers, only finitely many of
which are nonzero. If i1+i2+· · · = k+j1+j2+· · · then the coefficient of Ai11 A

i2
2 · · ·B

j1
1 B

j2
2 · · ·

in fk is

k
(i1 + i2 + · · · − 1)!

i1! i2! · · ·
ij11
j1!

ij22
j2!
· · ·

and if i1 + i2 + · · · 6= k + j1 + j2 + · · · then the coefficient is zero.

Proof. Applying equation (2.4.3) to (3.5.1) gives

fk =
∞∑
n=k

k

n
[tn−k]

(∑
m

Ame
Bmt

)n
=
∞∑
n=k

k

n
[tn−k]

∑
i1+i2+···=n

n!

i1! i2! · · ·
Ai11 A

i2
2 · · · ei1B1tei2B2t · · ·

=
∞∑
n=k

k

n
[tn−k]

∑
i1+i2+···=n

n!

i1! i2! · · ·
Ai11 A

i2
2 · · ·

∑
j1

(i1B1t)
j1

j1!

∑
j2

(i2B2t)
j2

j2!
· · ·

=
∞∑
n=k

∑
i1+i2+···=n

j1+j2+···=n−k

k
(n− 1)!

i1! i2! · · ·
Ai11 A

i2
2 · · ·B

j1
1 B

j2
2 · · ·

ij11
j1!

ij22
j2!
· · · ,

and the formula follows. �

A combinatorial derivation of Raney’s formula has also been given by D. Knuth [42, Section
2.3.4.4].

4. Proofs

In this section we give several proofs of the Lagrange inversion formula.

4.1. Residues. The simplest proof of Lagrange inversion is due to Jacobi [38]. We define
the residue res f(x) of a Laurent series f(x) =

∑
n fnx

n to be f−1.
Jacobi proved the following change of variables formula for residues:

Theorem 4.1.1. Let f be a Laurent series and let g(x) =
∑∞

n=1 gnx
n be a power series with

g1 6= 0. Then
res f(x) = res f(g(x))g′(x).

Proof. By linearity, it is sufficient to prove the formula when f(x) = xk for some integer k.
If k 6= −1 then resxk = 0 and

res g(x)kg′(x) = res
d

dx
g(x)k+1/(k + 1) = 0,

since the residue of a derivative is 0.
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If k = −1 then resxk = 1 and

res g(x)kg′(x) = res g′(x)/g(x) = res
g1 + 2g2x+ · · ·
g1x+ g2x2 + · · ·

= res
1

x
· g1 + 2g2x+ · · ·
g1 + g2x+ · · ·

= 1. �

Jacobi’s paper [38] contains a multivariable generalization of Theorem 4.1.1; see also Gessel
[28] and Xin [77].

Now let f(x) and g(x) be compositional inverses. Then for any Laurent series φ,

[xn]φ(f) = res
φ(f)

xn+1
= res

φ(f(g))g′

gn+1
= res

φ(x)g′

gn+1
.

This is equation (2.1.7), which we have already seen is equivalent to the other forms of
Lagrange inversion.

Exercise 4.1.2. Let f be a Laurent series and let g(x) =
∑∞

n=m gnx
n be a Laurent series

with gm 6= 0. Show that if f(g(x)) is well-defined as a Laurent series then

m res f = res f(g(x))g′(x).

Exercise 4.1.3. (Hirzebruch [34]; see also Kneezel [41].) Use the change of variables formula
(Theorem 4.1.1) to show that the unique power series f(x) satisfying

res

(
f(x)

x

)n
= 1

for all n ≥ 1 is f(x) = x/(1− e−x).

4.2. Induction. In this proof and the next we consider the equation f = xR(f), where
R(t) is a power series. If R(t) has no constant term then f = 0 and the formulas are trivial.
So we may assume that R(t) has a nonzero constant term, and thus f exists and is unique,
since it is the compositional inverse of x/R(x).

We now give an inductive proof of (2.1.2): for any power series φ(t),

[xn]φ(f) = [tn]

(
1− tR′(t)

R(t)

)
φ(t)R(t)n. (4.2.1)

(As noted in section 2, this implies that (4.2.1) holds more generally when φ(t) is a Laurent
series.)

We first take care of the case in which φ(t) = 1. The case φ(t) = 1, n = 0 is trivial. If
φ(t) = 1 and n > 0, we have(

1− tR′(t)

R(t)

)
R(t)n = R(t)n − tR′(t)R(t)n−1

= R(t)n − t

n

d

dt
R(t)n. (4.2.2)

Now for any power series u(t),

[tn]

(
u(t)− t

n
u′(t)

)
= 0.

With(4.2.2), this proves (4.2.1) for φ(t) = 1, n > 0.
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Now we prove the formula (4.2.1) by induction on n. It is clear that (4.2.1)holds for n = 0.
Now let us suppose that for some nonnegative integer m, (4.2.1) holds for all φ when n = m.
We now want to show that (4.2.1) holds for all φ when n = m+ 1. By linearity and the case
φ(t) = 1, it is enough to prove (4.2.1) for n = m + 1 and φ(t) = tk, where k ≥ 1. In this
case we have

[xm+1] fk = [xm+1] fk−1 · xR(f)

= [xm] fk−1R(f)

= [tm]

(
1− tR′(t)

R(t)

)
tk−1R(t)R(t)m

= [tm+1]

(
1− tR′(t)

R(t)

)
tkR(t)m+1.

4.3. Factorization. Another proof is based on a version of the “factor theorem”: if f =
xR(f) then t− f divides t− xR(t). This proof is taken from Gessel [27] but it is similar to
Lagrange’s original proof [47].

We will prove (2.2.1), which gives a formula for fk where f = f(x) satisfies f = xR(f).
First we recall Taylor’s theorem for power series: if P (t) is a power series in t, and α is an

element of the coefficient ring, then

P (t) =
∞∑
n=0

(t− α)n

n!
P (n)(α), (4.3.1)

as long as this sum is summable. (The case P (t) = tm of (4.3.1) is just the binomial theorem,
and the general case follows by linearity.)

Now let us apply (4.3.1) with P (t) = t − xR(t) and α = f , where f = xR(f) so that
P (f) = 0. Then we have

t− xR(t) = 0 + (t− f)
(
1− xR′(f)

)
+ (t− f)2S(x, t)

= (t− f)Q(x, t), (4.3.2)

where S(x, t) is a power series and Q(x, t) is a power series with constant term 1.
Equation (4.3.2) is an identity in the ring C[[x, t]], which is naturally embedded in the

ring C((t))[[x]] of power series in x with coefficients that are Laurent series in t. In this
ring, series like

∑∞
n=0(x/t)

n are allowed, even though they have infinitely many negative
powers of t, since the coefficient of any power of x is a Laurent series in t. We now do some
computations in C((t))[[x]].

By (4.3.2), we have 1− xR(t)/t = (1− f/t)Q(x, t). Since xR(t)/t and f/t are divisible by
x and Q(x, t) is a power series in x and t with constant term 1, we may take logarithms to
obtain

− log(1− xR(t)/t) = − log(1− f/t)− logQ(x, t). (4.3.3)

Note that logQ(x, t) is a power series in x and t, and so has no negative powers of t. Now we
equate coefficients of xnt−k on both sides of (4.3.3) where n and k are both positive integers.
On the left we have [t−k](R(t)/t)n/n = [tn−k]R(t)n/n and on the right we have [xn] fk/k.
Thus,

[xn] fk =
k

n
[tn−k]R(t)n,
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which is (2.2.1).

Exercise 4.3.1. (Gessel [27].) Derive (2.2.2) similarly.

4.4. Combinatorial proofs. There are several different combinatorial proofs of Lagrange
inversion. They all interpret the solution f of f = xR(f) or f = R(f) as counting certain
trees. Here f may be interpreted as either an ordinary or exponential generating function
and thus different types of trees may be involved.

In ordinary generating function proofs, f will count unlabeled ordered trees (also called
plane trees), which are rooted trees in which the children of each vertex are linearly ordered.
(See Figure 1.) More generally, fk will count k-tuples of ordered trees, which we also call

Figure 1. An ordered tree

forests of ordered trees.
If f = xR(f), where R(t) =

∑∞
i=0 rit

i, then the coefficient of xn in f is the sum of the
weights of the ordered trees with a total of n vertices, where the weight of a tree is the
product of the weights of its vertices and the weight of a vertex with i children is ri. (For
example, the tree of Figure 1 has weight r30r

2
2.) So to give a combinatorial proof of formula

(2.2.1), we show that the sum of the weights of all k-tuples of ordered trees with a total of
n vertices is (k/n) [tn−k]R(t)n, or equivalently by (2.5.1), the number of k-tuples of ordered
trees in which ni vertices have i children for each i is equal to

k

n

(
n

n0, n1, n2, . . .

)
(4.4.1)

if
n =

∑
k

ni and n− k =
∑
k

ini, (4.4.2)

and is zero otherwise. W. T. Tutte [74] gave the case k = 1 of (4.4.1), which he derived (in
a roundabout way) from Lagrange inversion.

We can also work with exponential generating functions. One way to do this is to consider
the equation f = x

∑∞
i=0 sif

i/i! where x is the exponential variable and the sn are weights.
Then by the properties of exponential generating functions (see, e.g., [70, Chapter 5]) f
counts labeled rooted trees where a vertex with i children is weighted si. More precisely,
the coefficient of xn/n! in fk/k! is the sum of the weights of all forests of k rooted trees with
vertex set [n] = {1, 2, . . . , n}. Then Lagrange inversion in the form (2.5.1) is equivalent to
assertion that the number of forests of k rooted trees with vertex set [n] in which ni vertices
have i children is equal to

(n− 1)!

(k − 1)! 0!n01!n12!n2 · · ·

(
n

n0, n1, . . .

)
(4.4.3)

with the same conditions on n0, n1, . . . as before. (See Stanley [70, p. 30, Corollary 5.3.5].)
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Another exponential generating function approach is to consider the equation

f =
∞∑
i=0

si
f i

i!

where we work with exponential generating functions in the variables s0, s1, . . . . Then by
the properties of multivariable exponential generating functions, the coefficient of

sn0
0

n0!

sn1
1

n1!
. . .

in fk/k! is the number of forests of k rooted trees in which for each i, ni vertices have i
children and these vertices are labeled 1, 2, . . . , ni. (Since vertices with the same label have
different numbers of children, there are no nontrivial label-preserving automorphisms of these
forests.) For example, such a forest with k = 2, n0 = 5, n2 = 3, and ni = 0 for i /∈ {0, 2} is
show in Figure 2. Then Lagrange inversion in the form (2.5.1) (with x = 1) is equivalent to

3

5 1

4 3

1 2

2 3

Figure 2. A forest with n0 = 5, n2 = 3

the assertion that the number of such forests is

(n− 1)!

(k − 1)! 0!n01!n12!n2
· · · , (4.4.4)

where n = n0 + n1 + · · · and n1 + 2n2 + 3n3 + · · · = n− k.

4.5. Raney’s proof. The earliest combinatorial proof of Lagrange inversion is that of
Raney [61]. We sketch here a proof that is based on Raney’s though the details are dif-
ferent. (See also Stanley [70, pp. 31–35 and 39–40].) We define the suffix code c(T ) for an
ordered tree T to be a sequence of nonnegative integers defined recursively: If the root r of
T has j children, and the trees rooted at the children of r are T1, . . . , Tj, then c(T ) is the
concatenation c(T1) · · · c(Tj)j. More generally, the suffix code for a k-tuple (T1, . . . , Tk) of
ordered trees is the concatenation c(T1) · · · c(Tk). We defined the reduced code of a tree or
k-tuple of trees to be the sequence obtained from the suffix code by subtracting 1 from each
entry.

For example the suffix code of the k-tuple of trees in Figure 3 is 0 0 2 0 1 and the reduced
code is 1̄ 1̄ 1 1̄ 0, where 1̄ denotes −1.

The following lemma can be proved by induction:

Lemma 4.5.1.

(i) A forest of ordered trees is uniquely determined by its reduced code.
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Figure 3. A forest of ordered trees

(ii) A sequence a1a2 · · · an of integers greater than or equal to −1 is the reduced code of
an ordered k-forest if and only if a1 + · · ·+ an = −k and a1 + · · ·+ ai is negative for
i = 1, . . . , n. �

We also need a lemma, due to Raney, that generalizes the “cycle lemma” of Dvoretzky
and Motzkin [18]. It can be proved by induction, or in other ways. (See, e.g., Stanley [70,
pp. 32–33].)

Lemma 4.5.2. Let a1 · · · an be a sequence of integers greater than or equal to −1 with sum
−k < 0. Then there are exactly k integers i, with 1 ≤ i ≤ n, such that the sequence
ai · · · ana1 · · · ai−1 has all partial sums negative. �

We can now prove Lagrange inversion. We want to prove that the sum of the weights of
all k-forests with n vertices is k/n times

[tn−k]R(t)n = [t−k]

(
R(t)

t

)n
,

where R(t) =
∑∞

n=0 snt
n. Let us define the weight of a sequence a1 · · · an of integers to be

the product sa1+1 · · · san+1. Then by Lemma 4.5.1, the sum of the weights of all k-forests
with n vertices is the sum of the weights of all sequences of integers of length n, with entries
greater than or equal to −1, with sum −k, and with all partial sums negative. It is clear
that [t−k](R(t)/t)n is the sum of the weights of all sequences of integers of length n, with
entries greater than or equal to −1, and with sum −k. But by Lemma 4.5.2, a proportion
k/n of these sequences have all partial sums negative.

4.6. Proofs by labeled trees. We can derive Lagrange inversion by counting labeled trees
with the following result, which seems to have first been proved by Moon [52].

Theorem 4.6.1. Let m be a positive integer and let d1, d2, . . . , dm be positive integers. Then
the number of (unrooted) trees with vertex set [m] in which vertex i has degree di is the
multinomial coefficient (

m− 2

d1 − 1, . . . , dm − 1

)
(4.6.1)

if
∑m

i=1 di = 2(m− 1) and is 0 otherwise.

We will prove Theorem 4.6.1 a little later; we first look at some of its consequences. A
corollary of Theorem 4.6.1 allows us to count forests of rooted trees:

Corollary 4.6.2. Let e1, e2, . . . , en be nonnegative integers with e1 + e2 + · · ·+ en = n− k,
and let k be a positive integer. Then the number of forests of k rooted trees, with vertex set
[n], in which vertex i has ei children is(

n− 1

k − 1, e1, . . . en

)
.
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Proof. Let T be a tree on [n+ 1] in which vertex n+ 1 has degree k, and vertex i has degree
ei+1 for 1 ≤ i ≤ n (so that

∑n
i=1 ei = n−k). Removing vertex n+1 from T and rooting the

resulting component trees at the neighbors of n + 1 in T gives a forest F of k rooted trees
in which vertex i has ei children, and this operation gives a bijection from trees on [n + 1]
in which vertex n + 1 has degree k and vertex i has degree ei + 1 for 1 ≤ i ≤ n to the set
of rooted forests of k trees on [n] in which vertex i has ei children. The result then follows
from Lemma 4.6.1. �

It follows from Corollary 4.6.2 that the number of forests of k rooted trees in which for
each i, ni vertices have i children and these vertices are labeled 1, 2, . . . , ni is given by (4.4.4),
which as we saw earlier, is equivalent to Lagrange inversion.

Now to count k-forests on [n] in which ni vertices have i children, we first assign the
number of children to each element of [n], which can be done in

(
n

n0,n1,...

)
ways. For each

assignment, the number of trees is

(n− 1)!

(k − 1)! 0!n01!n1 · · ·

Multiplying these factors gives (4.4.3).
We now present sketches of three proofs of Theorem 4.6.1. They all depend on the fact

that a tree with at least two vertices must have at least one leaf (vertex of degree 1).
The first proof uses Prüfer’s correspondence [60]. Given a tree T1 with vertex set [n], let

a1 be the least leaf of T1 and let b1 be the unique neighbor of a1 in T1. Let T2 be the result
of removing a1 and its incident edge from T1. Let a2 be the least leaf of T2 and let b2 be
its neighbor in T2. Continue in this way to define b3, · · · , bn−2. Then the Prüfer code of
T1 is the sequence (b1, b2, · · · , bn−2). It can be shown that the map that takes a tree to its
Prüfer code is a bijection from the set of trees with vertex set [n], for n ≥ 2, to the set of
sequences b1b2 . . . bn−2 of elements of [n], with the property that a vertex of degree d appears
d−1 times in the Prüfer code. Then, as noted by Moon [52], Theorem 4.6.1 is an immediate
consequence, since the multinomial coefficient counts Prüfer codes of trees in which vertex i
has degree di.

The second proof is by induction, and is due to Moon [53] (see also [54, p. 13]). For m ≥ 2,
let T (m; d1, . . . , dm) be the number of trees on [m] in which vertex i has degree di and let
U(m; d1 . . . , dm) be the multinomial coefficient (4.6.1), which is 0 if any di is less than 1 or
if
∑

i di 6= 2(n− 1).
Clearly T (m; d1, . . . , dm) is equal to U(m; d1 . . . , dm) for m = 2. Now suppose that n > 2

and that T (m; d1, . . . , dm) is equal to U(m; d1 . . . , dm) for m = n − 1 and all choices of
d1, . . . , dm.

We next observe that if dn = 1 then

T (n; d1, . . . , dn) =
n−1∑
i=1

T (n− 1; d1, . . . , di − 1, . . . , dn−1) (4.6.2)

since every tree in which n is a leaf is obtained by joining vertex n with an edge to some
vertex of a tree on [n−1], increasing by 1 the degree of this edge and leaving the other degrees
unchanged. Then by the inductive hypothesis and a well-known recurrence for multinomial
coefficients, T (n; d1, . . . , dn) is equal to U(n; d1 . . . , dn). We have assumed that dn = 1, but
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since T (n; d1, . . . , dn) is symmetric in d1, . . . , dn and every tree has at least one leaf, the result
holds without this assumption.

Rényi [63] (see also Moon [54, p. 13]) gave an elegant variation of this proof. He showed by
induction that for m ≥ 2 the number of trees on [m] with degree sequence (d1, . . . , dm), i.e.,
trees in which vertex i has degree di, is the coefficient of xd1−11 · · ·xdm−1m in (x1+ · · ·+xm)m−2.
The result clearly holds for m = 2, so suppose that n > 2 and that the result holds when
m = n − 1. To show that it holds for m = n, we note that every tree on [n] has at least
one leaf, so by symmetry, we may assume, without loss of generality, that dn = 1. Thus we
need only show that the number of trees on [n] with degree sequence (d1, . . . , dn−1, 1) is the

coefficient of xd1−11 · · · xdn−1−1
n−1 in

(x1 + · · ·+ xn−1)
n−2 = (x1 + · · ·+ xn−1) · (x1 + · · ·+ xn−1)

n−3.

But every tree on [n] in which vertex n is a leaf is obtained by joining vertex n with an edge
to some vertex of a tree on [n− 1], increasing by 1 the degree of this vertex and leaving the
other degrees unchanged. Thus by the induction hypothesis, the contribution from trees in
which vertex n is joined to vertex i is xi(x1 + · · ·+ xn−1)

n−3 and the result follows.

Acknowledgment. I would like to thank Sateesh Mane and an anonymous referee for helpful
comments.
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Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Berlin 24 (1770), 251–326, Oeuvres
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