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Abstract

We consider asymptotics of set partition pattern avoidance in the sense of Klazar.
The main result of this paper extends work of Alweiss, and finds a classification for
π such that the number of set partitions avoiding π grows more slowly than n

cn.
Several conjectures are proposed, and the related question of parallel permutation
pattern avoidance (which surprisingly seems to have not been addressed prior to now)
is considered and solved in the case of the trivial permutation.

1 Introduction

Pattern avoidance has been a popular area of study in the last forty years, and a fundamental
question that has been routinely asked is that of asymptotics. That is, for some pattern p,
how does the avoidance function An(p), equal to the number of patterns of size n avoiding
p, grow? This has been especially well-studied in the most classical pattern avoidance area,
that of permutations. The most famous result of this kind is the Stanley-Wilf Conjecture,
proved by Marcus and Tardos in [7].

More recently, the study of pattern avoidance and the corresponding asymptotics has
branched into other structures than permutations. The most well-studied type of pattern
avoidance on set partitions is the RGF-type pattern avoidance, studied in great detail by for
example Mansour [6], where many asymptotics of RGF-type avoidance are studied in detail.

Klazar [5] proposed a different, stronger notion of set partition pattern avoidance than
RGF-type avoidance, proving several results about special cases involving the generating
function of the avoidance sequence, and providing several conjectures when the partitions
have what this paper will refer to as permutability 1 (Klazar refers to these as srps). The
main theorem of this paper is a general asymptotic bound in this case.
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2 Definitions and Preliminary Results

Definition. A set partition of n is a partition of [n] into sets, where we ignore ordering
of sets and ordering within the sets. We will write set partitions with slashes between the
sets, as in T1/T2/ · · · /Tm for some m. The standard form of a set partition is what is
obtained from writing each Ti in increasing order, and then rearranging the sets so that
minT1 < minT2 < · · · < min Tm. The Ti are called the blocks of the partition.

For example, 1635/24 and 24/1356 are not in standard form; the standard form for this
partition is 1356/24. We now define a simple but useful statistic.

Definition. If π = T1/ · · ·/Tm is a set partition of n, we define the rank of π, denoted
rank(π), to be n−m.

It is well known that the number of set partitions of n is the Bell number Bn, and the
number of set partitions of n into m sets (or in other words, partitions of n of rank n−m)
is the Stirling number of the second kind S(n,m).

Definition. A set partition π of n contains a set partition π′ of k in the Klazar sense (which
we will use for the remainder of this paper) if there is a subset S of [n] of cardinality k
such that when π is restricted to the elements of S, the result is order-isomorphic to π′.
Otherwise, we say π avoids π′.

For example, 136/5/27 contains 14/23 because when we restrict 136/5/27 to the set
{2, 3, 6, 7}, the result is 36/27, which is order-isomorphic to 23/14, standardizing to 14/23.
However, it avoids 1/234.

We can think of containment in the following way: if we have some f : [m] → [n] and a
set partition of [n], we can take the pullback under f to get a partition of [m], where a and
b are in the same partition if and only if f(a) and f(b) are. Then π contains π′ if and only
if π′ is the pullback of π under some order-preserving injection.

Note that this Klazar notion of avoidance differs from the RGF notion of pattern avoid-
ance in set partitions, studied in detail by Mansour [6], where switching the order of the sets
during standardization is not allowed.

We will be concerned with the enumeration of the number of partitions of a given length
that avoid a particular pattern.

Definition. If π is some set partition of k, let Bn(π) be the number of set partitions of n
that avoid π, and let S(n,m, π) be the number of set partitions of n into m sets that avoid
π.

This paper will primarily be devoted to finding log-asymptotics for Bn(π) for particular
π.

The notation is analogous to that for Bell and Stirling numbers.

Definition. A layered partition is a partition T1/ · · · /Tm such that maxTi < min Ti+1 for
all i ∈ [m− 1]. Equivalently, each set consists of an interval of consecutive integers.
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For example, 12/3456/789 is layered while 13/2456/789 is not.
Alweiss [1] found the correct log-asymptotic for Bn(π) in the case where π is layered. This

represented the first evaluation of the correct log-asymptotic that works in exponentially
many cases in n.

An important notion in this paper will be relating set-partition pattern avoidance to
permutation pattern avoidance. To this end, we define the following notion.

Definition. Let σ1, . . . , σk be permutations [n] → [n]. We define the set partition corre-
spondent to (σ1, . . . , σk) to be the partition T1/ · · ·/Tn of (k + 1)n such that Bi = {i, n +
σ1(i), 2n+ σ2(i), . . . , kn+ σk(i)}. It is easy to see that this is indeed a set partition, and we
will write it [σ1, . . . , σk].

Notice that a set partition of (k + 1)n is correspondent to some (σ1, . . . , σk) if and only
if every set in the partition contains exactly one element from each of {1, . . . , n}, {n +
1, . . . , 2n},. . . ,{kn+ 1, . . . , (k + 1)n}. Klazar [5] studied the avoidance generating functions
of partitions of the form [σ] (which he referred to as srps).

Now, we define what we will call parallel pattern avoidance for k-tuples of permutations
(σ1, . . . , σk).

Definition. If σ1, . . . , σk ∈ Sn and σ′

1, . . . , σ
′

k are permutations of Sm, (σ1, . . . , σk) contains
(respectively avoids) (σ′

1, . . . , σ
′

k) if there exists (respectively does not exist) indices c1 <
· · · < cm such that σi(c1)σi(c2) · · ·σi(cm) is order-isomorphic to σ′

i for all i.

We will occasionally say ‘contains/avoids in parallel’ to refer to this notion in particular.
For k = 1, parallel pattern avoidance is equivalent to the classical case of permutation

pattern containment/avoidance. This idea of parallel avoidance in k-tuples of permutations
also reduces to several other interesting concepts in special cases; for example, (σ1, σ2) avoids
(12, 21) if and only if σ−1

1 ≤ σ−1
2 in the Weak Bruhat Order, which has been previously

studied; for example, see [4] and A007767 in [8].
We now relate this to our topic of partition pattern avoidance.

Proposition 2.1. Let σ1, . . . , σm be partitions of n and σ′

1, . . . , σ
′

m be partitions of m. The
following two statements are equivalent:

• The k-tuple of permutations (σ1, . . . , σk) contains the m-tuple of permutations σ′

1, . . . , σ
′

k.

• The set partition [σ1, . . . , σk] contains the set partition [σ′

1, . . . , σ
′

k].

Proof. If (σ1, . . . , σk) contains (σ
′

1, . . . , σ
′

k), we have indices c1 < · · · < cm with σi(c1) · · ·σi(cm)
order-isomorphic to σi. [σ1, . . . , σk] has blocks T1, . . . , Tn given by Ti = {i, n + σ1(i), 2n +
σ2(i), . . . , kn + σk(i)}. Restricting this to simply the elements in Tc1, . . . , Tcm, we have
blocks given by {ci, n + σ1(ci), . . . , kn + σk(ci)}. We show that this is order-isomorphic
to [σ′

1, . . . , σ
′

k]. Since ci = minTci, and the ci are increasing, the block Tci must correspond
the ith block of [σ′

1, . . . , σ
′

k], which is {i,m + σ′

1(i), . . . , km + σ′

k(i)}. Thus we must show
that j1n + σj1(ci1) < j2n + σj2(ci2) if and only if j1m + σj1(i1) < j2m + σj2(i2). But since
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1 ≤ σa(b) ≤ n and 1 ≤ σ′

a(b) ≤ m for all a, b, the first statement is equivalent to j1 < j2 or
j1 = j2 = j and σj(ci1) < σj(ci2), and the second is equivalent to j1 < j2 or j1 = j2 = j and
σ′

j(i1) < σ′

j(i2). These are equivalent by the definition of pattern containment for k-tuples
of permutations.

Now suppose [σ1, . . . , σk] contains [σ′

1, . . . , σ
′

k]. Since all blocks of both partitions have
size k + 1, the blocks of the latter partition must correspond exactly to m block of the
former, say blocks Tc1 , . . . , Tcm with c1 < · · · < cm. Now following the exact same argument
in reverse, we see that (σ1, . . . , σk) contains (σ

′

1, . . . , σ
′

k) (at indices c1, . . . , cm), as we showed
the ordering information is exactly equivalent in both cases.

Now, we discuss the concepts of layered and permutation-correspondent partitions to
form two useful statistics.

3 Thickness and Permutability

Definition. Let π be a partition. The thickness of π, which we will call th(π), is the
maximum rank of a layered partition contained in π.

Definition. The permutability of π, which we will call pm(π), is the minimum k such that
there exists a k-tuple of permutations (σ1, . . . , σk) such that the correspondent partition
[σ1, . . . , σk] contains π.

Note that as one would expect, [σ1, . . . , σk] has permutability k, as it has a block of
size k + 1, which is not contained in [σ′

1, . . . , σ
′

k−1 for any choice of the σ′

i. Similarly, a
layered partition of rank k has thickness k, as taking elements away from a partition can
only maintain or decrease the rank.

Proposition 3.1. For all partitions π, pm(π) ≥ th(π), and if π is permutation-correspondent
then equality holds.

Proof. Suppose there are permutations σ1, . . . , σk such that [σ1, . . . , σk] contains π. We must
show that all layered partitions π′ contained in π have rank at most k. Since π′ is contained
in π which is in turn contained in [σ1, . . . , σk], it suffices to show that any layered partition
contained in [σ1, . . . , σk] has rank at most k–and to show equality in the desired case, we
must just exhibit a layered partition of rank exactly k.

Suppose σi ∈ Sn for all i. Take a layered partition π′ of [m] of rank ℓ. In a layered
partition, the number of pairs (i, i + 1) that are in different sets is equal to the number of
blocks minus one, because in T1/ · · ·/Tm the i that satisfy this are maxTj , 1 ≤ j ≤ m − 1.
Since the total number of such pairs is the number of elements minus one, the number of
pairs (i, i+ 1) that are in the same set is the rank of the partition, ℓ.

Sort these ℓ pairs in increasing order, so (a1, a1 + 1), (a2, a2 + 1),. . . , (aℓ, aℓ + 1), with
ai+1 ≥ ai + 1. Since π′ is contained in [σ1, . . . , σk], there is some order-preserving function
f : [m] → [(k + 1)n] such that the pullback of the partition [σ1, . . . , σn] via f is π′. In
particular, f(ai) < f(ai + 1) ≤ f(ai+1) for all i and f(ai) and f(ai + 1) are in the same set.
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In [σ1, . . . , σk], it is easy to see that if a < b are in the same set, then there is a multiple
of n in the interval [a, b), by the definition of permutation-correspondent partitions. Thus
the [f(ai), f(ai+1)) are non-intersecting half-open intervals each containing a multiple of n.
Thus in [f(a1), f(aℓ +1)) ⊂ [1, (k+1)n), there are at least ℓ multiple of n. But [1, (k+1)n)
has k multiples of n, so ℓ ≤ k, as desired.

For equality, it suffices to realize that [σ1, . . . , σk] has blocks of size k + 1, and a single
block of size k + 1 is a layered partition of rank k.

A useful characterization of permutability is the following:

Proposition 3.2. For a fixed k and a set partition π of m, the following are equivalent.

• pm(π) ≤ k.

• There exists 0 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ ak+1 = m such that the k + 1 intervals
(0, a1], (a1, a2],. . . , (ak−1, ak], and (ak, m] each contain at most one element from each
block of π. (In other words, [m] can be divided into k + 1 intervals, each of which
contains at most one element from each block.)

Proof. Suppose the first bullet holds. Then there is n ∈ N and σ1, . . . , σk ∈ Sn such that
π is contained in [σ1, . . . , σn]. Then we have an order-preserving f : [m] → [(k + 1)n]
with π being the pullback of [σ1, . . . , σk] under f . Letting ai = max{i : f(i) ≤ in} (for
0 ≤ i ≤ k, and ak+1 = m), we have that the image of (ai, ai+1] under f contains only
elements in (in+1, (i+1)n]. But this interval contains exactly one element from each block
of [σ1, . . . , σk], so since f is injective, we still get at most one element from each block of π
in (ai, ai+1].

Now suppose the second bullet holds. Suppose π has n blocks. Since (ai, ai+1] contains
at most one element from each block, ai+1 − ai ≤ n for all i ∈ {0, 1, . . . , k}. Thus there is
an order-preserving injection f : [m] → [(k + 1)n] that sends ai to in for i ∈ [k + 1] (simply
choose values for the images of the elements in (ai, ai+1] in (in, (i + 1)n] so that they are
in the correct order). This induces a partition on the image of f in [(k + 1)n]. We will
include the remaining elements of [(k + 1)n] in this image as follows: Since in each interval
(in, (i + 1)n] there is at most one element from each block, and there are n blocks and n
elements in that interval in total, we can assign the remaining elements to the blocks so that
there is exactly one element from each set in that block. Then this resulting partition, call
it π′, will pull back to π under f , so π is contained in π′. Let T1, . . . , Tn be the blocks of
π′. Ti contains exactly one element of (jn, (j + 1)n] for all i ∈ [n], j ∈ {0, . . . , k}, call it cij .
The set {cij : i ∈ [n]} must be the interval (jn, (j + 1)n], so if σj : [n] → [n] is defined via
σj(i) = cij − jn, then σj is a permutation. Since Ti consists of the elements cij = σj(i) + jn
for 1 ≤ j ≤ k and the element i (corresponding to when j = 0), we see that π′ = [σ1, . . . , σk],
as desired.

From this we can see that we do not always have pm(π) = th(π); for example, th(1267/345) =
3 but by the proposition above we can see that pm(1267/345) = 4; the coarsest division into
intervals that satisfy the conditions of the proposition is [1], [2, 3], [4], [5, 6], [7].

We also have the following corollary.

5



Corollary 3.3. If π is layered, then th(π) = pm(π).

Proof. We already have that the second quantity is at least the first by Proposition 3.1. To
prove the reverse inequality, supposing π is a layered partition of [m] of rank k, it suffices
by Proposition 3.2 to show that we can divide [m] into k + 1 intervals, each containing at
most one element of each block of π. We do this by breaking [m] at each point where the
two consecutive elements are in the same block. By the layeredness of π, this satisfies the
desired condition, and we break it at k points by the definition of rank and layeredness of
π (since two consecutive elements are not in the same interval if and only if we are going
from the maximal element of one block up to the minimal element of another, which occurs
a number of times equal to the number of blocks minus one). Therefore, we end up with
k + 1 intervals, as desired.

4 Current and Prior Results

The following result is due to Alweiss. [1]

Theorem 4.1. Let π be a set partition. Then there exists a constant c1(π) > 0 such that

Bn(π) ≥ c1(π)
nnn(1− 1

th(π))

for all n.
Furthermore, if π is layered (and so th(π) is simply the rank of π in this case), then there

exists another constant c2(π) such that

Bn(π) ≤ c2(π)
nnn(1− 1

th(π))

for all n.

Alweiss also conjectured that 1− 1
th(π)

in the exponent is optimal in all cases, but this is
false, as the following result shows.

Theorem 4.2. Let π be a set partition. Then there exists a constant c1(π) > 0 such that

Bn(π) ≥ c1(π)
nnn(1− 1

pm(π))

for all n.

As the earlier example of 1267/345 shows, it is possible for pm(π) > th(π) to occur, so
this disproves Alweiss’s conjecture. However, this lower bound and previous results suggest
a similar conjecture may be true.

Conjecture 1. Let π be a set partition. Then the following bounds hold.

• (Weak Form) lim
n→∞

logBn(π)

n logn
= 1− 1

pm(π)
.
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• (Strong Form) There exists a constant c2(π) such that Bn(π) ≤ c2(π)
nn

n(1− 1
pm(π)) for

all n.

The naming is accurate as the second bullet and Theorem 4.2 together imply the first
bullet. When ±(π) = 1, the strong form of this conjecture was proposed by Klazar as
Problem 1 in [5].

The largest result of this paper is the following.

Theorem 4.3. The weak form of Conjecture 1 holds in the case where pm(π) = 1. That is,
if pm(π) = 1, then

lim
n→∞

logBn(π)

n logn
= 0.

This result, together with Theorem 4.2, shows that pm(π) = 1 is a necessary and sufficient
condition for Bn(π) to grow slower than ncn for all c > 0.

5 Proof of Theorem 4.2

We will now prove Theorem 4.2.
Let π be a set partition with pm(π) = k. Assume k > 1, as the case k = 1 is trivial. By

the interval criterion for permutability, removing blocks containing one element from π does
not change its permutability (as it preserves intervals containing exactly one element from
each set). Thus if π′ is π with all one-element blocks removed, any partition avoiding π′

must avoid π since π contains π′, so Bn(π) ≥ Bn(π
′) and pm(π′) = k. So it suffices to show

the problem for π′; that is, we can assume without loss of generality that π has no blocks of
size 1. This means that we can add any blocks of size 1 to a partition of [n− i] avoiding π to
get a partition of [n] avoiding π. If we only range over partitions of [n− i] with no blocks of
size 1, the resulting partitions will all be distinct. Let B′

n([σ]) be the number of partitions
of [n] avoiding [σ] with no blocks of size 1. Then since we can perform the process of adding
single blocks in

(

n

i

)

ways, we have Bn(σ) ≥
(

n

i

)

B′

n−i(σ)
Now suppose n is a multiple of k, n = km. Then if σ1, . . . , σk−1 ∈ Sm are permutations,

then [σ1, . . . , σk−1] will be a partition of [m(k − 1 + 1)] = [n], and by the definition of
permutability, it must avoid π. Since these all correspond to different partitions, and all
blocks have size k > 1, we can count them to see that

B′

n(π) ≥ m!k−1 =
(n

k

)

!k−1.

By Stirling Approximation, there is c > 0 such that
(

n
k

)

! > c
n

k

(

n
k

)
n

k =
(

c
k

)
n

k n
n

k . Substituting
this in,

B′

n(π) ≥
( c

k

)
(k−1)n

k

n
(k−1)n

k = cn0n
n(1− 1

k
),

where c0 =
(

c
k

)
k−1
k .

7



Now, let n = km + i, 0 ≤ i ≤ k − 1. Since we are dealing with asymptotics we may
assume that n > k. We have that since n − i is a multiple of k, assuming c0 < 1 without
loss of generality for ease of manipulation,

Bn(π) ≥
(

n

i

)

B′

n−i(π)

≥
(

n

i

)

cn−i
0 (n− i)(n−i)(1− 1

k
)

≥ (n− i)i

i!
cn−i
0 (n− i)(n−i)(1− 1

k
)

=
cn0
ci0i!

(n− i)(n−i)(1− 1
k
)+i

=
cn0
ci0i!

(n− i)n(1−
1
k
)+ i

k

≥ cn0
ci0i!

(n− i)n(1−
1
k
)

=
cn0
ci0i!

(

1− i

n

)n(1− 1
k
)
nn(1− 1

k
)

>
cn0
k!

(

1− k

n

)n(1− 1
k
)
nn(1− 1

k
).

Since
(

1− k
n

)n
is positive for n ∈ [k + 1,∞] and limits to e−k 6= 0 as n → ∞, it must have

a minimum, call it d, on n ∈ [k + 1,∞]. Substituting this in and noting d < 1,

Bn(π) >
cn0
k!

(

1− k

n

)n(1− 1
k
)
nn(1− 1

k
)

=
cn0
k!

((

1− k

n

)n)(1− 1
k
)
nn(1− 1

k
)

≥ cn0
k!
d(1−

1
k
)nn(1− 1

k
)

≥ cn0d

k!
nn(1− 1

k
)

>

(

c0d

k!

)n

nn(1− 1
k
)

= cn1n
n(1− 1

k
),

where c1 =
c0d
k!
. This concludes the proof of the theorem.

6 Proof of Theorem 4.3

We now turn to the proof of Theorem 4.3; that is, the case of pm(π) = 1.
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A key idea which will reappear later in this paper is that results on set partition pattern
avoidance depend on (via permutation-correspondent partitions) results in the concept de-
fined earlier of parallel permutation pattern avoidance, because as proven earlier [σ1, . . . , σk]
avoids [σ′

1, . . . , σ
′

k] if and only if (σ1, . . . , σ
′

k) avoids (σ′

1, . . . , σ
′

k) in parallel avoidance. As
we are dealing with the case k = 1, this corresponds to the classical case of asymptotics
in permutation pattern avoidance. To this end, we will utilise the Stanley-Wilf Conjecture,
famously proved by Marcus and Tardos in 2003. [7]

Theorem 6.1 (Marcus, Tardos). For any permutation σ ∈ Sk, let Sn(σ) be the set of
permutations in Sn avoiding σ. Then for all σ there exists a constant c(σ) such that

|Sn(σ)| ≤ cn.

We will now turn to the main proof. We proceed via recursion. For now we will assume
n is a power of 2. Notice that we can define a set partition of [n] via three pieces of data,
two of which lead to recursion:

1. The induced partition on {1, . . . , n
2
}.

2. The induced partition on {n
2
+ 1, . . . , n}.

3. The information of which sets in the two induced partitions above correspond to each
other; that is, are the same set in the full partition.

As an example, for the partition 1246/35/78, we have the induced partition 124/3, the
induced partition 5/6/78, and the matching data that 3 corresponds to 5 and 124 corresponds
to 6.

Let π be a set partition with pm(π) = 1. π is contained in some partition [σ] for some
permutation σ by the definition of permutability. Since [σ] contains π, Bn([σ]) ≥ Bn(π), and
since pm([σ]) = 1, it suffices to prove Theorem 4.3 for [σ]. Thus we may assume without
loss of generality that we are dealing with a partition of the form π = [σ].

Take any set partition π′ of [n], say with m blocks, avoiding [σ]. Then the restriction of
π′ to each of {1, . . . , n

2
} and {n

2
+ 1, . . . , n} must avoid σ. Suppose these restrictions have

a and b blocks, respectively. Then in the third piece of data above, we must match exactly
a + b −m blocks from the first restriction to a + b −m blocks from the second restriction.
There are

(

a

a+b−m

)(

b

a+b−m

)

ways to choose the blocks that we will match to each other. Now
it remains to choose the ordering of the matching.

Suppose we match blocks T1, . . . , Ta+b−m from the restriction of π′ to {1, . . . , n
2
} to blocks

R1, . . . , Ra+b−m from the restriction of π′ to {n
2
+ 1, . . . , n}. As usual, we suppose that the

Ti and Ri are sorted in increasing order of smallest element. Our matching of these will take
the form of a permutation σ′ ∈ Sa+b−m, where Ti is matched to Rσ′(i).

Now, restricting π′ to the smallest elements of T1, . . . , Ta+b−m, R1, . . . , Ra+b−m, we see
that π′ contains the partition with blocks {i, a+ b−m+ σ(i)} for all i ∈ [a+ b−m]–which
is just the partition [σ′]. Thus [σ′] may not contain [σ], so by Proposition 2.1, σ′ avoids σ.
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Thus by Theorem 6.1, there is some c such that there are at most ca+b−m ways to choose the
matching.

Summarizing this information in recursive form, we obtain that where π = [σ],

S(n,m, π) ≤
∑

a,b

S
(n

2
, a, π

)

S
(n

2
, b, π

)

(

a

a + b−m

)(

b

a+ b−m

)

ca+b−m.

(In this recursion and until the end of the proof, when we sum over a and b, the bounds are
0 ≤ a, b ≤ n

2
.) To simplify the binomials, we use the following lemma.

Lemma 6.2. For integers w ≥ x ≥ 0 and y ≥ z ≥ 0,
(

w

x

)(

y

z

)

≤
(

w+y

x+z

)(

x+z

x

)

.

Proof of Lemma. Cancelling out the factorials that can be cancelled and multiplying out,
this is equivalent to

w!y!(w + y − x− z)! ≤ (w − x)!(y − z)!(w + y)!,

which we can rearrange to
(

w + y − x− z

w − x

)

≤
(

w + y

w

)

.

This final statement holds because if we repeatedly recurse the term on the right side using
the binomial identity

(

n

m

)

=
(

n−1
m−1

)

+
(

n−1
m

)

, the term on the left side will be a summand.
This proves the lemma.

Now, letting w = a, y = b, and x = z = a+ b−m in Lemma 6.2,
(

a

a+ b−m

)(

b

a+ b−m

)

≤
(

a+ b

2(a+ b−m)

)(

2(a+ b−m)

a+ b−m

)

≤
(

a + b

2(a + b−m)

)

4a+b−m,

where the last inequality simply comes from the inequality
(

n

k

)

≤ 2n for 0 ≤ k ≤ n. Substi-
tuting this into our recursion,

S(n,m, π) ≤
∑

a,b

S
(n

2
, a, π

)

S
(n

2
, b, π

)

(

a+ b

2(a+ b−m)

)

(4c)a+b−m.

Now, for any n ≥ k ≥ 0,
(

n

2k

)

=
(

n

k

)(

n−k

k

)

≤
(

n

k

)2
. For the binomial term in the recursion, we

get
(

a+b

2(a+b−m)

)

≤
(

a+b

a+b−m

)2
=
(

a+b

m

)2
. Substituting this and multiplying through by (4c)m, we

obtain

(4c)mS(n,m, π) ≤
∑

a,b

(4c)aS
(n

2
, a, π

)

(4c)bS
(n

2
, b, π

)

(

a + b

m

)2

.

Let f(n,m, π) =
√

(4c)mS(n,m, π). We obtain that

f(n,m, π)2 ≤
∑

a,b

f
(n

2
, a, π

)2

f
(n

2
, b, π

)2
(

a+ b

m

)2

≤
(

∑

a,b

f
(n

2
, a, π

)

f
(n

2
, b, π

)

(

a+ b

m

)

)2

,
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simply using the inequality (
∑

xi)
2 ≥

∑

x2
i for xi ≥ 0. Taking the square root of both sides,

f(n,m, π) ≤
∑

a,b

f
(n

2
, a, π

)

f
(n

2
, b, π

)

(

a+ b

m

)

.

Thus if g(n,m, π) is defined by g(1, m, π) = f(1, m, π) and defined for n a power of 2 by the
recursion

g(n,m, π) =
∑

a,b

g
(n

2
, a, π

)

g
(n

2
, b, π

)

(

a + b

m

)

,

then f(n,m, π) ≤ g(n,m, π) for all n a power of 2.
Multiplying both sides by xm and summing from m = 0 to n (and using the fact that

a, b ≤ n
2
so a + b ≤ n), we obtain

n
∑

m=0

g(n,m, π)xm =
∑

a,b

g
(n

2
, a, π

)

g
(n

2
, b, π

)

n
∑

m=0

(

a + b

m

)

xm

=
∑

a,b

g
(n

2
, a, π

)

g
(n

2
, b, π

)

(x+ 1)a+b

=





n

2
∑

a=0

g
(n

2
, a, π

)

(x+ 1)a









n

2
∑

b=0

g
(n

2
, b, π

)

(x+ 1)b



 .

Thus if Fn,π(x) =

n
∑

m=0

g(n,m, π)xm, then we have found the recursion

Fn,π(x) =
(

Fn

2
,π(x+ 1)

)2
.

Writing n = 2k and applying the recursion k times, we obtain

F2k ,π(x) = (F1,π(x+ k))2
k

.

Looking back through the previous steps, we see that

F1,π(x) =

1
∑

m=0

g(1, m, π)xm

=

1
∑

m=0

f(1, m, π)xm

= f(1, 0, π) + f(1, 1, π)x

=
√

S(1, 0, π) +
√

4cS(1, 1, π)x

=
√
4cx

11



(except in the trivial π = {{1}} case). Therefore,

F2k ,π(x) = (
√
4c(x+ k))2

k

.

We now relate this back to our original problem; that of bounding Bn(π). We have that for
n = 2k,

Bn(π) =
n
∑

m=0

S(n,m, π)

=

n
∑

m=0

f(n,m, π)2

(4c)m

≤
n
∑

m=0

f(n,m, π)2

≤
(

n
∑

m=0

f(n,m, π)

)2

≤
(

n
∑

m=0

g(n,m, π)

)2

= (Fn,π(1))
2

= (
√
4c(k + 1))2

k+1

= (4c)n(lg n+ 1)2n.

Now consider the case where n is not necessarily a power of 2. Since π = [σ] has no blocks of
size 1, we can again add any number of blocks of size 1 to increase the length of a partition
avoiding π, so Bn(π) is at least weakly increasing. If n′ is the smallest power of 2 greater
than or equal to n, then lgn′ < lg n+ 1 and n′ < 2n, so

Bn(π) ≤ Bn′(π) ≤ (4c)n
′

(lg n′ + 1)2n
′

(4c)2n(lgn + 2)4n.

Letting d(π) = 16c2, we have obtained the result

Bn(π) < d(π)n(lgn + 2)4n.

Therefore,

lim
n→∞

logBn(π)

n logn
≤ lim

n→∞

log d(π) + 4 log(lg n+ 2)

log n
= 0,

and the proof is complete.

7 Implications of Conjecture 1 for Parallel Pattern Avoid-

ance

This section will be dedicated to the asymptotics of parallel pattern avoidance. We make
the following definition.

12



Definition. If σ1, . . . , σk are permutations of some [m], we say that Sk
n(σ1, . . . , σk) is the

number of k-tuples of permutations (σ′

1, . . . , σ
′

k) with σ′

i ∈ Sn such that (σ′

1, . . . , σ
′

k) avoids
(σ1, . . . , σk) in parallel.

Let σ1, . . . , σk be permutations, say in Sm. Then for every (σ′

1, . . . , σ
′

k) that avoids
(σ1, . . . , σk), we have a corresponding set partition [σ′

1, . . . , σ
′

k] avoiding [σ1, . . . , σk] by Propo-
sition 2.1. Thus Conjecture 1 should imply a corresponding bound on parallel permutation
pattern avoidance. This is summarized in the following conjecture.

Conjecture 2. Let σ1, . . . , σk ∈ Sm be permutations. Then the following hold.

• (Weak Form) lim
n→∞

log Sk
n(σ1, . . . , σk)

n logn
≤ k2 − 1

k
.

• (Strong Form) There exists a constant c2 (depending on the σi) such that Sk
n(σ1, . . . , σk) ≤

cn2n
n k

2
−1
k for all n.

If these bounds hold, they are tight for all (σ1, . . . , σk) (as long as they are not of length
1), as we will see later in this section. Again, it is obvious that the strong form implies the
weak form. The strong form for k = 1 is simply Theorem 6.1.

The following proposition formalizes the discussion in the paragraph preceding the con-
jecture. As such, the proof is quite simple.

Proposition 7.1. The forms of Conjecture 1 imply the corresponding forms of Conjecture
2. In particular, the forms of Conjecture 1 on [σ1, . . . , σk] imply the corresponding forms of
Conjecture 2 for (σ1, . . . , σk).

Proof. Each element of Sk
n(σ1, . . . , σk) gives an element of B(k+1)n([σ1, . . . , σk]) by Proposition

2.1, and these elements are clearly different. Thus Sk
n(σ1, . . . , σk) ≤ B(k+1)n([σ1, . . . , σk]).

Since [σ1, . . . , σk] has permutability k, substituting into Conjecture 1 yields exactly 2.

The main theorem of this section is the following.

Theorem 7.2. Let m > 1 be an integer, and consider the trivial permutation 12 · · ·m ∈ Sm.
There exists (m-dependent) constants c2 > c1 > 0 such that for n ∈ N,

cn1n
k
2
−1
k

n ≤ Sk
n(12 · · ·m, . . . , 12 · · ·m) ≤ cn2n

k
2
−1
k

n.

In particular, Conjecture 2 holds for many copies of the trivial permutation.

The proof of Theorem 7.2 follows relatively simply from previous results and ideas.

Proof of Theorem 7.2. We first translate to the language of probabilities. Let qm,k(n) be the
probability that randomly chosen σ1, . . . , σk ∈ Sn will have (σ1, . . . , σk) avoiding (12 · · ·m, . . . , 12 · · ·m).

Note that since there are n!k ways to choose k permutations in Sn, qm,k(n) =
Sk
n(12···m,...,12···m)

n!k
.
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We know that n! is within an exponential factor of nn by Stirling approximation, so if we
divide the desired statement by n!k, we obtain that we want to show

cn1n
−

n

k ≤ qm,k(n) ≤ cn2n
−

n

k

for all n ∈ N for some constants c2 > c1 > 0.
We now translate the problem into the language of random k+1-dimensional orderings as

follows. Let p1, . . . , pn be random points (in the usual sense) in [0, 1]k+1. We can sort them
by their first coordinates. Once this is done, looking at the ordering of the ith coordinates
of all n points for some fixed 2 ≤ i ≤ k + 1 will generate a permutation, so we get k
permutations σ1, . . . , σk given by these orderings. It is easy to see that these permutations
are independently and uniformly randomly chosen.

Now, we consider the (random) poset, also known as the random k+1-dimensional order
Pk+1(n), on these points as follows. We say that pi < pj if and only if all coordinates of pi
are less than those of pj. Suppose pi has the ai-th smallest first coordinate, and similarly
pj has the aj-th smallest. Then the condition that pi < pj corresponds to (looking at the
first coordinate) the condition that ai < aj, and (looking at the other k coordinates) the
condition that σℓ(ai) < σℓ(aj) for all ℓ ∈ [k]. This idea of relating sets of k permutations to
random k + 1-dimensional orderings seems to go back to Winkler. [9]

By definition, (σ1, . . . , σk) avoids (12 · · ·m, . . . , 12 · · ·m) if and only if there is no b1 <
· · · < bm with σi(b1) < · · · < σi(bm) for all i, and we can see by the previous paragraph that
this is in turn equivalent to there being no length-m chain in Pk+1(n). To summarize, we
have shown that qm,k(n) is the probability that Pk+1(n) contains no length-m chain.

By Mirsky’s Theorem, this is the same as the probability that Pk+1(n) can be partitioned
into m−1 (possibly empty) disjoint antichains. We casework on the partition of the elements
into antichains. Since there are m− 1 choices for each element, there are at most (m− 1)n

ways that we can choose the sets for the antichains (it is not equality as some of these maybe
the same upon for example permuting the sets). If these sets have a1, . . . , am−1 elements each,
the probability that the ith set is an antichain is the probability that it has no chains of size
at least 2; that is, it is q2,k(ai). Summing and bounding the sum by the number of terms
times the maximal element, we see that

qm,k(n) ≤ (m− 1)n max
a1+···+am−1=n

m−1
∏

i=1

q2,k(ai).

Suppose we have shown the result for m = 2. Since qm,k(n) ≥ q2,k(n), we have shown the
lower bound for all m. Now, since n! is within an exponential factor of nn asymptotically,
we have that there exists c such that q2,k(n) ≤ cnn!−

1
k for all n. Then substituting into the

equation above shows

qm,k(n) ≤ (m− 1)n max
a1+···+am−1=n

m−1
∏

i=1

q2,k(ai)

≤ (m− 1)n max
a1+···+am−1=n

m−1
∏

i=1

caiai!
−

1
k
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= (m− 1)ncn max
a1+···+am−1=n

1
(

m−1
∏

i=1

ai!

)
1
k

= (m− 1)ncnn!−
1
k max
a1+···+am−1=n

(

n

a1, . . . , am−1

)
1
k

≤ (m− 1)ncnn!−
1
k (m− 1)

n

k

=
(

c(m− 1)1+
1
k

)n

n!−
1
k ,

which is within an exponential factor of
(

c(m− 1)1+
1
k

)n

n−
n

k (again by Stirling approxima-

tion), so the upper bound also follows from all m. (The second to last step in the previous
chain of inequalities holds as the sum of all such multinomial coefficients is (m− 1)n.)

Thus it suffices to show the result when m = 2. We know that q2,k(n) is the probability
that Pk+1(n) is itself an antichain. However, this follows directly from prior results–Brightwell
showed in Theorem 1 of [2] that the probability that Pk+1(n) is an antichain is at most
(

2
1

k+1

(

k+1)
k+2
k )nn−

n

k (shifting k by one from the exact result stated there), and Crane and

Georgiou proved in Section 1.5 of [3] that this probability is also at least
(

(1
e
+ o(1)

)n
n−

n

k .
These results together prove the desired bound for m = 2, and thus finish the proof.

A nice corollary is that, as promised, it follows from Theorem 7.2 that the bounds in
Conjecture 2 are sharp.

Corollary 7.3. Let m > 1 be an integer and σ1, . . . , σk ∈ Sm be permutations. Then there

exists c1 > 0 such that Sk
n(σ1, . . . , σk) ≥ cn1n

k
2
−1
k

n.

Proof. Let τ1, . . . , τk ∈ S2 be such that τi has the same relative ordering as the first two terms
of σi. Then (σ1, . . . , σk) contains (τ1, . . . , τk), so Sk

n(σ1, . . . , σk) ≥ Sk
n(τ1, . . . , τk), as any k-

tuple avoiding the latter must avoid the former. Thus it suffices to show the problem for
τ1, . . . , τk ∈ S2. But some permutation π ∈ Sn contains the pattern 21 at exactly the pairs of
indices where the complement of π (the permutation obtained replacing each i in by n+1−i,
so for example 1243 becomes 4312) contains 12. So replacing all permutations in the places
where τk = 21 by their complement gives a bijection showing Sk

n(τ1, . . . , τk) = Sk
n(12, . . . , 12).

Therefore, it suffices to show that Sk
n(12, . . . , 12) ≥ cn1n

k
2
−1
k

n for some c1 > 0. But this is
simply the lower bound from the m = 2 case of Theorem 7.2, finishing the proof of the
corollary.

8 Further Directions

There are several possible directions to attempt to extend these results. The most obvious of
these comes in the form of Conjectures 1 and 2. To the author’s knowledge, little is known
in this area except for the results described in this paper. For example, the simplest case
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where the permutations are nontrivial is S2
n(123, 132), and even this does not appear to have

been studied before. Even proving Conjecture 2 in this case does not seem obvious.
One obstacle to progress on Conjecture 1 is that the recursions become more complicated

as k ≥ 2. The corresponding way to proceed would be to let n be a power of k + 1 and
partition [n] into {1, . . . , n

k+1
}, . . . , { kn

k+1
+ 1, . . . , n}, and then to look at the restrictions

of a permutation to each of these sets and ways of combining them. However, the ways of
combining them are more complicated, as one block of the partition can strech over anywhere
from 1 to k + 1 of these partitions. Although the blocks that stretch over k + 1 partitions
can possibly be dealt with using Conjecture 2 (in an attempt to reduce Conjecture 1 to
Conjecture 2), the blocks that stretch over k partitions have no obvious restrictions (for
example, any permutation consisting of blocks of size k or less avoids [σ1, . . . , σk]). Simply
allowing all blocks of size k does not appear to yield a strong enough recursion. However, it
is possible that the recursion may generalize in some other way, perhaps involving casework
on some other statistic besides the number of blocks.

Another natural notion for further study is that of the permutability statistic and its
distribution. To the author’s knowledge, this statistic has not explicitly appeared before in
the literature, and given its seemingly strong connection to asymptotics, it may be worthwhile
to study.
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