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Abstract. We consider combinatorial aspects of λ-terms in the model based on de Bruijn indices where
each building constructor is of size one. Surprisingly, the counting sequence for λ-terms corresponds also
to two families of binary trees, namely black-white trees and zigzag-free ones. We provide a constructive
proof of this fact by exhibiting appropriate bijections. Moreover, we identify the sequence of Motzkin
numbers with the counting sequence for neutral λ-terms, giving a bijection which, in consequence,
results in an exact-size sampler for the latter based on the exact-size sampler for Motzkin trees of
Bodini et alli. Using the powerful theory of analytic combinatorics, we state several results concerning
the asymptotic growth rate of λ-terms in neutral, normal, and head normal forms. Finally, we investigate
the asymptotic density of λ-terms containing arbitrary fixed subterms showing that, inter alia, strongly
normalising or typeable terms are asymptotically negligible in the set of all λ-terms.

1. Introduction

Quantitative investigations in computational logic, where combinatorial aspects and asymptotic be-
haviour of large typical entities related to computations and logic are studied, form an attractive and
actively developed branch of modern computer science. The unique combination of combinatorics, logic,
and computer science leads to a synthesis of approaches and techniques resulting in new discoveries
regarding the relation between computations and their syntactic realisation.

Representing a rather functional approach to logic and computations, lambda calculus was first studied
by David et al. (see [10]). Assuming a canonical representation of closed λ-terms, David et al. showed
that asymptotically almost all λ-terms are strongly normalising. Similarly to their model, the authors
of [8] considered the model in which the size of every variable, application, and abstraction is equal
to one. A different model of lambda calculus with de Bruijn indices, used to cope with the infinite
number of variables, was considered in [13]. In [19] John Tromp introduced a binary encoding of lambda
calculus and combinatory logic, which allowed him to construct compact and efficient self-interpreters
for both languages. Quantitative aspects of the aforementioned lambda calculus representation were
studied in [14]. The framework of combinatory logic, were computations are represented without the use
of bound variables, was investigated in [10, 6].

It is worth noticing that λ-calculus and combinatory logic are not the only computational models
considered in the literature. In [16] Hamkins and Miasnikov considered the framework of Turing machines,
showing that the halting problem is decidable on a set of asymptotic density one among the set of all
Turing machines. Somewhat contrary to their result, Bienvenu et al. considered a different information-
theory model of Turing machines, showing that the set of terminating Turing machines has no asymptotic
density [7]. In other words, the sequence of probabilities that a uniformly random Turing machine of
size n terminates, has no limit as n tends to infinity.

In this paper we propose a natural way of measuring the size of λ-terms represented using the unary
de Bruijn notation. In our model we assume that all the building constructors, i.e. λ-abstractions,
applications, successors and zeros contribute one to the term size.

The paper is organised as follows. In section 2 we list the employed analytic tools and generat-
ing function methods with corresponding notation. In section 3 we state our natural combinatorial
model. In subsection 3.1 we count plain λ-terms giving a corresponding holonomic equation in the sub-
sequent subsection 3.2. Next, we exhibit bijections between plain λ-terms and black-white trees (see
sections 3.3 and 3.4) as well as zigzag-free trees (see sections 3.5 and 3.6). In sections 3.7 and 3.8
we focus on neutral λ-terms and β-normal forms, exhibiting a bijection between the former terms and
Motzkin trees. Head normal forms and neutral head normal forms are considered in subsection 3.9. In
the next subsection 3.10 we count the number of plain λ-terms with bounded number of free indices.
In section 4 we discuss some alternative notions of size. Finally, in section 5 we focus on the family of
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λ-terms containing any arbitrary fixed subterm, showing that in the considered model asymptotically
almost all λ-terms are neither strongly normalising nor typeable.

A conference version of this paper appeared as [5].

2. Generating functions and analytic methods

Suppose that we are given a countable set of objects A and a size function f : A → N such that
an := |f−1({n})| is finite for each n ∈ N, i.e. there are only finitely many objects of any given size
n. We call the pair A = (A, f) a combinatorial class. In such a case, we can consider A’s counting
sequence (an)n∈N with its corresponding ordinary generating function A(z) =

∑
n≥0 anz

n. Viewing A(z)
as an analytic function defined in some neighbourhood of the complex plane origin, we can employ the
methods of analytic combinatorics (see, e.g. [20, 11]) and link the properties of A(z) with the asymptotic
behaviour of its underlying counting sequence (an)n∈N.

Throughout the paper, we use the following common notational conventions and abbreviations. We
use capital calligraphic letters A,B, C, . . . to denote combinatorial classes. Their corresponding ordinary
generating functions are denoted as A(z), B(z), C(z), . . .. The coefficient standing by zn in the Maclaurin
series expansion of A(z) is denoted as [zn]A(z). Whenever a generating function A(z) yields a dominating
singularity, we use ρA to denote it. Sometimes, when we are interested in the approximate value of ρA
we write ρA

.
= c, where c is its numerical approximation. To denote addition and subtraction operations

on combinatorial classes we use � and �, respectively. Given two sequences (an)n∈N and (bn)n∈N of
the same asymptotic order, i.e. satisfying limn→∞ an/bn = 1, we write an ∼ bn. Since we are exclusively
dealing with ordinary generating functions, whenever we write generating function, we mean ordinary
generating function. We use the underbar notation to denote de Bruijn indices. And so, n stands for the
nth de Bruijn index, i.e. Sn 0· .

2.1. Analytic combinatorics. The employed method of singularity analysis (see [11]) consists of a
few steps. We start with a combinatorial class A. Then, we find a closed form expression defining its
generating function A(z). Next, we locate A(z)’s dominant singularities, i.e. singularities with smallest
modulus, determining the exponential growth rate of (an)n∈N as dictated by the following theorem.

Theorem 1 (Exponential Growth Formula, see [11, Theorem IV.7]). If A(z) is analytic at 0 and R is
the modulus of a singularity nearest to the origin in the sense that

R = sup{r ≥ 0 : A(z) is analytic in |z| < r},
then the coefficient an = [zn]A(z) satisfies

an = R−nθ(n) with lim sup |θ(n)| 1n = 1.

In the case of analytic functions derived from combinatorial classes, the search for dominant singular-
ities simplifies to finding A(z)’s radius of convergence.

Theorem 2 (Pringsheim, see [11, Theorem IV.6]). If A(z) is representable at the origin by a series
expansion that has non-negative coefficients and radius of convergence R, then the point z = R is a
singularity of A(z).

In order to find sub-exponential factors contributing to (an)n∈N’s growth rate, we have to determine
the types and relative location of A(z)’s dominating singularities. If A(z) has just one single algebraic
dominating singularity, we can use the following standard function scale combined with the well known
Newton-Puiseux series expansion (see [11, Chapter VI.4. The process of singularity analysis]).

Theorem 3 (Standard function scale, see [11, Theorem VI.1]). Let α ∈ C\Z≤0. Then f(z) = (1− z)−α
admits for large n a complete asymptotic expansion in form of

[zn]f(z) =
nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2
+O(

1

n3
)

)
where Γ is the Euler Gamma function.

Theorem 4 (Newton-Puiseux, see [11, Theorem VII.7]). Let f(z) be a branch of an algebraic function
P (z, f(z)) = 0. Then in a circular neighbourhood of a singularity ζ slit along a ray emanating from ζ,
f(z) admits a fractional series expansion that is locally convergent and of the form

f(z) =
∑
k≥k0

ck(z − ζ)
k/κ
,

where k0 ∈ Z and κ ≥ 1.
2



3. Natural counting

Let N and M be two λ-terms with some bound variables. If bound variables in N can be renamed
in such a way that N and M become equal, then both N and M are said to be α-convertible. In
particular, this is an equivalence relation (see, e.g. [4]) such that if two λ-terms belong to the same
α-equivalence class, then both represent the same computable function (though the converse implication
does not hold). Due to the presence of infinitely many variables in λ-calculus, for each term T with
bound variables there are countably many inhabitants in [T ]α. We are therefore interested in counting
α-equivalence classes rather than particular λ-terms. In order to deal with the issue of α-equivalence,
we consider λ-terms in the unary de Bruijn notation (see, e.g. [13]) in which λ-terms are canonical
representatives of α-equivalence classes. For that reason, we are in fact counting α-equivalence classes
of regular λ-terms.

Consider the following natural way of defining the size of λ-terms, in which all the constructors
contribute one to the overall term size. This means that abstractions, applications, successors and zeros
are all of size one. Formally,

|λN | = |N |+ 1,

|N M | = |N |+ |M |+ 1,

|Sn| = |n|+ 1,

|0· | = 1.

For instance, the λ-term for K which is traditionally written as λx.λy.x, in the de Bruijn model is written
as λλS0· . We have |λλS0· | = 4 as there are two λ-abstractions, one successor S and one 0· . The λ-term
for S (which should not be confused with the successor symbol) is written as λx.λy.λz.xz(yz), whereas
using de Bruijn indices we write λλλ(((SS0· )0· )((S0· )0· )). Its size is equal to 13 since there are three
λ-abstractions, three applications, three successors S’s, and four 0· ’s.

3.1. Plain λ-terms. In this section we are interested in the generating function for the sequence corre-
sponding to the numbers of λ-terms. Let us start by considering the class of de Bruijn indices.

Proposition 1. Let D(z) stand for the generating function enumerating de Bruijn indices. Then

D(z) =
z

1− z
=

∞∑
n=1

zn.

Proof. Let n ∈ N. There exists a unique de Bruijn index n encoding n. Since application and 0· are both
of size 1, the size of n is equal to n+ 1 and thus ([zn]D(z))n∈N = (0, 1, 1, . . .), which immediately implies
D(z) = z

1−z . �

Proposition 2. Let L∞(z) stand for the generating function enumerating all λ-terms. Then

L∞(z) =
(1− z)3/2 −

√
1− 3z − z2 − z3

2z
√

1− z
.

Proof. Since λ-terms are either applications, abstractions or de Bruijn indices, the set L∞ of lambda
terms can be expressed as

L∞ = L∞L∞ � λL∞ �D.
Using this representation, we immediately obtain a corresponding quadratic equation defining the gen-
erating function L∞(z):

(1) L∞(z) = zL∞(z)2 + zL∞(z) +
z

1− z
.

Computing its discriminant ∆L∞(z) = 1−3z−z2−z3
1−z we finally solve the above equation:

L∞(z) =
(1− z)−

√
∆L∞(z)

2z

=
(1− z)3/2 −

√
1− 3z − z2 − z3

2z
√

1− z
.

�

Using the generating function L∞(z) we can now easily find the asymptotic growth rate of the sequence
([zn]L∞(z))n∈N.

3



Theorem 5. The asymptotic approximation of the number of λ-terms of size n is given by

[zn]L∞(z) ∼ (3.38298 . . .)
n C

n3/2
, where C

.
= 0.60676.

Proof. Examining the function L∞(z) we note that its dominating singularity ρL∞ is equal to the root
of smallest modulus of 1− 3z − z2 − z3. Therefore,

ρL∞ =
1

3

(
3

√
26 + 6

√
33− 4 22/3

3
√

13 + 3
√

33
− 1

)
.
= 0.29559774252208393

and hence 1/ρL∞
.
= 3.38298. Let us write L∞(z) as

L∞(z) =
(1− z)−

√
1−3z−z2−z3

1−z

2z

=
(1− z)−

√
(ρL∞−z)·Q(z)

1−z

2z
,

for the appropriate polynomial Q(z). Applying Theorem 3 and Theorem 4 we obtain

[zn]L∞(z) ∼
(

1

ρL∞

)n
· n
−3/2

Γ(− 1
2 )

C̃ with C̃ =
−
√
ρL∞

Q(ρL∞ )
1−ρL∞

2ρL∞
.

Since Q(ρL∞)
.
= 3.85321718036529, we finally get

C =
C̃

Γ(− 1
2 )

.
= 0.60676.

�

The sequence ([zn]L∞(z))n∈N is known as A105633 in the Online Encyclopedia of Integer Se-
quences [2] and counts, beside plain λ-terms, black-white binary trees (described in Section 3.3) and
binary trees without zigzags (described in Section 3.5). Its first 15 values are as follows:

0, 1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, 31160, 93802, 284789.

3.2. Holonomic representation of L∞(z). Using the Maple package gfun (see [17]) we find the fol-
lowing holonomic equation defining L∞(z):

z3 + z2 − 2z + (z3 + 3z2 − 3z + 1)L∞(z) + (z5 + 2z3 − 4z2 + z)L′∞(z) = 0

with L∞(0) = 0. Such an implicit form of L∞(z) allows us to derive a simpler, compared to the
combinatorial definition, recursive definition of its coefficients. For convenience, let us denote L∞,n :=
[zn]L∞(z). Now, we can express the recursive definition of L∞,n as:

L∞,0 = 0, L∞,1 = 1, L∞,2 = 2, L∞,3 = 4,

L∞,n =
(4n− 1)L∞,n−1 − (2n− 1)L∞,n−2 − L∞,n−3 − (n− 4)L∞,n−4

n+ 1
.

Note that L∞,n depends on the previous four values L∞,n−1, L∞,n−2, L∞,n−3 and L∞,n−4. Exploiting
this fact, the above definition allows us to compute the exact value L∞,n using only linear number of
arithmetic operations. Moreover, we note that this holonomic equation could be used to develop a
random generator in the spirit of [3].

3.3. E-free black-white binary trees. A black-white binary tree is a binary tree in which nodes are
coloured either black • or white ◦. Let E be a set of edges. An E-free black-white binary tree is a black-
white binary tree in which edges from the set E are forbidden. For instance, if the set of forbidden edges

is E1 = {
◦

• ,
•

◦ ,
•

• ,
◦

◦ }, then the only allowed edges are A1 = {
•

◦ ,
•

• ,
◦

◦ ,
◦

• }. The

size of a black-white tree is the total number of its nodes. For E1, like for E2 = {
◦

• ,
•

◦ ,
•

• ,
◦

◦ },
which is obtained by left-right symmetry, the E-free black-white binary trees are counted by A105633,
see [15]. Henceforth we consider only the set E1 and speak rather in terms of allowed edge patterns,
i.e. A1. For convenience, whenever we use the term black-white trees, we mean the black-white trees with
allowed set of patterns A1. Unless otherwise stated, we assume that black-white trees have black roots.

4
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Let BW• and BW◦ denote the set of black-white trees with a black, respectively white, root. Interpret-
ing the set of allowed edges A1 combinatorially, we can define both BW• and BW◦ using the following
mutually recursive equations:

BW• = • � •
BW•

� •
BW◦

BW◦ = ◦ �
◦

BW◦
�

◦
BW•

�
◦

BW◦ BW•
Such a representation yields the following identities on the corresponding generating functions BW•(z)

and BW◦(z):

BW•(z) = z + zBW•(z) + zBW◦(z),

BW◦(z) = z + zBW◦(z) + zBW•(z) + zBW◦(z)BW•(z).

Reformulating this system, we obtain

BW◦(z) =
(1− z)BW•(z)− z

z
,

and hence
(1− z)zBW 2

• (z)− (1− z)2
BW•(z) + z = 0.

Notice that the equation defining BW•(z) is equivalent to the equation (1) defining L∞(z) up to
multiplication by (1 − z). It follows that both ([zn]BW•(z))n∈N and ([zn]L∞(z))n∈N are equal and
therefore there exists a bijection between λ-terms and black-white trees.

3.4. Bijection between λ-terms and black-white trees. We are now ready to give a bijective
translation LtoBw from λ-terms to black-white trees and the inverse translation BwtoL from black-white
trees to λ-terms:

0· LtoBw−−−−→ • • BwtoL−−−−→ 0·

S n
LtoBw−−−−→

LtoBw(n)

•

t

•
BwtoL−−−−→ S BwtoL(t)

λM
LtoBw−−−−→

LtoBw(M)

◦

t

◦
BwtoL−−−−→ λBwtoL(t)

M1M2
LtoBw−−−−→

LtoBw(M2)

◦

LtoBw(M1)

t2

◦

t1

BwtoL−−−−→ BwtoL(t1) BwtoL(t2)

Proposition 3. Both LtoBw and BwtoL are mutually inverse bijections, i.e.

BwtoL ◦ LtoBw = idΛ and LtoBw ◦ BwtoL = idBW• .

In order to translate a given black-white tree t into a corresponding λ-term, we decompose t depending
on the type of its leftmost node. If t is a single black node •, we translate it into 0· . Otherwise, we have
to consider three cases based on the set A1 of allowed edges and map them into λ-abstraction, successor,
or application, respectively.

Example 1. Let us give two black-white trees corresponding to:
• Ω = (λ.xx)(λ.xx) = (λ(0· 0· ))λ(0· 0· ), and
• Y = λf.(λx.f(xx))(λx.f(xx)) = λ(λ(S 0· (0· 0· ))λ(S 0· (0· 0· )))

LtoBw(Ω) •
◦

◦ •
◦
•

◦
◦ •

LtoBw(Y) •
◦

◦ •
◦ •

◦ •
◦ •
◦

◦ •
◦ •
•

5



We provide Haskell implementations of LtoBw and BwtoL which can be found at [1]. Our implemen-
tations were tested using Quickcheck [9].

3.5. Binary trees without zigzags. In this section we are interested in zigzag-free binary trees,
i.e. trees without a forbidden zigzag subtree:

×

×

×

Let us denote BZ1 the set of zigzag free trees. The above negative criterion can be stated positively.
Wherever inside such a tree we start from a node by a left branch and follow only left branches, we get
to an isolated node ×, i.e. a leaf. This description can be translated into the following combinatorial
equations:

BZ1 =
×
BZ1

� BZ2

BZ2 = × �
×

BZ2
�

×
BZ2 BZ1

Similarly to L∞(z) and BW•(z), the generating function BZ1(z) can be expressed as a solution of the
functional equation:

z(1− z)BZ2
1 (z) + (1− z)2

BZ1(z) + z = 0.

It follows that the sequence ([zn]BZ1(z))n∈N is equal to ([zn]BW•(z))n∈N and also to ([zn]L∞(z))n∈N,
suggesting that appropriate bijections exist. We note that Sapounakis et al. [18] consider the same
sequence defined in terms of constrained Dyck paths and give the following explicit formula:

[zn]BZ1(z) = [zn]L∞(z) =

(n−1)÷2∑
k=0

(−1)
k

n− k

(
n− k
k

)(
2n− 3k

n− 2k − 1

)
.

3.6. Bijection between black-white trees and zigzag-free trees. We start by giving a bijective
translation BwtoBz from black-white trees to zigzag-free ones. For convenience, we use u1 and u2 to
denote arbitrary (possibly empty) black-white trees.

• BwtoBz−−−−→ ×
•

t
BwtoBz−−−−→

×
BwtoBz(t)

when t =
•

u1 u2

•
t

BwtoBz−−−−→ BwtoBz(t) when t =
◦

u1 u2

◦ BwtoBz−−−−→
×

×
◦

t
BwtoBz−−−−→

×
BwtoBz(t)

when t =
◦

u1 u2

◦
t

BwtoBz−−−−→
×

× BwtoBz(t)
when t =

•
u1 u2

◦
t t′

BwtoBz−−−−→
×

BwtoBz(t) BwtoBz(t′)

Proposition 4. Let t be a black-white tree. Then trees t and BwtoBz(t) are of equal size.

Proof. Let us notice that it suffices to consider the case BwtoBz
( •

t

)
, since it results in subtracting

one black node. Because the root of t is white, the next translation step is done according to one of the
last four rules, which eventually falls into either the fourth or the sixth equation. Since both of them
enforce adding one additional ×, the total number of nodes is preserved. �

6



What remains is to give the inverse translation, which we present as two mutually recursive functions
BztoBw• and BztoBw◦:

× BztoBw•−−−−−→ •
×

t
BztoBw•−−−−−→

•
BztoBw•(t)

×
×

BztoBw•−−−−−→
•

◦

×
t

BztoBw•−−−−−→
•

◦
BztoBw◦(t)

×
× t

BztoBw•−−−−−→
•

◦
BztoBw•(t)

×
t t′

BztoBw•−−−−−→
•

◦
BztoBw◦(t) BztoBw•(t

′)

×
×

BztoBw◦−−−−−→ ◦

×
× t

BztoBw◦−−−−−→
◦

BztoBw•(t)

×
t

BztoBw◦−−−−−→
◦

BztoBw◦(t)

×
t t′

BztoBw◦−−−−−→
◦

BztoBw◦(t) BztoBw•(t
′)

Proposition 5. Let t be a zigzag-free tree. Then trees t and BztoBw•(t) are of equal size.

Proof. The fourth and the sixth equations defining BztoBw• introduce an additional white node ◦, but
since both the first and the second equations of BztoBw◦ remove one node, the overall tree size is
preserved. �

Proposition 6. Both BztoBw• and BwtoBz are mutually inverse bijections, i.e.

BztoBw• ◦ BwtoBz = idBW• and BwtoBz ◦ BztoBw• = idBZ .

Example 2. Let us present the zigzag-free tree corresponding to the aforementioned black-white tree
associated with Ω:

LtoBw(Ω) •
◦

◦ •
◦
•

◦
◦ •

BwtoBz(LtoBw(Ω)) ×
× ×

×
× ×
× ×

×

We provide Haskell implementations of BwtoBz, BztoBw• and BztoBw◦ which can be found at [1].
Our implementations were tested using Quickcheck [9].

3.7. Neutral λ-terms and β-normal forms. Here we are interested in the class N of β-normal forms,
i.e. λ-terms which do not have subterms of the form (λN)M , and the associated class M of neutral
terms, i.e. normal forms without head abstractions. We start by giving a combinatorial specification of

7



normal forms involving the classM of neutral terms:

N = M� λN
M = MN �D
D = SD � 0·

Normal forms either are neutral or start with a head abstraction. Neutral terms, in turn, are either
de Bruijn indices, or are in form of an application of a neutral term to a normal form. The above
specification yields the following system of equations for the corresponding generating functions:

N(z) = M(z) + zN(z),

M(z) = zM(z)N(z) +D(z),

D(z) = zD(z) + z.

Solving this system, we obtain the following generating functions:

M(z) =
1− z −

√
(1 + z)(1− 3z)

2z
,

N(z) =
M(z)

1− z
.

Note thatM(z) is the generating function corresponding to the counting sequence of Motzkin numbers
(see, e.g. [11, p. 396]), for convenience denoted henceforth as T . Naturally, it means that there exists a
size-preserving bijection between Motzkin trees and neutral forms.

3.8. Bijection between Motzkin trees and neutral forms. Let un denote the unary Motzkin path
of size n > 0. We start by defining two auxiliary operations UnToL and UnToD, translating unary
Motzkin paths into λ-paths and de Bruijn indices, respectively:

• UnToL−−−−→ λ • UnToD−−−−→ 0·

•

un

UnToL−−−−→
λ

UnToL (un)

•

un

UnToD−−−−→
S

UnToD (un)

Using UnToL and UnToD we can now define a bijective translation MoToNe from Motzkin trees to
corresponding neutral terms:

un
MoToNe−−−−−→ UnToD (un)

un

•

t t′

MoToNe−−−−−→

@

MoToNe (t) UnToL (un)

MoToNe (t′)

•

t t′

MoToNe−−−−−→
@

MoToNe (t) MoToNe (t′)

Proposition 7. MoToNe is a bijection.

Proof. The proposition is an easy consequence of the fact that MoToNe preserves the exact number of
unary and binary nodes. �

In order to translate Motzkin trees to corresponding neutral terms we have to consider two cases.
Either we are given a Motzkin tree starting with a unary node or a Motzkin tree starting with a binary
node. The second case is straightforward due to the fact that binary nodes correspond to neutral term
applications. Assume we are given a Motzkin tree starting with a unary path un of size n. We have to
decide whether the path corresponds to a de Bruijn index or to a chain of λ-abstractions. This distinction
is uniquely determined by the existence of the path’s splitting node – the binary node directly below un.

8



If un has a splitting node, then it corresponds to a chain of n λ-abstractions which will be placed on top
of the corresponding right neutral term constructed recursively from un’s splitting node. Otherwise, un
corresponds to the nth de Bruijn index.

What remains is to give the inverse translation NeToMo from neutral terms to Motzkin trees. Let
LToUn and DToUn denote the inverse functions of UnToL and UnToD, respectively. Let ln denote the
unary λ-path of size n > 0. The translation NeToMo is given by:

n
NeToMo−−−−−→ DToUn (n)

@

t ln

t′

NeToMo−−−−−→

LToUn (ln)

•

NeToMo (t) NeToMo (t′)

where t′ does not start with a head λ

@

t t′
NeToMo−−−−−→

•

NeToMo (t) NeToMo (t′)

Proposition 8. MoToNe ◦ NeToMo = idM and NeToMo ◦MoToNe = idT .

Example 3. Consider the neutral term P = 0· (λλ0· (S 0· )). The following figure presents P and its
Motzkin tree counterpart through the translation MoToNe.

Neutral term P @

0· λ

λ

@

0· S

0·

MoToNe(P) •
•
•

• •
• •

•

Let us notice that the simple translation NeToMo allows us to design an effective exact-size sampler
for neutral λ-terms in the natural size notion, employing the sampler for Motzkin trees of Bacher et
al. [3]. Given a number n ∈ N, we sample a uniformly random Motzkin tree of size n, constructing a
corresponding neutral λ-term out of it using the NeToMo translation. The resulting outcome is clearly
a uniformly random neutral λ-term of size n. As our translation is linear in time and space, the overall
complexity of the described sampler is, on average, linear in both time and space.

3.9. Head normal forms. In this section we are interested in counting head normal forms, i.e. λ-terms
without head redexes and the associated auxiliary set K of neutral head normal forms, as defined by the
following combinatorial specification:

H = K � λH
K = KL∞ �D

A head normal form either starts with a head λ-abstraction followed by another head normal form,
or is a neutral head normal form. In the latter case, it must be a de Bruijn index or an application of a
neutral head normal form to an arbitrary λ-term. Translating the above specification into a corresponding
system of functional equations we obtain:

H(z) = K(z) + zH(z),

K(z) = zK(z)L∞(z) +D(z)

and hence

K(z) =
D(z)

1− zL∞(z)
,

H(z) =
K(z)

1− z
.(2)

9



It is easy to verify that we have

K(z) = z + zL∞(z).(3)

Naturally, the above equation suggests an appropriate translation between the set of neutral head
normal forms and the set of plain λ-terms. Consider the following partial mapping K 7→ L∞:

0· N1N2 . . . Nm ←→ (λN1)N2 . . . Nm where m > 0

(Sn)N1 . . . Nm ←→ nN1 . . . Nm where m ≥ 0

Note that the neutral head normal forms are of size by one greater than the size of their plain λ-term
counterparts. Since each plain λ-term is either in form of (λN1)N2 . . . Nm for some m > 0 or nN1 . . . Nm
(note that in this case m can be equal to 0), the above mapping is surjective, explaining the zL∞(z)
part in Equation 3. The z part comes from the fact that the only λ-term in neutral head normal form
not covered by the mapping is 0· , which is of size one.

Immediately, from Theorem 5 we get the following results.

Proposition 9. The asymptotic approximation of the number of λ-terms in neutral head normal form
of size n+ 1 is given by

[zn+1]K(z) ∼
(

1

ρL∞

)n
C

n
3
2

with C .
= 0.60676 and ρL∞

.
= 0.29559.

In particular, we obtain the following easy consequence.

Corollary 1. The density of neutral head normal forms in the set of plain terms equal to ρL∞ .

Solving Equation 2 we can find the asymptotic approximation on the growth rate of head normal
forms, similarly to plain λ-terms (see Theorem 5).

Proposition 10. The asymptotic approximation of the number of λ-terms in head normal form of size
n is given by

[zn]H(z) ∼
(

1

ρL∞

)n
CH

n
3
2

with CH
.
= 0.254625911836762946.

Proof. The proof is analogous to the one of Theorem 5 with

CH =
−
√
ρL∞

Q(ρL∞ )
1−ρL∞

2(1− ρL∞)Γ(− 1
2 )

.
= 0.254625911836762946.

�

Comparing it with the growth rate of [zn]L∞(z) we obtain the following corollary.

Corollary 2. The density of head normal forms in the set of plain terms equal to
ρL∞

1− ρL∞
.
= 0.41964337760707887.

Note that with the above density results, we are able to explain the effectiveness of Boltzmann samplers
for plain λ-terms (see, e.g. [13]), used with an additional rejection phase. Consider the following approach.
In order to sample a (neutral) head normal λ-term, we draw random plain λ-terms until the first (neutral)
head normal λ-term is sampled. In the case of head normal forms, the expected number of samples for
large n equals 1−ρL∞

ρL∞

.
= 2.383, while in the case of neutral head normal forms it is equal to 1

ρL∞

.
= 3.383.

3.10. Counting terms with bounded number of free indices. In this section we are interested in
counting terms with bounded number of distinct free de Bruijn indices. We start by giving the generating
function Dm(z) associated with the set of first m indices.

Proposition 11. Let Dm = {0, 1, . . . ,m-1} where m ∈ N. Then

Dm(z) =
z(1− zm)

1− z
.

10



Proof. Let us notice that

[zn]Dm(z) =

{
1 if 1 ≤ n ≤ m,
0 otherwise.

It follows that we can express Dm(z) as D(z)− zmD(z). Using Proposition 1 we finally obtain Dm(z) =
z

1−z −
zm+1

1−z = z(1−zm)
1−z , finishing the proof. �

Let m ∈ N. We denote by Lm the set of λ-terms whose free indices are elements of Dm. Obviously,
for every m we have Lm ⊆ Lm+1.

Proposition 12. The generating function associated with the set Lm is given by

Lm(z) =

1−
√

1− 4z2
(
Lm+1(z) + 1−zm

1−z

)
2z

.

Proof. Due to the structure of λ-terms, we can set the following specification defining Lm:

Lm = LmLm � λLm+1 � Dm,

which immediately implies

Lm(z) = zLm(z)
2 − zLm+1(z) +

z(1− zm)

1− z
.

Solving the above equation in Lm(z), we obtain

Lm(z) =
1−

√
∆Lm(z)

2z
=

1−
√

1− 4z2
(
Lm+1(z) + 1−zm

1−z

)
2z

.

�

Notice that Lm(z), and in particular L0(z) – counting the number of closed λ-terms, is defined using
Lm+1(z). If this definition is developed, then Lm(z) is expressed by means of infinitely nested radicals – a
known phenomenon already observed in other models of λ-calculus (see, e.g. [13, 8]).

Although the challenging problem of finding asymptotic approximations on the number of closed λ-
terms is still open, in [12], Gittenberger and Gołębiewski give the following bounds on the asymptotic
growth rate of ([zn]L0(z))n∈N.

Theorem 6 (see [12], Lemma 14). The following bounds hold:

lim inf
n→∞

[zn]L0(z)

Cn3/2ρ−nL∞
≥ 1 and lim sup

n→∞

[zn]L0(z)

Cn3/2ρ−nL∞
≤ 1,

where C .
= 0.07790995266 and C .

= 0.07790998229.

The above result implies, inter alia, that the asymptotic density of closed λ-terms in the set of plain
ones cannot be equal to zero. Comparing the obtained constants C and C with the constant C .

= 0.60676
in the asymptotic approximation of plain λ-terms (see Theorem 5) we get the following corollary.

Corollary 3. We have the following numerical bounds on the lower and upper density of closed λ-terms
in the set of plain ones:

lim inf
n→∞

[zn]L0(z)

[zn]L∞(z)
≥ 0.12840324454479532,

lim sup
n→∞

[zn]L0(z)

[zn]L∞(z)
≤ 0.12840324454479532.

In other words for large n, we should expect that in the set of λ-terms of size n, roughly 12, 84%
of them are closed. Immediately, this suggests the following naive approach for a dedicated rejection
sampler for closed λ-terms: draw random plain λ-terms until the first closed one is sampled. With the
above relative density bounds, we expect that in order to draw a uniformly random closed λ-term, we
have to repeat the sampling roughly 13 times on average, before the first success.
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4. Counting λ-terms with another notions of size

Assume we take another notion of size in which 0· has size zero, applications are of size two, whereas
abstraction and successor keep their original size one. Formally,

|λN | = |N |+ 1,

|N M | = |N |+ |M |+ 2,

|Sn| = |n|+ 1,

|0· | = 0.

It is easy to verify that the corresponding generating function1 A1 fulfills the identity

A1(z) = z2A2
1(z)− (1− z)A1(z) +

1

1− z
.

In particular, we have L∞(z) = z A1(z) and hence [zn]A1(z) = [zn+1]L∞(z). Indeed, the number of
zeros in an arbitrary λ-term T is equal to the number of its applications plus one. Suppose that the
number of applications in T is equal to d. Then, in the natural size notion where each constructor is
of size one, applications and zeros in T contribute 2d + 1 to its size. On the other hand, in the above
size notion applications and zeros contribute just 2d to T ’s size. Since both size functions set the size of
abstractions and successors to one, we obtain [zn]A1(z) = [zn+1]L∞(z). It follows that both notions of
size yield the sequence A105633.

Suppose that we assume another size notion where:

|λN | = |N |+ 1,

|N M | = |N |+ |M |+ 1,

|Sn| = |n|+ 1,

|0· | = 0.

Then, the corresponding generating function M∞(z) is the solution of

zM∞(z)2 − (1− z)M∞(z) +
1

1− z
= 0

with discriminant ∆M∞(z) = 1−7z+3z2−z3
1−z yielding the dominating singularity ρM∞

.
= 0.152292401860433

and 1/ρM∞
.
= 6.5663157700831193. The first 10 values of ([zn]M∞(z))n∈N are:

1, 3, 10, 40, 181, 884, 4539, 24142, 131821, 734577, 4160626 .

This sequence is known as A258973 in the Online Encyclopedia of Integer Sequences [2] and grows
significantly faster than A105633.

Remarkably, under some additional technical assumptions on the constructor sizes, counting sequences
of plain λ-terms yield similar asymptotic expansions and behaviour. We refer the curious reader to [12].

5. Counting λ-terms containing fixed λ-terms as subterms

LetM be an arbitrary λ-term of size p and TM denote the set of λ-terms that containM as a subterm.
In this section we focus on the asymptotic density of TM in the set of all λ-terms.

Theorem 7. For a fixed term M , the asymptotic density of TM is equal to 1. In other words, asymp-
totically almost all λ-terms contain M as a subterm.

Proof. Consider an arbitrary T ∈ TM . Either T is equal to M , or M is a proper subterm of T . In the
latter case we have four additional cases. Either T is an abstraction, or T = T1T2 and M is a subterm
of T1, or T2, or both. Combining, we obtain the following equation:

TM = M � λ TM � TM L∞ � L∞ TM � TM TM .
Note that by adding TML∞ and L∞TM we count each term T = T1T2 containing M in both T1 and

T1 twice, therefore we have to subtract TM TM . Such a representation yields the following functional
quadratic equation involving the corresponding generating function TM (z):

TM (z) = zp + z TM (z) + 2z TM (z)L∞(z)− z T 2
M (z).

1We write this function A1(z) as a reference to the function A(x, 1) described in A105632 of the Online Encyclopedia
of Integer Sequences [2].
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Since
√

∆L∞(z) = 1− 2z L∞(z)− z (see Proposition 2), we can express the discriminant of TM (z) as
∆TM (z) = ∆L∞(z) + 4zp+1. Hence ∆TM (z) > ∆L∞(z). It follows that the root ρTM of smallest modulus of
∆TM (z) is strictly larger than the root ρL∞ of smallest modulus of ∆L∞(z), i.e. ρTM > ρL∞ . Moreover,

TM (z) =

√
∆TM (z)−

√
∆L∞(z)

2z and thus the generating function counting the number of λ-terms which do
not contain M as a subterm is given by

L∞(z)− TM (z) =
(1− z)−

√
∆TM (z)

2z
.

Applying Theorem 1 we immediately get that the above set has asymptotic density 0 and thus TM
has asymptotic density equal to 1. �

Corollary 4. Asymptotically almost every λ-term is neither strongly normalising, nor typeable, nor in
normal form.

Proof. Consider the aforementioned Ω. Clearly, it is neither typeable nor in normal form. Moreover, as
it is not normalising and asymptotically almost all λ-terms contain it as a subterm, we immediately get
our claim. �

Let us notice the striking discrepancy between the density of strongly normalising terms in the natural
model and the corresponding density in the model considered in [10]. In the latter case, variables tend to
be arbitrarily far from their binders, since they do not contribute to the overall size. In the natural model,
however, increasing an index (i.e., increasing the distance of the variable from the binder) increases the
overall size and thus indices tend to be rather near their binding lambdas.

6. Conclusions

We investigated the combinatorial aspects of λ-terms in the model with unary de Bruijn indices and
natural size notion. We provided effective size-preserving translations among plain λ-terms, black-white
trees and zigzag-free ones. By exhibiting a bijection between Motzkin trees and neutral forms, we
showed that our translation allows to exploit the exact-size Motzkin tree sampler of Bacher et al. [3]
yielding an exact-size sampler for neutral λ-terms. Next, we considered the classes of head normal forms
and neutral head normal forms, linking their positive densities in the set of plain λ-terms with the
effectiveness of rejection Boltzmann samplers for the aforementioned classes. Finally, we proved that
strongly normalising terms, as typeable ones or normal forms, are asymptotically negligible in the set
of all λ-terms, contrary to the model considered in [10]. The following figure summarises our density
results.

nf nhnf TM
sn hnf sn

0 0.295... 0.419... 1
nf − normal forms
TM − terms containing subterm M

nhnf − neutral head normal forms
hnf − head normal forms
sn − strongly normalising terms
sn − not strongly normalising terms
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