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ON THE ARITHMETIC AND GEOMETRIC MEANS OF THE PRIME NUMBERS

CHRISTIAN AXLER

Abstract. In this paper we establish explicit upper and lower bounds for the ratio of the arithmetic
and geometric means of the prime numbers, which improve the current best estimates. Further, we prove
several conjectures related to this ration stated by Hassani. In order to do this, we use explicit estimates
for the prime counting function, Chebyshev’s ϑ-function and the sum of the first n prime numbers.

1. Introduction

Let an be the arithmetic mean and gn be the geometric mean of the first n positive integers, respectively.
Stirling’s approximation for n! implies that

lim
n→∞

an
gn

=
e

2
.

In his paper [12], Hassani studied the arithmetic and geometric means of the prime numbers, i.e.

An =
1

n

∑

k≤n

pk, Gn = (p1 · . . . · pn)
1/n.

Here, as usual, pk denotes the kth prime number. By setting

D(n) = log pn −
ϑ(pn)

n
, R(n) =

1

n

∑

k≤n

pk −
pn
2
,

where Chebyshev’s ϑ-function is defined by

ϑ(x) =
∑

p≤x

log p,

Hassani [12, p. 1595] derived the identity

(1.1) log
An

Gn
= D(n) + log

(

1 +
2R(n)

pn

)

− log 2

for the ratio of An and Gn, which plays an important role in this paper. First, we establish asymptotic
formulae for the quantities D(n), Gn and An which help us to find the following asymptotic formula for
the ratio of An and Gn. Here, let rt = (t− 1)!(1− 1/2t) and the positive integers k1, . . . , ks, where s is a
positive integer, are defined by the recurrence formula

ks + 1!ks−1 + 2!ks−2 + . . .+ (s− 1)!k1 = s · s!.

Theorem 1.1 (See Theorem 2.8). For each positive integer m, we have

An

Gn
= e

(

1

2
+

m
∑

i=1

1

logi pn

(

−ri+1 + ri +

i−1
∑

s=1

rski−s

))

· exp





m
∑

j=1

kj

logj pn



+O

(

1

logm+1 pn

)

.

One of Hassani’s results [12, p. 1602] is that

An

Gn
=

e

2
+O

(

1

logn

)

,

which implies that the ration of An and Gn also tends to e/2 for n → ∞. Setting m = 2 in Theorem 1.1,
we get the following more accurate asymptotic formula.

Corollary 1.2 (See Corollary 2.9). We have

An

Gn
=

e

2
+

e

4 log pn
+

e

log2 pn
+O

(

1

log3 pn

)

.
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Using explicit estimates for the n-th prime number pn and the prime counting function π(x), which is
defined for every x ≥ 0 by

π(x) =
∑

p≤x

1,

where p runs over primes not exceeding x, Hassani [12, Theorem 1.1] found that the ratio of An and Gn

fulfills the inequalities

(1.2)
e

2
−

14.951

logn
<

An

Gn
<

e

2
+

9.514

logn

for every n ≥ 2. The proof of the inequalities (1.2) consists of three steps. First, Hassani gave some
explicit estimates for the quanities D(n) and log(1 + 2R(n)/pn) and then he used (1.1). We follow this
method to improve the inequalities given in (1.2) by showing the following both results in the direction
of Corollary 1.2.

Theorem 1.3 (See Corollary 7.2). For every n ≥ 47, we have

An

Gn
>

e

2
+

e

4 log pn
+

2e

5 log2 pn
.

Theorem 1.4 (See Theorem 7.4). For every positive integer n, we have

An

Gn
<

e

2
+

e

4 log pn
+

7e

4 log2 pn
.

In particular, we prove several conjectures concerning D(n), Gn and the ratio of An and Gn stated by
Hassani [12] in 2013. For instance, we use Theorem 1.3 to show that the ratio of An and Gn is always
greater than e/2.

2. Several asymptotic formulae

In this section, we give some asymptotic formulae for the quantities D(n), Gn, An, the ratio of An

and Gn and finally for log(1 + 2R(n)/pn). Here, an asymptotic formula for the prime counting function
plays an important role.

2.1. Two asymptotic formulae for D(n). In order to find the first asymptotic formula for D(n), we
introduce the following definition.

Definition. Let m be a positive integer. The positive integers k1, . . . , km are defined by the recurrence
formula

(2.1) km + 1!km−1 + 2!km−2 + . . .+ (m− 1)!k1 = m ·m!.

In particular, k1 = 1, k2 = 3, k3 = 13 and k4 = 71.

Then, we obtain the following result.

Proposition 2.1. Let r be a non-negative integer. Then

D(n) = 1 +
k1

log pn
+

k2

log2 pn
+ . . .+

kr
logr pn

+O

(

1

logr+1 pn

)

.

Proof. The proof of the required asymptotic formula for D(n) consists of two steps. First, we find an
asymptotic formula for log x. Panaitopol [16] showed that

(2.2) π(x) =
x

log x− 1− k1

log x − k2

log2 x
− . . .− kr+1

logr+1 x

+O

(

x

logr+3 x

)

.

Hence,

(2.3) log x =
x

π(x)
+ 1 +

k1
log x

+
k2

log2 x
+ . . .+

kr
logr x

+O

(

x

π(x) logr+2 x

)

.

Further, (2.2) implies that

(2.4) lim
x→∞

π(x)

x/ log x
= 1,

which is known as the Prime Number Theorem. So, we can simplify the error term in (2.3) and get

(2.5) log x =
x

π(x)
+ 1 +

k1
log x

+
k2

log2 x
+ . . .+

kr
logr x

+O

(

1

logr+1 x

)

.
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The next step is to find an asymptotic formula for Chebyshev’s ϑ-function. A well-known result concering

this function is that ϑ(x) = x+O
(

x exp(−c log1/10 x)
)

, where c is an absolute positive constant (see, for

example, Brüdern [7, p. 41]). Since exp(−c log1/10 x) = O(1/ logs x) for every positive integer s, we get

(2.6) ϑ(x) = x+O

(

x

logr+2 x

)

.

From (2.4) follows that

(2.7) lim
n→∞

n

pn/ log pn
= 1

and combined with (2.6), we get

(2.8)
ϑ(pn)

n
=

pn
n

+O

(

1

logr+1 pn

)

.

Together with (2.5) and the definition of D(n) we conclude the proof. �

To prove a second asymptotic formula for the quantity D(n), we first note two useful results of Cipolla
[9] from 1902 concerning asymptotic formulae for the nth prime number pn and log pn. Here, lc(P )
denotes the leading coefficient of a polynomial P .

Lemma 2.2 (Cipolla, [9]). Let m be a positive integer. Then there exist uniquely determined polynomials

Q1, . . . , Qm ∈ Z[x] with deg(Qk) = k and lc(Qk) = (k − 1)!, so that

pn = n

(

logn+ log logn− 1 +

m
∑

k=1

(−1)k+1Qk(log logn)

k! logk n

)

+O

(

n(log logn)m+1

logm+1 n

)

.

The polynomials Qk can be computed explicitly. In particular, Q1(x) = x− 2, Q2(x) = x2 − 6x+ 11 and

Q3(x) = 2x3 − 21x2 + 84x− 131.

Lemma 2.3 (Cipolla, [9]). Let m be a positive integer. Then there exist uniquely determined polynomials

R1, . . . , Rm ∈ Z[x] with deg(Rk) = k and lc(Rk) = (k − 1)!, so that

log pn = logn+ log logn+

m
∑

k=1

(−1)k+1Rk(log logn)

k! logk n
+O

(

(log logn)m+1

logm+1 n

)

.

The polynomials Rk can be computed explicitly. In particular, R1(x) = x − 1, R2(x) = x2 − 4x + 5 and

R3(x) = 2x3 − 15x2 + 42x− 47.

Now, we give another asymptotic formula for the quantity D(n).

Proposition 2.4. Let r be a positive integer and let Tk(x) = Rk(x) − Qk(x) for 1 ≤ k ≤ r. Then,

deg(Tk) = k − 1, lc(Tk) = k! and

D(n) = 1 +

r
∑

k=1

(−1)k+1Tk(log logn)

k! logk n
+O

(

(log logn)r

logr+1 n

)

.

In particular, T1(x) = 1, T2(x) = 2x− 6 and T3(x) = 6x2 − 42x+ 84.

Proof. Let 1 ≤ k ≤ r. Since deg(Qk) = deg(Rk) = k and lc(Qk) = lc(Rk) = (k − 1)!, we have
deg(Tk) ≤ k − 1. Following Cipolla [9, p. 144], we write

Qk(x) = (k − 1)!xk − ak,1x
k−1 +

k
∑

j=2

(−1)jak,jx
k−j

and

Rk(x) = (k − 1)!xk − bk,1x
k−1 +

k
∑

j=2

(−1)jbk,jx
k−j ,

where ai,j , bi,j ∈ Z. Then

Tk(x) = −(bk,1 − ak.1)x
k−1 +

k
∑

j=2

(−1)j(bk,j − ak,j)x
k−j .
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By Cipolla [9, p. 150], we have −(bk,1 − ak,1) = k! 6= 0. Hence, deg(Tk) = k − 1 and lc(Tk) = k!. By the
definition of D(n) and (2.8), we get

D(n) = log pn −
pn
n

+ O

(

1

logr+1 pn

)

.

Let m = r + 1. Then we substitute the asymptotic formulae given in Lemma 2.2 and Lemma 2.3 to
obtain

D(n) = 1 +

r+1
∑

k=1

(−1)k+1Tk(log logn)

k! logk n
+O

(

1

logr+1 pn

)

.

Since deg(Tr+1) = r and 1/ logr+1 pn = O(1/ logr+1 n), we conclude the proof. �

Remark. Proposition 2.4 implies that

(2.9) D(n) = 1 +
1

logn
−

log logn− 3

log2 n
+

(log logn)2 − 7 log logn+ 14

log3 n
+O

(

(log logn)3

log4 n

)

,

which precises Hassani’s [12] asymptotic formula for D(n). He found that

D(n) = 1 +O

(

1

logn

)

.

2.2. An asymptotic formula for Gn. Next, we derive an asymptotic formula for Gn, the geometric
mean of the prime numbers. Using the definition of Gn and D(n), we obtain the identity

(2.10) Gn =
pn

eD(n)
.

Proposition 2.1 implies that limn→∞ D(n) = 1. Hence,

(2.11) Gn ∼
pn
e

(n → ∞),

which was conjectured by Vrba [17] in 2010 and was already proved by Sándor and Verroken [20, Theorem
2.1] in 2011. Using (2.10) and Proposition 2.1, we get the following refinement of (2.11). Here, the positive
intergers k1, . . . , kr are defined by the recurrence formula (2.1).

Proposition 2.5. Let r be a positive integer. Then,

(2.12) Gn =
pn

exp
(

1 + k1

log pn

+ k2

log2 pn

+ . . .+ kr

logr pn

) +O

(

pn

logr+1 pn

)

.

Proof. We use (2.10), Proposition 2.1 and the fact that exp(c/x) = 1 +O(1/x) for every c ∈ R to get

Gn =
pn

exp
(

1 + k1

log pn

+ k2

log2 pn

+ . . .+ kr

logr pn

) ·

(

1 +O

(

1

logr+1 pn

))

,

which completes the proof. �

Remark. The asymptotic formula (2.12) was independently found by Kourbatov [13, Remark (ii)] in 2016.

Remark. The asymptotic relation (2.7) and Proposition 2.5 imply that

(2.13) Gn =
pn
e

+O(n),

which was already obtained by Hassani [12, p. 1602] in 2013.

2.3. Two asymptotic formulae for An. We start with the following proposition concerning an as-
ymptotic formula for An, the arithmetic mean of the prime numbers.

Proposition 2.6. For each positive integer m, we have

An = pn −
m−1
∑

k=1

(k − 1)!

(

1−
1

2k

)

p2n

n logk pn
+O

(

p2n
n logm pn

)

.

Proof. See [3, Theorem 2]. �

Another asymptotic formula for An is given as follows.
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Proposition 2.7. Let m be a positive integer. Then there exist unique monic polynomials Ls ∈ Q[x],
where 1 ≤ s ≤ m and deg(Ls) = s, such that

An =
n

2

(

logn+ log logn−
3

2
+

m
∑

s=1

(−1)s+1Ls(log logn)

s logs n

)

+O

(

n(log logn)m+1

logm+1 n

)

.

In particular, L1(x) = x− 5/2 and L2(x) = x2 − 7x+ 29/2.

Proof. See [5, Theorem 1.1]. The polynomials Ls can be computed explicitly by Theorem 2.7 of [5]. �

2.4. An asymptotic formula for the ratio of An and Gn. Now, we use (2.10), Proposition 2.1 and
Proposition 2.6 to prove our first main result Theorem 1.1 concerning an asymptotic formula for the ratio
of An and Gn. Here we define ri for every 1 ≤ i ≤ m+ 1 by

(2.14) ri = (i − 1)!

(

1−
1

2i

)

.

Theorem 2.8. For each positive integer m, we have

An

Gn
= e

(

1

2
+

m
∑

i=1

1

logi pn

(

−ri+1 + ri +

i−1
∑

s=1

rski−s

))

· exp





m
∑

j=1

kj

logj pn



+O

(

1

logm+1 pn

)

.

Proof. Form (2.10), Proposition 2.1 and Proposition 2.6 follow that

An

Gn
=

(

1−

m+1
∑

i=1

ripn

n logi pn
+O

(

pn

n logm+2 pn

)

)

·



exp



1 +

m
∑

j=1

kj

logj pn



+O

(

1

logm+1 pn

)



 .

Since pn ∼ n log pn for n → ∞, we get

(2.15)
An

Gn
= e

(

1−

m+1
∑

i=1

ripn

n logi pn
+O

(

1

logm+1 pn

)

)

· exp





m
∑

j=1

kj

logj pn



+O

(

1

logm+1 pn

)

.

Using (2.5) with x = pn and r = m− 1, we get

pn
n

= log pn − 1−
k1

log pn
− . . .−

km−1

logm−1 pn
+O

(

1

logm pn

)

.

Applying this asymptotic formula to (2.15), we get

An

Gn
= e

(

1−
m+1
∑

i=1

ri

logi pn

(

log pn − 1−
m−1
∑

s=1

ks
logs pn

)

+O

(

1

logm+1 pn

)

)

· exp





m
∑

j=1

kj

logj pn





+O

(

1

logm+1 pn

)

.

Hence,

An

Gn
= e

(

1−

m+1
∑

i=1

ri

logi−1 pn
+

m+1
∑

i=1

ri

logi pn
+

m+1
∑

i=1

k1ri

logi+1 pn
+ . . .+

m+1
∑

i=1

km−1ri

logm−1+i pn
+O

(

1

logm+1 pn

)

)

× exp





m
∑

j=1

kj

logj pn



+O

(

1

logm+1 pn

)

.

Separating the terms in the first brace, which are O(1/ logm+1 pn), we get

An

Gn
= e

(

1−
m+1
∑

i=1

ri

logi−1 pn
+

m
∑

i=1

ri

logi pn
+

m−1
∑

i=1

k1ri

logi+1 pn
+ . . .+

km−1r1
logm pn

+O

(

1

logm+1 pn

)

)

× exp





m
∑

j=1

kj

logj pn



+O

(

1

logm+1 pn

)

.



6 CHRISTIAN AXLER

An index offset in the first brace gives

An

Gn
= e

(

1− r1 +
m
∑

i=1

1

logi pn

(

−ri+1 + ri +
i−1
∑

s=1

rski−s

)

+O

(

1

logm+1 pn

)

)

· exp





m
∑

j=1

kj

logj pn





+O

(

1

logm+1 pn

)

.

We conclude by using the facts that r1 = 1/2 and that exp(c/x) = 1 +O(1/x) for every c ∈ R. �

Setting m = 2 in Theorem 2.8, we get the following asymptotic formula for the ratio of An and Gn.

Corollary 2.9. We have

An

Gn
=

e

2
+

e

4 log pn
+

e

log2 pn
+O

(

1

log3 pn

)

.

Proof. We set m = 2 in Theorem 2.8 to get

An

Gn
= e

(

1− r1 +
r1 − r2
log pn

+
k1r1 + r2 − r3

log2 pn

)

· exp





2
∑

j=1

kj

logj pn



+O

(

1

log3 pn

)

.

By (2.14), we have r1 = 1/2, r2 = 3/4 and r3 = 7/4. Together with k1 = 1, we get

(2.16)
An

Gn
= e

(

1

2
−

1

4 log pn
−

1

2 log2 pn

)

· exp





2
∑

j=1

kj

logj pn



+O

(

1

log3 pn

)

.

Since exp(1/x) = 1 + 1/x+ 1/(2!x2) +O(1/x3), we obtain

exp





2
∑

j=1

kj

logj pn



 = 1 +
1

log pn
+

7

2 log2 pn
+O

(

1

log3 pn

)

,

since k1 = 1 and k2 = 3. Applying this to (2.16), we obtain that

An

Gn
= e

(

1

2
−

1

4 log pn
−

1

2 log2 pn

)

·

(

1 +
1

log pn
+

7

2 log2 pn
+O

(

1

log3 pn

))

+O

(

1

log3 pn

)

,

which completes the proof. �

2.5. An asymptotic formula for the quantity log(1 + 2R(n)/pn). Finally, in the next proposition
we derive an asymptotic formula for log(1 + 2R(n)/pn) for n → ∞.

Proposition 2.10. We have

(2.17) log

(

1 +
2R(n)

pn

)

∼ −
1

2 logn
(n → ∞).

Proof. We have R(n) ∼ −n/4 by [5] and pn ∼ n logn for n → ∞. Hence,

log

(

1 +
2R(n)

pn

)

∼ log

(

1−
1

2 logn

)

.

Since log(1 + c/x) ∼ c/x for x → ∞ and every c ∈ R, the proposition is proved. �

At the end of Section 6, we give a more accurate asymptotic formula for the quantity log(1+2R(n)/pn).

3. New estimates for the quantity D(n)

After giving two asymptotic formulae for the quantity D(n) in Subsection 2.1, we are interested in
finding some explicit estimates for D(n). We start with the following one.

Proposition 3.1. For every n ≥ 126, we have

(3.1) D(n) > 1 +
1

log pn
+

2.3

log2 pn
.
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Proof. The proof consists of two steps. First, we give a lower bound for log pn. In [4, Corollary 3.5] it is
shown that the inequality

π(x) >
x

log x− 1− 1
log x − 2.65

log2 x

holds for every x ≥ 38168363 = p2328664. Setting x = pn, we get that the inequality

(3.2) log pn >
pn
n

+ 1 +
1

log pn
+

2.65

log2 pn

is fulfilled for every n ≥ 2328664. Next, the present author [6, Proposition 2.4] found that ϑ(x) <
x+ 0.35x/ log3 x for every x > 1. Together with the definition od D(n) and (3.2), we get

(3.3) D(n) > 1 +
1

log pn
+

2.65

log2 pn
−

0.35pn

n log3 pn

for every n ≥ 2328664. By Rosser and Schoenfeld [18, Corollary 1], we have π(x) > x/ log x for every
x ≥ 17. Hence,

(3.4) pn ≤ n log pn

for every n ≥ 7. Applying this inequality to (3.3), we get that the inequality (3.1) holds for every
n ≥ 2328664. A computer check shows that inequality (3.1) also holds for every 126 ≤ n ≤ 2328663. �

In the direction of the asymptotic formula given in Proposition 2.1, we derive the following lower
bounds for D(n), which improve the inequality (3.1) for all sufficiently large values of n.

Proposition 3.2. For every positive integer n, we have

(3.5) D(n) > 1 +
1

log pn
+

3

log2 pn
−

2551

log3 pn

and

(3.6) D(n) > 1 +
1

log pn
+

3

log2 pn
+

13

log3 pn
−

11013803

log4 pn
.

Proof. We start with the proof of (3.5). In [6, Proposition 2.5 and Theorem 1.2] it is shown that

|ϑ(x)− x| < 1282x/ log4 x for every x ≥ 2 and that the inequality

π(x) >
x

log x− 1− 1
log x − 3

log2 x
+ 1269

log3 x

holds for every x ≥ 2. Similar to the proof of Proposition 3.1, we get that the inequality (3.5) is fulfilled
for every n ≥ 7. A direct comuter check shows that the required inequality also holds for every 1 ≤ n ≤ 6.

Next we give the proof of (3.6). In [6, Proposition 2.6 and Theorem 1.2], the present author found
that the inequalities |ϑ(x)− x| < 5506937x/ log5 x and

π(x) >
x

log x− 1− 1
log x − 3

log2 x
− 13

log3 x
+ 5506866

log4 x

hold for every x ≥ 2. Similar to the proof of Proposition 3.1, we get that the inequality (3.6) holds for
every n ≥ 7. We use a computer to verify that the inequality (3.6) is valid for every 1 ≤ n ≤ 6 as well. �

Since k1 = 1 and k2 = 3, Proposition 2.1 implies that there is a smallest positive integer N0 so that

(3.7) D(n) > 1 +
1

log pn
+

3

log2 pn

for every n ≥ N0. In the following corollary, we make a first progress in finding this N0.

Corollary 3.3. The inequality (3.7) holds at least for every 264 ≤ n ≤ π(1019) = 234057667276344607
and every n ≥ π(e11013803/13) + 1.

Proof. The inequality (3.6) implies the validity of (3.7) for every n ≥ π(e11013803/13) + 1. So, it suffices
to prove that the inequality (3.7) holds for every 264 ≤ n ≤ π(1019). By [6, Corollary 3.5], we have

(3.8) π(x) >
x

log x− 1− 1
log x − 3

log2 x

for every p3863019 = 65405887 ≤ x ≤ 5.5 · 1025 and every x ≥ e5506866/13. Büthe [8, Theorem 2] found
that ϑ(x) < x for every 1 ≤ x ≤ 1019 and together with (3.8), we get, similar to the proof of Proposition
3.1, that the inequality (3.7) holds for every 3863019 ≤ n ≤ π(1019). Finally, we check the remaining
cases with a computer. �
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Based on Corollary 3.3 we state the following conjecture.

Conjecture 3.4. The inequality (3.7) holds for every n ≥ 264.

Hassani [12, Proposition 1.6] showed that the inequality

D(n) > 1−
15

5 logn

is valid for every n ≥ 2. In view of (2.9), we improve this result as follows.

Proposition 3.5. For every n ≥ 275, we have

(3.9) D(n) > 1 +
1

logn
−

log logn− 2.14

log2 n
.

In particular, for every 0 < α < 1 there exists a positive integer n0 = n0(α) so that for every n ≥ n0

(3.10) D(n) > 1 +
α

logn
.

Proof. First, we consider the case n > π(1019) = 234057667276344607. By [2, Korollar 2.7], we have

(3.11)
1

log pm
≥

1

logm
−

log logm

log2 m
+

(log logm)2 − log logm+ 1

log2 m log pm

for every m ≥ 71, which implies that the weaker inequality

(3.12)
1

log pm
≥

1

logm
−

log logm

log2 m

also holds for every m ≥ 71. After combining (3.11) and (3.12), we get

(3.13)
1

log pm
≥

1

logm
−

log logm

log2 m
+

(log logm)2 − log logm+ 1

log2 m

(

1

logm
−

log logm

log2 m

)

for every m ≥ 71. Together with (3.1) and (3.12), we get

D(n) > 1 +
1

logn
−

log logn

log2 n
+

(log logn)2 − log logn+ 1

log3 n
−

(log logn)3 − (log logn)2 + log logn

log4 n

+ 2.3

(

1

logn
−

log logn

log2 n

)2

= f(n) +
0.16

log2 n
+

(log logn)2 − 5.6 log logn+ 1

log3 n
−

(log logn)3 − 3.3(log logn)2 + log logn

log4 n
,

where f(n) denotes the right-hand site of (3.9). Since

0.16

log2 x
+

(log log x)2 − 5.6 log log x+ 1

log3 x
−

(log log x)3 − 3.3(log log x)2 + log log x

log4 x
> 0

for every x ≥ 1.3 · 1017, the required inequality holds for every n > π(1019) ≥ 1.3 · 1017.
Now, let 580752 ≤ n ≤ π(1019). Similarly to the case n > π(1019), we combine (3.12), (3.13) and

Corollary 3.3 to get

D(n) > f(n) +
0.86

log2 n
+

(log logn)2 − 7 log log n+ 1

log3 n
−

(log logn)3 − 4(log logn)2 + log logn

log4 n
.

Since 0.86 logx+(log log x)2−7 log log x > 0 for every x ≥ 580752 and log x > (log log x)3−4(log log x)2+
log log x for every x ≥ 3, we obtain that the inequality (3.9) also holds for every 580752 ≤ n ≤ π(1019).
We verify the remaining cases with a computer. �

Remark. Hassani [12, Conjecture 1.7] conjectured that there exist a real number β with 0 < β < 5.25
and a positive integer n0, such that the inequality (3.10) is valid for every n ≥ n0. The second part of
Proposition 3.5 proves this conjecture. The inequality (3.9) implies

(3.14) D(n) > 1

for every n ≥ 275. A computer check shows that the last inequality also holds for every 10 ≤ n ≤ 274.
Therefore, the inequality (3.14) holds for every n ≥ 10, which was also conjectured by Hassani [12,
Conjecture 1.7].
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Next, we establish some explicit upper bounds for D(n). From Proposition 2.1 follows that for each
ε > 0 there is a positive integer N = N(ε), such that

D(n) < 1 +
1

log pn
+

3 + ε

log2 pn

for every n ≥ N . In this regard, we show the following

Proposition 3.6. For every n ≥ 704569, we have

(3.15) D(n) < 1 +
1

log pn
+

4.18

log2 pn
,

and for every positive integer n, we have

(3.16) D(n) < 1 +
1

log pn
+

3

log2 pn
+

2577

log3 pn
.

Proof. We start with the proof of (3.15). First, we consider the case n ≥ 66775686. In [4, Corollary 3.4]
it is shown that the inequality

π(x) <
x

log x− 1− 1
log x − 3.83

log2 x

holds for every x ≥ 9.25. It follows that

(3.17) log pn <
pn
n

+ 1 +
1

log pn
+

3.83

log2 pn
.

Further, the present author [6, Proposition 2.4] found that ϑ(x) > x − 0.35x/ log3 x for every x ≥
1332492593 = p66775686. Together with the definition of Dn and the inequality (3.17) we obtain that

D(n) < 1 +
1

log pn
+

3.83

log2 pn
+

0.35pn

n log3 pn
.

Now we use (3.4) to get that the inequality (3.15) holds for every n ≥ 66775686. A computer check shows
that the inequality (3.15) holds for every 704569 ≤ n ≤ 66775685 as well.

Next, we establish the inequality (3.16). In the direction of (2.2), the present author [6, Theorem 1.1]
found that

π(x) <
x

log x− 1− 1
log x − 3

log2 x
− 1295

log3 x

for every x ≥ 563. As already mentioned in the proof of Proposition 3.2, we have |ϑ(x)−x| < 1282x/ log4 x
for every x ≥ 2. Now we argue as in the proof of Proposition 3.6. For the remaining cases, we use a
computer. �

Using estimates for the n-th prime number and Chebyshev’s ϑ-function, Hassani [12, Proposition 1.6]
found that

D(n) < 1 +
21

4 logn

for every n ≥ 2. In view of (2.9), we give the following result, which leads to an improvement of the last
inequality.

Proposition 3.7. For every positive integer n ≥ 2, we have

D(n) < 1 +
1

logn
−

log logn− 4.56

log2 n
.

In particular, for every β ≥ 1 there exists an positive interger n1 = n1(β) so that for every n ≥ n1

D(n) < 1 +
β

logn
.

Proof. By [2, Korollar 2.21], we have

(3.18)
1

log pn
≤

1

logn
−

log log n

log2 n
+

(log logn)2 − log logn+ 1

log2 n log pn
+

P8(log log n)

2 log3 n log pn
−

P9(log logn)

2 log4 n log pn

for every n ≥ 2, where P8(x) = 3x2 − 6x+ 5.2 and P9(x) = x3 − 6x2 + 11.4x− 4.2. Since P9(x) > 0 for
every x ≥ 0.5, we get

(3.19)
1

log pn
≤

1

logn
−

log logn

log2 n
+

(log logn)2 − log logn+ 1

log3 n
+

P8(log logn)

2 log4 n
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for every n ≥ 6. Together with Proposition 3.6 and the inequality 4.18/ log2 pn ≤ 4.18/ log2 n, we obtain
that the inequality

(3.20) D(n) < 1 +
1

logn
−

log logn− 4.18

log2 n
+

(log logn)2 − log logn+ 1

log3 n
+

P8(log logn)

2 log4 n

holds for every n ≥ 704569. Notice that

(log log x)2 − log log x+ 1

log3 x
+

P8(log log x)

2 log4 x
<

0.38

log2 x

for every x ≥ 56615486. Applying this inequality to (3.20), the claim follows for every n ≥ 56615486.
Finally, we use a computer to check that the required inequality also holds for every 2 ≤ n ≤ 56615485. �

4. New estimates for the geometric mean of the prime numbers

In the following, we use the identity (2.10); i.e. Gn = pn/e
D(n), and the explicit estimates for D(n)

obtained in Section 3 to find new bounds for Gn, the geometric mean of the prime numbers in the
direction of (2.11)–(2.13). First, we notice that (3.14) and (2.10) imply Gn < pn/e for every n ≥ 10,
which was already proved by Panaitopol [14] in 1999. In the direction of Proposition 2.5, Kourbatov [13,
Theorem 2] used explicit estimates for the prime counting function π(x) and Chebyshev’s ϑ-function to
show that the inequality

Gn <
pn

exp(1 + 1
log pn

+ 1.62
log2 pn

)

is fulfilled for every pn ≥ 32059; i.e. for every n ≥ 3439. Actually, this inequality also holds for every
92 ≤ n ≤ 3438 as well. In the next proposition, we give a sharper estimate for Gn.

Proposition 4.1. If n ≥ 126, then

Gn <
pn

exp(1 + 1
log pn

+ 2.3
log2 pn

)
.

Proof. The claim follows directly from (2.10) and Proposition 3.1. �

Proposition 3.2 implies the following upper bounds for Gn, which improve the inequality obtained in
Proposition 4.1 for all sufficiently large values of n.

Proposition 4.2. For every positive integer n, we have

Gn <
pn

exp(1 + 1
log pn

+ 3
log2 pn

− 2551
log3 pn

)

and

Gn <
pn

exp(1 + 1
log pn

+ 3
log2 pn

+ 13
log3 pn

− 11013803
log4 pn

)
.

Proof. We apply the inequalities obtained in Proposition 3.2 to the identity (2.10). �

Next, we use Corollary 3.3 to get the following upper bound.

Proposition 4.3. For every 264 ≤ n ≤ π(1019) = 234057667276344607 and every n ≥ π(e11013803/13)+1,
we have

(4.1) Gn <
pn

exp(1 + 1
log pn

+ 3
log2 pn

)
.

Proof. We combine (2.10) with Corollary 3.3. �

Remark. Under the assumption that Conjecture 3.4 is true, we get that the inequality (4.1) holds for
every n ≥ 264.

After finding some upper bounds for Gn in the direction of (2.12), we establish now upper bounds for
Gn in view of the asymptotic formula (2.13). In order to do this, we first notice the following result.

Proposition 4.4. If n ≥ 47, then

Gn <
pn
e

(

1−
1

log pn

)

.
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Proof. Using Proposition 4.1 and the inequality ex ≥ 1 + x, which holds for every x ∈ R, we get

Gn <
pn
e

(

1−
log pn + 2.3

log2 pn + log pn + 2.3

)

for every n ≥ 126. Since 1.3 log pn > 2.3 for every n ≥ 4, we obtain the required inequality for every
n ≥ 126. For the remaining cases of n we use a computer. �

Using (3.17) and Proposition 4.4, we find the following upper bound for Gn in the direction of (2.13).

Corollary 4.5. If n ≥ 31, then

Gn <
pn
e

−
n

e

(

1−
1

log pn
−

1

log2 pn
−

3.83

log3 pn

)

.

In particular, for every 0 < γ < 1/e there is a positive integer n2 = n2(γ) so that for every n ≥ n2

Gn <
pn
e

− γn.

Proof. We use (3.17) and Proposition 4.4 to obtain that

Gn <
pn
e

−
pn

e log pn
<

pn
e

−
n

e

(

1−
1

log pn
−

1

log2 pn
−

3.83

log3 pn

)

for every n ≥ 47. For every 31 ≤ n ≤ 46 we check the required inequality with a computer. �

Remark. The second part of Corollary 4.5 proves a conjecture stated by Hassani [12, Conjecture 4.3].

Next, we find new lower bounds for Gn. In the direction of Proposition 2.5, Kourbatov [13, Theorem
2] found that the inequality

Gn >
pn

exp(1 + 1
log pn

+ 4.83
log2 pn

)

holds for every n ≥ 3439 by using explicit estimates for the prime counting function π(x) and Chebyshev’s
ϑ-function. In the next proposition, we give two sharper lower bounds for Gn.

Proposition 4.6. For every n ≥ 704569, we have

(4.2) Gn >
pn

exp(1 + 1
log pn

+ 4.18
log2 pn

)
,

and for every positive integer n, we have

Gn >
pn

exp(1 + 1
log pn

+ 3
log2 pn

+ 2577
log3 pn

)
.

Proof. We use (2.10) and Proposition 3.6 to obtain the required inequalities. �

In order to derive a lower bound for Gn in the direction of (2.13), we first establish the following result.

Proposition 4.7. For every positive integer n, we have

Gn >
pn
e

(

1−
1

log pn
−

5.14

log2 pn

)

.

Proof. First, we consider the case n ≥ 64881104 = π(e20.98) + 1. It is easy to see that

(4.3) et < 1 + t+
2t2

3

for every t < log(4/3). Hence, we obtain

exp

(

1

x
+

4.18

x2

)

< 1 +
1

x
+

14.54

3x2
+

16.72

3x3
+

34.9448

3x4

for every x ≥ 6. Now, if x ≥ 20.98, then 16.72/(3x) + 34.9448/(3x2) < 0.293 and we get

(4.4) exp

(

1

x
+

4.18

x2

)

< 1 +
1

x
+

5.14

x2

for every x ≥ 20.98. Since log pn ≥ 20.98, it follows from (4.2) and the inequality (4.4) that

Gn >
pn
e

(

1−
log pn + 5.14

log2 pn + log pn + 5.14

)

.
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Since the right-hand side of the last inequality is greater then the right-hand side of the required inequality,
the corollary is proved for every n ≥ 64881104. A computer check shows that the asserted inequality
holds for every 1 ≤ n ≤ 64881103 as well. �

In view of (2.13), Hassani [12, Corollary 4.2] found that

Gn >
pn
e

− 2.37n

for every positive integer n. The following corollary improves this inequality.

Corollary 4.8. If n ≥ 3, then

Gn >
pn
e

−
n

e

(

1 +
4.14

log pn
−

6.14

log2 pn
−

7.79

log3 pn

)

.

In particular, for every δ > 1/e there is a positive integer n3 = n3(δ) so that for every n ≥ n3,

Gn >
pn
e

− δn.

Proof. First, we consider the case n ≥ 2328664. We use (3.2) and the inequality obtained in Proposition
4.7 to get that

(5.3) Gn >
pn
e

−
n

e

(

1−
1

log pn
−

1

log2 pn
−

2.65

log3 pn

)

−
5.14pn

e log2 pn
.

The inequality (3.2) implies that

−
5.14pn

e log2 pn
> −

5.14n

e log pn

(

1−
1

log pn
−

1

log2 pn

)

.

We apply this inequality to (5.3) and obtain the required inequality. For every 3 ≤ n ≤ 2328663 we check
the required inequality with a computer. �

Remark. Corollary 4.5 and Corollary 4.8 yield a more accurate asymptotic formula for Gn than in (2.13),
namely that

Gn =
pn
e

−
n

e
+O

(

n

log pn

)

.

Remark. Panaitopol [14, Theorem, p. 34] and Sándor [19, Theorem 2.1] showed another kind of inequality
for Gn, namely that for every n ≥ 2,

Gn ≥ p
1−π(n)/n
n+1 .

5. Estimates for the arithmetic mean of the prime numbers

Although we will not use them below, we note in this section, for the sake of completeness, the best
known estimates concerning the arithmetic mean of the prime numbers An. In view of Proposition 2.6,
it is shown in [3, Theorem 3 and Theorem 4] that the inequality

An ≤ pn −
p2n

2n log pn
−

3p2n
4n log2 pn

−
7p2n

4n log3 pn
−

Θ(n)

n

holds for every n ≥ 52703656, where

Θ(n) =
43.6p2n
8 log4 pn

+
90.9p2n
4 log5 pn

+
927.5p2n
8 log6 pn

+
5620.5p2n
8 log7 pn

+
39537.75p2n
8 log8 pn

,

and that

An ≥ pn −
p2n

2n log pn
−

3p2n
4n log2 pn

−
7p2n

4n log3 pn
−

Ω(n)

n

for every positive integer n, where

Ω(n) =
46.4p2n
8 log4 pn

+
95.1p2n
4 log5 pn

+
962.5p2n
8 log6 pn

+
5809.5p2n
8 log7 pn

+
59424p2n
8 log8 pn

.

In the direction of Proposition 2.7, the present author [5, Theorem 1.5 and Theorem 1.6] found that

An <
n

2

(

logn+ log logn−
3

2
+

log log n− 5/2

logn
−

(log logn)2 − 7 log log n+ 12.373

2 log2 n

)
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for every n ≥ 355147, and that the inequality

An >
n

2

(

log n+ log logn−
3

2
+

log logn− 5/2

logn
−

(log logn)2 − 7 log logn+ 17.067

2 log2 n

)

.

holds for every n ≥ 2.

6. New estimates for the quantity log(1 + 2R(n)/pn)

As already mentioned in the introduction, the quantity R(n) is defined by

R(n) =
1

n

∑

k≤n

pk −
pn
2
.

Following Hassani’s proof of (1.2), we next establish new estimates for the quantity log(1 + 2R(n)/pn).
Hassani [12, Corollary 1.5] proved that

(6.1) −
15

2 logn
< log

(

1 +
2R(n)

pn

)

< −
5

36 logn
,

where the left-hand side inequality holds for every n ≥ 2, and the right-hand side inequality holds for every
n ≥ 10. In Proposition 2.10, we gave a more suitable approximation for the quantity log(1 + 2R(n)/pn)
for n → ∞. In the direction of this approximation, we improve now the inequalities (6.1). The first
proposition is about a lower bound for log(1 + 2R(n)/pn).

Proposition 6.1. For every positive integer n ≥ 2, we have

(6.2) log

(

1 +
2R(n)

pn

)

> −
1

2 logn
+

log logn− 2.25

2 log2 n
−

(log logn)2 − 4.5 log logn+ 24.91/3

2 log3 n
.

Proof. First, we note a result proved by Dusart [10] concerning a lower bound for pn, namely that

(6.3) pn ≥ r1(n)

for every n ≥ 2, where r1(x) = x(log x+ log log x− 1). We set

s1(x) = −
x

4
−

x

4 logx
+

x(log log x− 5.22)

4 log2 x

and by [5, Corollary 4.10] and Hassani [12, Corollary 1.5], we obtain that

(6.4) s1(n) < R(n) < 0

for every n ≥ 26220. Now, we define

h1(x) = log

(

1 +
2s1(x)

r1(x)

)

and we show that h(x) is greater than the right-hand side of (6.2). For this, we set

f(y) = (2 log3 y − 13 log2 y + 34.69 log y − 31.9575)y3

+ (1.5 log4 y − 11.5 log3 y + 35.83 log2 y − 43.9575 logy + 10.2075)y2

+ (−0.5 log3 y + 1.32 log2 y + 5.19 log y − 23.85005)y

+ 0.75 log4 y − 8.54 log3 y + 35.37 log2 y − 65.96005 logy + 38.38005

and
g1(y) = y3 + y2 log y − 1.5y2 − 0.5y + 0.5 log y − 2.61.

Since 2 log3 y − 13 log2 y + 34.69 log y − 31.9575 ≥ 4 for every y ≥ e2.4 and 1.5 log4 y − 11.5 log3 y +
35.83 log2 y − 43.9575 logy + 10.2075 ≥ 0 for every y ≥ 10, we get

f(y) ≥ 4y3 + (−0.5 log3 y + 1.32 log2 y + 5.19 log y − 23.85005)y

+ 0.75 log4 y − 8.54 log3 y + 35.37 log2 y − 65.96005 logy + 38.38005

for every y ≥ e3. Notice that y2 ≥ 2 log3 y for every y ≥ 1. Hence,

f(y) ≥ (15.5 log3 y + 1.32 log2 y + 5.19 log y − 23.85005)y

+ 0.75 log4 y − 8.54 log3 y + 35.37 log2 y − 65.96005 logy + 38.38005

for every y ≥ e2.4. Now we apply the inequality y ≥ log y, which holds for every y > 0, to get

f(y) ≥ 16.25 log4 y − 7.22 log3 y + 40.56 log2 y − 89.8101 logy + 38.38005
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for every y ≥ e2.4. Now, it is clear that the right-hand side of the last inequality is positive for every
y ≥ e2. Hence f1(y) > 0 for every y ≥ e2.4. Similarly, we get that g1(y) > 0 for every y ≥ e2.4. Therefore,

(

h1(x) +
1

2 log x
−

log log x− 5/2

2 log2 x
+

(log log x)2 − 4.5 log log x+ 24.91/3

2 log3 x

)′

= −
f1(log x)

g1(log x)r1(x) log
4 x

< 0

for every x ≥ exp(exp(2.4)). In addition, we have

lim
x→∞

(

h1(x) +
1

2 logx
−

log log x− 5/2

2 log2 x
+

(log log x)2 − 4.5 log log x+ 24.91/3

2 log3 x

)

= 0.

So, we get

h1(x) > −
1

2 logx
+

log log x− 5/2

2 log2 x
−

(log log x)2 − 4.5 log log x+ 24.91/3

2 log3 x

for every x ≥ exp(exp(2.4)). Together with (6.3) and (6.4), it follows that

log

(

1 +
2R(n)

pn

)

> −
1

2 logn
+

log logn− 2.25

2 log2 n
−

(log logn)2 − 4.5 log logn+ 24.91/3

2 log3 n

for every n ≥ exp(exp(2.4)). The remaining cases are checked with a computer. �

Corollary 6.2. For every n ≥ 2194, we have

log

(

1 +
2R(n)

pn

)

> −
1

2 logpn
−

2.25

2 log2 n
.

Proof. First, we consider the case n ≥ 9423108. Using (3.11) and Proposition 6.1, we get

log

(

1 +
2R(n)

pn

)

> −
1

2 log pn
−

2.25

2 log2 n
+

(log logn)2 − log logn+ 1

2 log2 n log pn
(6.5)

−
(log logn)2 − 4.5 log logn+ 24.91/3

2 log3 n
.

Since (log logn)2 − log logn+ 1 ≥ 0 for every n ≥ 2, we apply (3.12) to (6.5) and get

log

(

1 +
2R(n)

pn

)

> −
1

2 log pn
−

2.25

2 log2 n
+

(log logn)2 − log logn+ 1

2 log2 n

(

1

logn
−

log logn

log2 n

)

−
(log logn)2 − 4.5 log logn+ 24.91/3

2 log3 n

= −
1

2 log pn
−

2.25

2 log2 n
+

3.5 log logn− 21.91/3

2 log3 n
−

(log logn)3 − log log n+ log logn

2 log4 n
.

Notice that (3.5 log log x− 21.91/3) logx− ((log log x)3 − log log x+ log log x) ≥ 0 for every x ≥ 9423108.
So, we get that the required inequality holds for every n ≥ 9423108. We check the remaining cases with
a computer. �

Before we derive an upper bound for log(1 + 2R(n)/pn), we prove the following lemma.

Lemma 6.3. Let P8(x) = 3x2 − 6x+ 5.2. Then, for every n ≥ 3, we have

1

2 logn
+

3.2

2 log2 n
≥

(log logn)2 + log logn

2 log2 n
+

P8(log logn)

4 log3 n
.

Proof. First, we notice that (log logn)2+log logn ≤ logn for every n ≥ 2. Further, we have P8(log logn) ≤
3(log logn)2 + 5.2 ≤ 6.4 logn for every n ≥ 3, which completes the proof. �

Now, we give an upper bound for log(1 + 2R(n)/pn).

Proposition 6.4. For every n ≥ 2701, we have

log

(

1 +
2R(n)

pn

)

< −
1

2 log pn
−

1

log2 pn
−

1

log3 pn
.
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Proof. First, we consider the case n ≥ 348247. We define

s2(x) = −
x

4
−

x

4 logx
+

x(log log x− 2.1)

4 log2 x
.

By [5, Corollary 4.10] and the definition of R(n), we obtain R(n) < s2(n) < 0. Hence,

log

(

1 +
2R(n)

pn

)

< log

(

1 +
2s2(n)

pn

)

.

Since 2s2(n)/pn > −1, we apply the inequality log(1 + x) ≤ x, which holds for every x > −1, to get that

log

(

1 +
2R(n)

pn

)

< −
n

2pn
−

n

2pn logn
+

n(log logn− 2.1)

2pn log
2 n

.

Now, we use a lower bound for the prime counting function given by Dusart [11, Theorem 6.9], namely

that π(x) ≥ x/ logx+ x/ log2 x for every x ≥ 599, with x = pn to obtain that

log

(

1 +
2R(n)

pn

)

< −
1

2 log pn
−

1

2 log2 pn
−

1

2 logn log pn
−

1

2 logn log2 pn
+

n(log logn− 2.1)

2pn log
2 n

.

Further, from Dusart [11, Theorem 6.9] follows that π(x) ≤ x/ log x+ 2x/ log2 x for every x > 1. Hence,

log

(

1 +
2R(n)

pn

)

< −
1

2 log pn
−

1

2 log2 pn
−

1

2 logn log pn
−

1

2 logn log2 pn
(6.6)

+
log log n− 2.1

2 log2 n log pn
+

log logn− 2.1

log2 n log2 pn
.

By (3.18), we have

−
1

logn
≤ −

1

log pn
−

log logn

log2 n
+

(log logn)2 − log logn+ 1

log2 n log pn
+

P8(log logn)

2 log3 n log pn
−

P9(log logn)

2 log4 n log pn

for every n ≥ 2, where P8(x) = 3x2 − 6x+ 5.2 and P9(x) = x3 − 6x2 + 11.4x− 4.2. Since P9(x) > 0 for
every x ≥ 0.5, we get

−
1

logn
≤ −

1

log pn
−

log logn

log2 n
+

(log log n)2 − log log n+ 1

log2 n log pn
+

P8(log logn)

2 log3 n log pn
.

Applying this inequality to (6.6), we get

log

(

1 +
2R(n)

pn

)

< −
1

2 log pn
−

1

log2 pn
+

(log logn)2 + log logn− 3.2

2 log2 n log2 pn
+

P8(log logn)

4 log3 n log2 pn

−
1

2 logn log2 pn
−

2.1

2 log2 n log p
.

Finally, we use Lemma 6.3 to obtain that the required inequality holds for every n ≥ 348247. For every
2701 ≤ n ≤ 348247, we check the the asserted inequality with a computer. �

In the direction of (2.17), we find the following upper bound for log(1 + 2R(n)/pn), which leads to an
improvement of the right-hand side of (6.1).

Corollary 6.5. For every n ≥ 259, we have

log

(

1 +
2R(n)

pn

)

< −
1

2 logn
+

log log n− 2

2 log2 n
+

2 log logn

log3 n
.

Proof. First we consider the case n ≥ 2701. Proposition 6.4 implies that

(6.7) log

(

1 +
2R(n)

pn

)

< −
1

2 log pn
−

1

log2 pn
.

From (3.13) follows that

(6.8) −
1

log pn
≤ −

1

logn
+

log log n

log2 n
.

Applying this to (6.7), we get that the inequality

log

(

1 +
2R(n)

pn

)

< −
1

2 logn
+

log logn

2 log2 n
−

1

logn log pn
+

log logn

log2 n log pn
.
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Again we use (6.8) to obtain that

log

(

1 +
2R(n)

pn

)

< −
1

2 logn
+

log logn

2 log2 n
−

1

log2 n
+

log logn

log3 n
+

log logn

log2 n log pn
,

which concludes the proof for every n ≥ 2701. For every 259 ≤ n ≤ 2700, we check the the required
inequality with a computer. �

Compared with Proposition 2.10 we establish the following more precise result.

Corollary 6.6. We have

log

(

1 +
2R(n)

pn

)

= −
1

2 logn
+

log logn

2 log2 n
+O

(

1

log2 n

)

.

Proof. The asymptotic formula follows directly from Proposition 6.1 and Corollary 6.5. �

7. New bounds for the ratio of An and Gn

First, we recall the asymptotic formula for the ratio of An and Gn given in Corollary 2.9, namely

(7.1)
An

Gn
=

e

2
+

e

4 log pn
+

e

log2 pn
+O

(

1

log3 pn

)

and the identity (1.1); i.e.

log
An

Gn
= D(n) + log

(

1 +
2R(n)

pn

)

− log 2.

Now we use this identity together with the explicit estimates for the quantitiesD(n) and log(1+2R(n)/pn)
obtained in Section 3 and Section 6 to derive upper and lower bounds for the ratio of An and Gn in the
direction of (7.1), which improve the inequalities given in (1.2). We start with the following result.

Theorem 7.1. For every n ≥ 76, we have

(7.2)
An

Gn
>

e

2
+

e

4 logn
−

e(log logn− 2)

4 log2 n
.

Proof. By (1.1), Proposition 3.5 and Proposition 6.1, we get that the inequality

An

Gn
>

e

2
· exp

(

1

2 logn
−

log logn− 2.03

2 log2 n
−

(log logn)2 − 4.5 log logn+ 24.91/3

2 log3 n

)

holds for every n ≥ 275. Since 0.23 logx > (log log x)2 − 4.5 log log x+24.91/3 for every x ≥ 3281492, we
get that the inequality

An

Gn
>

e

2
· exp

(

1

2 logn
−

log logn− 1.8

2 log2 n

)

holds for every n ≥ 3281492. Now we use the inequality ex ≥ 1 + x+ x2/2, which holds for every real x,
to get

An

Gn
>

e

2
·

(

1 +
1

2 logn
−

log logn− 2

2 log2 n
+

0.025

log2 n
−

log logn

4 log3 n
+

0.45

log3 n

)

for every n ≥ 3281492. Notice that the function t 7→ 4 · 0.025− (log log t− 4 · 0.45)/(4 log t) is positive for
every t ≥ 2. Hence, we obtain that the required lower bound for the ratio of An and Gn holds for every
n ≥ 3281492. For every 76 ≤ n ≤ 3281491 we check the inequality (7.2) with a computer. �

Remark. Theorem 7.1 proves a conjecture stated by Hassani [12] in 2013, namely that there exists a real
number α with 0 < α < 9.514 and a positive integer n0 such that

An

Gn
>

e

2
+

α

logn

for every n ≥ n0.

Next, we derive the inequality stated in Theorem 1.3. Here, we use (3.19) and Theorem 7.1.

Corollary 7.2. For every n ≥ 47, we have

An

Gn
>

e

2
+

e

4 log pn
+

2e

5 log2 pn
.
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Proof. First, we consider the case n ≥ 2992205. Using (7.2) and (3.19), we get

An

Gn
>

e

2
+

e

4 log pn
+

e

4

(

2

log2 n
−

(log logn)2 − log logn+ 1

log3 n
−

P8(log logn)

2 log4 n

)

,

where P8(x) = 3x2 − 6x+ 5.2. Notice that the inequality

(7.3)
(log log x)2 − log log x+ 1

log3 x
+

P8(log log x)

2 log4 x
<

0.4

log2 x

holds for every x ≥ 2992205. Hence, we get that the inequality

An

Gn
>

e

2
+

e

4 log pn
+

2e

5 log2 n

holds, which implies that required inequality holds for every n ≥ 2992205. We verify the remaining cases
with a computer. �

The following corollary confirms that the ratio of the arithmetic and geometric means of the prime
numbers is always greater than e/2, as conjectured by Hassani [12].

Corollary 7.3. For every positive integer n, we have

An

Gn
>

e

2
.

Proof. Corollary 7.2 implies the validity of the required inequality for every n ≥ 47. We verify the
remaining cases with a computer. �

Next, we use Proposition 3.6 and Proposition 6.4 to find the following upper bound for the ratio of
An and Gn, stated in Theorem 1.4.

Theorem 7.4. For every positive integer n, we have

An

Gn
<

e

2
+

e

4 log pn
+

7e

4 log2 pn
.

Proof. First, let n ≥ 949552. By (1.1), Proposition 6.4 and the inequality (3.15), we obtain that

An

Gn
<

e

2
· exp

(

1

2 log pn
+

3.18

log2 pn

)

.

Using (4.3), we get

An

Gn
<

e

2
·

(

1 +
1

2 log pn
+

10.04

3 log2 pn
+

2.12

log3 pn
+

6.7416

log4 pn

)

.

Since log pn ≥ 16.5, we have 10.04/3+ 2.12/ logpn +6.7416/ log2 pn < 3.5, which concludes the proof for
every n ≥ 949552. We check the remaining cases with a computer. �

Now we use Theorem 7.4 and the inequality (3.19) to prove the following result.

Corollary 7.5. For every n ≥ 2, we have

An

Gn
<

e

2
+

e

4 logn
−

e(log logn− 7.4)

4 log2 n
.

Proof. By Theorem 7.4, the inequality (3.19) and the inequality 7e/(4 log2 pn) ≤ 7e/(4 log2 n), we obtain

(7.4)
An

Gn
<

e

2
+

e

4 logn
−

e(log logn− 7)

4 log2 n
+

e((log logn)2 − log logn+ 1)

4 log3 n
+

eP8(log logn)

8 log4 n

for every n ≥ 6. Applying (7.3) to (7.4), the claim follows for every n ≥ 2992205. A computer check
shows the validity of the required inequality for every 2 ≤ n ≤ 2992204. �

Remark. One of the conjectures stated by Hassani [12] is still open, namely that the inequality

An+1

Gn+1
<

An

Gn

holds for every n ≥ 226.
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