Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations

Megan A. Martinez* and Carla D. Savage ${ }^{\dagger}$

September 27, 2016

Abstract

Inversion sequences of length n, \mathbf{I}_{n}, are integer sequences $\left(e_{1}, \ldots, e_{n}\right)$ with $0 \leq e_{i}<n$ for each i. The study of patterns in inversion sequences was initiated recently by MansourShattuck and Corteel-Martinez-Savage-Weselcouch through a systematic study of inversion sequences avoiding words of length 3 . We continue this investigation by generalizing the notion of a pattern to a fixed triple of binary relations $\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$ and consider the set $\mathbf{I}_{n}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$ consisting of those $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i} \rho_{1} e_{j}, e_{j} \rho_{2} e_{k}$, and $e_{i} \rho_{3} e_{k}$. We show that "avoiding a triple of relations" can characterize inversion sequences with a variety of monotonicity or unimodality conditions, or with multiplicity constraints on the elements. We uncover several interesting enumeration results and relate pattern avoiding inversion sequences to familiar combinatorial families. We highlight open questions about the relationship between pattern avoiding inversion sequences and families such as plane permutations and Baxter permutations. For several combinatorial sequences, pattern avoiding inversion sequences provide a simpler interpretation than otherwise known.

1 Introduction

Pattern avoiding permutations have been studied extensively for their connections in computer science, biology, and other fields of mathematics. Within combinatorics they have proven their usefulness, providing an interpretation that relates a vast array of combinatorial structures. See the comprehensive survey of Kitaev [16.

The notion of pattern avoidance in inversion sequences was introduced in 13 and 21. An inversion sequence is an integer sequence $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ satisfying $0 \leq e_{i}<i$ for all $i \in[n]=$ $\{1,2, \ldots, n\}$. There is a natural bijection $\Theta: \mathbf{S}_{n} \rightarrow \mathbf{I}_{n}$ from \mathbf{S}_{n}, the set of permutations of [n], to \mathbf{I}_{n}, the set of inversion sequences of length n. Under this bijection, $e=\Theta(\pi)$ is obtained from a permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathbf{S}_{n}$ by setting $e_{i}=\mid\left\{j \mid j<i\right.$ and $\left.\pi_{j}>\pi_{i}\right\} \mid$.

[^0]The encoding of permutations as inversion sequences suggests that it could be illuminating to study patterns in inversion sequences in the same way that patterns have been studied in permutations. The paper 13 focused on the enumeration of inversion sequences that avoid words of length three and [21] treated permutations of length 3. For example, the inversion sequences $e \in \mathbf{I}_{n}$ that avoid the pattern 021 are those with no $i<j<k$ such that $e_{i}<e_{j}>e_{k}$ and $e_{i}<e_{k}$. We denote these by $\mathbf{I}_{n}(021)$. Similarly, $\mathbf{I}_{n}(010)$ is the set of $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i}<e_{j}>e_{k}$ and $e_{i}=e_{k}$. The results in [13, 21] related pattern avoidance in inversion sequences to a number of well-known combinatorlal sequences including the Fibonacci numbers, Bell numbers, large Schröder numbers, and Euler up/down numbers. They also gave rise to natural sequences that previously had not appeared in the On-Line Encyclopedia of Integer Sequences (OEIS) [15].

In this paper we consider a generalization of pattern avoidance to a fixed triple of binary relations ($\rho_{1}, \rho_{2}, \rho_{3}$) and study the set $\mathbf{I}_{n}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$ consisting of those $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i} \rho_{1} e_{j}, e_{j} \rho_{2} e_{k}$, and $e_{i} \rho_{3} e_{k}$. For example, $\mathbf{I}_{n}(<,>,<)=\mathbf{I}_{n}(021)$ and $\mathbf{I}_{n}(<,>,=)=\mathbf{I}_{n}(010)$. Table 1 illustrates that "avoiding a triple of relations" can characterize inversion sequences with a variety of natural monotonicity or unimodality conditions, or with multiplicity constraints on the appearance of elements in the inversion sequence.

For this project, we considered all triples of relations in the set $\{<,>, \leq, \geq,=, \neq,-\}^{3}$. The relation "-" on a set S is all of $S \times S$; that is, x "-" y for all $x, y \in S$. There are 343 possible triples of relations (patterns). For each pattern, $\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$, we can consider the avoidance set, $\mathbf{I}_{n}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$, or the avoidance sequence $\left|\mathbf{I}_{1}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)\right|,\left|\mathbf{I}_{2}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)\right|,\left|\mathbf{I}_{3}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)\right|, \ldots$. We say two patterns are equivalent if they give rise to the same avoidance sets and two patterns are Wilf equivalent if they yield the same avoidance sequence.

The 343 patterns partition into 98 equivalence classes of patterns. Additionally, we conjecture that there are 63 Wilf equivalence classes. In this paper, we enumerate a number of avoidance sets either directly or by relating them to familiar combinatorial structures. These relationships establish Wilf equivalence between a number of inequivalent patterns. However, even where enumeration is elusive, in many cases, Wilf equivalence can be proved via a bijection. This paper presents the results we have been able to prove, documents what has not yet been settled, and highlights the most intriguing open questions.

We uncovered several interesting enumeration results beyond those in [13, 21. For example, the inversion sequences with no $i<j<k$ such that $\mathbf{e}_{\mathbf{i}}=\mathbf{e}_{\mathbf{j}} \leq \mathbf{e}_{\mathbf{k}}$ are counted by the Fibonacci numbers (as are, e.g., permutations avoiding the pair (321, 3412)). Inversion sequences with no $i<j<k$ such that $\mathbf{e}_{\mathbf{i}}<\mathbf{e}_{\mathbf{j}} \leq \mathbf{e}_{\mathbf{k}}$ are counted by powers of two (as are, e.g., permutations avoiding (213, 312)). Inversion sequences avoiding $(-, \neq,=)$ are counted by the Bell numbers; inversion sequences avoiding $(\geq,-,>)$ are counted by the large Schröder numbers; and inversion sequences avoiding $(-, \geq,<)$ are counted by the Catalan numbers. There are the same number of inversion sequences in \mathbf{I}_{n} avoiding (\neq, \neq, \neq) as there are Grassmannian permutations in $\mathbf{S}_{n} . \mathbf{I}_{n}(\neq,<, \leq)$ is counted by the number of 321 -avoiding separable permutations in \mathbf{S}_{n}. $\mathbf{I}_{n}(\neq,<, \neq)$ has the same number of elements as the set of permutations in \mathbf{S}_{n} avoiding both of the patterns 321 and 2143.

In addition to results we could prove, several conjectures are suggested by our calculations, including the following. Inversion sequences avoiding $\mathbf{e}_{\mathbf{i}}>\mathbf{e}_{\mathbf{j}} \geq \mathbf{e}_{\mathbf{k}}$ seem to have the same counting sequence as permutations avoiding the barred pattern $21 \overline{3} 54$, also known as plane permu-
tations 6. Inversion sequences avoiding $\mathbf{e}_{\mathbf{i}} \geq \mathbf{e}_{\mathbf{j}} \geq \mathbf{e}_{\mathbf{k}}$ seem to have the same counting sequence as set partitions avoiding enhanced 3-crossings. The set $\mathbf{I}_{n}(\geq, \geq,>)$ appears to have the same counting sequence as the Baxter permutations.

Of the 63 conjectured Wilf equivalence classes, five classes are counted by sequences that are ultimately constant. In the remaining 58 classes, 30 have counting sequences that appear to match sequences in the OEIS and 28 do not.

In Sections 2.1 through 2.30 we present our results and conjectures for the 30 Wilf classes of pattern-avoiding inversion sequences that (appear to) match sequences in the OEIS. Table 2 gives an overview. Even for patterns with a "no" in this table, we are able to prove some Wilf equivalence results.

For the patterns whose counting sequence does not match a sequence in the OEIS we have some limited results on Wilf equivalence and counting. Table 3 gives an overview of the patterns in these 28 Wilf classes. Our results and conjectures for a few of these patterns are presented in Section 3.

In Tables 1, 2, and 3, each row represents an equivalence class of patterns whose identifier is given in the last column. A Wilf class of patterns is identified by the number a_{7}, the number of inversion sequences of length 7 avoiding a pattern in the class. Within a Wilf class, equivalence classes are labeled A, B, C, etc. So, for example, there are three equivalence classes of patterns counted by the Catalan numbers and these classes are labeled 429A, 429B, and 429C.

In the remainder of this section we give some definitions that will be needed throughout this paper, keeping the number of definitions to a minimum so that subsections can be somewhat selfcontained. Finally, for completeness, we list the triples of relations whose avoidance sequences are ultimately constant.

Encodings of permutations

We compare Θ with a few other common encodings of permutations mentioned later in this paper: Lehmer codes, and invcodes, which are reverse Lehmer codes.

For a sequence $t=\left(t_{1}, \ldots, t_{n}\right)$, let $t^{R}=\left(t_{n}, t_{n-1}, \ldots, t_{1}\right)$, and for a set of sequences, T, let $T^{R}=\left\{t^{R} \mid t \in T\right\}$. For a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right) \in \mathbf{S}_{n}$, let $\pi^{C}=\left(n+1-\pi_{1}, \ldots, n+1-\pi_{n}\right)$, and for a set of permutations P, let $P^{C}=\left\{\pi^{C} \mid \pi \in P\right\}$. We use the following encodings.

$$
\begin{array}{lc}
\Theta: \mathbf{S}_{n} \rightarrow \mathbf{I}_{n} & e=\Theta(\pi) \text { iff } e_{i}=\mid\left\{j \mid j<i \text { and } \pi_{j}>\pi_{i}\right\} \mid \\
L: \mathbf{S}_{n} \rightarrow \mathbf{I}_{n}^{R} & e=L(\pi) \text { iff } e_{i}=\mid\left\{j \mid j>i \text { and } \pi_{j}<\pi_{i}\right\} \mid \\
\text { invcode }: \mathbf{S}_{n} \rightarrow \mathbf{I}_{n} & e=\operatorname{invcode}(\pi) \text { iff } e^{R}=L(\pi) .
\end{array}
$$

Note that $\operatorname{inv} \operatorname{code}(\pi)=e$ if and only if $e=\Theta\left(\left(\pi^{C}\right)^{R}\right)$. Additionally, notice that if $\Theta(\pi)=e$, then i is a descent of π, that is $\pi_{i}>\pi_{i+1}$, if and only if i is an ascent of e, that is $e_{i}<e_{i+1}$.

We will make use of another encoding, ϕ in Sections 2.24 and 2.29

Operations on inversion sequences

For $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathbf{I}_{n}$ and any integer t, define $\sigma_{t}(e)=\left(e_{1}^{\prime}, e_{2}^{\prime}, \ldots e_{n}^{\prime}\right)$ where $e_{i}^{\prime}=e_{i}$ if $e_{i}=0$, and $e_{i}^{\prime}=e_{i}+t$ otherwise. So σ_{t} adds t to the nonzero elements of a sequence (notice that t could be negative).

Concatenation is used to add an element to the beginning or end of an inversion sequence. For $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathbf{I}_{n}, 0 \cdot e=\left(0, e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathbf{I}_{n+1}$ and, if $0 \leq i \leq n, e \cdot i=\left(e_{1}, e_{2}, \ldots, e_{n}, i\right) \in$ \mathbf{I}_{n+1}. More generally, $x \cdot y$ denotes the concatenation of two sequences or two words x, y

Statistics on inversion sequences

In several cases, statistics on inversion sequences helped to prove or refine the results in Table 2 and make connections with statistics on other combinatorial families. These include the following, defined for an inversion sequence $e \in \mathbf{I}_{n}$:

$$
\begin{aligned}
\operatorname{asc}(e) & =\left|\left\{i \in[n-1] \mid e_{i}<e_{i+1}\right\}\right| \\
\operatorname{zeros}(e) & =\left|\left\{i \in[n] \mid e_{i}=0\right\}\right| \\
\operatorname{dist}(e) & =\left|\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\right| \\
\operatorname{repeats}(e) & =\left|\left\{i \in[n-1] \mid e_{i} \in\left\{e_{i+1}, \ldots, e_{n}\right\}\right\}\right|=n-\operatorname{dist}(e) \\
\operatorname{maxim}(e) & =\left|\left\{i \in[n] \mid e_{i}=i-1\right\}\right| \\
\operatorname{maxx}(e) & =\max \left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \\
\operatorname{last}(e) & =e_{n}
\end{aligned}
$$

These statistics are, respectively, the number of ascents, the number of zeros, the number of distinct elements, the number of repeats, the number of maximal elements, the maximum element, and the last element of e.

Equivalence classes of patterns whose avoidance sequences are ultimately constant

These can be easily checked:

pattern	avoidance sequence
$(-,-,-)$	$1,2,0,0,0,0, \ldots$
$(\leq, \leq,-)$	$1,2,1,0,0,0, \ldots$
$(-,-, \neq)$	$1,2,2,1,1,1 \ldots$
$(-,-,<)$	$1,2,2,2,2,2, \ldots$
$(-,-,<)$	$1,2,2,2,2,2, \ldots$
$(-, \neq,-)$	$1,2,2,2,2,2, \ldots$
$(-, \neq, \neq)$	$1,2,3,3,3,3, \ldots$

Inversion sequences e satisfying:

Monotonicity constraints:
$e_{1}=e_{2}=\ldots=e_{n-1}$
$\exists t: e_{1}=e_{2}=\ldots=e_{t} \leq e_{t+1}=e_{t+2}=\ldots=e_{n}$
$\exists t: e_{1}=e_{2}=\ldots=e_{t}<e_{t+1}<e_{t+2}<\ldots<e_{n}$
$e_{1} \leq e_{2} \leq \ldots \leq e_{n-1}$
$e_{1} \leq e_{2} \leq \ldots \leq e_{n-1} \leq e_{n}$
$e_{1} \leq e_{2}<e_{3}<\ldots<e_{n}$
$e_{1}<e_{2}<\ldots<e_{n-1}$
$e_{2} \geq e_{3} \geq \ldots \geq e_{n}$
Unimodality constraints:
$\exists t: e_{1}=e_{2}=\ldots=e_{t} \leq e_{t+1} \geq e_{t+2}=\ldots=e_{n}=0$
$\exists t: e_{1}=e_{2}=\ldots=e_{t} \leq e_{t+1} \geq e_{t+2} \geq \ldots \geq e_{n}$
$\exists t: e_{1}=e_{2}=\ldots=e_{t}<e_{t+1}>e_{t+2}>\ldots>e_{n}$
$\exists t: e_{1} \leq e_{2} \leq \ldots \leq e_{t}>e_{t+1} \geq e_{t+2} \geq \ldots \geq e_{n}$
$\exists t: e_{1} \leq e_{2} \leq \ldots \leq e_{t}>e_{t+1}>e_{t+2}>\ldots>e_{n}$
$\exists t: e_{1} \leq e_{2} \leq \ldots \leq e_{t} \geq e_{t+1}=e_{t+2}=\ldots=e_{n}$
$\exists t: e_{1}<e_{2}<\ldots<e_{t} \geq e_{t+1}=e_{t+2}=\ldots=e_{n}$
$\exists t: e_{1}<e_{2}<\ldots<e_{t} \geq e_{t+1} \geq e_{t+2} \geq \ldots \geq e_{n}$
$\exists t: e_{1}<e_{2}<\ldots<e_{t} \geq e_{t+1}>e_{t+2}>\ldots>e_{n}$
$\exists(t \leq s): e_{1}<e_{2}<\ldots<e_{t}=\ldots=e_{s}>\ldots>e_{n}$

Positive elements monotone:
positive entries are strictly decreasing positive entries are weakly decreasing positive entries are strictly increasing positive entries are weakly increasing
are those with no $i<j<k$ such that:
$e_{i} \neq e_{j}$
$e_{i}<e_{j} \neq e_{k}$
$e_{i}<e_{j} \geq e_{k}$
$e_{i}>e_{j}$
$e_{j}>e_{k}$
$e_{j} \geq e_{k}$
$e_{i}=e_{j}$
$e_{j}<e_{k}$
$e_{i}<e_{j}$ and $e_{i}<e_{k}$
$e_{i} \neq e_{j}<e_{k}$
$e_{i} \neq e_{j} \leq e_{k}$
$e_{i}>e_{j}<e_{k}$
$e_{i}>e_{j} \leq e_{k}$
$e_{i}>e_{j} \neq e_{k}$
$e_{i} \geq e_{j} \neq e_{k}$
$e_{i}=e_{j}<e_{k}$
$e_{i}=e_{j} \leq e_{k}$
$e_{i} \geq e_{j} \leq e_{k}$ and $e_{i} \neq e_{k}$
and are counted by:
a_{7}, equiv class Section

n	$7, \mathrm{D}$	2.1
$1+n(n-1) / 2$	$22, \mathrm{~A}$	2.4
2^{n-1}	$64, \mathrm{C}$	2.6
Binom $(2 n-2, n-1)$	924	2.18
Catalan number C_{n}	$429, \mathrm{~A}$	2.14
n	$7, \mathrm{~B}$	2.1
n	$7, \mathrm{C}$	2.1
n	$7, \mathrm{~A}$	2.1

$1+n(n-1) / 2$	$22, \mathrm{~B}$	2.4
Grassmannian perms	$121, \mathrm{~A}$	2.7
$F_{n+2}-1$	$33, \mathrm{~A}$	2.5
A033321	1265	2.20
A071356	1064	2.19
See Section 3	$1079, \mathrm{~A}$	3.1 .3
$1+n(n-1) / 2$	$22, \mathrm{C}$	2.4
2^{n-1}	$64, \mathrm{~A}$	2.6
F_{n+1}	21	2.3
$F_{n+2}-1$	33 B	2.5

$e_{i}<e_{j} \leq e_{k}$	2^{n-1}	$64, \mathrm{~B}$	$\boxed{2.6}$
$e_{i}<e_{j}<e_{k}$	$F_{2 n-1}$	233	2.12
$e_{j} \geq e_{k}$ and $e_{i}<e_{k}$	Catalan number C_{n}	$429, \mathrm{~B}$	2.14
$e_{j}>e_{k}$ and $e_{i}<e_{k}$	large Schröder number	$1806, \mathrm{~A}$	2.24

Multiplicity constraints:
entries e_{2}, \ldots, e_{n} are all distinct
$\left|\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\right| \leq 2$
positive entries are distinct
no three entries equal
only adjacent entries can be equal
$e_{s}=e_{t} \Longrightarrow|s-t| \leq 1$

$e_{i} \leq e_{j}=e_{k}$	2^{n-1}	$64, \mathrm{D}$	$\boxed{2.6}$
$e_{i} \neq e_{j} \neq e_{k}$ and $e_{i} \neq e_{k}$	Grassmannian perms	$121, \mathrm{~B}$	$\boxed{2.7}$
$e_{i}<e_{j}=e_{k}$	Bell numbers	$877, \mathrm{~A}$	$\boxed{2.17}$
$e_{i}=e_{j}=e_{k}$	Euler up/down nos.	1385	$\boxed{2.22}$
$e_{i} \neq e_{j} \neq e_{k}$ and $e_{i} \neq e_{k}$	Bell numbers	$877, \mathrm{C}$	2.17
$e_{i}=e_{k}$	A229046	304	2.13

Table 1: Characterizations of inversion sequences avoiding triples of relations.

Inversion sequences with no $i<j<k$ such that:

$e_{i} \neq e_{j}$ and $e_{i} \neq e_{k}$	A004275
$e_{i} \geq e_{j}$ and $e_{i} \neq e_{k}$	A004275
$e_{i}=e_{j} \leq e_{k}$	A000045
$e_{i}<e_{j} \neq e_{k}$	A000124
$e_{i}<e_{j}$ and $e_{i}<e_{k}$	A000124
$e_{i} \geq e_{j} \neq e_{k}$	A000124
$e_{i} \neq e_{j} \leq e_{k}$	A000071
$e_{i} \geq e_{j} \leq e_{k}$ and $e_{i} \neq e_{k}$	A000071
$e_{i}=e_{j}<e_{k}$	A000079
$e_{i}<e_{j} \leq e_{k}$	A000079
$e_{i}<e_{j} \geq e_{k}$	A000079
$e_{i} \leq e_{j}=e_{k}$	A000079
$e_{i} \neq e_{j}<e_{k}$	A000325
$e_{i} \neq e_{j} \neq e_{k}$ and $e_{i} \neq e_{k}$	A000325
$e_{j} \geq e_{k}$ and $e_{i} \neq e_{k}$	A000325
$e_{i} \neq e_{j}<e_{k}$ and $e_{i} \leq e_{k}$	A034943
$e_{i} \neq e_{j}<e_{k}$ and $e_{i} \neq e_{k}$	A088921
$e_{i} \geq e_{k}$	A049125
$e_{i} \leq e_{j} \geq e_{k}$ and $e_{i} \neq e_{k}$	A005183
$e_{i}<e_{j}<e_{k}$	A001519
$e_{i}=e_{k}$	A229046
$e_{j}>e_{k}$	A000108
$e_{j} \geq e_{k}$ and $e_{i}<e_{k}$	A000108
$e_{i} \geq e_{j}$ and $e_{i} \geq e_{k}$	A000108
$e_{i} \neq e_{j}=e_{k}$	A047970
$e_{j} \leq e_{k}$ and $e_{i} \geq e_{k}$	A108307
$e_{i} \geq e_{j} \geq e_{k}$	A108307
$e_{i}<e_{j}=e_{k}$	A000110
$e_{i}=e_{j} \geq e_{k}$	A000110
$e_{j} \neq e_{k}$ and $e_{i}=e_{k}$	A000110
$e_{i} \geq e_{j}$ and $e_{i}=e_{k}$	A000110
$e_{i}>e_{j}$	A000984
$e_{i}>e_{j} \leq e_{k}$	A071356
$e_{i}>e_{j}<e_{k}$	A033321
$e_{i}>e_{j}$ and $e_{i} \leq e_{k}$	A106228
$e_{i}=e_{j}=e_{k}$	A000111
$e_{i}>e_{j}$ and $e_{i}<e_{k}$	A200753
$e_{j}>e_{k}$ and $e_{i}<e_{k}$	A006318
$e_{i}>e_{j}$ and $e_{i} \geq e_{k}$	A006318
$e_{i} \geq e_{j}$ and $e_{i}>e_{k}$	A006318
$e_{i} \geq e_{j} \neq e_{k}$ and $e_{i} \geq e_{k}$	A006318
$e_{i} \geq e_{j} \geq e_{k}$ and $e_{i}>e_{k}$	A001181
$e_{i}>e_{j}$ and $e_{i}>e_{k}$	A098746
$e_{i}>e_{j} \neq e_{k}$ and $e_{i} \geq e_{k}$	A098746
$e_{i} \geq e_{j} \neq e_{k}$ and $e_{i}>e_{k}$	A098746
$e_{j}<e_{k}$ and $e_{i} \geq e_{k}$	A117106
$e_{i}>e_{j} \geq e_{k}$	A117106
$e_{i} \geq e_{j}>e_{k}$	A117106
$e_{j} \leq e_{k}$ and $e_{i}>e_{k}$	A117106
$e_{j}<e_{k}$ and $e_{i}=e_{k}$	A113227
$e_{i}=e_{j}>e_{k}$	A113227
$e_{i}>e_{j} \neq e_{k}$ and $e_{i}>e_{k}$	A212198

appear to be counted by OEIS seq:

A004275
A004275
A000124
A000124
A000124

A000071
A000079
A000079
A000079
A000325
A000325

A034943
A088921
A049125

A001519
A229046
A000108
A000108

A108307
A108307

A000110

A000110
A000984
A071356

A106228

A006318

A006318
A006318
A001181

A098746
A098746
A117106
A117106
A117106

A113227
proven?
notes/OEIS description
a_{7}, equiv class
Section

yes	$2(n-1)$ for $n>1$	12,A	2.2
yes	$2(n-1)$ for $n>1$	12,B	2.2
yes	Fibonacci numbers, F_{n+1}	21	2.3
yes	Lazy caterer sequence	22,A	2.4
yes	Lazy caterer sequence	22,B	2.4
yes	Lazy caterer sequence	22,C	2.4
yes	$F_{n+2}-1$	33,A	2.5
yes	$F_{n+2}-1$	33,B	2.5
yes	$\mathbf{I}_{n}(001), 2^{n-1}$ (see [13])	64,A	2.6
yes	2^{n-1}	64,B	2.6
yes	2^{n-1}	64,C	2.6
yes	2^{n-1}	64,D	2.6
yes	Grassmannian permutations	121, A	2.7
yes	Grassmannian permutations	121,B	2.7
yes	Grassmannian permutations	121,C	2.7
yes	321-avoiding separable perms	151	2.8
yes	$\mathbf{S}_{n}(321,2143)$	185	2.9
no	ordered trees, internal nodes adj. to ≤ 1 leaf	187	2.10
yes	$\mathbf{S}_{n}(132,4312), n 2^{n-1}+1$	193	2.11
yes	$\mathbf{I}_{n}(012), F_{2 n-1}($ see [13, 21])	233	2.12
no	recurrence \rightarrow gf?	304	2.13
yes	Catalan numbers	429, A	2.14
yes	Catalan numbers	429,B	2.14
no	Catalan numbers	429, C	2.14
yes	$\mathbf{S}_{n}(\overline{3} \overline{1} 542)$, nexus numbers	523	2.15
no	set partitions avoiding enhanced 3-crossings	772,A	2.16
no	set partitions avoiding enhanced 3-crossings	772,B	2.16
yes	$\mathbf{I}_{n}(011)$ (see [13), Bell numbers B_{n}	877,A	2.17
no	$\mathbf{I}_{n}(000,110), B_{n}$	877,B	2.17
yes	$\mathbf{I}_{n}(010,101), B_{n}$	877,C	2.17
no	$\mathbf{I}_{n}(000,101), B_{n}$	877,D	2.17
yes	central binomial coefficients	924	2.18
no	certain underdiagonal lattice paths	1064	2.19
yes	$\mathbf{S}_{n}(2143,3142,4132)$ (see [8)	1265	2.20
no	$\mathbf{I}_{N}(101,102), \mathbf{S}_{n}(4123,4132,4213)$	1347	2.21
yes	$\mathbf{I}_{n}(000)$ (see [13), Euler up/down numbers	1385	2.22
yes	$\mathbf{I}_{n}(102), 21$	1694	2.23
yes	$\mathbf{I}_{n}(021)$ 13, 21, large Schröder numbers R_{n-1}	1806,A	2.24
yes	$\mathbf{I}_{n}(210,201,101,100), R_{n-1}$	1806,B	2.24
yes	$\mathbf{I}_{n}(210,201,100,110), R_{n-1}$	1806,C	2.24
yes	$\mathbf{I}_{n}(210,201,101,110), R_{n-1}$	1806, D	2.24
no	Baxter permutations	2074	2.25
no	$\mathbf{I}_{n}(210,201,100), \mathbf{S}_{n}(4231,42513)$	2549,A	2.26
no	$\mathbf{I}_{n}(210,201,101), \mathbf{S}_{n}(4231,42513)$	2549,B	2.26
no	$\mathbf{I}_{n}(210,201,110), \mathbf{S}_{n}(4231,42513)$	2549, C	2.26
no	$\mathbf{I}_{n}(201,101), \mathbf{S}_{n}(21 \overline{3} 54)$	2958,A	2.27
no	$\mathbf{I}_{n}(210,100), \mathbf{S}_{n}(21 \overline{3} 54)$	2958,B	2.27
no	$\mathbf{I}_{n}(210,110), \mathbf{S}_{n}(21 \overline{3} 54)$	2958, C	2.27
no	$\mathbf{I}_{n}(201,100), \mathbf{S}_{n}(21 \overline{3} 54)$	2958,D	2.27
yes	$\mathbf{I}_{n}(101), \mathbf{S}_{n}(1-23-4)$, (see [13])	3207,A	2.28
yes	$\mathbf{I}_{n}(110), \mathbf{S}_{n}(1-23-4)$, (see [13)	3207,B	2.28
yes	$\mathbf{I}_{n}(201,210), M M P(0,2,0,2)$-avoiding perms	3720	2.28

Table 2: Patterns whose avoidance sequences appear to match sequences in the OEIS. Those marked as "yes" are cited, if known, and otherwise are proven in this paper.

Inversion sequences with no $i<j<k$ such that:

$e_{j} \geq e_{k}$ and $e_{i} \geq e_{k}$	$\mathbf{I}_{n}(000,010,011,021)$	1, 2, 4, 10, 26, 73, 214, 651, 2040	214
$e_{i} \leq e_{j}$ and $e_{i} \geq e_{k}$	$\mathbf{I}_{n}(000,010,110,120)$	1, 2, 4, 10, 27, 79, 247, 816, 2822	247
$e_{j} \geq e_{k}$ and $e_{i}=e_{k}$	$\mathbf{I}_{n}(000,010)$	$1,2,4,10,29,95,345,1376,5966$	345
$e_{j} \neq e_{k}$ and $e_{i} \geq e_{k}$	Wilf eq. to 663B (Sec. 3.2)	1, 2, 5, 15, 50, 178, 663, 2552, 10071	663,A
$e_{i} \neq e_{j}$ and $e_{i} \geq e_{k}$	Wilf eq. to 663A (Sec. 3.2)	$1,2,5,15,50,178,663,2552,10071$	663,B
$e_{i} \neq e_{j} \neq e_{k}$ and $e_{i} \geq e_{k}$	$\mathbf{I}_{n}(010,101,120,201)$	$1,2,5,15,51,188,733,2979,12495$	733
$e_{j}>e_{k}$ and $e_{i} \geq e_{k}$	Wilf eq. to 746B (Sec. 3.2	$1,2,5,15,51,189,746,3091,13311$	746,A
$e_{i} \neq e_{j} \geq e_{k}$ and $e_{i} \geq e_{k}$	Wilf eq. to 746A (Sec. 3.2	1, 2, 5, 15, 51, 189, 746, 3091, 13311	746,B
$e_{i} \leq e_{j} \neq e_{k}$ and $e_{i} \geq e_{k}$	$\mathbf{I}_{n}(010,110,120)$	$1,2,5,15,51,190,759,3206,14180$	759
$e_{i} \leq e_{j}>e_{k}$ and $e_{i} \neq e_{k}$	counted - See Section 3.1	1,2,6,20,68,233,805,2807,9879	805
$e_{i} \neq e_{j}>e_{k}$ and $e_{i} \geq e_{k}$	$\mathbf{I}_{n}(010,120)$	1,2, 5, 15, 52, 200, 830, 3654, 16869	830
$e_{i}<e_{j}$ and $e_{i} \geq e_{k}$	$\mathbf{I}_{n}(010,120)$	1, 2, 5, 15, 52, 201, 845, 3801, 18089	845
$e_{j}>e_{k}$ and $e_{i}=e_{k}$	$\mathbf{I}_{n}(010)(\mathrm{A} 263779)$	1, 2, 5, 15, 53, 215, 979, 4922, 26992	979
$e_{i}>e_{j}$ and $e_{i} \neq e_{k}$	counted - See Section 3.1	1, 2, 6, 21, 76, 277, 1016, 3756, 13998	1016
$e_{i}>e_{j} \neq e_{k}$	Wilf eq. to 1079B (Sec. 3.2)	1, 2, 6, 21, 77, 287, 1079, 4082, 15522	1079,A
$e_{i}<e_{j}>e_{k}$ and $e_{i} \neq e_{k}$	Wilf eq. to 1079A (Sec. 3.2)	1, 2, 6, 21, 77, 287, 1079, 4082, 15522	1079,B
$e_{i}>e_{j} \leq e_{k}$ and $e_{i} \neq e_{k}$	$\mathbf{I}_{n}(100,102,201)$	1, 2, 6, 21, 78, 299, 1176, 4729, 19378	1176
$e_{i}>e_{j} \neq e_{k}$ and $e_{i} \neq e_{k}$	$\mathbf{I}_{n}(210,201,102)$	1, 2, 6, 22, 85, 328, 1253, 4754, 17994	1253
$e_{i} \geq e_{j}=e_{k}$	$\mathbf{I}_{n}(000,100)$	1, 2, 5, 16, 60, 260, 1267, 6850, 40572	1267
$e_{i}>e_{k}$	$\mathbf{I}_{n}(100,110,120,210,201)$	1, 2, 6, 21, 81, 332, 1420, 6266, 28318	1420
$e_{i}>e_{j}<e_{k}$ and $e_{i} \neq e_{k}$	$\mathbf{I}_{n}(102,201)$	1, 2, 6, 22, 87, 354, 1465, 6154, 26223	1465
$e_{j} \geq e_{k}$ and $e_{i}>e_{k}$	$\mathbf{I}_{n}(100,110,210)$	1, 2, 6, 21, 82, 343, 1509, 6893, 32419	1509
$e_{j} \neq e_{k}$ and $e_{i}>e_{k}$	Wilf eq. to 1833B (Sec. 3.2)	1, 2, 6, 22, 90, 396, 1833, 8801, 43441	1833,A
$e_{i} \neq e_{j}$ and $e_{i}>e_{k}$	Wilf eq. to 1833A (Sec. 3.2)	1, 2, 6, 22, 90, 396, 1833, 8801, 43441	1833,B
$e_{j}>e_{k}$ and $e_{i}>e_{k}$	Wilf eq. to 1953B (Sec. 3.2)	1, 2, 6, 22, 91, 409, 1953, 9763, 50583	1953,A
$e_{i} \neq e_{j} \geq e_{k}$ and $e_{i}>e_{k}$	Wilf eq. to 1953A (Sec. 3.2)	1, 2, 6, 22, 91, 409, 1953, 9763, 50583	1953,B
$e_{i} \leq e_{j}>e_{k}$ and $e_{i}>e_{k}$	$\mathbf{I}_{n}(110,120)$	1, 2, 6, 22, 92, 423, 2091, 10950, 60120	2091
$e_{i}>e_{j} \leq e_{k}$ and $e_{i} \geq e_{k}$	$\mathbf{I}_{n}(100,101,201)$	1, 2, 6, 22, 92, 424, 2106, 11102, 61436	2106
$e_{i} \neq e_{j} \neq e_{k}$ and $e_{i}>e_{k}$	$\mathbf{I}_{n}(120,210,201)$	1, 2, 6, 23, 101, 484, 2468, 13166, 72630	2468
$e_{i} \neq e_{j}>e_{k}$ and $e_{i}>e_{k}$	$\mathbf{I}_{n}(210,120)$	1, 2, 6, 23, 102, 499, 2625, 14601, 84847	2625
$e_{i}<e_{j}$ and $e_{i}>e_{k}$	$\mathbf{I}_{n}(120)(\mathrm{A} 263778)$	1, 2, 6, 23, 103, 515, 2803, 16334, 100700	2803
$e_{i}>e_{j}=e_{k}$	$\mathbf{I}_{n}(100)(\mathrm{A} 263780)$	1, 2, 6, 23, 106, 565, 3399, 22678, 165646	3399
$e_{j}<e_{k}$ and $e_{i}>e_{k}$	$\mathbf{I}_{n}(201)($ A263777)	1, 2, 6, 24, 118, 674, 4306, 29990, 223668	4306,A
$e_{i}>e_{j}>e_{k}$	$\mathbf{I}_{n}(210)$ Wilf eq to 4306A [13]	1, 2, 6, 24, 118, 674, 4306, 29990, 223668	4306,B

$e_{i} \leq e_{j}$ and $e_{i} \geq e_{k}$
$e_{j} \geq e_{k}$ and $e_{i}=e_{k}$
$e_{j} \neq e_{k}$ and $e_{i} \geq e_{k}$
$e_{i} \neq e_{j}$ and $e_{i} \geq e_{k}$
$e_{i} \neq e_{j} \neq e_{k}$ and $e_{i} \geq e_{k}$
$e_{j}>e_{k}$ and $e_{i} \geq e_{k}$
$e_{i} \neq e_{j} \geq e_{k}$ and $e_{i} \geq e_{k}$
$e_{i} \leq e_{j} \neq e_{k}$ and $e_{i} \geq e_{k}$
$e_{i} \leq e_{j}>e_{k}$ and $e_{i} \neq e_{k}$
$e_{i} \neq e_{j}>e_{k}$ and $e_{i} \geq e_{k}$
$e_{i}<e_{j}$ and $e_{i} \geq e_{k}$
$e_{j}>e_{k}$ and $e_{i}=e_{k}$
$e_{i}>e_{j}$ and $e_{i} \neq e_{k}$
$e_{i}>e_{j} \neq e_{k}$
$e_{i}<e_{j}>e_{k}$ and $e_{i} \neq e_{k}$
$e_{i}>e_{j} \leq e_{k}$ and $e_{i} \neq e_{k}$
$e_{i}>e_{j} \neq e_{k}$ and $e_{i} \neq e_{k}$
$e_{i} \geq e_{j}=e_{k}$
$e_{i}>e_{k}$
$e_{j} \geq e_{k}$ and $e_{i}>e_{k}$
$e_{j} \neq e_{k}$ and $e_{i}>e_{k}$
$e_{i} \neq e_{j}$ and $e_{i}>e_{k}$
$e_{j}>e_{k}$ and $e_{i}>e_{k}$
$e_{i} \neq e_{j} \geq e_{k}$ and $e_{i}>e_{k}$
$e_{i} \leq e_{j}>e_{k}$ and $e_{i}>e_{k}$
$e_{i}>e_{j} \leq e_{k}$ and $e_{i} \geq e_{k}$
$e_{i} \neq e_{j} \neq e_{k}$ and $e_{i}>e_{k}$
$e_{i} \neq e_{j}>e_{k}$ and $e_{i}>e_{k}$
$e_{i}<e_{j}$ and $e_{i}>e_{k}$
$e_{j}<e_{k}$ and $e_{i}>e_{k}$
$e_{i}>e_{j}>e_{k}$
comments
$\mathbf{I}_{n}(000,010,011,021)$
$\mathbf{I}_{n}(000,010,110,120)$
Wilf eq. to 663 B (Sec. 3.2)
Wilf eq. to 663A (Sec. 3.2)
$\mathbf{I}_{n}(010,101,120,201)$
Wilf
$\mathbf{I}_{n}(010,110,120)$
counted - See Section 3.1
$\mathbf{I}_{n}(010,120)$
$\mathbf{I}_{n}(010)$ (A263779)
counted - See Section 3.1
Wif eq tor (Sec.
$\mathbf{I}_{n}(100,102,201)$
$\mathbf{I}_{n}(210,201,102)$
$\mathbf{I}_{n}(100,100)$
$\mathbf{I}_{n}(102,201)$
$\mathbf{I}_{n}(100,110,210)$
Wilf eq. to 1833A (Sec. 3.2)
Wilf eq. to 1953B (Sec. 3.2)
Wilf eq. to 1953A (Sec. 3.2)
$\mathbf{I}_{n}(110,120)$
$\mathbf{I}_{n}(120,210,201)$
$\mathbf{I}_{n}(210,120)$
$\mathbf{I}_{n}(120)(\mathrm{A} 263778)$
$\mathbf{I}_{n}(201)$ (A263777)
$\mathbf{I}_{n}(210)$ Wilf eq to 4306 A [13]
initial terms $a_{1}, \ldots a_{9}$
$1,2,4,10,26,73,214,651,2040$
$1,2,4,10,27,79,247,816,2822$
$1,2,5,15,50,178,663,2552,10071$
$1,2,5,15,50,178,663,2552,10071$
$1,2,5,15,51,188,733,2979,12495$
$1,2,5,15,51,189,746,3091,13311$
$1,2,5,15,51,190,759,3206,14180$
1,2,6,20,68,233,805,2807,9879
$1,2,5,15,52,200,830,3654,16869$
$1,2,5,15,53,215,979,4922,26992$
$1,2,6,21,76,277,1016,3756,13998$
$1,2,6,21,77,287,1079,4082,15522$
$1,2,6,21,78,299,1176,4729,19378$
$1,2,6,22,85,328,1253,4754,17994$
$1,2,5,16,60,260,1267,6850,40572$
$1,2,6,22,87,354,1465,6154,26223$
$1,2,6,21,82,343,1509,6893,32419$
$1,2,6,22,90,396,1833,8801,43441$
$1,2,6,22,91,409,1953,9763,50583$
$1,2,6,22,91,409,1953,9763,50583$
1,2, $, 22,52,423,2091,10950,60120$
$1,2,6,22,92,424,2106,11102,6136$
1,2, 6, 23, 11, 499, 2625, 14601, 84847
$1,2,6,23,103,515,2803,16334,100700$
$1,2,6,23,106,565,3399,22678,1656463399$
$1,2,6,24,118,674,4306,29990,223668 \quad 4306, \mathrm{~A}$
4306,B

Table 3: The patterns whose avoidance sequences did not match sequences in the OEIS. (OEIS numbers in parentheses were newly assigned after [13] was posted to the arXiv.)

2 Patterns whose sequences appear in the OEIS

2.1 7(A,B,C,D): n

There are four equivalence classes of patterns whose avoidance sequences are counted by the positive integers. We characterize each, from which it is straightforward to prove that

$$
\left|\mathbf{I}_{n}(-,<,-)\right|=\left|\mathbf{I}_{n}(-, \geq,-)\right|=\left|\mathbf{I}_{n}(=,-,-)\right|=\left|\mathbf{I}_{n}(\neq,-,-)\right|=n
$$

although these four patterns are not equivalent.
$7 \mathbf{A}: e_{j}<e_{k}$
$\mathbf{I}_{n}(-,<,-)$ is the set of $e \in \mathbf{I}_{n}$ satisfying $e_{2} \geq e_{3} \geq \ldots \geq e_{n}$.
7B: $e_{j} \geq e_{k}$
$\mathbf{I}_{n}(-, \geq,-)$ is the set of $e \in \mathbf{I}_{n}$ satisfying $e_{1} \leq e_{2}<e_{3}<\ldots<e_{n}$.
$7 \mathrm{C}: e_{i}=e_{j}$
$\mathbf{I}_{n}(=,-,-)$ is the set of $e \in \mathbf{I}_{n}$ satisfying $e_{1}<e_{2}<\ldots<e_{n-1}$.
$7 \mathrm{D}: e_{i} \neq e_{j}$
$\mathbf{I}_{n}(\neq,-,-)$ is the set of $e \in \mathbf{I}_{n}$ satisfying $e_{1}=e_{2}=\ldots=e_{n-1}$.
Note: Simion and Schmidt [24] showed that $\left|S_{n}(123,132,231)\right|=n$.

2.2 12(A,B): $2(n-1)$ for $n>1$

We show that the following patterns are Wilf equivalent, but not equivalent.
12A: $e_{i} \neq e_{j}$ and $e_{i} \neq e_{k}$
12B: $e_{i} \geq e_{j}$ and $e_{i} \neq e_{k}$
Theorem 1. $\left|\mathbf{I}_{n}(\neq,-, \neq)\right|$ and $\left|\mathbf{I}_{n}(\geq,-, \neq)\right|$ are both counted by 1 if $n=1$ and by $2(n-1)$ for $n>1$. However, $\mathbf{I}_{n}(\neq,-, \neq) \neq \mathbf{I}_{n}(\geq,-, \neq)$ for $n>2$.

Proof. For $n=1$ this is clear. For $n>1$ this follows by noting that any $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i} \neq e_{j}$ and $e_{i} \neq e_{k}$ can be $(0,0, \ldots, 0)$ or can be of the form $(0,0, \ldots, t, 0)$ or $(0,0, \ldots, 0, s)$ where $t \in[n-2]$ and $s \in[n-1]$. On the other hand, any $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i} \geq e_{j}$ and $e_{i} \neq e_{k}$ must have the form $(0,1,2, \ldots, n-2, t)$ for $t=0, \ldots, n-1$ or the form $(0,1,2, \ldots, t-1, t, t, \ldots, t)$ for $t=0, \ldots, n-3$.

2.3 21: F_{n+1}

Let F_{n} be the n-th Fibonacci number, where $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. The Fibonacci numbers count pattern-avoiding permutations such as $\mathbf{S}_{n}(123,132,213)$ [24].

$$
\text { 21: } e_{i}=e_{j} \leq e_{k}
$$

Observation 1. The inversion sequences $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i}=e_{j} \leq e_{k}$ are those satisfying, for some $t \in[n]$,

$$
\begin{equation*}
e_{1}<e_{2}<\ldots<e_{t} \geq e_{t+1}>\ldots>e_{n} \tag{1}
\end{equation*}
$$

Theorem 2. $\left|\mathbf{I}_{n}(=, \leq,-)\right|=F_{n+1}$

Proof. This is clear for $n=1,2$. For $n \geq 3$, any $e \in \mathbf{I}_{n}(=, \leq,-)$ must have the form $\left(0, e_{1}+\right.$ $\left.1, \ldots, e_{n-1}+1\right)$ for $\left(e_{1}, \ldots, e_{n-1}\right) \in \mathbf{I}_{n-1}(=, \leq,-)$ or $\left(0, e_{1}+1, \ldots, e_{n-2}+1,0\right)$ for $\left(e_{1}, \ldots, e_{n-2}\right) \in$ $\mathbf{I}_{n-2}(=, \leq,-)$. Conversely, strings of either of these forms are in $\mathbf{I}_{n}(=, \leq,-)$.

Among the 343 patterns checked it can be shown that the six patterns whose avoidance sequence is counted by F_{n+1} are equivalent.

Observation 2. All of the following patterns are equivalent to $(=, \leq,-):(=,-, \leq),(=, \leq, \leq)$, $(\geq,-, \leq),(\geq, \leq,-),(\geq, \leq, \geq)$,

2.4 22(A,B,C): Lazy caterer sequence, $\binom{n}{2}+1$

We show that there are three inequivalent patterns that are all counted by the Lazy caterer sequence, $\binom{n}{2}+1$, which also counts $\mathbf{S}_{n}(132,321)[24]$

22A: $e_{i}<e_{j} \neq e_{k}$
It is not hard to see that inversion sequences avoiding $e_{i}<e_{j} \neq e_{k}$ are characterized by the following.
Observation 3. The inversion sequences $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i}<e_{j} \neq e_{k}$ are those satisfying, for some t where $1 \leq t \leq n$,

$$
\begin{equation*}
0=e_{1}=e_{2}=\ldots=e_{t-1} \leq e_{t}=e_{t+1}=\ldots=e_{n} \tag{2}
\end{equation*}
$$

That is, either $e=(0,0, \ldots, 0)$ or, for some $t: 2 \leq t \leq n$ and $j: 1 \leq j \leq t-1$, e consists of a string of $t-1$ zeros followed by a string of $n-t+1$ copies of j. This gives the following.
Theorem 3. $\left|\mathbf{I}_{n}(<, \neq,-)\right|=\binom{n}{2}+1$.
The sequence whose nth entry is $\binom{n}{2}+1$ is sequence A000124 in the OEIS, where it is called the Lazy Caterer sequence [15]. This is also the avoidance sequence for certain pairs of permutation patterns, as was shown in [24].

Theorem 4 (Simion-Schmidt [24]). $\left|\mathbf{S}_{n}(\alpha, \beta)\right|=\binom{n}{2}+1$ for any of the following pairs (α, β) of patterns:

$$
(132,321),(123,231),(123,312),(213,321)
$$

We can relate these permutations to the inversion sequences in $\mathbf{I}_{n}(<, \neq,-)$. Recall the bijection $\Theta(\pi): \mathbf{S}_{n} \rightarrow \mathbf{I}_{n}$ for $\pi=\pi_{1} \ldots \pi_{n} \in \mathbf{S}_{n}$ defined by $\Theta(\pi)=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, where $e_{i}=\mid\{j \mid j<$ i and $\left.e_{j}>e_{i}\right\} \mid$.
Theorem 5. $\mathbf{I}_{n}(<, \neq,-)=\Theta\left(\mathbf{S}_{n}(213,321)\right)$.
Proof. Note that $e \in \mathbf{I}_{n}$ satisfies (2) if and only if $\pi=\Theta^{-1}(e)$ satisfies

$$
\pi_{1}<\pi_{2}<\ldots<\pi_{t}>\pi_{t+1}<\pi_{t+2}<\ldots<\pi_{n}
$$

where $\pi_{t}, \pi_{t+1}, \ldots, \pi_{n}$ are consecutive integers. Such permutations are the ones that avoid both 213 and 321 .

The patterns $(<,-,<)$ and $(\geq, \neq,-)$ are Wilf-equivalent to the pattern $(<, \neq,-)$ on inversion sequences, although the three patterns are pairwise inequivalent. This is clear from the following characterizations.

22B: $e_{i}<e_{j}$ and $e_{i}<e_{k}$
Observation 4. The inversion sequences $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i}<e_{j}$ and $e_{i}<e_{k}$ are those satisfying, for some t where $1 \leq t \leq n$,

$$
\begin{equation*}
0=e_{1}=e_{2}=\ldots=e_{t-1} \leq e_{t} \geq e_{t+1}=\ldots=e_{n}=0 \tag{3}
\end{equation*}
$$

22C: $e_{i} \geq e_{j} \neq e_{k}$
Observation 5. The inversion sequences $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i} \geq e_{j} \neq e_{k}$ are those satisfying, for some t where $1 \leq t \leq n$,

$$
\begin{equation*}
e_{1}<e_{2}<\ldots<e_{t-1} \geq e_{t}=e_{t+1}=\ldots=e_{n} \tag{4}
\end{equation*}
$$

$2.533(\mathrm{~A}, \mathrm{~B}): F_{n+2}-1$

We show that 33A: $(\neq, \leq,-)$ and 33B: (\geq, \leq, \neq) are inequivalent Wilf equivalent patterns whose avoidance sequences are counted by $F_{n+2}-1$.

33A: $e_{i} \neq e_{j} \leq e_{k}$
Theorem 6. $\left|\mathbf{I}_{n}(\neq, \leq,-)\right|=F_{n+2}-1$.

Proof. Observe that the inversion sequences $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i} \neq e_{j} \leq e_{k}$ are those satisfying, for some t where $1 \leq t \leq n+1$,

$$
\begin{equation*}
0=e_{1}=e_{2}=\ldots=e_{t-1}<e_{t}>e_{t+1}>\ldots>e_{n} \tag{5}
\end{equation*}
$$

We can partition the inversion sequences in $\mathbf{I}_{n}(\neq, \leq,-)$ into three disjoint sets: $\{(0,0, \ldots, 0)\}$, $A=\left\{e \in \mathbf{I}_{n}(\neq, \leq,-) \mid e_{n} \neq 0\right\}$, and $B=\left\{e \in \mathbf{I}_{n}(\neq, \leq,-) \mid e \neq 0, e_{n}=0\right\}$. Any inversion sequence in A can be constructed by taking any $e^{\prime}=\left(e_{1}, e_{2}, \ldots, e_{n-1}\right) \in \mathbf{I}_{n-1}(\neq, \leq,-)$ and letting e_{t} be the first nonzero entry (if there is no nonzero entry, set $e_{t}=e_{n}$). Then we can use the characterization 5 to verify that $\left(0, e_{1}, e_{2}, \ldots, e_{t-1}, e_{t}+1, \ldots, e_{n}+1\right)$ is an element of A.

Any element of B can be constructed by taking some $e^{\prime \prime}=\left(e_{1}, e_{2}, \ldots, e_{n-2}\right) \in \mathbf{I}_{n-2}(\neq, \leq,-)$ and letting e_{t} be the first nonzero entry (again, if no such entry exists, set $e_{t}=e_{n}$). Then $\left(0, e_{1}, \ldots, e_{t-1}, e_{t}+1, \ldots, e_{n-2}+1,0\right)$ is an element of B.

Setting $a_{n}=\left|\mathbf{I}_{n}(\neq, \leq,-)\right|$, this gives $a_{n}=a_{n-1}+a_{n-2}+1$, with initial conditions $a_{1}=1$, $a_{2}=2$. So $a_{n}=F_{n+2}-1$.

33B: $e_{i} \geq e_{j} \leq e_{k}$ and $e_{i} \neq e_{k}$

Theorem 7. $\left|\mathbf{I}_{n}(\geq, \leq, \neq)\right|=F_{n+2}-1$.

Proof. The inversion sequences $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i} \geq e_{j} \leq e_{k}$ and $e_{i} \neq e_{k}$ are those satisfying, for some t, s where $1 \leq t \leq s \leq n$,

$$
\begin{equation*}
e_{1}<e_{2}<\ldots=e_{t-1}=e_{t}=e_{t+1}=\ldots=e_{s}>e_{s+1}>\ldots>e_{n} \tag{6}
\end{equation*}
$$

The following is a bijection mapping $\mathbf{I}_{n}(\geq, \leq, \neq)$ to $\mathbf{I}_{n}(\neq, \leq,-)$. For $e \in \mathbf{I}_{n}(\geq, \leq, \neq)$, let s be the first index, if any, such that $e_{s}>e_{s+1}$. If there is such an s, set $e_{i}=0$ for $i=1, \ldots s-1$ to get an element of $\mathbf{I}_{n}(\neq, \leq,-)$. Otherwise $e=(0,0, \ldots, 0)$, which maps to itself in $\mathbf{I}_{n}(\neq, \leq,-)$.

$2.6 \quad 64(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}): 2^{n-1}$

64A: $e_{i}=e_{j}<e_{k}$
In [13], $\mathbf{I}_{n}(=,<,-)=\mathbf{I}_{n}(001)$ was characterized as the set of $e \in \mathbf{I}_{n}$ satisfying, for some $t \in[n]$,

$$
e_{1}<e_{2}<\ldots<e_{t} \geq e_{t+1} \geq e_{t+2} \geq \ldots \geq e_{n}
$$

It was shown that $\left|\mathbf{I}_{n}(001)\right|=2^{n-1}$ by showing that the bijection $\Theta: \mathbf{S}_{n} \rightarrow \mathbf{I}_{n}$ restricts to a bijection $\mathbf{S}_{n}(132,231) \rightarrow \mathbf{I}_{n}(001)$. Permutations avoiding both 132 and 231 were shown by Simion and Schmidt to be counted by 2^{n-1} in [24].

We show that three other patterns are Wilf equivalent, though inequivalent, to 64 A .
64B: $e_{i}<e_{j} \leq e_{k}$

Theorem 8. The number of $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i}<e_{j} \leq e_{k}$ is 2^{n-1}.

Proof. First observe that the inversion sequences e with no $i<j<k$ such that $e_{i}<e_{j} \leq e_{k}$ are those whose positive entries form a strictly decreasing sequence.

Let $B_{n}=\mathbf{I}_{n}(<, \leq,-)$. Notice that $\left|B_{1}\right|=|\{(0)\}|=1$; we will show that for $n>1,\left|B_{n}\right|=$ $2\left|B_{n-1}\right|$. Recall that $\sigma_{1}(e)$ adds 1 to each positive element in e. Each $e \in B_{n-1}$ gives rise to two elements of B_{n}. The first is $0 \cdot \sigma_{1}(e)$, which contains no " 1 ". The second, which does have a " 1 ", is $0 \cdot e$ if e contains a " 1 " and $e \cdot 1$ otherwise.

64C: $e_{i}<e_{j} \geq e_{k}$
Theorem 9. The number of $e \in \mathbf{I}_{n}$ avoiding $e_{i}<e_{j} \geq e_{k}$ with $i<j<k$ is 2^{n-1}.

Proof. The inversion sequences avoiding the pattern $e_{i}<e_{j} \geq e_{k}$ with $i<j<k$ are those $e \in \mathbf{I}_{n}$ satisfying, for some $t \in[n]$,

$$
0=e_{1}=e_{2}=\cdots=e_{t}<e_{t+1}<e_{t+2}<\cdots<e_{n}
$$

Map $e \in \mathbf{I}_{n}(<, \geq,-)$ to the set consisting of its nonzero values. Clearly this is a bijection from $\mathbf{I}_{n}(<, \geq,-)$ to $2^{[n-1]}$.

In fact, we can show that $\mathbf{I}_{n}(<, \geq,-)$ is the image under Θ of $\mathbf{S}_{n}(213,312)$.
Theorem 10. $\Theta\left(\mathbf{S}_{n}(213,312)\right)=\mathbf{I}_{n}(<, \geq,-)$.

Proof. It is straightforward to prove that $\mathbf{S}_{n}(213,312)$ consists of the unimodal permutations where

$$
\pi_{1}<\pi_{2}<\cdots<\pi_{t}=n>\pi_{t+1}>\cdots>\pi_{n}
$$

The inversion sequences avoiding the pattern $e_{i}<e_{j} \geq e_{k}$ with $i<j<k$ are those $e \in \mathbf{I}_{n}$ satisfying, for some $t \in[n]$,

$$
0=e_{1}=e_{2}=\cdots=e_{t}<e_{t+1}<e_{t+2}<\cdots<e_{n}
$$

It immediately follows that $\Theta\left(\mathbf{S}_{n}(213,312)\right)=\mathbf{I}_{n}(<, \geq,-)$.

64D: $e_{i} \leq e_{j}=e_{k}$
Theorem 11. The number of $e \in \mathbf{I}_{n}$ avoiding $e_{i} \leq e_{j}=e_{k}$ where $i<j<k$ is 2^{n-1}.

Proof. The inversion sequences avoiding the pattern $e_{i} \leq e_{j}=e_{k}$, where $i<j<k$, are those $e \in \mathbf{I}_{n}$ in which all of the entries $e_{2}, e_{3}, \ldots, e_{n}$ are distinct.

Let $D_{n}=\mathbf{I}_{n}(\leq,=,-)$. Then $\left|D_{1}\right|=|\{(0)\}|=1$. We show that for $n>1,\left|D_{n}\right|=2\left|D_{n-1}\right|$. Each $e \in D_{n-1}$ gives rise to two elements of D_{n} : the first is $e \cdot(n-1)$, and the second is $e \cdot d$, where d is the unique element in $\{0,1, \ldots, n-2\} \backslash\left\{e_{2}, \ldots, e_{n-1}\right\}$.

2.7 121(A,B,C): Grassmannian permutations, $2^{n}-n$

Permutations with at most one descent were called Grassmannian by Lascoux and Schützenberger in 19, who also characterized them in terms of their Lehmer codes. Grassmannian permutations of length n are counted by $2^{n}-n$ and relate to three equivalence classes of patterns for inversion sequences.

121A: $e_{i} \neq e_{j}<e_{k}$
Theorem 12. $\left|\mathbf{I}_{n}(\neq,<,-)\right|=2^{n}-n$.

Proof. First observe that those $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i} \neq e_{j}<e_{k}$ are exactly those with at most one ascent.

Using the mapping $\Theta: \mathbf{S}_{n} \rightarrow \mathbf{I}_{n}$, recall that π has a descent in a position i if and only if $\Theta(\pi)$ has an ascent in position i. Thus Θ restricts to a bijection from Grassmannian permutations of $[n]$ to $\mathbf{I}_{n}(\neq,<,-)$.

The inversion sequences in $\mathbf{I}_{n}(\neq,<,-)$ correspond to the Grassmannian Lehmer codes of [19] via the natural bijection (reversal) between inversion sequences and Lehmer codes.

121B: $e_{i} \neq e_{j} \neq e_{k}$ and $e_{i} \neq e_{k}$
Theorem 13. $\left|\mathbf{I}_{n}(\neq, \neq, \neq)\right|=2^{n}-n$.

Proof. Note that inversion sequences with no $i<j<k$ such that $e_{i} \neq e_{j} \neq e_{k}$ and $e_{i} \neq e_{k}$ are those with at most 2 distinct entries; precisely, $\left|\left\{e_{1}, \ldots, e_{n}\right\}\right| \leq 2$.

The theorem is clear for $n=1$. Now consider some $e \in \mathbf{I}_{n}(\neq, \neq, \neq)$ when $n>1$. Note that $\left(e_{1}, \ldots, e_{n-1}\right) \in \mathbf{I}_{n-1}(\neq, \neq, \neq)$. It follows that either (1) $\left|\left\{e_{1}, \ldots, e_{n-1}\right\}\right|=2$, and e_{n} is one of the two elements occurring in $\left(e_{1}, \ldots, e_{n-1}\right)$; or (2) $\left|\left\{e_{1}, \ldots, e_{n-1}\right\}\right|=1$, and $e_{n} \in\{0,1, \ldots, n-1\}$. Furthermore, the only inversion sequence in $\mathbf{I}_{n-1}(\neq, \neq, \neq)$ where $\left|\left\{e_{1}, \ldots, e_{n-1}\right\}\right|=1$ is the zero inversion sequence. This gives the recurrence $\left|\mathbf{I}_{n}(\neq, \neq, \neq)\right|=2\left(\left|\mathbf{I}_{n-1}(\neq, \neq, \neq)\right|-1\right)+n$ which has the claimed solution.

121C: $e_{j} \geq e_{k}$ and $e_{i} \neq e_{k}$
Theorem 14. $\left|\mathbf{I}_{n}(-, \geq, \neq)\right|=2^{n}-n$.

Proof. Inversion sequences with no $i<j<k$ such that $e_{j} \geq e_{k}$ and $e_{i} \neq e_{k}$ are those satisfying

$$
e_{1}=\ldots=e_{i-1}<e_{i}<\ldots<e_{n}
$$

or with $e_{i+1}=0$ and

$$
e_{1}=\ldots=e_{i-1}<e_{i}<e_{i+2}<\ldots<e_{n}
$$

for some $i: 2 \leq i \leq n+1$.

To count these, for each $t=1, \ldots, n-1$, and for any t-element subset $x_{1}<x_{2}<\ldots<x_{t}$ of $[n-1]$, associate the length n inversion sequence $\left(0,0, \ldots, 0, x_{1}, x_{2}, \ldots, x_{t}\right)$ and, unless $\left\{x_{1}, \ldots, x_{t}\right\}=$ $\{n-t, n-t+1, \ldots n-1\}$, also associate the length n inversion sequence $\left(0,0, \ldots, 0, x_{1}, 0, x_{2}, \ldots, x_{t}\right)$, giving $2^{n-1}+\left(2^{n-1}-n\right)=2^{n}-n$.

2.8 151: (321)-avoiding separable permutations

151: $e_{i} \neq e_{j}<e_{k}$ and $e_{i} \leq e_{k}$
We show that the avoidance sequence for this pattern satisfies the recurrence $a_{n}=3 a_{n-1}-$ $2 a_{n-2}+a_{n-3}$ with initial conditions $a_{1}=1, a_{2}=2$, and $a_{3}=5$. This coincides with sequence A034943 in the OEIS, where, among other things, it is said to count 321-avoiding separable permutations (OEIS entry by Vince Vatter) [15]. A separable permutation is one that avoids 2413 and 3142. Moreover, we show that $(\neq,<, \leq)$-avoiding inversion sequences have a simple characterization.

Theorem 15. Let $A_{n}=\mathbf{I}_{n}(\neq,<, \leq)$ and $a_{n}=\left|A_{n}\right|$. Then $a_{n}=3 a_{n-1}-2 a_{n-2}+a_{n-3}$ with initial conditions $a_{1}=1, a_{2}=2$, and $a_{3}=5$.

Proof. First, it can be shown that the set of $e \in \mathbf{I}_{n}$ such that there is no $i<j<k$ for which $e_{i} \neq e_{j}<e_{k}$ and $e_{i} \leq e_{k}$ is the set of $e \in \mathbf{I}_{n}$ where the nonzero elements are weakly decreasing and equal nonzero elements are consecutive. That is, (1) if $e_{i}<e_{j}$, then $e_{i}=0$ and (2) if $0<e_{i}=e_{j}$ for some $i<j$, then $e_{i}=e_{i+1}=\ldots=e_{j}$.

Define X_{n}, Y_{n}, Z_{n} by

$$
\begin{aligned}
X_{n} & =\left\{e \in A_{n} \mid e_{i} \neq 1, \text { for all } 1 \leq i \leq n\right\} \\
Y_{n} & =\left\{e \in A_{n} \mid e_{n}=1\right\} \\
Z_{n} & =\left\{e \in A_{n} \mid e_{n}=0 \text { and } e_{i}=1 \text { for some } i<n\right\}
\end{aligned}
$$

Then A_{n} is the disjoint union $A_{n}=X_{n} \cup Y_{n} \cup Z_{n}$. Recall that the operator σ_{1} adds 1 to the positive elements of an inversion sequence. To get a recurrence, note that $\left|X_{n}\right|=\left|A_{n-1}\right|=a_{n-1}$ since $e \in A_{n-1}$ if and only if $0 \cdot \sigma_{1}(e) \in X_{n}$. Also, $\left(e_{1}, \ldots, e_{n-1}, 0\right) \in Z_{n}$ if and only if $\left(e_{1}, \ldots, e_{n-1}\right) \in$ $Y_{n-1} \cup Z_{n-1}=A_{n-1}-X_{n-1} ;$ so $\left|Z_{n}\right|=\left|A_{n-1}\right|-\left|X_{n-1}\right|=a_{n-1}-a_{n-2}$. Finally, $\left(e_{1}, \ldots, e_{n-1}, 1\right) \in$ Y_{n} if and only if $\left(e_{1}, \ldots, e_{n-1}\right) \in A_{n-1}-Z_{n-1}$, so $\left|Y_{n}\right|=a_{n-1}-\left|Z_{n-1}\right|=a_{n-1}-\left(a_{n-2}-a_{n-3}\right)$. Putting this together,

$$
a_{n}=\left|A_{n}\right|=\left|X_{n}\right|+\left|Y_{n}\right|+\left|Z_{n}\right|=3 a_{n-1}-2 a_{n-1}+a_{n-3}
$$

and the result follows by checking the initial conditions.

2.9 185: 321-avoiding vexillary permutations, $2^{n+1}-\binom{n+1}{3}-2 n-1$

Vexillary permutations, studied by Lascoux and Schützenberger in [19, are 2143-avoiding permutations. The 321-avoiding vexillary permutations arose in work of Billey, Jockush and Stanley [5] on
the combinatorics of Schubert polynomials. It was shown that $\left|\mathbf{S}_{n}(321,2143)\right|=2^{n+1}-\binom{n+1}{3}-2 n-1$ which is entry A088921 in the OEIS. In this entry, it is noted that the 321-avoiding vexillary permutations are exactly the Grassmannian permutations (see Section 2.7) and their inverses.

185: $e_{i} \neq e_{j}<e_{k}$ and $e_{i} \neq e_{k}$
We show that the $(\neq,<, \neq)$-avoiding inversion sequences are counted by the same function as the 321-avoiding vexillary permutations.

Lemma 1. $\mathbf{I}_{n}(\neq,<, \neq)=\mathbf{I}_{n}(\neq, \neq, \neq) \cup \mathbf{I}_{n}(\neq,<,-)$.

Proof. If $\mathbf{e} \in \mathbf{I}_{n}(\neq,<, \neq)$, then either $e \in \mathbf{I}_{n}(\neq,<,-)$ or for any $i<j<k$ such that $e_{i} \neq e_{j}<e_{k}$, $e_{i}=e_{k}$ and therefore $e \in \mathbf{I}_{n}(\neq, \neq, \neq)$.

Conversely, if, for some $i<j<k, e_{i} \neq e_{j}<e_{k}$ and $e_{i} \neq e_{k}$, then e contains both $(\neq,<,-)$ and (\neq, \neq, \neq).
Theorem 16. $\left|\mathbf{I}_{n}(\neq,<, \neq)\right|=2^{n+1}-\binom{n+1}{3}-2 n-1$.

Proof. By Theorem [13, $\left|\mathbf{I}_{n}(\neq, \neq, \neq)\right|=2^{n}-n$ and by Theorem $12, \mid \mathbf{I}_{n}(\neq,<,-)=2^{n}-n$. From the characterizations of these sets in the proof of Theorems 12 and $13, \mathbf{I}_{n}(\neq, \neq, \neq) \cap \mathbf{I}_{n}(\neq,<,-)$ is the set of inversion sequences with at most one ascent and at most two distinct elements, that is, the set of $e \in \mathbf{I}_{n}$ satisfying, for some $1 \leq t<a<b \leq n+1$:

$$
0=e_{1}=\ldots=e_{a-1} ; \quad t=e_{a}=\ldots=e_{b-1} ; \quad 0=e_{b}=\ldots=e_{n}
$$

which is counted by $\binom{n+1}{3}$, together with $(0,0, \ldots, 0)$. Thus

$$
\left|\mathbf{I}_{n}(\neq, \neq, \neq) \cap \mathbf{I}_{n}(\neq,<,-)\right|=\binom{n+1}{3}+1
$$

and the result follows.

2.10 187: A049125?

187: $e_{i} \geq e_{k}$
It appears that the number of $e \in \mathbf{I}_{n}$ avoiding this pattern is given by A049125 in the OEIS, where it is described by David Callan to be the number of ordered trees with n edges in which every non-leaf non-root vertex has at most one leaf child. However, we have not yet proven it. We can prove a characterization of the avoidance set and, from that, derive a 4 -parameter recurrence that allows us to check against A049125 for several terms.

Observation 6. The sequences $e \in \mathbf{I}_{n}$ having no $i<j<k$ with $e_{i} \geq e_{k}$ are those for which $e_{i}>\max \left\{e_{1}, \ldots e_{i-2}\right\}$ for $i=3, \ldots, n$. For $e \in \mathbf{I}_{n}$, this is equivalent to the conditions $e_{3}>e_{1}$ and, for $4 \leq i \leq n, e_{i}>\max \left\{e_{i-2}, e_{i-3}\right\}$.
2.11 193: $\mathrm{S}_{n}(132,4312),(n-1) 2^{n-2}+1$

Sequence $(n-1) 2^{n-2}+1$ appears as A005183 in the OEIS, where Pudwell indicates that it counts $\mathbf{S}_{n}(132,4312)$ [15]. We show it also counts $\mathbf{I}_{n}(<, \geq, \neq)$.

193: $e_{i} \leq e_{j} \geq e_{k}$ and $e_{i} \neq e_{k}$
Theorem 17. $\left|\mathbf{I}_{n}(<, \geq, \neq)\right|=(n-1) 2^{n-2}$

Proof. Observe that if $e \in \mathbf{I}_{n}$ has no $i<j<k$ such that $e_{i} \leq e_{j} \geq e_{k}$ and $e_{i} \neq e_{k}$ then e must have the form

$$
e=\left(0, \ldots, 0, e_{a}, 0, \ldots, 0, e_{n-b+1}, e_{n-b+2}, \ldots, e_{n}\right\}
$$

where $1 \leq a<n+1$ and $b<n-a+2$ and $1 \leq e_{a}<e_{n-b+1}<e_{n-b+2}<\ldots<e_{n}<n$.
If $e_{a}>1$ then $e=0 \cdot \sigma_{1}\left(e^{\prime}\right)$ for some $e^{\prime} \in \mathbf{I}_{n-1}(<, \geq, \neq)$. Otherwise, $e_{a}=1$ and e can be obtained by first choosing a b-element subset of $\{2, \ldots, n-1\}$ to place (sorted) in locations $n-b+1, \ldots, n$, and then choosing one of the locations $2, \ldots, n-b$ to be the location a such that $e_{a}=1$. Thus the number of sequences containing a 1 is:

$$
\sum_{b=0}^{n-2}\binom{n-2}{b}(n-1-b)=n 2^{n-3}
$$

This gives the recurrence

$$
\left|\mathbf{I}_{n}(<, \geq, \neq)\right|=\left|\mathbf{I}_{n-1}(<, \geq, \neq)\right|+n 2^{n-3}
$$

where $\left|\mathbf{I}_{1}(<, \geq, \neq)\right|=1$, whose solution is as claimed in the theorem.
$2.12 \quad 233: \mathbf{I}_{n}(012), F_{2 n-1}$

$$
\text { 233: } e_{i}<e_{j}<e_{k}
$$

It was shown in [13] that the inversion sequences $e \in \mathbf{I}_{n}(<,<,-)=\mathbf{I}_{n}(012)$ are those in which the positive elements of e are weakly decreasing. From that characterization, it was shown that

$$
\left|\mathbf{I}_{n}(<,<,-)\right|=\left|\mathbf{I}_{n}(012)\right|=F_{2 n-1}
$$

The sequence $F_{2 n-1}$ also counts the Boolean permutations, given by $\mathbf{S}_{n}(321,3412)$ [27, 22].

2.13 304: A229046?

304: $e_{i}=e_{k}$

We derive a recurrence to count the $(-,-,=)$-avoiding inversion sequences. This sequence appears to be sequence A229046 in the OEIS. If true, this would give a combinatorial interpretation of A229046 which so far is defined only by a generating function and summation.

Note that $\mathbf{I}_{n}(-,-,=)$ is the set of $e \in \mathbf{I}_{n}$ with at most two copies of any entry and any equal entries must be adjacent.

Let $S_{n, k}$ be the set of $e \in \mathbf{I}_{n}(-,-,=)$ with k distinct elements; that is, $S_{n, k}$ consists of the inversion sequences $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathbf{I}_{n}(-,-,=)$ such that $\left|\left\{e_{1}, \ldots, e_{n}\right\}\right|=k$. Let $s(n, k)=$ $\left|S_{n, k}\right|$.

Theorem 18. for $1 \leq k \leq n$,

$$
s(n, k)=(n-1+k) s(n-1, k-1)+(n-k) s(n-2, k-1)
$$

with initial conditions $s(1,1)=s(2,1)=s(2,2)=1$ and otherwise $s(n, k)=0$ for $k=1$ or $n \leq 2$.

Proof. Let $A_{n, k}$ be the subset of $S_{n, k}$ consisting of those e in which e_{n} is unrepeated. Let $B_{n, k}=$ $S_{n, k} \backslash A_{n, k}$. We can extend some $e \in S_{n, k}$ to strings in $S_{n+1, k}$ and $S_{n+1, k+1}$ in the following ways.

If $e \in B_{n, k}$, then $e \cdot n \in A_{n+1, k+1}$. Additionally, if x is one of the $n-k$ values in $\{0,1, \ldots, n-1\}$ not used in e, then $e \cdot x \in A_{n+1, k+1}$.

If $e \in A_{n, k}$, then $e \cdot n \in A_{n+1, k+1}$. Furthermore, if x is one of the $n-k$ values in $\{0,1, \ldots, n-1\}$ not used in e, then $e \cdot x \in A_{n+1, k+1}$. Finally, if $e_{n}=y$, then $e \cdot y \in B_{n+1, k}$. Letting $a(n, k)=\left|A_{n, k}\right|$ and $b(n, k)=\left|B_{n, k}\right|$, we have

$$
\begin{aligned}
s(n, k) & =a(n, k)+b(n, k) ; \\
b(n+1, k) & =a(n, k) \\
a(n+1, k+1) & =(n-k+1) b(n, k)+(n-k+1) a(n, k) \\
& =(n-k+1) s(n, k) .
\end{aligned}
$$

So,

$$
\begin{aligned}
s(n, k) & =a(n, k)+b(n, k) \\
& =a(n, k)+a(n-1, k) \\
& =(n-k+1) s(n-1, k-1)+(n-k) s(n-2, k-1) .
\end{aligned}
$$

Then $\left|\mathbf{I}_{n}(-,-,=)\right|=s(n, 1)+\ldots+s(n, n)$. Can we prove that this theorem gives (a refinement) of A229046? Is there a natural description of $\Theta^{-1}\left(\mathbf{I}_{n}(-,-,=)\right)$?

2.14 429(A,B,C): Catalan numbers

It is known that for any $\pi \in \mathbf{S}_{3},\left|\mathbf{S}_{n}(\pi)\right|$ is the Catalan number $C_{n}=\binom{2 n}{n} /(n+1)$ [20, 24]. There are three inequivalent triples of relations $\rho=\left(\rho_{1}, \rho_{2}, \rho_{3}\right) \in\{\geq, \leq,<,>,=, \neq,-\}^{3}$ such that $\left|\mathbf{I}_{n}(\rho)\right|=C_{n}$. The first corresponds naturally under $\Theta: \mathbf{S}_{n} \rightarrow \mathbf{I}_{n}$ to a pattern $\pi \in \mathbf{S}_{3}$.

429A: $e_{j}>e_{k}$

Theorem 19. $\mathbf{I}_{n}(-,>,-)=\Theta\left(\mathbf{S}_{n}(213)\right)$.

Proof. Observe that an $e \in \mathbf{I}_{n}$ has no $i<j<k$ with $e_{j}>e_{k}$ if and only if e is weakly increasing. Similarly, it can be checked that $\pi \in \mathbf{S}_{n}$ avoids 213 if and only if $\Theta(\pi)$ is weakly increasing.

429B: $e_{j} \geq e_{k}$ and $e_{i}<e_{k}$
Theorem 20. $\left|\mathbf{I}_{n}(-, \geq,<)\right|=C_{n}$.

Proof. Observe that some $e \in \mathbf{I}_{n}$ has no $i<j<k$ with $e_{i}<e_{k}$ and $e_{j} \geq e_{k}$ if and only if the positive elements of e are strictly increasing.

Let $I(x)=\sum_{n \geq 0} \mathbf{I}_{n}(-, \geq,<) x^{n}$. We will show that

$$
\begin{equation*}
I(x)=1+x I^{2}(x) \tag{7}
\end{equation*}
$$

which has the solution $\frac{1-\sqrt{1-4 x}}{2 x}$; recall that this is the generating function for C_{n}.
Given any $e \in \mathbf{I}_{n}(-, \geq,<)$, consider the last maximal entry e_{t}; this is the largest t such that $e_{t}=$ $t-1$. The string $\left(e_{1}, e_{2}, \ldots, e_{t-1}\right)$ is an element of $\mathbf{I}_{t-1}(-, \geq,<)$. Additionally, it is straightforward to show that the string $\sigma_{1-t}\left(e_{t+1}, e_{t+2}, \ldots, e_{n}\right)$ (where $t-1$ is subtracted from each positive value) is an element of $\mathbf{I}_{n-t}(-, \geq,<)$. Conversely, any element of $\mathbf{I}_{n}(-, \geq,<)$ with last maximal entry in position t is of the form $e^{\prime} \cdot(t-1) \cdot \sigma_{1-t}\left(e^{\prime \prime}\right)$ where $e^{\prime} \in \mathbf{I}_{t-1}(-, \geq,<)$ and $e^{\prime \prime} \in \mathbf{I}_{n-t}(-, \geq,<)$. This accounts for the " $x I^{2}(x)^{\prime \prime}$ term of equation 7 Since this construction doesn't account for the length 0 inversion sequence, we must also add a " 1 ."

Alternatively, it can be checked that the following map from $\mathbf{I}_{n}(-,>,-)$ to $\mathbf{I}_{n}(-, \geq,<)$ is a bijection. Send $e \in \mathbf{I}_{n}(-,>,-)$ to e^{\prime}, defined by $e_{i}^{\prime}=0$ if $e_{i} \in\left\{e_{1}, \ldots, e_{i-1}\right\}$ and otherwise $e_{i}^{\prime}=e_{i}$.

429C: $e_{i} \geq e_{j}$ and $e_{i} \geq e_{k}$
Although we have not proven it, it appears from our computations that $\left|\mathbf{I}_{n}(\geq,-, \geq)\right|=C_{n}$. In fact computations suggest, but do not prove, all of the following:

- The number of $e \in \mathbf{I}_{n}(\geq,-, \geq)$ with last $(e)=k$ is equal to the number of standard tableaux of shape $(n-1, k)$ (ballot numbers A009766 in OEIS [15).
- The number of $e \in \mathbf{I}_{n}(\geq,-, \geq)$ with $\operatorname{asc}(e)=n-1-k$ is equal to the number of ordered trees with n edges and with k interior vertices (non-leaf, non-root) adjacent to a leaf (A108759).
- The number of $e \in \mathbf{I}_{n}(\geq,-, \geq)$ with repeats $(e)=k$ is equal to the number of ordered trees with n edges such that exactly k nodes have at least two children. (A091156 in the OEIS [15]). (A repeat in e is an i such that $e_{i} \in\left\{e_{1}, \ldots, e_{i-1}\right\}$.)
- The number of $e \in \mathbf{I}_{n}(\geq,-, \geq)$ with $\operatorname{dist}(e)=k$ is equal to the number of $\pi \in \mathbf{S}_{n}(123)$ with $k-1$ descents (A166073 in the OEIS [15]). (The number of distinct elements is dist $(e)=$ $\left.\left|\left\{e_{1}, \ldots, e_{n}\right\}\right|.\right)$

2.15 523: $\mathrm{S}_{n}(\overline{3} \overline{1} 542)$ and the nexus numbers

In this section we show that inversion sequences avoiding the pattern $(\neq,=,-)$ are equinumerous with permutations avoiding $\overline{3} \overline{1} 542$. (A permutation π avoids the pattern $\overline{3} \overline{1} 542$ if any occurrence of 542 in π is contained in an occurrence of 31542.) We do this by proving that the $(\neq,=,-)$-avoiding inversion sequences with k distinct entries are counted by the nexus numbers, $(n+1-k)^{k}-(n-k)^{k}$.

523: $e_{i} \neq e_{j}=e_{k}$
Observe that the sequences $e \in \mathbf{I}_{n}$ with no $i<j<k$ satisfying $e_{i} \neq e_{j}=e_{k}$ are those in which the nonzero elements are distinct and once a nonzero element has occurred, at most one more 0 can appear in e. We use this characterization to show that $\mathbf{I}_{n}(\neq,=,-)$ is counted by the sequence A047970 which counts diagonal sums of nexus numbers [15. This sequence also counts permutations in \mathbf{S}_{n} avoiding the barred pattern $\overline{3} \overline{1} 542$ (conjectured by Pudwell, and proved by Callan in [11).

Let $T_{n, k}$ be the set of $e \in \mathbf{I}_{n}(\neq,=,-)$ with k distinct elements. We prove the following refinement, which gives a new combinatorial interpretation of the nexus numbers, $(n+1-k)^{k}-(n-k)^{k}$ (see A047969 in the OEIS [15]).
Theorem 21. For $1 \leq k \leq n,\left|T_{n, k}\right|=(n+1-k)^{k}-(n-k)^{k}$.

Proof. We count $T_{n, k}$ directly. When $k=1,\left|T_{n, k}\right|=1$ and the result follows. When $k \geq 2$, any $e \in T_{n, k}$ will contain some e_{t} such that $0=e_{1}=e_{2}=\ldots=e_{t-1}<e_{t}$ and there are no repeated values among $e_{t}, e_{t+1}, \ldots, e_{n}$. Therefore, if e has k distinct values, there are two cases: (1) e begins with $n-k+1$ zeros and contains no other zeros; or (2) e begins with $n-k$ zeros and contains one further zero after e_{n-k+1} (which is the first nonzero entry).

For Case (1), the values $e_{n-k+2}, e_{n-k+3}, \ldots, e_{n}$ must all be distinct and nonzero. So, there are $n-k+1$ possibilities for each, giving $(n-k+1)^{k-1}$ inversion sequences.

For Case (2), e_{n-k+1} must be nonzero, so there are $n-k$ choices for this entry. Additionally, each of $e_{n-k+1}, e_{n-k+2}, e_{n-k+3}, \ldots, e_{n}$ must be distinct, though zero could appear after e_{n-k+1}. In total, this gives $(n-k)(n-k+1)^{k-1}$ possible inversion sequences. Finally, we must remove any inversion sequence that does not include a zero among $e_{n-k+2}, e_{n-k+3}, \ldots, e_{n}$; there are $(n-k)^{k}$ such sequences. As a result, there are $(n-k)(n-k+1)^{k-1}-(n-k)^{k}$ inversion sequences that are part of Case (2).

Adding Cases (1) and (2), we have $\left|T_{n, k}\right|=(n-k+1)^{k-1}+(n-k)(n-k+1)^{k-1}-(n-k)^{k}=$ $(n-k+1)^{k}-(n-k)^{k}$, as desired.

$2.16772(A, B):$ set partitions avoiding enhanced 3-crossings?

The avoidance sets for the patterns $(-, \leq, \geq)$ and $(\geq, \geq,-)$ appear to be counted by A108307 but we have not proved this. If true, this gives new simple combinatorial interpretations of A108307 in the OEIS [15]. It was shown by Bousquet-Mélou and Xin that A108307 gives the number of set partitions of $[n]$ avoiding enhanced 3-crossings [7].

We can show that there is a bijection that not only proves Wilf equivalence of the patterns 772A and 772 B below, but also preserves a number of statistics.

772A: $e_{j} \leq e_{k}$ and $e_{i} \geq e_{k}$
772B: $e_{i} \geq e_{j} \geq e_{k}$
Observation 7. The inversion sequences with no $i<j<k$ such that $e_{i} \geq e_{j} \geq e_{k}$ are precisely those that can be partitioned into two increasing subsequences.

Proof. Suppose e has such a partition $e_{a_{1}}<e_{a_{2}}<\cdots<e_{a_{t}}$ and $e_{b_{1}}<e_{b_{2}}<\cdots<e_{b_{n-t}}$. If there exists $i<j<k$ such that $e_{i} \geq e_{j} \geq e_{k}$, then no two of i, j, k can both be in $\left\{a_{1}, \ldots, a_{t}\right\}$ or both be in $\left\{b_{1}, \ldots, b_{n-t}\right\}$, so e avoids $(\geq, \geq,-)$. Conversely, if e avoids $(\geq, \geq,-)$, let $a=\left(a_{1}, \ldots, a_{t}\right)$ be the sequence of left-to-right maxima of e. Then $e_{a_{1}}<e_{a_{2}}<\cdots<e_{a_{t}}$. Consider $i, j \notin\left\{a_{1}, \ldots, a_{t}\right\}$ where $i<j$. The fact that e_{i} is not a left-to-right maxima implies there exists some e_{s} such that $s<i$ and $e_{s} \geq e_{i}$. Thus to avoid ($\left.\geq, \geq,-\right)$, we must have $e_{i}<e_{j}$.

Observation 8. Let $\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathbf{I}_{n}$. Additionally, for any $i \in[n]$, let $M_{i}=\max \left(e_{1}, e_{2}, \ldots, e_{i-1}\right)$. Then $e \in \mathbf{I}_{n}(-, \leq, \geq)$ if and only if for every $i \in[n]$, the entry e_{i} is a left-to-right maximum, or for every j where $i<j, j>i$, we have $e_{i}>e_{j}$ or $M_{i}<e_{j}$.

Proof. Let $e \in \mathbf{I}_{n}$ satisfy the conditions of Observation 8 and, to obtain a contradiction, assume there exist $i<j<k$ such that $e_{j} \leq e_{k}$ and $e_{i} \geq e_{k}$ (that is $e_{j} \leq e_{k} \leq e_{i}$). Notice that $M_{j}=$ $\max \left\{e_{1}, e_{2}, \ldots, e_{j-1}\right\} \geq e_{i}$. It follows that $M_{j} \geq e_{k} \geq e_{j}$, which contradictions our assumption.

Conversely, if $\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathbf{I}_{n}(-, \leq, \geq)$, consider any e_{i}. If e_{i} is not a left-to-right maximum, then there exists some maximum value $M_{i}=e_{s}$ such that $s<i$ and $e_{s} \geq e_{i}$. Therefore, in order to avoid a 201 pattern, any e_{j} where $j>i$ must have $e_{i}>e_{j}$ or $e_{j}>M_{i}=e_{s}$.
Theorem 22. For $n \geq 1,\left|\mathbf{I}_{n}(\geq, \geq,-)\right|=\left|\mathbf{I}_{n}(-, \leq, \geq)\right|$.

Proof. We exhibit a bijection based on the characterizations in Observations 7 and 8 ,
Given $e \in \mathbf{I}_{n}(\geq, \geq,-)$, define $f \in \mathbf{I}_{n}(-, \leq, \geq)$ as follows. Let $e_{a_{1}}<e_{a_{2}}<\cdots<e_{a_{t}}$ be the sequence of left-to-right maxima of e and let $e_{b_{1}}<e_{b_{2}}<\cdots<e_{b_{n-t}}$ be the subsequence of remaining elements of e.

For $i=1, \ldots, t$, set $f_{a_{i}}=e_{a_{i}}$. For each $j=1,2, \ldots, n-t$, we extract an element of the multiset $B=\left\{e_{b_{1}}, e_{b_{2}}, \ldots, e_{b_{n-t}}\right\}$ and assign it to $f_{b_{1}}, f_{b_{2}}, \ldots, f_{b_{n-t}}$ as follows:

$$
f_{b_{j}}=\max \left\{k \mid k \in B-\left\{f_{b_{1}}, f_{b_{2}}, \ldots, f_{b_{j-1}}\right\} \text { and } k<\max \left(e_{1}, \ldots, e_{b_{j}-1}\right)\right\}
$$

By definition, f will satisfy the characterization property in Observation 8 of $\mathbf{I}_{n}(-, \leq, \geq)$.
Corollary 1. All of the following statistics have the same distribution over $\mathbf{I}_{n}(-, \leq, \geq,-)$ and $\mathbf{I}_{n}(\geq, \geq,-)$.

- the number of locations i such that $e_{i}=i-1$;
- the largest entry of e;
- the number of zeros of e (there can be at most two in either class);
- the number of distinct elements of e (and therefore the number of repeats in e);
- the number of left-to-right maxima of e.

It would also be interesting to relate these statistics on the classes 772 A and 772 B of inversion sequences to corresponding statistics on set partitions avoiding enhanced 3 -crossings.

2.17 877(A,B,C,D): Bell numbers and Stirling numbers

The Bell number B_{n} is the number of partitions of the set $[n]$ into nonempty blocks. The Stirling number of the second kind, $S_{n, k}$ in the number of partitions of $[n]$ into k blocks.

Among the triples of relations under consideration in this paper, four equivalence classes of patterns have avoidance sets that appear to be counted by the Bell numbers. We have shown this to be true for the classes 877 A and 877 C , whose inversion sequences have a similar character. We have not confirmed this for the classes 877 B and 877 D , nor have we confirmed that 877B and 877D are Wilf equivalent, even though our experiments show that there is likely a bijection that preserves several statistics.

Note: $B(n)$ counts permutations avoiding $4 \overline{1} 32$ and several other barred patterns of length 4 , as shown by Callan [9]. Can any of these be related to one of the four patterns 877(A,B,C,D)?

$$
877 \mathrm{~A}: e_{i}<e_{j}=e_{k}
$$

These are the 011-avoiding sequences. In [13] it was observed that these are the $e \in \mathbf{I}_{n}$ in which the positive elements of e are distinct. It was shown that 011 -avoiding sequences in \mathbf{I}_{n} with k zeros are counted by the Stirling number of the second kind, $S_{n, k}$. (This also appears in [25].) Thus $\mathbf{I}_{n}(011)$ is counted by the Bell numbers.

877B: $e_{i}=e_{j} \geq e_{k}$

$\mathbf{I}_{n}(=, \geq,-)$ is the set of $e \in \mathbf{I}_{n}$ such that no element appears more than twice and if an element x is repeated, all elements following the second occurrence of x must be larger than x.

From our calculations, it appears that $\mathbf{I}_{n}(=, \geq,-)$ is counted by the Bell numbers and, in fact, that the number of $e \in \mathbf{I}_{n}(=, \geq,-)$ with k repeats is given by A124323, the number of set partitions of $[n]$ with k blocks of size larger than 1 , but we have not proven this.

$$
877 \mathrm{C}: e_{i} \neq e_{j} \neq e_{k} \text { and } e_{i}=e_{k}
$$

Observe that these are the $e \in \mathbf{I}_{n}$ in which only adjacent elements of e can be equal.
Theorem 23. The number of $e \in \mathbf{I}_{n}$ in which only adjacent elements of e can be equal is B_{n}, the nth Bell number.

Proof. It can be checked that the following map from $\mathbf{I}_{n}(\neq, \neq=)$ to $\mathbf{I}_{n}(011)$ is a bijection. Send $e \in \mathbf{I}_{n}(\neq, \neq,=)$ to e^{\prime}, defined by $e_{i}^{\prime}=0$ if $e_{i} \in\left\{e_{1}, \ldots, e_{i-1}\right\}$ and otherwise $e_{i}^{\prime}=e_{i}$.

877D: $e_{i} \geq e_{j}$ and $e_{i}=e_{k}$
$\mathbf{I}_{n}(\geq,-,=)$ is the set of $e \in \mathbf{I}_{n}$ such that no element appears more than twice and if an element x is repeated, all elements between the two occurrences of x must be larger than x (Note the similarity to 877B).

From our calculations, it appears that $\mathbf{I}_{n}(\geq,-,=)$ is also counted by the Bell numbers. Moreover, it appears that all of the following statistics are equally distributed over the classes 877 B and 877D:

- the number of locations i such that $e_{i}=i-1$;
- the largest entry of e;
- the number of zeros of e (there can be at most two in either class);
- the number of distinct elements of e (and therefore the number of repeats in e, which appears to be A124323).

2.18 924: Central binomial coefficients

924: $e_{i}>e_{j}$
Theorem 24. $\left|\mathbf{I}_{n}(>,-,-)\right|=\binom{2 n-2}{n-1}$.
Proof. $\mathbf{I}_{n}(>,-,-)$ is the set of $e \in \mathbf{I}_{n}$ with $e_{1} \leq \ldots \leq e_{n-1}$ (counted by the Catalan number C_{n-1} as shown in Section 2.14) and with e_{n} chosen arbitrarily from $\{0, \ldots, n-1\}$. Thus

$$
\left|\mathbf{I}_{n}(>,-,-)\right|=n C_{n-1}=n\left(\frac{1}{n}\binom{2 n-2}{n-1}\right)=\binom{2 n-2}{n-1}
$$

2.19 1064: A071356?

1064: $e_{i}>e_{j} \leq e_{k}$
These are the inversion sequences $e \in \mathbf{I}_{n}$ satisfying, for some t such that $1<t \leq n$,

$$
e_{1} \leq \ldots \leq e_{t}>e_{t+1}>\ldots>e_{n}
$$

Our experiments suggest that these are counted by A071356 in the OEIS, which Emeric Deutsch notes counts the number of underdiagonal lattice paths from $(0,0)$ to the line $x=n$ using only steps $R=(1,0), V=(0,1)$, and $D=(1,2)$ [15].

It also appears from our experiments that the distribution of the number of distinct elements of e is symmetric and unimodal on $\mathbf{I}_{n}(<, \leq,-)$. The number of $e \in \mathbf{I}_{n}(<, \leq,-)$ with $\operatorname{dist}(e)=k$ is given in the table below for $n=1, \ldots 7$:

1
$1 \quad 1$
$\begin{array}{lll}1 & 4 & 1\end{array}$
$\begin{array}{lll}9 & 9 & 1\end{array}$
$\begin{array}{llll}16 & 38 & 16 & 1\end{array}$
$\begin{array}{lllll}25 & 110 & 110 & 25 & 1 \\ 36 & 480 & 255 & 36 & 1\end{array}$

If these observations are true in general, this provides a new simple combinatorial interpretation for A071356 with a natural refinement via a symmetric statistic.
2.20 1265: $\mathrm{S}_{n}(2143,3142,4132)$

1265: $e_{i}>e_{j}<e_{k}$
Observe that $\mathbf{I}_{n}(>,<,-)$ is the set of $e \in \mathbf{I}_{n}$ satisfying, for some t with $1<t \leq n$,

$$
e_{1} \leq e_{2} \leq \ldots \leq e_{t}>e_{t+1} \geq \ldots \geq e_{n}
$$

Our experiments suggested that $\mathbf{I}_{n}(>,<,-)$ is counted by A0333321, which counts $\mathbf{S}_{n}(2143,3142,4132)$, as well as permutations avoiding several other triples of 4 -permutations. Burstein and Stromquist confirmed this by recognizing a natural bijection between $\mathbf{S}_{n}(2143,3142,4132)$ and $\mathbf{I}_{n}(>,<,-)$ in [8. Their theorem is as follows. Recall from Section 1 that invcode : $\mathbf{S}_{n} \rightarrow \mathbf{I}_{n}$ is the reverse of the Lehmer code.

Theorem 25 (Burstein, Stromquist [8]). For $n \geq 1, \operatorname{invcode}\left(\mathbf{S}_{n}(2143,3142,4132)\right)=\mathbf{I}_{n}(>,<,-)$.
From Section 1, $\operatorname{invcode}(\pi)=e$ if and only if $e=\Theta\left(\left(\pi^{C}\right)^{R}\right)$, giving the following.
Corollary 2. $\Theta\left(\mathbf{S}_{n}(2143,3142,3241)\right)=\mathbf{I}_{n}(>,<,-)$.
2.21 1347: $\mathbf{S}_{n}(4123,4132,4213) ?$

1347: $e_{i}>e_{j}$ and $e_{i} \leq e_{k}$
Our calculations suggest that $\mathbf{I}_{n}(>,-, \leq)$ is counted by A106228 in the OEIS, which was recently shown to count $\mathbf{S}_{n}(4123,4132,4213)$ by Albert, Homberger, Pantone, Shar and Vatter [3]. We have not been able to confirm that our avoidance sequence is A106228.

2.22 1385: $\mathrm{I}_{n}(000)$ Euler up/down numbers

1385: $e_{i}=e_{j}=e_{k}$
$\mathbf{I}_{n}(=,=,-)$ is the set of inversion sequences avoiding the pattern ' 000 '. It was shown in 13 that $\left|\mathbf{I}_{n}(000)\right|=E_{n+1}$, where E_{n} is the Euler up/down number which counts the number of $\pi \in \mathbf{S}_{n}$ such that $\pi_{1}<\pi_{2}>\pi_{3}<\pi_{4}>\cdots$. The proof was via a bijection with n-vertex 0-1-2 increasing trees, which are also counted by E_{n+1}.

Another family of permutations counted by E_{n+1} is the number of simsun permutations of [n], introduced by Simion and Sundaram [26]. A simsun permutation is one with no double descents, even after the removal of the elements $\{n, n-1, \ldots, k\}$ for any k. It was shown in [13] that the number of $e \in \mathbf{I}_{n}(000)$ with $n-k$ distinct elements is the number of simsun permutations of n with k descents. The method of proof was to show that they satisfy the same recurrence.

It would nice to have a natural bijection between $\mathbf{I}_{n}(000)$ and up-down (or down-up) permutations of $[n+1]$. For example, our calculations suggest that the number of $e \in \mathbf{I}_{n}(000)$ with $e_{n}=k-1$ is the number of down-up permutations π of $[n+1]$ with $\pi_{1}=k+1$.

2.23 1694: $\mathrm{I}_{n}(102)$

1694: $e_{i}>e_{j}$ and $e_{i}<e_{k}$
As mentioned in [13], our calculations suggested that $\mathbf{I}_{n}(>,-,<)$ is counted by A200753 in the OEIS [15], a sequence defined by the generating function

$$
\begin{equation*}
A(x)=1+\left(x-x^{2}\right)(A(x))^{3} \tag{8}
\end{equation*}
$$

This was confirmed by Mansour and Shattuck in [21] where they derive an explicit formula for $\left|\mathbf{I}_{n}(102)\right|$.

Theorem 26 (Mansour-Shattuck [21). The generating function $\sum_{n \geq 0}\left|\mathbf{I}_{n}(102)\right| x^{n}$ satisfies (8).
It would be interesting to find a direct combinatorial argument.

2.24 1806(A,B,C,D): large Schröder numbers

The large Schröder number R_{n} is the number of Schröder n-paths; that is, the number of paths in the plane from $(0,0)$ to $(2 n, 0)$ never going below the x-axis, and using only the steps $(1,1)$ (up), $(1,-1)$ (down) and $(2,0)$ (flat).

In the area of pattern avoiding permutations, R_{n-1} counts the separable permutations $\mathbf{S}_{n}(2413,3142)$, as well as $\mathbf{S}_{n}(\alpha, \beta)$ for many other pairs (α, β) of patterns of length 4 [18. We have four inequivalent triples of relations whose avoidance sets are counted by the large Schröder numbers, two of which (1806B and 1806D) correspond in natural ways to a pair of patterns of length 4.

1806A: $e_{j}>e_{k}$ and $e_{i}<e_{k}$
These are the sequences avoiding 021. It was shown in [13] that $e \in \mathbf{I}_{n}$ avoids 021 if and only if its positive entries are weakly increasing. It was also proven in 13 that $\left|\mathbf{I}_{n}(021)\right|=R_{n-1}$.

The following refinements were shown:

- The number of 021-avoiding inversion sequences e in \mathbf{I}_{n} with k positions i such that $e_{i}=i-1$ is equal to the number of Schröder $(n-1)$-paths with $k-1$ initial up steps.
- The number of 021-avoiding inversion sequences e in \mathbf{I}_{n} with k zeros is equal to the number of Schröder ($n-1$)-paths with $k-1$ peaks (or $k-1$ flat steps).

It was also shown in 13 that the ascent polynomial for $\mathbf{I}_{n}(021)$ is palindromic and corresponds to sequence A175124 in the OEIS.

Is there a nice characterization of $\Theta^{-1}\left(\mathbf{I}_{n}(021)\right)$?
1806B: $e_{i}>e_{j}$ and $e_{i} \geq e_{k}$
It is known that $\mathbf{S}_{n}(2134,2143)$ is counted by R_{n-1} [18. This is a member of "Class VI" in Kitaev's book [16] we use this fact to count $\mathbf{I}_{n}(>,-, \geq)$.

Theorem 27. $\left|\mathbf{I}_{n}(>,-, \geq)\right|=R_{n-1}$.

Proof. We show that $\Theta\left(\mathbf{S}_{n}(2134,2143)\right)=\mathbf{I}_{n}(>,-, \geq)$.
Let $e \in \mathbf{I}_{n}$ satisfy $e_{i}>e_{j}$ and $e_{i} \geq e_{k}$ for some $i<j<k$. Let $\pi=\Theta^{-1}(e)$. Then $\min \left\{\pi_{j}, \pi_{k}\right\}>$ π_{i} and, since $e_{i}>e_{j}$, there must exist $a<i$ such that both $\pi_{a}>\pi_{i}$ and $\min \left\{\pi_{j}, \pi_{k}\right\}>\pi_{a}$. Thus $\pi_{a} \pi_{i} \pi_{j} \pi_{k}$ forms either a 2134 or a 2143.

Conversely, suppose, for some $\pi \in \mathbf{S}_{n}$, that $\pi_{a} \pi_{i} \pi_{j} \pi_{k}$ is one of the patterns 2134 or 2143 and let $e=\Theta(\pi)$. Let j^{\prime} be the smallest index larger than i for which $\pi_{j^{\prime}}>\pi_{a}$. Then $\pi_{i+1}, \ldots, \pi_{j^{\prime}-1}$ are all smaller than $\pi_{a}<\pi_{j^{\prime}}$ and so $e_{i}>e_{j^{\prime}}$. Let k^{\prime} be the smallest index larger than j^{\prime} such that $\pi_{k^{\prime}}>\pi_{a}$. Then, with the possible exception of $\pi_{j^{\prime}}$, all of $\pi_{i+1}, \ldots, \pi_{k^{\prime}-1}$ are smaller than $\pi_{k^{\prime}}$ (since these entries are necessarily smaller than π_{a}). In addition, since $\pi_{i}<\pi_{a}<\pi_{k^{\prime}}$, we have $e_{i} \geq e_{k^{\prime}}$. Thus e has the pattern $(>,-\geq)$.

Note. From our calculations, it appears that the ascent polynomial for $\mathbf{I}_{n}(>,-, \geq)$ is the same as that for 1806 A , which was palindromic. Since Θ sends descents to ascents, if true, this would imply that the descent polynomial for $\mathbf{S}_{n}(2134,2143)$ is palindromic. This is not true in general for permutations avoiding pairs of patterns of length 4 , even those counted by the large Schröder numbers. For example, it is not true of $\mathbf{S}_{n}(1234,2134)$ or $\mathbf{S}_{n}(1324,2314)$. However Fu, Lin, and Zeng have recently shown that the descent polynomial for the separable permutations $\mathbf{S}_{n}(2413,3142)$ is γ-positive and therefore palindromic [14].

1806C: $e_{i} \geq e_{j}$ and $e_{i}>e_{k}$
Theorem 28. $\left|\mathbf{I}_{n}(\geq,-,>)\right|=R_{n-1}$.

Proof. We will construct a generating function for $\mathbf{I}_{n}(\geq,-,>)$.
Let $E(x)=\sum_{i=1}^{\infty}\left|\mathbf{I}_{n}(\geq,-,>)\right| x^{n}$. We will show that $E(x)$ satisfies

$$
E(x)=x+x E(x)+E^{2}(x)
$$

whose solution is

$$
E(x)=\frac{1-x-\sqrt{x^{2}-6 x+1}}{2}
$$

This implies that $\left|\mathbf{I}_{n}(\geq,-,>)\right|$ is the $(n-1)$ th large Schröder number.
Let $e=e_{1} e_{2} \ldots e_{n} \in \mathbf{I}_{n}(\geq,-,>)$. Let e_{t} be the latest maximal entry of $e ;$ that is, $\max \left\{i \mid e_{i}=\right.$ $i-1\}$. If $t=1$, then either $e=(0)$ or $e=\left(0, f_{1}, f_{2}, \ldots, f_{n-1}\right)$ for some $\left(f_{1}, f_{2}, \ldots f_{n-1}\right) \in \mathbf{I}_{n-1}(\geq$ $,-,>)$.

Now consider the case where $t>1$. Notice that $e_{t+1} \leq t-1$ since e_{t+1} cannot be maximal. This implies that $\left(e_{1}, e_{2}, \ldots, e_{t-1}, e_{t+1}\right)$ is an inversion sequence of length t. Furthermore, it is straightforward to show that $\left(e_{1}, e_{2}, \ldots, e_{t-1}, e_{t+1}\right) \in \mathbf{I}_{n}(\geq,-,>)$.

Additionally, for all e_{j} where $j>t+1$, we must have $e_{j} \geq t-1$; if this is not the case, and there exists some j where $e_{j}<t-1$, then we have $t<t+1<j$ where $e_{t} \geq e_{t+1}$ and $e_{t}>e_{j}$. Therefore $\left(e_{t}-t+1, e_{t+2}-t+1, \ldots, e_{n}-t+1\right) \in \mathbf{I}_{n-t}(\geq,-,>)$.

Conversely, for any sequences $\left(e_{1}, e_{2}, \ldots, e_{t}\right) \in \mathbf{I}_{t}(\geq,-,>)$ and $\left(f_{1}, f_{2}, \ldots, f_{n-t}\right) \in \mathbf{I}_{n-t}(\geq,-,>$), we can construct the inversion sequence

$$
\left(e_{1}, e_{2}, \ldots, e_{t-1}, f_{1}+t-1, e_{t}, f_{2}+t-1, f_{3}+t-1, \ldots, f_{n-t}+t-1\right)
$$

It is straightforward to show that this inversion sequence is in $\mathbf{I}_{n}(\geq,-,>)$ and the last maximal entry is in the t-th position.

1806D: $e_{i} \geq e_{j} \neq e_{k}$ and $e_{i} \geq e_{k}$
In [18], it was shown that $\left|\mathbf{S}_{n}(4321,4312)\right|=R_{n-1}$. We can prove that $\left|\mathbf{I}_{n}(\geq, \neq, \geq)\right|$ is also enumerated by R_{n-1} by constructing a bijection between \mathbf{S}_{n} and \mathbf{I}_{n} that restricts to a bijection between $\mathbf{S}_{n}(4321,4312)$ and $\mathbf{I}_{n}(\geq, \neq, \geq)$. This bijection is useful for another class of inversion sequences: it will be used later to prove results related to $\mathbf{I}_{n}(>, \neq,>)$ (classified as 3720).
Definition 1. Let $\pi \in S_{n}$ and define $\phi(\pi)=e_{1} e_{2} \ldots e_{n} \in \mathbf{I}_{n}$ as follows, starting with e_{n} and defining entries in reverse order.

1. $e_{n}=\pi_{n}-1$
2. For $1 \leq i<n$,
(a) If $\pi_{i} \leq i$, then $e_{i}=\pi_{i}-1$.
(b) Otherwise, if π_{i} is the k-th largest element of $\left\{\pi_{1}, \ldots, \pi_{i}\right\}$ then e_{i} is the k-th smallest element of the set $\left\{e_{i+1}, \ldots, e_{n}\right\} .$.

Lemma 2. For $\pi \in \mathbf{S}_{n}, \phi(\pi) \in \mathbf{I}_{n}$.

Proof. To show that $\phi(\pi) \in \mathbf{I}_{n}$, we need to prove that $0 \leq e_{i} \leq i-1$ for every $i \in[n]$. We will use an inductive argument, starting with e_{n}, to show this. We defined $e_{n}=\pi_{n}-1$; since $1 \leq \pi_{n} \leq n$, it follows that $0 \leq e_{n} \leq n-1$, as desired. Now consider e_{i} and assume that for all e_{j} among $e_{i+1} e_{i+2} \ldots e_{n}, 0 \leq e_{j} \leq j-1$. If $\pi_{i} \leq i$, then $e_{i}=\pi_{i}-1$ and it immediately follows that $0 \leq e_{i} \leq i-1$.

If instead $\pi_{i}>i$, assume that π_{i} is in the k-th largest element of $\left\{\pi_{1}, \ldots, \pi_{i}\right\}$. Notice that each value of $\left\{e_{i+1}, \ldots, e_{n}\right\}$ corresponds to an entry π_{j} where $i<j$ and $\pi_{j} \leq j$ (any entry π_{j} where $\pi_{j}>j$ will repeat a value). So, there are $n-\pi_{i}-k+1$ entries π_{j} such that $i<j$ and $\pi_{j}>\pi_{i}$; in turn, this implies that there are $(n-i)-\left(n-\pi_{i}-k+1\right)=\pi_{i}-(i+1)+k$ entries π_{j} such that $i<j$ and $\pi_{j}<\pi_{i}$. At a maximum, $\pi_{i}-(i+1)$ of these entries are greater than i; this leaves k entries occurring after π_{i} that are less than or equal to i. Each of these entries corresponds to a value in $\left\{e_{i+1}, \ldots, e_{n}\right\}$ that is less than or equal to $i-1$. It follows, that $e_{i} \leq i-1$, as desired.

Lemma 3. $\phi: \mathbf{S}_{n} \rightarrow \mathbf{I}_{n}$ is a bijection.

Proof. Let $e=e_{1} e_{2} \ldots e_{n} \in \mathbf{I}_{n}$. We can define the inverse image of $e, \phi^{-1}(e)=\pi_{1} \pi_{2} \ldots \pi_{n}$ in reverse order, starting with π_{n} so that $\pi_{n}=e_{n}+1$. For $1 \leq i<n$, if $e_{i} \neq e_{j}$ for all j where $i<j \leq n$, then $\pi_{i}=e_{i}+1$; otherwise, if e_{i} is the k-th smallest value of $\left\{e_{i+1}, \ldots, e_{n}\right\}, \pi_{i}$ is the k-th largest value of $[n]$ that does not appear among $\pi_{i+1}, \ldots, \pi_{n}$.

It is interesting to note that for any $\pi \in \mathbf{S}_{n}, \operatorname{exc}(\pi)=\operatorname{repeats}(\phi(\pi))$, where $\operatorname{exc}(\pi)$ is the number of positions i such that $\pi_{i}>i$.

Now, we show that ϕ restricts to a bijection between $\mathbf{S}_{n}(4321,4312)$ and $\mathbf{I}_{n}(\geq, \neq, \geq)$ by proving the following:

Theorem 29. $\phi\left(\mathbf{S}_{n}(4321,4312)\right)=\mathbf{I}_{n}(\geq, \neq, \geq)$

Proof. Consider some $\pi \in \mathbf{S}_{n}$ that contains an occurrence of 4321 or 4312 . So, there exists some $a<i<j<k$ such that $\pi_{a} \pi_{i} \pi_{j} \pi_{k}$ form a 4321 of 4312 pattern. We will show that there exists an occurrence of the pattern (\geq, \neq, \geq) in $\phi(\pi)=e$.

We must consider two cases. If $\pi_{i} \leq i$, then $j>\pi_{i}>\pi_{j}$ and $k>\pi_{i}>\pi_{k}$. Therefore, $e_{i}=\pi_{i}-1$, $e_{j}=\pi_{j}-1$ and $e_{k}=\pi_{k}-1$. So, since $\pi_{i}>\max \left\{\pi_{j}, \pi_{k}\right\}$ and $\pi_{j} \neq \pi_{k}, e_{i}, e_{j}, e_{k}$ forms an occurrence of (\geq, \neq, \geq).

Now assume $\pi_{i}>i$. Recall that e_{i} is the t-th smallest element of $\left\{e_{i+1}, \ldots, e_{n}\right\}$ if π_{i} is the t-th largest element of $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{i}\right\}$. Since π_{a} is larger than and occurs before π_{i}, we know that t is at least 2. So, if $e_{j^{\prime}}$ and $e_{k^{\prime}}$ are the two smallest distinct values in the set $\left\{e_{i+1}, \ldots, e_{n}\right\}$, we are guaranteed that $e_{i} \geq e_{j^{\prime}}$ and $e_{i} \geq e_{k^{\prime}} ;$ so, $e_{i}, e_{j^{\prime}}, e_{k^{\prime}}$ form the pattern (\geq, \neq, \geq).

Our calculations suggest that the ascent polynomial for the inversion sequences in $\mathbf{I}_{n}(\geq, \neq, \geq)$ is the same as the (symmetric) ascent polynomial for 1806 A . It also appears that the number of these inversion sequences with k "repeats" is counted by A090981, the number of Schröder paths with k ascents.

2.25 2074: Baxter permutations?

2074: $e_{i} \geq e_{j} \geq e_{k}$ and $e_{i}>e_{k}$
From our calculations, it appears that the avoidance sequence for the pattern $(\geq, \geq,>)$ is A001181 in the OEIS, which counts the Baxter permutations, a result of Chung et al in 12 . A Baxter permutation π is one that avoids the vincular patterns 3-14-2 and 2-41-3, that is, there is no $i<j<k$ such that $\pi_{j}<\pi_{k}<\pi_{i}<\pi_{j+1}$ or $\pi_{j}>\pi_{k}>\pi_{i}>\pi_{j+1}$. We have not yet proven this.

Note that the Baxter permutations contain the separable permutations $\mathbf{S}_{n}(3142,2413)$ which are counted by the large Schröder numbers. Similarly, $\mathbf{I}_{n}(\geq, \geq,>)$ contains the inversion sequences $\mathbf{I}_{n}(\geq$,,$->$) (which define class 1806C) which are also counted by the large Schröder numbers. It would be nice to find a bijection between $(\geq, \geq,>)$-avoiding inversion sequences and Baxter permutations that restricts to a bijection between $(\geq,-,>)$-avoiding inversion sequences and separable permutations.

2.26 2549(A,B,C): A098746, $\mathrm{S}_{n}(4231,42513) ?$

In 1], Albert et al showed that

$$
\left|\mathbf{S}_{n}(4231,42513)\right|=\sum_{i=0}^{n} \frac{n-i}{2 i+n}\binom{2 i+n}{i}
$$

which is sequence A098746 in the OEIS [15].
It appears from our calculations that the three inequivalent patterns below have the same avoidance sequence A098746. We will show at least that the classes 2549A and 2549C are Wilf equivalent.

$$
\text { 2549A: } e_{i}>e_{j} \text { and } e_{i}>e_{k}
$$

$$
\text { 2549B: } e_{i}>e_{j} \neq e_{k} \text { and } e_{i} \geq e_{k}
$$

$$
\text { 2549C: } e_{i} \geq e_{j} \neq e_{k} \text { and } e_{i}>e_{k}
$$

Theorem 30. The patterns $(>,-,>)$ and $(\geq, \neq,>)$, defining classes 2549 A and 2549 C respectively, are Wilf equivalent.

The proof relies on Theorem 33 in the next section and will be given there.

2.27 2958(A,B,C,D): Plane permutations $S_{n}(21 \overline{3} 54) ?$

Although it has not yet been proven, it appears from our experiments that four different equivalence classes of patterns have avoidance sets equinumerous with the plane permutations, $\mathbf{S}_{n}(21 \overline{3} 54)$. These are permutations in which every occurrence of the pattern 2154 is contained in an occurrence of 21354.

In response to a challenge of Bousquet-Mélou and Butler in [6] to find a formula for the number of plane permutations, David Bevan, in his thesis 4, derived a functional equation. Although he could not solve it, he used it to extract coefficients and compute the number of plane permutations of n through $n=37$. This sequence appears as A117106 in the OEIS [15].

In this section we show that the classes $2958(B, C, D)$ are Wilf equivalent. We give a characterization of $\mathbf{I}_{n}(100,210)$, the avoidance set for 2958 B, and use it to derive a recurrence to count $\mathbf{I}_{n}(100,210)$. The recurrence allows us to compute up to $n=200$ in a few minutes. Our results agree with Bevan's calculation of the number of plane permutations up to $n=37$ and agree up through $n=200$ with the conjectured recurrence of van Hoeij (see A117106 in the OEIS [15]) and Bevan's related Conjecture 13.3 [4].

2958A: $e_{j}<e_{k}$ and $e_{i} \geq e_{k}$
David Bevan has verified that inversion sequences avoiding the pattern $(-,<, \geq)$ (class 2958A) are equinumerous with plane partitions through $n=36$ 4].

2958B: $e_{i}>e_{j} \geq e_{k}$
Note that $\mathbf{I}_{n}(>, \geq,-)=\mathbf{I}_{n}(210,100)$. It was shown in 13 that the inversion sequences avoiding 210 (class 4306A) have a useful characterization.

Define a weak left-to-right maximum in an inversion sequence e to be a position j such that $e_{i} \leq e_{j}$ for all $i \in[j-1]$.

For $e \in \mathbf{I}_{n}$, let $a_{1}<a_{2}<\cdots<a_{t}$ be the sequence of weak left-to-right maxima of e. Let $b_{1}<b_{2}<\cdots<b_{n-t}$ be the sequence of remaining indices in [n]. Let $e^{t o p}=\left(e_{a_{1}}, e_{a_{2}}, \ldots, e_{a_{t}}\right)$ and $\operatorname{top}(e)=e_{a_{t}}$. Let $e^{\text {bottom }}=\left(e_{b_{1}}, e_{b_{2}}, \ldots, e_{b_{n-t}}\right)$ and $\operatorname{bottom}(e)=e_{b_{n-t}}$. If every entry of e is a weak left-to-right maxima, then $e^{\text {bottom }}$ is empty and we set $\operatorname{bottom}(e)=-1$.
Observation 9 ([13]). The inversion sequence e avoids 210 if and only if $e^{\text {top }}$ and $e^{\text {bottom }}$ are weakly increasing sequences.

This characterization was used to derive a recurrence.
Theorem 31 (13). Let $T_{n, a, b}$ be the number of $e \in \mathbf{I}_{n}(201)$ with $\operatorname{top}(e)=a$ and $\operatorname{bottom}(e)=b$. Then

$$
\begin{equation*}
T_{n, a, b}=\sum_{i=-1}^{b} T_{n-1, a, i}+\sum_{j=b+1}^{a} T_{n-1, j, b} \tag{9}
\end{equation*}
$$

with initial conditions $T_{n, a, b}=0$ if $a \geq n$ and $T_{n, a,-1}=\frac{n-a}{n}\binom{n-1+a}{a}$.
We use the same approach to enumerate $\mathbf{I}_{n}(210,100)$.
Observation 10. The inversion sequence e avoids both 210 and 100 if and only if $e^{\text {top }}$ is weakly increasing and and $e^{\text {bottom }}$ is strictly increasing.
Theorem 32. Let $S_{n, a, b}$ be the number of $e \in \mathbf{I}_{n}(201,100)$ with $\operatorname{top}(e)=a$ and $\operatorname{bottom}(e)=b$. Then

$$
S_{n, a, b}=\sum_{i=-1}^{b-1} S_{n-1, a, i}+\sum_{j=b+1}^{a} S_{n-1, j, b}
$$

with initial conditions $S_{n, a, b}=0$ if $a \geq n$ and $S_{n, a,-1}=\frac{n-a}{n}\binom{n-1+a}{a}$.

From Theorem 32 we get:

$$
\begin{equation*}
\left|\mathbf{I}_{n}(210,100)\right|=\sum_{a=0}^{n-1} \sum_{b=-1}^{a-1} S_{n, a, b}=\frac{1}{n+1}\binom{2 n}{n}+\sum_{a=0}^{n-1} \sum_{b=0}^{a-1} S_{n, a, b} \tag{10}
\end{equation*}
$$

We conjecture that this is the number of plane permutations in \mathbf{S}_{n}. The first 50 values are:

```
1, 2, 6, 23, 104, 530, 2958, 17734, 112657, 750726, 5207910, 37387881, 276467208, 2097763554,
16282567502, 128951419810, 1039752642231, 8520041699078, 70840843420234, 596860116487097,
5089815866230374, 43886435477701502, 382269003235832006, 3361054683237796748, 29808870409714471629,
266506375018970260798, 2400594944788679086246, 21775140746921451807813, 198809340676892441106504,
1826282268703405468306242, 16872997989167207310526350, 156733628752383523517966154,
1463331781095592078766081067, 13728102975517134576035012166, 129375450056444890453148475138,
1224510110939244929853284519565, 11637123841882863436079893510908,
111022911072651911246209688239494, 1063116093852524285500741644638322,
10215821273522500820260330677099486, 98496126104298745718970566070156495,
952690698366216517516116694690619898, 9242930766428561890110747307163780874,
89936218036703072446114434758174384847, 877551360693740954054799745948902842226,
8585641010767276382316313171527991801182, 84214629478944993778155385601015021260758,
828079895548521670881282794955097090105284, 8161776754206403112036885185391701912831107,
80627888029113149463127387185375117917090526.
```

We will next show that the class 2958 B is Wilf equivalent to 2958 C .
2958C: $e_{i} \geq e_{j}>e_{k}$
Theorem 33. The patterns $(-,<, \geq)$ and $(\geq,>,-)$, defining classes 2958B and 2958C respectively, are Wilf equivalent.

Proof. The avoidance sets for classes 2958 B and 2958 C are $\mathbf{I}_{n}(100,210)$ and $\mathbf{I}_{n}(110,210)$, repspectively. We describe a bijection

$$
\alpha: \mathbf{I}_{n}(110,210) \rightarrow \mathbf{I}_{n}(100,210)
$$

For $e \in \mathbf{I}_{n}(110,210)$, let $\alpha(e)=e^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$ where for $1 \leq j \leq n$

$$
e_{j}^{\prime}= \begin{cases}\max \left\{e_{1}, \ldots, e_{j}\right\} & \text { if } e_{j}=e_{k} \text { for some } k>j \tag{11}\\ e_{j} & \text { otherwise }\end{cases}
$$

Note that for $1 \leq j \leq n$,

$$
\begin{equation*}
e_{j}^{\prime} \leq \max \left\{e_{1}, \ldots, e_{j}\right\}=\max \left\{e_{1}^{\prime}, \ldots, e_{j}^{\prime}\right\} \tag{12}
\end{equation*}
$$

and if $e_{j}^{\prime} \neq e_{j}$ then

$$
\begin{equation*}
e_{j}^{\prime}=\max \left\{e_{1}, \ldots, e_{j}\right\} \geq e_{i}^{\prime} \text { for } 1 \leq i<j \tag{13}
\end{equation*}
$$

To see that e^{\prime} avoids 100, suppose $e_{i}^{\prime}>e_{j}^{\prime}=e_{k}^{\prime}$ for some $i<j<k$. Then by (13), we must have $e_{j}^{\prime}=e_{j}$ and $e_{k}^{\prime}=e_{k}$. But from the definition of α (11), if $e_{j}=e_{k}$ where $j<k$ then $e_{j}^{\prime}=\max \left\{e_{1}, \ldots, e_{j}\right\} \geq e_{i}^{\prime}$, a contradiction.

To see that e^{\prime} avoids 210, suppose that $e_{i}^{\prime}>e_{j}^{\prime}>e_{k}^{\prime}$ for some $i<j<k$. Again by (13), $e_{j}^{\prime}=e_{j}$ and $e_{k}^{\prime}=e_{k}$. Since e avoids 210, $e_{i}^{\prime} \neq e_{i}$ so $e_{i}^{\prime}=\max \left\{e_{1}, \ldots, e_{i}\right\}=e_{s}$ for some $s \in[i]$. But then $e_{s}>e_{j}>e_{k}$ is a 210 in e.

Thus $e^{\prime}=\alpha(e) \in \mathbf{I}_{n}(100,210)$. To show that α is a bijection, we define its inverse β.
First we make an observation. Consider some $e \in \mathbf{I}_{n}(110,210)$ and an entry e_{j} such that $e_{j}^{\prime} \neq e_{j}$ in $\alpha(e)=e^{\prime}$. This implies that there exists some index k with $j<k$ and $e_{j}=e_{k}=m$ for some value m. Additionally, it must be the case that $m<M=\max \left\{e_{1}, \ldots, e_{j-1}\right\}=e_{i}$ where $i \in[j-1]$ (else, $e_{j}^{\prime}=m$). Then, since e avoids 210, we must have $m=\min \left\{e_{j}, \ldots, e_{n}\right\}$. Thus, for $e^{\prime}=\alpha(e)$ we have

$$
e_{i}^{\prime}=e_{i}=M=e_{j}^{\prime}>e_{j}=m=\min \left\{e_{j}, \ldots, e_{n}\right\}=\min \left\{e_{j}^{\prime}, \ldots, e_{n}^{\prime}\right\}
$$

Thus, we can reconstruct e from e^{\prime} by defining $\beta: \mathbf{I}_{n}(100,210) \rightarrow \mathbf{I}_{n}(110,210)$ as follows.
For $e \in \mathbf{I}_{n}(100,210)$, let $\beta(e)=e^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$ where for $1 \leq j \leq n$

$$
e_{j}^{\prime}= \begin{cases}\min \left\{e_{j}, \ldots, e_{n}\right\} & \text { if } e_{i}=e_{j} \text { for some } i<j \\ e_{j} & \text { otherwise }\end{cases}
$$

Then $\beta(\alpha(e))=e$. We can check similarly that $\beta(e) \in \mathbf{I}_{n}(110,210)$ and $\alpha(\beta(e))=e$.

We now return to the proof of the Wilf equivalence of the classes 2549 A and 2549 C from the previous section.

Proof of Theorem 30

Observe that $2549 \mathrm{C} \preceq 2958 \mathrm{C}$ and $2549 \mathrm{~A} \preceq 2958 \mathrm{~B}$ in the following sense:

$$
\begin{aligned}
& 2549 \mathrm{C}: \mathbf{I}_{\mathrm{n}}(\geq, \neq,>)=\mathbf{I}_{\mathrm{n}}(110,210,201) \subseteq \mathbf{I}_{\mathrm{n}}(110,210) \subseteq \mathbf{I}_{\mathrm{n}}(\geq,>,-): 2958 \mathrm{C} \\
& 2549 \mathrm{~A}: \mathbf{I}_{\mathrm{n}}(>,-,>)=\mathbf{I}_{\mathrm{n}}(100,210,201) \subseteq \mathbf{I}_{\mathrm{n}}(100,210) \subseteq \mathbf{I}_{\mathrm{n}}(>, \geq,-): 2958 \mathrm{~B}
\end{aligned}
$$

We check that the mapping α (11) restricts to a bijection between inversion sequences in class 2549 C and in class 2549 A .

Let $e \in \mathbf{I}_{n}(110,210)$ and let $e^{\prime}=\alpha(e)$. Suppose e avoids the pattern 201, but that for some $i<j<k, e_{i}^{\prime}>e_{j}^{\prime}<e_{k}^{\prime}$ and $e_{i}^{\prime}>e_{k}^{\prime}$. Then by (13), $e_{j}^{\prime}=e_{j}$ and $e_{k}^{\prime}=e_{k}$. But, since e avoids 201, $e_{i}^{\prime} \neq e_{i}$. Then, by definition of α, there is an $s \in[i-1]$ such that $e_{i}^{\prime}=e_{s}$. But then $e_{s} e_{j} e_{k}$ forms a 201 pattern in e, a contradiction.

2958D: $e_{j} \leq e_{k}$ and $e_{i}>e_{k}$
Theorem 34. The patterns $(>, \geq,-)$ and $(-, \leq,>)$, defining classes 2958B and 2958D respectively, are Wilf equivalent.

Proof. The inversion sequences in classes 2958 B and 2958 D are defined by $\mathbf{I}_{n}(210,100)$ and $\mathbf{I}_{n}(201,100)$, respectively. It was shown in [13], Theorem 5, that the following gives a bijection from $\mathbf{I}_{n}(210)$ to $\mathbf{I}_{n}(201)$. It can be checked that this mapping preserves 100 -avoidance and therefore restricts to a bijection from $\mathbf{I}_{n}(210,100)$ to $\mathbf{I}_{n}(201,100)$.

Given $e \in \mathbf{I}_{n}(210)$, define $f \in \mathbf{I}_{n}(201)$ as follows. Let $e_{a_{1}} \leq e_{a_{2}} \leq \cdots \leq e_{a_{t}}$ be the sequence of weak left-to-right maxima of e and let $e_{b_{1}}, e_{b_{2}}, \cdots, e_{b_{n-t}}$ be the subsequence of remaining elements of e. Since e avoids both 210 and100, $e_{b_{1}}<e_{b_{2}}<\cdots<e_{b_{n-t}}$.

For $i=1, \ldots, t$, set $f_{a_{i}}=e_{a_{i}}$. For each $j=1,2, \ldots, n-t$, we extract an element of the multiset $B=\left\{e_{b_{1}}, e_{b_{2}}, \ldots, e_{b_{n-t}}\right\}$ and assign it to $f_{b_{1}}, f_{b_{2}}, \ldots, f_{b_{n-t}}$ as follows:

$$
f_{b_{j}}=\max \left\{k \mid k \in B-\left\{f_{b_{1}}, f_{b_{2}}, \ldots, f_{b_{j-1}}\right\} \text { and } k<\max \left(e_{1}, \ldots, e_{b_{j}-1}\right)\right\}
$$

This is the same mapping that was used in Section 2.16 to show that the patterns 772A and 772B are Wilf equivalent. Note that

$$
\begin{aligned}
& 772 \mathrm{~B}: \mathbf{I}_{n}(210,110,100,000) \subseteq \mathbf{I}_{n}(210,100): 2958 \mathrm{~B} \\
& 772 \mathrm{~A}: \mathbf{I}_{n}(201,101,100,000) \subseteq \mathbf{I}_{n}(201,100): 2958 \mathrm{D}
\end{aligned}
$$

Note: Lara Pudwell in her thesis [23] found some other Wilf equivalent barred permutation patterns of length 5 that may be helpful to settle the open questions in this subsection.

2.28 3207: $\mathbf{I}_{n}(101), \mathbf{I}_{n}(110)$

3207A: $e_{j}<e_{k}$ and $e_{i}=e_{k}$
3207B: $e_{i}=e_{j}>e_{k}$
It was shown in [13] that both $\mathbf{I}_{n}(<,-,=)=\mathbf{I}_{n}(101)$ and $\mathbf{I}_{n}(=,>,-)=\mathbf{I}_{n}(110)$ are counted by the sequence A113227 in the OEIS [15], where it is said to count $\mathbf{S}_{n}(1-23-4) . \mathbf{S}_{n}(1-23-4)$ is the set of permutations with no $i<j<k<\ell$ such that $\pi_{i}<\pi_{j}<\pi_{k}<\pi_{\ell}$ and $k=j+1$.

It was proven by David Callan in 10, that $\mathbf{S}_{n}(1-23-4)$ is in bijection with increasing ordered trees with $n+1$ vertices whose leaves, taken in preorder, are also increasing. He showed that if $u_{n, k}$ is the number of such trees with $n+1$ vertices in which the root has k children then

$$
\begin{equation*}
u_{n, k}=u_{n-1, k-1}+k \sum_{j=k}^{n-1} u_{n-1, j} \tag{14}
\end{equation*}
$$

with initial conditions $u_{0,0}=1$ and $u_{n, k}=0$ if $k>n$, or $n>0$ and $k=0$.
It was shown in [13] that the number of $e \in \mathbf{I}_{n}$ (101) with exactly k zeros is $u_{n, k}$, as is the number of $e \in \mathbf{I}_{n}(110)$ with exactly k zeros. As a consequence, 101 and 110 are Wilf equivalent and both avoidance sets are counted by A113227.

2.29 3720: Quadrant Marked Mesh Patterns

In this section we prove that $\mathbf{I}_{n}(>, \neq,>)$ is counted by the sequence A212198 in the OEIS [15] where it is said to count permutations avoiding a particular marked mesh pattern.

3720: $e_{i}>e_{j} \neq e_{k}$ and $e_{i}>e_{k}$
In [17, Kitaev and Remmel introduced the idea of quadrant marked mesh patterns, a definition of which is given below.

Definition 2. Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in S_{n}$. Consider the graph of $\pi, G(\pi)$, consisting of the points $\left(i, \pi_{i}\right)$ for all $i \in[n]$. The entry π_{i} is said to match the quadrant marked mesh pattern $M M P(a, b, c, d)$, where a, b, c, d are nonnegative integers, if in $G(\pi)$ there are at least a points to the northeast of $\left(i, \pi_{i}\right)$, at least b points to the northwest of $\left(i, \pi_{i}\right)$, at least c points to the southwest of $\left(i, \pi_{i}\right)$, and at least d points to the southeast of $\left(i, \pi_{i}\right)$.

Let $S_{n}(M M P(a, b, c, d))$ denote the set of permutations of length n where no π_{i} matches $M M P(a, b, c, d)$. We will prove that $\left|\mathbf{S}_{n}(M M P(0,2,0,2))\right|=\left|\mathbf{I}_{n}(>, \neq,>)\right|$ for all n. By symmetry established in [17], this implies that $\left|\mathbf{I}_{n}(>, \neq,>)\right|=\left|\mathbf{S}_{n}(M M P(2,0,2,0))\right|$. In our proof, we make use of the bijection ϕ from Section 2.24, whose definition was given in Definition 1 Specifically, we can prove the following:

Theorem 35. For all n, $\phi\left(\mathbf{S}_{n}(M M P(0,2,0,2))\right)=\mathbf{I}_{n}(>, \neq,>)$.

Proof. This proof is very similar to the proof of Theorem 29. Consider some $\pi \in \mathbf{S}_{n}$ such that there exists some π_{i} that matches $\operatorname{MMP}(0,2,0,2)$. This implies that there exist indices $a<b<i<j<k$ such that $\min \left\{\pi_{a}, \pi_{b}\right\}>\pi_{i}>\max \left\{\pi_{j}, \pi_{k}\right\}$. We will show that there exists an occurrence of the pattern $(>, \neq,>)$ in $\phi(\pi)=e$.

We must consider two cases. If $\pi_{i} \leq i$, then $j>\pi_{i}>\pi_{j}$ and $k>\pi_{i}>\pi_{k}$. Therefore, $e_{i}=\pi_{i}-1$, $e_{j}=\pi_{j}-1$ and $e_{k}=\pi_{k}-1$. So, since $\pi_{i}>\max \left\{\pi_{j}, \pi_{k}\right\}$ and $\pi_{j} \neq \pi_{k}, e_{i}, e_{j}, e_{k}$ forms an occurrence of $(>, \neq,>)$.

Now assume $\pi_{i}>i$. Recall that e_{i} is the t-th smallest element of $\left\{e_{i+1}, \ldots, e_{n}\right\}$ if π_{i} is the t-th largest element of $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{i}\right\}$. Since π_{a}, π_{b} are larger than and occur before π_{i}, we know that t is at least 3. If $e_{j^{\prime}}$ and $e_{k^{\prime}}$ are the two smallest distinct values in the set $\left\{e_{i+1}, \ldots, e_{n}\right\}$, we are guaranteed that $e_{i}>e_{j^{\prime}}$ and $e_{i}>e_{k^{\prime}}$; so, $e_{i}, e_{j^{\prime}}, e_{k^{\prime}}$ form the pattern $(>, \neq,>)$.

The bijection ϕ turns out to be a versatile tool, giving interesting results when restricted to $\mathbf{S}_{n}(M M P(k, 0, k, 0))$ for any positive integer k. In this case, $\phi\left(\mathbf{S}_{n}(M M P(k, 0, k, 0))\right)$ maps to inversion sequences that avoid a particular set of length $k+1$ patterns.

2.30 5040: n !

The last equivalence class of patterns in this section is the set of those avoided by all inversion sequences. There are 41 such patterns among our 343, including the representative below.

5040: $e_{i}=e_{j}=e_{k}$ and $e_{i} \neq e_{k}$

3 Results about patterns whose sequences don't appear in the OEIS [15]

Table 3 lists all equivalence classes of the patterns $\rho \in\{<,>, \leq, \geq,=, \neq,-\}^{3}$ whose avoidance sequences do not appear in the OEIS. We were able to derive the avoidance sequences for a few of these patterns and prove Wilf equivalence of some others. In this section we describe our limited results and leave identification of the avoidance sequences of the remaining patterns in Table 3 as questions for future study.

3.1 Counting results

3.1.1 805: sum of Catalan numbers

805: $e_{i} \leq e_{j}>e_{k}$ and $e_{i} \neq e_{k}$
Conjecture 1. $\left|\mathbf{I}_{n}(\leq,>, \neq)\right|=C_{n+1}-1-\sum_{i=0}^{n} C_{i}$, where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
(Differences of successive terms appeared in the OEIS as A002057: 1, 4, 14, 48, 165, 572, 2002, 7072. Second differences appeared as A026016: 3, 10, 34, 117, 407, 1430, 5070.)

3.1.2 1016

1016: $e_{i}>e_{j}$ and $e_{i} \neq e_{k}$
We can show that the counting sequence is as follows. We omit the details since we hope to find a simpler formula and nicer explanation.

$$
\left|\mathbf{I}_{n}(>,-, \neq)\right|=\binom{2(n-1)}{n-1}+\sum_{k=2}^{n-2} \sum_{i=1}^{k-1} \sum_{u=1}^{i} \sum_{d=0}^{u-1} \frac{i-d+1}{i+1}\binom{i+d}{d}
$$

3.1.3 1079(A,B): sum of binomial coefficients

1079A: $e_{i}>e_{j} \neq e_{k}$
These sequences have a nice unimodality characterization. They are the inversion sequences $e \in \mathbf{I}_{n}$ satisfying for some t :

$$
e_{1} \leq e_{2} \leq \ldots \leq e_{t} \geq e_{t+1}=e_{t+2}=\ldots=e_{n}
$$

From this characterization, we can show the following.
Theorem 36. $\left|\mathbf{I}_{n}(>, \neq,-)\right|=1+\sum_{i=1}^{n-1}\binom{2 i}{i-1}$.

1079B: $e_{i}<e_{j}>e_{k}$ and $e_{i} \neq e_{k}$
These are the inversion sequences whose positive elements are weakly increasing (like 1806A) but where $e_{i}=0$ implies $\operatorname{dist}\left(e_{1}, \ldots, e_{i-1}\right) \leq 2$. We have not yet shown pattern 1079B to be Wilf equivalent to 1079A.

3.1.4 4306A,B: $\mathbf{I}_{n}(210), \mathbf{I}_{n}(201)$

4306A: $e_{j}<e_{k}$ and $e_{i}>e_{k}: 201$
4306B: $e_{1}>e_{j}>e_{k}: 210$
These two patterns were shown to be Wilf equivalent in [13] via a bijection, which we made use of in Section 2.27, The recurrence (31) was also derived. See [21] for an alternate approach.

3.2 Wilf equivalence results

In the remainder of the section we show that the bijection α described in (11) of Section 2.27 proves Wilf equivalence of all of the following pairs of patterns: $663 \mathrm{~A}, \mathrm{~B} ; 746 \mathrm{~A}, \mathrm{~B} ; 1833 \mathrm{~A}, \mathrm{~B}$; and $1953 \mathrm{~A}, \mathrm{~B}$.

1953A: $e_{j}>e_{k}$ and $e_{i}>e_{k}$
1953B: $e_{i} \neq e_{j} \geq e_{k}$ and $e_{i}>e_{k}$
Theorem 37. The patterns $(-,>,>)$ and $(\neq, \geq,>)$, defining classes 1953A and 1953B respectively, are Wilf equivalent.

Proof. The inversion sequences in classes 1953A and 1953B are those in $\mathbf{I}_{n}(110,210,120)$ and $\mathbf{I}_{n}(100,210,120)$, respectively. Notice that these are the inversion sequences in $\mathbf{I}_{n}(110,210)$ (class $2958 \mathrm{C})$ and $\mathbf{I}_{n}(100,210)$ (class 2958A), respectively, that avoid 120. So it suffices to show that both $\alpha: \mathbf{I}_{n}(110,210) \rightarrow \mathbf{I}_{n}(100,210)$ and $\beta=\alpha^{-1}$ preserves 120 -avoidance.

Suppose $e \in \mathbf{I}_{n}(110,210)$ avoids 120 , but for $e^{\prime}=\alpha(e)$ there exist $i<j<k$ such that $e_{i}^{\prime}<e_{j}^{\prime}>$ e_{k}^{\prime} and $e_{i}^{\prime}>e_{k}^{\prime}$. By (13), $e_{k}^{\prime}=e_{k}$. Notice that we cannot have both $e_{i}^{\prime}=e_{i}$ and $e_{j}^{\prime}=e_{j}$, since this would create a 120 in e.

Suppose first that $e_{j}^{\prime}=e_{j}$. Since e avoids $120, e_{i}^{\prime} \neq e_{i}$ so, by definition of α, there is an $s \in[i-1]$ such that $e_{s}=e_{i}^{\prime}$. But then $e_{s} e_{j} e_{k}$ forms a 120 in e.

So, assume that $e_{i}^{\prime}=e_{i}$. Then, since e avoids $120, e_{j}^{\prime} \neq e_{j}$. So, there must be a $t \in[j-1]$ such that $e_{t}=e_{j}^{\prime}$. If $i<t<k$ then $e_{i} e_{t} e_{k}$ is a 120 in e. Otherwise, $t<i<k$ and $e_{t} e_{i} e_{k}$ is a 210 in e, which is impossible.

Finally, if both $e_{i}^{\prime} \neq e_{i}$ and $e_{j}^{\prime} \neq e_{j}$, then let s and t be as above. If $s<t$ then $e_{s} e_{t} e_{k}$ forms a 102 in e. Otherwise, $e_{t} e_{s} e_{k}$ forms a 210 in e. Both cases lead to a contradiction.

If both $e_{i}^{\prime} \neq e_{i}$ and $e_{j}^{\prime} \neq e_{j}$, then let $s \in[i-1]$ and $j \in[j-1]$ be indices such that $e_{i}^{\prime}=e_{s}$ and $e_{j}^{\prime}=e_{t}$. Since $e_{i}^{\prime}=\max \left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$ and $e_{j}^{\prime}=\max \left\{e_{1}, e_{2}, \ldots, e_{j}\right\}$, and we have $e_{i}^{\prime}<e_{j}^{\prime}$, it must be the case the $e_{s}<e_{t}$ and $s<t$. Therefore $e_{s} e_{t} e_{k}$ is an occurrence of 120 in e, giving a contradiction.

It follows that α preserves 210-avoidance. Showing that β preserves 210 -avoidance is similar.

1833A: $e_{j} \neq e_{k}$ and $e_{i}>e_{k}$
1833B: $e_{i} \neq e_{j}$ and $e_{i}>e_{k}$
Theorem 38. The patterns $(-, \neq,>)$ and $(\neq,-,>)$, defining classes 1833A and 1833B respectively, are Wilf equivalent.

Proof. The inversion sequences in classes 1833 A and 1833 B are those in $\mathbf{I}_{n}(110,210,120,201)$ and $\mathbf{I}_{n}(100,210,120,201)$, respectively. It was shown in Section 2.27 that the bijection $\alpha: \mathbf{I}_{n}(110,210) \rightarrow$ $\mathbf{I}_{n}(100,210)$ preserves 201-avoidance, as does its inverse β. It follows from Theorem 37 that α and β preserves 120-avoidance as well. So $\alpha\left(\mathbf{I}_{n}(-, \neq,>)\right)=\mathbf{I}_{n}(\neq,-,>)$.

746A: $e_{j}>e_{k}$ and $e_{i} \geq e_{k}$
746B: $e_{i} \neq e_{j} \geq e_{k}$ and $e_{i} \geq e_{k}$
Theorem 39. The patterns $(-,>, \geq)$ and (\neq, \geq, \geq), defining classes 746 A and 746 B respectively, are Wilf equivalent.

Proof. The inversion sequences in classes 746 A and 746 B are those in $\mathbf{I}_{n}(110,210,120,010)$ and $\mathbf{I}_{n}(100,210,120,010)$, respectively. These are, in turn, the inversion sequences in $\mathbf{I}_{n}(110,210,120)$ (class 1953A) and $\mathbf{I}_{n}(100,210,120)$ (class 1953B), respectively, that avoid 010. By Theorem 37, $\alpha: \mathbf{I}_{n}(110,210) \rightarrow \mathbf{I}_{n}(100,210)$ and $\alpha^{-1}=\beta$ preserve 120 -avoidance. So it suffices to show that both $\alpha: \mathbf{I}_{n}(110,210) \rightarrow \mathbf{I}_{n}(100,210)$ and $\alpha^{-1}=\beta$ preserves 010-avoidance.

Suppose $e \in \mathbf{I}_{n}(110,210)$ avoids 010, but for $e^{\prime}=\alpha(e)$ there exist $i<j<k$ such that $e_{i}^{\prime}<e_{j}^{\prime}>$ e_{k}^{\prime} and $e_{i}^{\prime}=e_{k}^{\prime}$. By (13), $e_{k}^{\prime}=e_{k}$. Since e avoids 010, it follows that we cannot have both $e_{i}^{\prime}=e_{i}$ and $e_{j}^{\prime}=e_{j}$.

Suppose first that $e_{j}^{\prime}=e_{j}$. Since e avoids $010, e_{i}^{\prime} \neq e_{i}$ so, by definition of α there is an $s \in[i-1]$ such that $e_{s}=e_{i}^{\prime}$. But then $e_{s} e_{j} e_{k}$ forms a 010 in e.

So, assume that $e_{i}^{\prime}=e_{i}$. Then, since e avoids $010, e_{j}^{\prime} \neq e_{j}$. So, there must be a $t \in[j-1]$ such that $e_{t}=e_{j}^{\prime}$. If $i<t<k$ then $e_{i} e_{t} e_{k}$ is a 010 in e. Otherwise, $t<i<k$ and $e_{t} e_{i} e_{k}$ is a 100 in e, which is impossible.

If both $e_{i}^{\prime} \neq e_{i}$ and $e_{j}^{\prime} \neq e_{j}$, then let $s \in[i-1]$ and $t \in[j-1]$ be indices such that $e_{i}^{\prime}=e_{s}$ and $e_{j}^{\prime}=e_{t}$. Since $e_{i}^{\prime}=\max \left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$ and $e_{j}^{\prime}=\max \left\{e_{1}, e_{2}, \ldots, e_{j}\right\}$, and we have $e_{i}^{\prime}<e_{j}^{\prime}$, it
must be the case the $e_{s}<e_{t}$ and $s<t$. Additionally, $e_{s}=e_{i}^{\prime}=e_{k}^{\prime}=e_{k}$. Therefore $e_{s} e_{t} e_{k}$ is an occurrence of 010 in e, giving a contradiction.

It follows that α preserves 010 -avoidance. Showing that β preserves 010 -avoidance is similar.

663A: $e_{j} \neq e_{k}$ and $e_{i} \geq e_{k}$
663B: $e_{i} \neq e_{j}$ and $e_{i} \geq e_{k}$
Theorem 40. The patterns $(-, \neq, \geq)$ and $(\neq,-, \geq)$, defining classes 663 A and 6633 B respectively, are Wilf equivalent.

Proof. The inversion sequences in classes 663 A and 663 B are those in $\mathbf{I}_{n}(110,210,120,201,010)$ and $\mathbf{I}_{n}(100,210,120,201,010)$, respectively. It was shown in Section 2.27 that the bijection α : $\mathbf{I}_{n}(110,210) \rightarrow \mathbf{I}_{n}(100,210)$ preserves 201-avoidance, as does its inverse. It follows from Theorem 37 that α, β preserve 120 -avoidance and from Theorem 39 that they preserve 010 -avoidance as well. So $\alpha\left(\mathbf{I}_{n}(-, \neq, \geq)\right)=\mathbf{I}_{n}(\neq,-, \geq)$.

4 Concluding remarks

The results in this work demonstrate that inversion sequences avoiding a triple of relations provide a rich and unifying paradigm for modeling combinatorial sequences.

Several interesting questions remain for future work, such those highlighted in Table 2 with a "no" in column 3. This includes, for example, showing that the number of inversion sequences $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that $e_{i}>e_{j} \geq e_{k}$ is the same as the number of plane permutations in \mathbf{S}_{n} (see Section 2.27). Another fascinating open question is whether the number of Baxter permutations in \mathbf{S}_{n} is the same as the number of $e \in \mathbf{I}_{n}$ with no $i<j<k$ such that both $e_{i} \geq e_{j} \geq e_{k}$ and $e_{i}>e_{k}$ (Section 2.25). There are also a number of lingering open enumeration problems: can enumeration formulas be found for some of the avoidance sets in Table 3, such as $\mathbf{I}_{n}(010), \mathbf{I}_{n}(100), \mathbf{I}_{n}(120)$, or $\mathbf{I}_{n}(201)=\mathbf{I}_{n}(210)$?

In ongoing work, we construct and examine the partially ordered set defined on the base set of patterns $\{<,>, \leq, \geq,=, \neq,-\}^{3}$, where for $\rho, \rho^{\prime} \in\{<,>, \leq, \geq,=, \neq,-\}^{3}, \rho \preceq \rho^{\prime}$ if and only if for all $n \geq 1, \mathbf{I}_{n}(\rho) \subseteq \mathbf{I}_{n}\left(\rho^{\prime}\right)$.

Acknowledgements

Thanks to Sylvie Corteel for helpful discussions about several of the sequences herein. Thanks to Michael Weselcouch for independently verifying our computations of the avoidance sequences for the 343 patterns. Thanks to Michael Albert for making his PermLab software freely available [2]. Thanks to the Simons Foundation for a grant to the second author which supported the travel of the first author for collaboration.

We once again extend sincere thanks to Neil Sloane and the OEIS Foundation, Inc. The On-Line Encyclopedia of Integer Sequences [15] was an invaluable resource for this project.

References

[1] M. H. Albert, R. E. L. Aldred, M. D. Atkinson, H. P. van Ditmarsch, C. C. Handley, and D. A. Holton. Restricted permutations and queue jumping. Discrete Math., 287(1-3):129-133, 2004.
[2] Michael Albert. Permlab: Software for permutation patterns, 2012.
http://www.cs.otago.ac.nz/staffpriv/malbert/permlab.php.
[3] Michael H. Albert, Cheyne Hamburger, Jay Pantone, Nathaniel Shar, and Vincent Vatter. Generating permutations with restricted containers. 2015. http://arxiv.org/pdf/1510.00269.pdf.
[4] David Ian Bevan. On the growth of permutation classes. 2015. PhD thesis, The Open University.
[5] Sara C. Billey, William Jockusch, and Richard P. Stanley. Some combinatorial properties of Schubert polynomials. J. Algebraic Combin., 2(4):345-374, 1993.
[6] Mireille Bousquet-Mélou and Steve Butler. Forest-like permutations. Ann. Comb., 11(3-4):335354, 2007.
[7] Mireille Bousquet-Mélou and Guoce Xin. On partitions avoiding 3-crossings. Sém. Lothar. Combin., 54:Art. B54e, 21 pp. (electronic), 2005/07.
[8] Alexander Burstein and Walter Stromquist. Unimodal inversion sequences and patternavoiding classes. AMS Fall Central Sectional Meeting, Loyola University, Chicago, 2015. Slides,
http://www.alexanderburstein.org/tiki-index.php?page=Papers+and+Talks/uis-chigago-talk-5.pdf.
[9] David Callan. A combinatorial interpretation of the eigensequence for composition. J. Integer Seq., 9(1):Article 06.1.4, 12, 2006.
[10] David Callan. A bijection to count (1-23-4)-avoiding permutations. 2010. Unpublished manuscript, http://arxiv.org/abs/1008.2375.
[11] David Callan. The number of $\overline{2} \overline{1} 542$-avoiding permutations. 2011. Unpublished manuscript, http://arxiv.org/abs/1111.3088.
[12] F. R. K. Chung, R. L. Graham, V. E. Hoggatt, Jr., and M. Kleiman. The number of Baxter permutations. J. Combin. Theory Ser. A, 24(3):382-394, 1978.
[13] Sylvie Corteel, Megan A. Martinez, Carla D. Savage, and Michael Weselcouch. Patterns in inversion sequences I. Discrete Mathematics and Theoretical Computer Science, 18(2), 2016.
[14] Shishuo Fu, Zhicong Lin, and Jiang Zeng. Two new unimodal descent polynomials. 2015. http://arxiv.org/abs/1507.05184.
[15] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2011. http://oeis.org
[16] Sergey Kitaev. Patterns in permutations and words. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg, 2011. With a foreword by Jeffrey B. Remmel.
[17] Sergey Kitaev and Jeffrey Remmel. Quadrant marked mesh patterns. J. Integer Seq., 15(4):Article 12.4.7, 29, 2012.
[18] Darla Kremer. Permutations with forbidden subsequences and a generalized Schröder number. Discrete Math., 218(1-3):121-130, 2000.
[19] Alain Lascoux and Marcel-Paul Schützenberger. Schubert polynomials and the LittlewoodRichardson rule. Lett. Math. Phys., 10(2-3):111-124, 1985.
[20] Percy A. MacMahon. Combinatory analysis. Two volumes (bound as one). Chelsea Publishing Co., New York, 1960.
[21] Toufik Mansour and Mark Shattuck. Pattern avoidance in inversion sequences. Pure Mathematics and Applications, 25(2):157-176, 2015.
[22] T. Kyle Petersen and Bridget Eileen Tenner. The depth of a permutation. J. Comb., 6(1-2):145-178, 2015.
[23] Lara Pudwell. Enumeration schemes for pattern-avoiding words and permutations. 2008. PhD thesis, Rutgers University.
[24] Rodica Simion and Frank W. Schmidt. Restricted permutations. European J. Combin., $6(4): 383-406,1985$.
[25] Richard P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.
[26] Sheila Sundaram. The homology of partitions with an even number of blocks. J. Algebraic Combin., 4(1):69-92, 1995.
[27] Bridget Eileen Tenner. Pattern avoidance and the Bruhat order. J. Combin. Theory Ser. A, 114(5):888-905, 2007.

[^0]: *Department of Mathematics, Ithaca College, Ithaca, NY 14850, mmartinez@ithaca.edu
 ${ }^{\dagger}$ Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206, savage@ncsu.edu

