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Abstract

We present an improved orderly algorithm for constructing all unla-

belled lattices up to a given size, that is, an algorithm that constructs the

minimal element of each isomorphism class relative to some total order.

Our algorithm employs a stabiliser chain approach for cutting branches

of the search space that cannot contain a minimal lattice; to make this

work, we grow lattices by adding a new layer at a time, as opposed to

adding one new element at a time, and we use a total order that is com-

patible with this modified strategy.

The gain in speed is about two orders of magnitude. As an application,

we compute the number of unlabelled lattices on 20 elements.

1 Introduction

Enumerating all isomorphism classes of unlabelled lattices, in the sense of sys-
tematically constructing a complete list of isomorphism classes up to a cer-
tain size threshold, is a difficult combinatorial problem. The number un of
isomorphism classes of unlabelled lattices on n elements grows exponentially
in n [KL71, KW80], as does the typical size of an isomorphism class. In-
deed, the largest value of n for which un has been published previously is
n = 19 [JL15, Slo].

When trying to enumerate combinatorial objects modulo isomorphism, one
typically faces the problem that the number and the size of the isomorphism
classes are so large that trying to weed out isomorphic objects through explicit
isomorphism tests is out of the question. Instead, an orderly algorithm is needed,
that is, an algorithm that traverses the search space in such a way that every
isomorphism class is encountered exactly once.

A general strategy for the construction of isomorphism classes of combin-
atorial objects using canonical construction paths was described in [McK98].
Orderly algorithms for enumerating isomorphism classes of unlabelled lattices,
as well as special subclasses of unlabelled lattices, were given in [HR02, JL15].
The fastest published method currently is the one described in [JL15]; the com-
putations of u18 and u19 reported in [JL15] took 26 hours respectively 19 days
on 64 CPUs.

Both authors acknowledge support under UWS grant 20721.81112. Volker Gebhardt
acknowledges support under the Spanish Project MTM2013-44233.
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The algorithms described in [HR02, JL15] follow a similar strategy: (i) A
total order <wt on all labelled lattices of a given size is defined. (ii) Starting
from the (unique) <wt-minimal lattice on 2 elements, the <wt-minimal labelled
representative of each isomorphism class of unlabelled lattices with at most n

elements is constructed using a depth first search, where the children of a parent
lattice are obtained by adding a single new element covering the minimal element
of the parent lattice. (iii) For each parent lattice, one child is obtained for every
choice for the covering set of the added element that yields a labelled lattice
that is <wt-minimal in its isomorphism class of unlabelled lattices.

It is the test for <wt-minimality in step (iii) that takes most of the time:
While there are some necessary conditions that are easy to verify, ensuring that
the newly constructed labelled lattice is indeed <wt-minimal in its isomorphism
class requires checking the candidate covering set of the added element against
all possible relabellings of the elements of the existing lattice; details are given
in Section 2. Basically, one has a certain permutation group that acts on a
configuration space of covering sets, and one must verify that a given candidate
is minimal in its orbit.

It turns out that the elements of a <wt-minimal labelled lattice are arranged
by levels (cf. Section 2), and thus it is tempting to construct and test candidate
covering sets of a new element level by level, exploiting the levellised structure
for a divide-and-conquer approach; such an approach promises two advantages:
(i) The orbit of the restriction of a candidate covering set to a given level is
potentially much smaller than the orbit of the complete covering set. (ii) The
entire branch of the search space that corresponds to the candidate configuration
of covers on the given level can potentially be discarded in a single test.

However, we shall see that the constructions from [HR02, JL15] do not adapt
well to this levellised approach: In order to make the levellised approach work,
we need to modify the depth-first-search to add one level at a time as opposed to
one element at a time, and we need to modify the total order to be level-major.

The structure of the paper is as follows: In Section 2, we recall some results
from [HR02, JL15] that are needed later, and we interpret the total order used
in [HR02, JL15] as row-major. In Section 3, we describe our new construction
using a level-major order and prove the results required to establish its cor-
rectness. In Section 4, we remark on implementation details and compare the
performance of our new approach to that of those published in [HR02, JL15].

We thank the Institute for Mathematics at the University of Seville (IMUS)
for providing access to a 64-node 512 GB RAM computer.

2 Background

We start by giving a brief summary of the algorithms from [HR02, JL15]. We
refer to these references for details.

Definition 1. A finite poset L is an n-poset, if the elements of L are labelled
0, 1, . . . , n − 1, where 0 is a lower bound of L and 1 is an upper bound of L.
An n-poset that is a lattice is called an n-lattice. To avoid confusion with the
numerical order of integers, we denote the partial order of an n-poset L by ⊑L

and ⊒L, or simply ⊑ and ⊒ if the poset is obvious.
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Notation 2. Assume that L is an n-poset.
For a ∈ L, we define the shadow of a as ↓ a = ↓L a = {x ∈ L : x ⊑L a}

and the shade of a as ↑ a = ↑L a = {x ∈ L : x ⊒L a}. For A ⊆ L, we define
↑A = ↑L A =

⋃
a∈A ↑L a as well as ↓A = ↓L A =

⋃
a∈A ↓L a.

We say that a ∈ L has depth dep(a) = depL(a) = p, if p + 1 is the length
of a maximal chain from 1 to a in L. Given a non-negative integer k, we call
levk(L) = {a ∈ L : depL(a) = k} the k-th level of L. We say that L is levellised,
if depL(i) ≤ depL(j) holds for all 0 < i ≤ j < n.

For a, b ∈ L, we write a ≺L b (or simply a ≺ b) if a is covered by b in L,
that is, a ⊑L b holds and a ⊑L x ⊑L b implies x = a or x = b. We denote the
covering set of a ∈ L by

c
a =

c
L a = {x ∈ L : a ≺ x}, and we say that a ∈ L

is an atom in L if 0 ≺L a holds.
If L is a lattice and a, b ∈ L, we denote the least common upper bound of a

and b in L by a ∨L b (or simply a ∨ b), and the greatest common lower bound
of a and b in L by a ∧L b (or simply a ∧ b).

2.1 Canonical representatives

The idea of an orderly algorithm is to construct all those lattices that are min-
imal, with respect to a suitable total order, in their isomorphism class. In this
section, we recall the total order used in [HR02, JL15] and some of its properties.

Definition 3. Let L be an n-poset.

(a) For A ⊆ L, we define wtL(A) =
∑
j∈A

2j.

(b) For i ∈ L, we define wtL(i) = wtL
(c

L i
)
.

(c) We define wt(L) =
(
wtL(2),wtL(3), . . . ,wtL(n− 1)

)
.

Ordering n-lattices lexicographically with respect to wt(L), we obtain a total
order <wt on the set of all n-lattices.

Remark 4. An n-poset L is completely defined by its covering relation.
Indeed, the upper bound 1 is not covered by any element, and it covers

precisely those elements that are not covered by any other element. Similarly,
the lower bound 0 covers no element, and it is covered precisely by those ele-
ments that do not cover any other element. Thus, L is completely described by
specifying the pairs (i, j), for 1 < i, j < n, for which i ≺ j holds.

The latter information can be interpreted as an (n − 2) by (n − 2) matrix
over F2, and the total order <wt from Definition 3 amounts to a row-major
lexicographic order on the associated matrices; cf. Figure 1.

Theorem 5 ([HR02, Theorem 1]). If L is a <wt-minimal n-lattice and one has
0 < i ≤ j < n, then depL(i) ≤ depL(j) holds.

Corollary 6. If L is a <wt-minimal n-lattice and one has 0 < i and i ≺ j,
then j < i holds.

Remark 7. Theorem 5 and Corollary 6 say that a <wt-minimal n-lattice L is
levellised, that is, that the non-minimal levels of L are filled by elements labelled
in their numerical order; cf. Figure 2.
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Remark 8. Any relabelling π ∈ Sym({0, . . . , n − 1}) of the elements of an n-
lattice L acts on each level of L, as depL(π(i)) = depL(i) holds for every i ∈ L.
In particular, if L is a levellised lattice with the elements labelled as in Figure 2,
then the relabelled lattice π(L) is levellised if and only if

π ∈ Sym({0})× Sym({1})× Sym({2, . . . , a2 − 1})×

× Sym({a2, . . . , a3 − 1})× · · · × Sym({ak, . . . , n− 1})

holds.

Theorem 9 ([HR02, Theorem 2]). If L is a <wt-minimal n-lattice, one has

wtL(2) ≤ wtL(3) ≤ . . . ≤ wtL(n− 1) .

Remark 10. Theorem 9 says that the rows of the matrices describing the
covering relation of a <wt-minimal n-lattice L (cf. Figure 1) are sorted in non-
decreasing order with respect to a (right-to-left) lexicographic order on the rows.

2.2 Incremental construction

The algorithms from [HR02, JL15] work by traversing a tree of <wt-minimal
n-lattices in a depth-first manner; the root of the tree is the unique 2-lattice,
and an (n+ 1)-lattice L̃ is a descendant of the <wt-minimal n-lattice L, if L̃ is

obtained from L by adding a new cover of 0 (labelled n) and L̃ is <wt-minimal.

The lattice L̃ is determined by L and the covering set of the new element n;
the possible choices for the latter can be characterised effectively.

Definition 11 ([HR02]). If L is an n-lattice, a non-empty antichain A ⊆ L\{0}
is called a lattice-antichain for L, if a∧Lb ∈ {0}∪(↑LA) holds for any a, b ∈ ↑LA.

Remark 12. To test the condition in Definition 11, it is clearly sufficient to
verify that a∧L b ∈ ↑L A holds for those pairs (a, b) that are minimal in the set

{
(a, b) ∈ (↑L A)× (↑L A) : a ∧L b 6= 0

}

with respect to the product partial order in L× L.

Theorem 13 ([HR02, Lemma 2]). Let L be an n-lattice. A subset A ⊆ L \ {0}
is a lattice-antichain for L, if and only if L is a subposet of an (n+1)-lattice LA

in which 0 ≺LA
n (that is, n is an atom in LA) and

c
LA

n = A hold.

2

n−1

2 n−1

Figure 1: Interpreting the order <wt as row-major lexicographic order on the
matrices specifying the covering relation. Note that adding a column for 1 would
not affect the order: An entry in this column is determined by the other entries
in the same row, and it is checked after those in the lexicographic comparison.
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Remark 14. In the situation of Theorem 13, it is clear that the pair (L,A)
uniquely determines LA and vice versa.

Moreover, the covering relation of LA is obtained from the covering relation
of L by

(i) adding the pair (0, n);

(ii) adding all pairs of the form (n, a) for a ∈ A; and

(iii) removing all pairs of the form (0, a) for a ∈ A that are present.

As mentioned in Remark 4, the covers of 0 need not be stored explicitly; in this
case, only step (ii) is needed.

Indeed, this definition of LA makes sense for any n-poset L and any A ⊆ L.
It is obvious from the definitions that one has wtLA

(n) = wtL(A). Moreover, for
1 ≤ i < n, we have i 6⊑LA

n and thus wtLA
(i) = wtL(i) and depLA

(i) = depL(i).

The following two results are consequences of Remark 14 and Theorem 9.

Corollary 15 ([HR02, §3]). If L is an n-lattice and A is a lattice-antichain
for L such that LA is <wt-minimal, then L is <wt-minimal.

Corollary 16 ([HR02, §5]). If L is an n-lattice and A is a lattice-antichain
for L such that LA is <wt-minimal, then one has A∩

(
levk−1(L)∪ levk(L)

)
6= ∅

for k = depL(n− 1).

2.3 Testing for canonicity

In the light of Corollary 16, there are two cases to consider for testing whether
the descendant LA of a <wt-minimal n-lattice L defined by a lattice-antichain A

for L with depL(n− 1) = k is <wt-minimal:

(A) A ∩ levk(L) 6= ∅, that is, depLA
(n) = k + 1

(B) A ∩ levk(L) = ∅ 6= A ∩ levk−1(L), that is, depLA
(n) = k

Case (A):
In this case, the new element n forms a separate level of LA; cf. Figure 3(a).

As LA is levellised by construction and the non-minimal elements of L corres-
pond to the levels 0, . . . , k of LA, any relabelling π of LA for which π(LA) is
levellised must fix n and induce a relabelling of L by Remark 8. By Remark 14
and the definition of the lexicographic order, wt(π(LA)) < wt(LA) implies
wt(π(L)) ≤ wt(L). By Corollary 15, the latter implies wt(π(L)) = wt(L) and
thus π(L) = L.

1

2 3 ··· a2−1

a2 a1+1 ··· a3−1

··· ··· ··· ···

ak ak+1 ··· n−1

0

Figure 2: A levellised n-lattice; the dashed lines separate the levels.
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To test whether LA is <wt-minimal, it is thus sufficient to check that

wt(A) = min
{
wt(π(A)) : π ∈ Stab(L)× Sym({n}) ∼= Stab(L)

}
(1)

holds, again using Remark 14.

Case (B):
In this case, the new element n is added to the lowest existing non-trivial

level of L; cf. Figure 3(b). Thus, a relabelling π of LA for which π(LA) is
levellised need not fix n and induce a relabelling of L. It will, however, induce a
relabelling of the lattice L′ induced by the levels 0, . . . , k− 1, k+1 of L (or LA),
and one has π(L′) = L′ by the same arguments as in the previous case.

If the lowest non-trivial level of LA contains the elements ak, . . . , n, checking
whether LA is <wt-minimal means testing that

(
wtLA

(ak), . . . ,wtLA
(n)

)
is lex-

icographically minimal in its orbit under the group Stab(L′)×Sym({ak, . . . , n}).
Observe that one has

c
LA

i ⊆ L′ for ak ≤ i ≤ n, and that the action
of π ∈ Stab(L′) × Sym({ak, . . . , n}) not only modifies the individual weights
wtLA

(i) (by relabelling the elements of L′), but also permutes their positions in
the sequence (by acting on {ak, . . . , n}).

2.4 Vertically indecomposable lattices

Definition 17. An n-lattice L is vertically decomposable, if there exists an ele-
ment i ∈ L\{0, 1} that is comparable to every other element of L. Otherwise, L
is vertically indecomposable.

One can speed up the construction by restricting to lattices that are vertically
indecomposable; a straightforward recursion makes it possible to recover all
lattices from the vertically indecomposable ones. We refer to [HR02, §5] for
details.

3 An improved algorithm

The test for minimality of wt(A) respectively
(
wtLA

(ak), . . . ,wtLA
(n)

)
in their

orbit under the acting permutation group is the most time consuming part of
the construction and thus an obvious target for improvement.

In Section 3.1, we sketch the basic idea for a more efficient algorithm, but
we will see that the construction of [HR02, JL15] has to be modified to make
this idea work. We describe our modified construction in Section 3.2.

L \ {0}

{
1

··· ··· ···

ak ··· n−1

n

0

(a) Case (A).

L′ \ {0}

{
1

··· ··· ···

ak−1 ··· ak−1

ak ··· n−1 n

0

(b) Case (B).

Figure 3: The lattice LA obtained by adding a new cover n of 0 to the n-lattice L.
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3.1 Stabiliser chain approach

Case (A) from Section 2.3 suggests a possible approach, namely the use of a
standard technique from computational group theory: stabiliser chains.

Since Stab(L) preserves each level of L by Remark 8 and L is levellised,
it is tempting to construct and test lattice-antichains level by level: Defining
Sk := Stab(L) as well as Ad := A ∩ levd(L) and Sd−1 := Sd ∩ Stab(Ad) for
d = k, . . . , 1, condition (1) is equivalent to the following condition:

wt(Ad) = min
{
wt(π(Ad)) : π ∈ Sd

}
for d = k, . . . , 1 (2)

The sets Ad for d = k, . . . , 1 can be constructed and tested one at a time; this
offers two advantages: Firstly, if the test at level d fails, the levels d − 1, . . . , 1
don’t have to be constructed; an entire branch of the search space is discarded
in one step. Secondly, even if the test succeeds on all levels, the cost of testing
condition (2) is proportional to

∑k
d=1 |A

Sd

d |, and thus in general much smaller

than |AStab(L)| =
∏k

d=1 |A
Sd

d |, which is the cost of testing condition (1) directly.

However, when trying to use a similar approach for Case (B), we run into
problems: We must compare

(
wtLA

(ak), . . . ,wtLA
(n)

)
=

(
wtL(ak), . . . ,wtL(n− 1),wtL(A)

)

lexicographically to its images under the elements of the acting permutation
group Stab(L′) × Sym({ak, . . . , n}), but if A has only been constructed par-
tially, wtLA

(n) = wtL(A) is not completely determined; in the interpretation of
Remark 4 and Figure 1, the leftmost entries of the last row of the binary matrix
corresponding to LA are undefined.

The elements of the group Stab(L′) × Sym({ak, . . . , n}) can permute the
rows of this matrix, so the position of the undefined entries will vary. Clearly,
the lexicographic comparison of the two matrices must stop once it reaches an
entry that is undefined in one of the matrices being compared; in this situation,
the order of the two matrices cannot be decided on the current level.

The problem is that the position in the matrix at which the lexicographic
comparison must stop depends on the relabelling that is applied (cf. Figure 4). A
consequence of this is that the subset of elements of Stab(L′)×Sym({ak, . . . , n})
for which the parts of the matrices that can be compared are equal does not
form a subgroup, so applying a stabiliser chain approach is not possible.

3.2 Levellised construction

The analysis at the end of the preceding section indicates that the problem is
that possible relabellings can swap an element whose covering set is only par-
tially determined with an element whose covering set is completely determined,
or in other words, that we add a new element to an existing level of L.

The idea for solving this problem is simple: Rather than adding one element
at a time, possibly to an already existing level, we only ever add an entire level at
a time; that way, the problem of adding elements to an existing level is avoided.

To make the stabiliser chain approach work in this setting, we must use a total
order that compares parts of the covering sets in the same order in which they are
constructed; that is, we have to compare the entries of the matrices describing
the covering relations in level-major order.
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Notation 18. For a levellised n-lattice L with n > 2 and depL(n − 1) = k,
let L′ denote the lattice induced by the levels 0, . . . , k − 1, k + 1 of L, that is,
the lattice obtained from L by removing its last non-trivial level.

Note that L′ is a levellised n′-lattice for some n′ < n.

The total order we are about to define uses the partition of the covering set of
each element according to levels.

Definition 19. Given a levellised n-lattice L with depL(n− 1) = k, an element

i ∈ L \ {0} and an integer d ∈ {1, . . . , k− 1}, we define
cd

L i =
(c

L i
)
∩ levd(L).

Definition 20. Using induction on n, we define a relation < on the set of
levellised n-lattices that are isomorphic as unlabelled lattices as follows:

Given n > 2 and levellised n-lattices L1 and L2 that are isomorphic as
unlabelled lattices, we say L1 < L2, if one of the following holds:

• L′
1 < L′

2

• L′
1 = L′

2 = L′ and, denoting depL1
(n − 1) = depL2

(n − 1) = k and
levk(L1) = levk(L2) = {ak, . . . , n − 1}, there exist ℓ ∈ {1, . . . , k − 1} as
well as i ∈ {ak, . . . , n− 1} such that both of the following hold:

– wtL′

(cd
L1

j
)
= wtL′

(cd
L2

j
)
if d > ℓ, or d = ℓ and j ∈ {ak, . . . , i−1}

– wtL′

(cℓ
L1

i
)
< wtL′

(cℓ
L2

i
)

Remark 21. The relation from Definition 20 corresponds to a level-major lex-
icographic comparison of the binary matrices describing the covering relations
of L1 and L2 as illustrated in Figure 5.

As L1 and L2 are levellised, both matrices are lower block triagonal, with
the blocks defined by the levels. Moreover, as L1 and L2 are isomorphic as
unlabelled lattices, the block structures of both matrices are identical.

Notice also that the matrix describing the covering relation of L′
1 (respect-

ively L′
2) is obtained from that of L1 (respectively L2) by removing the lowest

row and the rightmost column of blocks.

n

2 ak−1

ak

n

2 ak−1

Figure 4: Lexicographic comparison of a lattice LA obtained from a partially
constructed lattice-antichain A (left) and a relabelling (right); only the relevant
parts of the matrices are shown. Thick lines indicate the boundaries between
levels. The parts of the lattice-antichain not yet constructed are shown in grey.
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Lemma 22. The relation < from Definition 20 is a total order on the set of
levellised n-lattices that are isomorphic as unlabelled lattices.

Proof. Verifying transitivity is routine. Trichotomy holds, as for s ∈ {1, 2} and
i ∈ {2, . . . , n− 1} with depL1

(i) = depL2
(i) = D, one has

k
Ls

i =





D−1⋃
d=1

cd
Ls

i ; if
D−1⋃
d=1

cd
Ls

i 6= ∅

{1} ; if
D−1⋃
d=1

cd

Ls
i = ∅

whence
c

L1
i =

c
L2

i holds if and only if one has wtL′

(cd

L1
i
)
= wtL′

(cd

L2
i
)

for d = 1, . . . , D − 1.

Definition 23. An n-lattice L is canonical if L is levellised and <-minimal
among all levellised n-lattices that are isomorphic to L as unlabelled lattices.

Lemma 24. Every isomorphism class of unlabelled lattices on n elements con-
tains a unique canonical n-lattice.

Proof. The set of representatives that are levellised n-lattices is clearly non-
empty and finite, and < is a total order on this set by Lemma 22.

The following Theorem 26 is an analogue of Corollary 15.

Lemma 25. If L is a levellised (n+1)-lattice for n > 1 and 0 ≺L n, then L\{n}
is a levellised n-lattice and depL\{n}(i) = depL(i) holds for i = 1, . . . , n− 1.

Proof. Let L = L\{n}. As L is levellised, 1 ≤ i < n implies depL(i) ≤ depL(n),
so i 6⊑L n, and hence depL(i) = depL(i). As L is levellised, so is L.

A routine verification shows that for a, b ∈ L one has

a ∨L b = a ∨L b and a ∧L b =

{
a ∧L b ; if a ∧L b 6= n

0 ; if a ∧L b = n

so L is an n-lattice.

2

n−1

2 n−1

Figure 5: Interpreting the order < as level-major lexicographic order on the
matrices specifying the covering relation. Thick lines indicate the boundaries
between levels. The entries of the matrix shown in grey are zero.
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Theorem 26. If L is a canonical n-lattice, then L′ is canonical.

Proof. Iterated application of Lemma 25 shows that L′ is levellised.
Assume that π′ is a relabelling of L′ such that π′(L′) is levellised and one

has π′(L′) < L′. We can trivially extend π′ to a relabelling π of L such that(
π(L)

)′
= π′(L′) < L′, contradicting the assumption that L is canonical.

Theorem 26 means that we can again construct a tree of canonical n-lattices in
a depth-first manner; the root of the tree is the unique 2-lattice, and an (n+m)-

lattice L̃ is a descendant of the canonical n-lattice L, if L̃ is obtained from L by
adding m new covers of 0 (labelled n, . . . , n+m− 1) and L̃ is canonical.

The lattice L̃ is determined by L and the covering sets of the new ele-
ments n, . . . , n + m − 1; the possible choices for the latter can again be char-
acterised effectively using lattice-antichains, although this time, extra compat-
ibility conditions are needed. The following Theorem 29, a generalisation of
Theorem 13, makes this precise.

Notation 27. Given m ∈ N
+, an n-poset L, and An, . . . , An+m−1 ⊆ L \ {0},

let LAn,...,An+m−1 =
(
· · ·

(
LAn

)
· · ·

)
An+m−1

denote the (n +m)-poset obtained

from L by adding m new atoms n, . . . , n + m − 1 with
c

LAn,...,An+m−1
i = Ai

for i = n, . . . , n+m− 1. (See Remark 14.)

Lemma 28. Let L be a levellised n-poset with depL(n − 1) = k, let m ∈ N
+,

and let Ai ⊆ L \ {0} for i = n, . . . , n+m− 1. The following are equivalent:

(A) L̃ = LAn,...,An+m−1 is a levellised (n+m)-poset with dep
L̃
(a) = depL(a) ≤ k

for 1 ≤ a < n and dep
L̃
(n) = . . . = dep

L̃
(n+m− 1) = k + 1.

(B) Ai ∩ levk(L) 6= ∅ holds for n ≤ i < n+m.

Proof. As L is levellised, one has depL(a) ≤ depL(n− 1) = k for all a ∈ L \ {0},
and induction using Remark 14 shows that dep

L̃
(a) = depL(a) ≤ k holds for all

a ∈ L \ {0}. Thus, for any i = n, . . . , n + m − 1, one has dep
L̃
(i) = k + 1 if

and only if ∅ 6=
(c

L̃
i
)
∩ levk(L̃) = Ai ∩ levk(L̃) = Ai ∩ levk(L) holds. Finally,

dep
L̃
(n) = . . . = dep

L̃
(n+m− 1) = k + 1 implies that L̃ is levellised.

Theorem 29. Let L be a levellised n-lattice with depL(n− 1) = k, let m ∈ N
+,

and let Ai ⊆ L \ {0} for i = n, . . . , n+m− 1. The following are equivalent:

(A) L̃ = LAn,...,An+m−1 is a levellised (n +m)-lattice, dep
L̃
(a) = depL(a) ≤ k

for 1 ≤ a < n, and dep
L̃
(n) = . . . = dep

L̃
(n+m− 1) = k + 1.

(B) (i) Ai ∩ levk(L) 6= ∅ holds for n ≤ i < n+m;

(ii) Ai is a lattice-antichain for L for n ≤ i < n+m; and

(iii) if a, b ∈ (↑LAi) ∩ (↑L Aj) for n ≤ i < j < n+m, then a ∧L b 6= 0.

Proof. We use induction on m. In the case m = 1, condition (B)(iii) is vacuous.

By Theorem 13, the poset L̃ = LAn
is a lattice if and only if An is a lattice-

antichain for L. Together with Lemma 28, the claim is shown in this case.
Let m > 1 and consider L◦ = LAn,...,An+m−2 and A = An+m−1; we have

L̃ = (L◦)A. By Lemma 28, we can assume dep
L̃
(a) = depL◦(a) = depL(a) ≤ k

10



for 1 ≤ a < n and dep
L̃
(n) = . . . = dep

L̃
(n + m − 1) = depL◦(n) = . . . =

depL◦(n+m− 2) = k + 1. In particular, ↑
L̃
A = ↑L◦ A = ↑LA holds. Also, for

i = n, . . . , n+m− 1 and a ∈ L, we have i ⊑
L̃
a if and only if a ∈ ↑L Ai holds.

First assume that (A) holds.
Induction using Lemma 25 shows that the sets An, . . . , An+m−2 are lattice-

antichains for L, and a, b ∈ (↑L Ai) ∩ (↑L Aj) for n ≤ i < j < n+m− 1 implies
a∧Lb 6= 0. Further, by Theorem 13, the set A is a lattice-antichain for L◦, which
means that for a, b ∈ ↑L◦ A = ↑L A, one has a∧L◦ b ∈ {0} ∪ ↑L◦ A = {0}∪ ↑LA.

Let a, b ∈ ↑LA. If we had a, b ∈ ↑LAi for some n ≤ i < n+m− 1, we would
have i ⊑

L̃
a ∧

L̃
b and (n +m − 1) ⊑

L̃
a ∧

L̃
b. As i and n +m− 1 are distinct

atoms of L̃, this contradicts the hypothesis that L̃ is a lattice. Thus, we have
condition (B)(iii). Moreover, a ∧L◦ b = a ∧L b for all a, b ∈ ↑LA, and thus A is
a lattice-antichain for L. Together with Lemma 28, we have thus shown (B).

Now assume that (B) holds.
By induction, L◦ is a levellised (n+m− 1)-lattice. Let a, b ∈ ↑L◦ A = ↑LA.

If we have a ∧L b 6= 0, then a ∧L◦ b = a ∧L b ∈ ↑L A = ↑L◦ A holds, as A

is a lattice-antichain for L by assumption. On the other hand, a ∧L b = 0
implies a ∧L◦ b = 0, as by assumption, there is no i ∈ {n, . . . ,m− 2} such that

a, b ∈ ↑L Ai holds. Thus, A is a lattice-antichain for L◦, whence L̃ is a lattice
by Theorem 13. Together with Lemma 28, we have thus shown (A).

Notation 30. Let L be a levellised n-lattice with depL(n−1) = k, let m ∈ N
+,

and let Ai ⊆ L \ {0} for i = n, . . . , n + m − 1. For d = 1, . . . , k we define
LWd

L(An, . . . , An+m−1) as the sequence

(
wtL

(
An ∩ levd(L)

)
, . . . , wtL

(
An+m−1 ∩ levd(L)

))

and we define the sequence LWL(An, . . . , An+m−1) as the concatenation of
LWk

L(An, . . . , An+m−1), . . . ,LW
1
L(An, . . . , An+m−1) in this order.

Theorem 31. Let L be a levellised n-lattice with depL(n− 1) = k, let m ∈ N
+,

and assume that Ai ⊆ L\{0} for i = n, . . . , n+m−1 satisfy condition (B) from
Theorem 29. Then LAn,...,An+m−1 is a canonical (n+m)-lattice if and only if:

(i) L is canonical; and

(ii) the sequence LWL(An, . . . , An+m−1) is lexicographically minimal under
the action of Stab(L)× Sym({n, . . . , n+m− 1}) given by

π
(
LWL(An, . . . , An+m−1)

)
= LWL

(
π
(
Aπ−1(n)

)
, . . . , π

(
Aπ−1(n+m−1)

))

for π ∈ Stab(L)× Sym({n, . . . , n+m− 1}).

Proof. As any π ∈ Stab(L)×Sym({n, . . . , n+m−1}) induces a relabelling of the

elements of L, the action is well-defined. Moreover, defining L̃ = LAn,...,An+m−1 ,

Theorem 29 implies
cd

L̃
i = Ai ∩ levd(L) for i = n, . . . , n+m− 1 and 1 ≤ d ≤ k.

First assume that L̃ is canonical. By Theorem 26, L = L̃
′
is canonical, so (i)

holds. If (ii) does not hold, there exist π ∈ Stab(L)× Sym({n, . . . , n+m− 1})
as well as ℓ ∈ {1, . . . , k} and i ∈ {n, . . . , n+m− 1} such that one has
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– wtL
(
π
(
Aπ−1(j)

)
∩ levd(L)

)
= wtL

(
Aj ∩ levd(L)

)
if d > ℓ, or d = ℓ and

j ∈ {n, . . . , i− 1}; and

– wtL
(
π
(
Aπ−1(i)

)
∩ levℓ(L)

)
< wtL

(
Ai ∩ levℓ(L)

)
.

By Theorem 29, L̂ = L
π(Aπ−1(n)),...,π(Aπ−1(n+m−1))

is a levellised (n+m)-lattice,

and L̂
′
= L = L̃

′
holds by construction. Hence, the above conditions mean

that L̃ is not canonical, contradicting the assumption. Thus (ii) holds.

Conversely, if L̃ is not canonical, there is a relabelling π of L̃ such that
L̂ = π(L̃) is levellised and L̂ < L̃ holds. As π acts on the levels of L̃ it induces a

relabelling of L, and we have L̂
′
=

(
π(L̃)

)′
= π

(
L̃
′)

= π(L), which is levellised

as well. If (i) holds, we cannot have π(L) < L, so L̂ < L̃ implies that one has

L̂
′
= L̃

′
= L and there exist ℓ ∈ {1, . . . , k} as well as i ∈ {n, . . . , n + m − 1}

such that both of the following hold:

– wtL
(cd

L̂
j
)
= wtL

(cd

L̃
j
)
if d > ℓ, or d = ℓ and j ∈ {n, . . . , i− 1}

– wtL
(cℓ

L̂
i
)
< wtL

(cℓ

L̃
i
)
.

As we have
cd

L̂
j = π(Aπ−1(j))∩ levd(L) for j = n, . . . , n+m− 1 and 1 ≤ d ≤ k,

the above conditions imply that

LWL

(
π
(
Aπ−1(n)

)
, . . . , π

(
Aπ−1(n+m−1)

))
= π

(
LWL(An, . . . , An+m−1)

)

is lexicographically smaller than LWL(An, . . . , An+m−1). Since π(L) = L̂
′
= L,

we have π ∈ Stab(L)× Sym({n, . . . , n+m− 1}), so (ii) does not hold.

Corollary 32. Let L be a levellised n-lattice with depL(n−1) = k, let m ∈ N
+,

and assume that Ai ⊆ L\{0} for i = n, . . . , n+m−1 satisfy condition (B) from
Theorem 29. Then LAn,...,An+m−1 is a canonical (n+m)-lattice if and only if:

(i) L is canonical; and

(ii) for d = k, . . . , 1, the sequence LWd
L(An, . . . , An+m−1) is lexicographically

minimal under the action of Sd given by

π
(
LWd

L(An, . . . , An+m−1)
)
= LWd

L

(
π
(
Aπ−1(n)

)
, . . . , π

(
Aπ−1(n+m−1)

))

for π ∈ Sd, where we define Sk = Stab(L)× Sym({n, . . . , n+m− 1}) and
Sd−1 = Sd ∩ Stab

(
LWd

L(An, . . . , An+m−1)
)
for d = k, . . . , 2.

Proof. Since the sequence LWL(An, . . . , An+m−1) is the concatenation of the se-
quences LWk

L(An, . . . , An+m−1), . . . ,LW
1
L(An, . . . , An+m−1) in this order, con-

dition (ii) from Corollary 32 is equivalent to condition (ii) of this corollary.

Remark 33. Corollary 32 makes it possible to construct the lattice-antichains
An, . . . , An+m−1 level by level: The comparison at step d in condition (ii) only
involves the elements of An, . . . , An+m−1 that live on the level d of L. In par-
ticular, the benefits of using stabiliser chains mentioned in Section 3.1 apply:

12



(i) If the test at level d fails, the levels d−1, . . . , 1 do not have to be construc-
ted; an entire branch of the search space is discarded in one step.

(ii) The cost of testing condition (ii) of Corollary 32 is in general much smal-
ler than the cost of testing condition (ii) of Theorem 31: The former is
proportional to

k∑

d=1

∣∣∣
(
LWd

L(An, . . . , An+m−1)
)Sd

∣∣∣ ,

while the latter is proportional to

∣∣∣
(
LWL(An, . . . , An+m−1)

)Sk

∣∣∣ =
k∏

d=1

∣∣∣
(
LWd

L(An, . . . , An+m−1)
)Sd

∣∣∣ .

Figure 6 shows the comparisons that are made when testing one step of con-
dition (ii) of Corollary 32. Note that a reordering of the rows of the matrix
does not change the position at which the lexicographic comparison stops; this
property is necessary for the stabiliser chain approach to work.

4 Implementation and results

4.1 Implementation notes

This section sketches some ideas that are crucial for an efficient implementation
of the algorithm presented in the preceding sections.

4.1.1 Representing antichains using up-closed sets

While the theoretical results of Section 3 are formulated in terms of antichains,
it is easier and computationally more efficient to work with sets S that are up-
closed, meaning that ↑ S = S holds. (For instance, testing whether A ⊆ L is a
lattice-antichain for L only involves ↑L A.)

Clearly, if A is an antichain, then ↑LA is up-closed. Moreover, the set of
minimal elements of ↑L A is equal to A.

n

n+m−1

2 n−1

Figure 6: Lexicographic comparison of a lattice LAn,...,An+m−1 obtained from
a sequence of partially constructed lattice-antichains and a relabelling; only
the relevant part of the matrix is shown. Thick lines indicate the boundaries
between levels. Parts of the lattice-antichains not yet constructed are shown in
grey. Parts of the lattice-antichains known to coincide are shown in black.
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Lemma 34. Let L be a levellised n-lattice with depL(n− 1) = k, let A and B

be antichains in L, and let ℓ ∈ {1, . . . , k}. The following are equivalent:

(i) One has wtL
(
A ∩ levd(L)

)
= wtL

(
B ∩ levd(L)

)
for d = k, . . . , ℓ − 1, and

wtL
(
A ∩ levℓ(L)

)
< wtL

(
B ∩ levℓ(L)

)
.

(ii) One has wtL
(
(↑LA)∩levd(L)

)
= wtL

(
(↑LB)∩levd(L)

)
for d = k, . . . , ℓ−1,

and wtL
(
(↑L A) ∩ levℓ(L)

)
< wtL

(
(↑LB) ∩ levℓ(L)

)
.

Proof. If (i) holds, one has ((↑L A) \ A) ∩ levd(L) = ((↑L B) \ B) ∩ levd(L) for
d = k, . . . , ℓ, since L is levellised. In particular, one has

(
(↑L B) \ (↑L A)

)
∩ levℓ(L) = (B \A) ∩ levℓ(L) and(

(↑L A) \ (↑L B)
)
∩ levℓ(L) = (A \B) ∩ levℓ(L) ,

which together with (i) imply (ii).
As A and B are the sets of minimal elements of ↑L A respectively ↑L B, the

converse implication is obvious.

Corollary 35. Let L be a levellised n-lattice with depL(n−1) = k, let m ∈ N
+,

and assume that Ai ⊆ L\{0} for i = n, . . . , n+m−1 satisfy condition (B) from
Theorem 29. Then LAn,...,An+m−1 is a canonical (n+m)-lattice if and only if:

(i) L is canonical; and

(ii) for d = k, . . . , 1, the sequence LWd
L(↑L An, . . . , ↑L An+m−1) is lexicograph-

ically minimal under the action of Sd as in Corollary 32.

Proof. The claim follows from Corollary 32 with Lemma 34 and the observation
that one has ↑L

(
π(A)

)
= π(↑L A) for any A ⊆ L and π ∈ Sd.

4.1.2 Packed representation of antichains and Beneš networks

Let L be a canonical n-lattice with depL(n − 1) = k, and let m ∈ N
+. To

generate the descendants of L with m elements on level k+1, we use a backtrack
search to construct the sets (↑LAi) ∩ levd(L) for d = k, . . . , 1 (outer loop) and
i = n, . . . , n+m− 1 (inner loop).

Every time a candidate set (↑LAi) ∩ levd(L) has been chosen, we use con-
dition (B) from Theorem 29 to check for possible contradictions (backtrack-
ing if there are any), and to keep track of any elements whose presence in
(↑L Ai) ∩ levd′(L) for some d > d′ ≥ 1 is forced by the choices made so far
(restricting the possible choices later in the backtrack search if there are any).

Once all candidate sets on the current level have been chosen, we check for
minimality under the action of the appropriate stabiliser Sd (cf. Corollary 35),
backtracking if necessary.

Given the large number of configurations that have to be generated and tested
for canonicity, it is critical to use an efficient data structure to store a configur-
ation of antichains.

The sets (↑LAn)∩levd(L), . . . , (↑L An+m−1)∩levd(L) are encoded as a single
(m · |levd(L)|)-bit integer. That way, a lexicographic comparison of two config-
urations reduces to a single comparison of two (m · |levd(L)|)-bit integers.

14



When constructing lattices with up to 18 elements, m·|levd(L)| is at most 64;
when constructing lattices with up to 23 elements, m · |levd(L)| is at most 128.
Thus, on a 64-bit CPU, a lexicographic comparison of two configurations costs
only very few clock cycles.

To be able to apply permutations to a packed representation as described above
effectively, we pre-compute a Beneš network [Knu09, § 7.1.3] for each generator
of the stabiliser Sd. That way, the application of the generator to the sequence(
(↑LAn) ∩ levd(L), . . . , (↑LAn+m−1) ∩ levd(L)

)
is realised by a sequence of bit-

wise operations (XOR and shift operations) on the (m · |levd(L)|)-bit integer
representation.

If the sequence
(
(↑LAn) ∩ levd(L), . . . , (↑LAn+m−1) ∩ levd(L)

)
is lexicograph-

ically minimal in its orbit under the action of Sd, then the computation of this
orbit also yields generators of Sd−1 [Cam99, § 1.13]; we limit the number of
generators by applying a technique known as Jerrum’s filter [Cam99, § 1.14].

4.1.3 Vertically indecomposable lattices

Restricting the construction to vertically indecomposable lattices is very easy:

Lemma 36. Let L be a levellised n-lattice.

(a) If L is vertically decomposable, then any levellised descendant LAn,...,An+m−1

of L is vertically decomposable.

(b) If L is vertically indecomposable, then a levellised descendant LAn,...,An+m−1

of L is vertically decomposable if and only if m = 1 and ↑LAn = L \ {0}
hold.

Proof. Let k = depL(n− 1) and let L̃ = LAn,...,An+m−1.

(a) Choose i ∈ L such that j ⊑L i holds for any j ∈ (An∪. . . , An+m−1)∩levk(L).
For any a ∈ {n, . . . , n+m− 1}, one has Aa ∩ levk(L) 6= ∅, and thus a ⊑

L̃
i.

(b) This is obvious, as L̃ is vertically decomposable if and only if there exists

a ∈ {n, . . . , n+m− 1}, such hat one has a ⊑
L̃
i for all i ∈ L̃ \ {0}.

4.2 Results and performance

Table 1 shows the number in of isomorphism classes of vertically indecomposable
unlabelled lattices on n elements, and the number un of isomorphism classes of
unlabelled lattices on n elements for n ≤ 20; the values i20 and u20 are new.

Table 2 and Figure 7 show the total CPU time and the real time taken by
the computations for n ≥ 14 for two configurations:

(A) 4 threads on a system with one 4-core Intel Xeon E5-1620 v2 CPU (clock
frequency 3.70GHz). The system load was just over 4 during the tests.

(B) 32 threads on a system with eight 8-core Intel Xeon E7-8837 CPUs (clock
frequency 2.67GHz). The system load was around 55 during the tests.

All computations were done with a C-implementation of the described al-
gorithm written by the first author, compiled using GCC with maximal op-
timisations for the respective architecture. The compiler version was 4.8.1 for
configuration (A) and 4.4.7 for configuration (B).
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Remark 37.

1. The computing times reported in [JL15] for n = 18 and n = 19 were
26 hours respectively 19 days on 64 CPUs, that is, 69 CPU-core days
respectively 1216 CPU-core days.

Our values for configuration (B) are 1.6 respectively 19.1 CPU-core
days. Assuming that the CPU clock speeds are comparable, this would
correspond to a speedup by a factor of 43 respectively 63. In particular,
it seems that the speedup increases with n.

Obtaining a meaningful complexity analysis seems out of reach, as
estimating the average case complexity would require a detailed under-
standing of the tree of canonical lattices. Experimentally, the algorithm
seems to be close to optimal in the sense that the computation time grows
roughly linearly in the size of the output.

2. The throughput on configuration (A) corresponds to roughly 2 200 CPU
clock cycles per lattice, including pre-computations and inter-thread com-
munication.

3. On configuration (A), the L2 and L3 cache hit rates are on average around
45% respectively 75%; on configuration (B), this information could not be
obtained. These data suggest that memory bandwidth is a main limiting
factor, at least for the current implementation.

4. On configuration (B), it was not possible to influence the allocation of
threads to individual nodes. Given the suboptimal scaling behaviour,
which was worse than on configuration (A) even for 4 threads, we sus-
pect that inter-node communication posed a problem on this architecture.
However, as we did not have exclusive use of this machine, we were unable
to investigate this question in detail.
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Figure 7: Growth of the number in of vertically indecomposable lattices, as well
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