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Closed-Form Expressions for the n-Queens Problem and Related Problems
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In this paper, we derive simple closed-form expressions for the n-queens problem and three related problems in terms

of permanents of (0, 1) matrices. These formulas are the first of their kind. Moreover, they provide the first method for

solving these problems with polynomial space that has a nontrivial time complexity bound. We then show how a closed

form for the number of Latin squares of order n follows from our method. Finally, we prove lower bounds. In particular,

we show that the permanent of Schur’s complex-valued matrix is a lower bound for the toroidal semi-queens problem,

or equivalently, the number of transversals in a cyclic Latin square.

1 Introduction

The n-queens problem is to determine Q(n), the number of arrangements of n queens on an n-by-n chessboard
such that no two queens attack. It is a generalization of the eight queens puzzle posed in 1848 by Max Bezzel,
a German chess player. The n-queens problem has been widely studied since then, attracting the attention of
Pólya and Lucas. It is now best known as a toy problem in algorithm design [1].

Despite this rich history, little is known of the general behavior of Q(n). Key results are that Q(n) > 1
for n > 3, and Q(n) > 4n/5 when gcd(n, 30) = 5. See [1] for a comprehensive survey. The only closed-form
expression∗ we are aware of was given in [2]. It is “very complicated” in the authors’ own words, however.

The variants of the n-queens problem we consider are the toroidal n-queens problem T (n), the semi-queens

problem S(n), and the toroidal semi-queens problem TS(n). As withQ(n), the general behavior of these functions
is not well understood; asymptotic lower bounds are only known for TS(n) [3].

In this paper, we derive closed-form expressions for Q(n), T (n), S(n), and TS(n) in terms of permanents of
(0, 1) matrices. The method we use is general and proceeds as follows. First, we come up with an obstruction

matrix for a problem. Each entry in this matrix is a multilinear monomial. We then prove a formula for the
sum of the coefficients of the terms containing some number of distinct variables in a polynomial. This is then
used to obtain closed-form expressions for our problems. The expressions we obtain are very similar to those for
the number of Latin squares of order n, such as those given in [9]. In fact, we show that one such formula is an
immediate corollary of our method.

The permanent was previously considered by Rivin and Zabih to compute Q(n) and T (n) [7]. Similarly, in
1874 Gunther used the determinant to construct solutions to the n-queens problem for small values of n [1]. As
far as we can tell however, no one has previously attempted to obtain closed-form expressions with this approach.
The expressions we obtain in doing so can be evaluated in nontrivial time (i.e., better than the O(n!) brute-force
approach) and with polynomial space. The only other algorithms for computing Q(n) and T (n) with nontrivial
time complexity bounds were given in [8]; however, this approach requires exponential space. We are not aware
of any previously known algorithms for computing S(n) and TS(n) with nontrivial complexity bounds.

Finally, we prove lower bounds for these problems in terms of determinants of (0, 1) matrices. As a
consequence, we show that the permanent of Schur’s complex-valued matrix [4] provides a lower bound for
the toroidal semi-queens problem.

Communicated by A. Editor
∗We would like to correct a misunderstanding in [1]. The authors state that there exists no closed-form expression for Q(n) because
it was shown to be beyond the #P complexity class. However, the result referenced only shows that the n-queens problem is beyond
#P because Q(n) can be more than polynomial in n [5]. A function can clearly be beyond #P for this reason and still have a
closed-form expression; consider 2n for instance.
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2 Preliminary Definitions

The permanent of an n-by-n matrix A = (ai,j) is given by

per(A) =
∑

σ∈Sn

n
∏

i=1

ai,σ(i)

where Sn is the symmetric group on n elements. It is a well-known result in complexity theory that computing
the permanent of a matrix is intractable, even when restricted to the set of (0, 1) matrices [11].

An obstruction matrix A is a square matrix whose entries are multilinear monomials. If A contains the
variables x1, x2, . . . , xm and s = (si) ∈ {0, 1}m, then A|s is the matrix obtained by substituting xi = si for all i.

An n-by-n matrix M = (mi,j) is diagonally constant if each northwest-southeast diagonal is constant; that
is, mi,j = mi+1,j+1. A circulant matrix is a diagonally constant matrix with the property that each row is
obtained by rotating the preceding row one position to the right, i.e., mi,j = mi+1,j+1 modn.

Q(n) is the number of arrangements of n queens on an n-by-n chessboard such that no two attack; that is,
lie on the same row, column, or diagonal [10, Sequence A000170].

S(n) is the number of arrangements of n nonattacking semi-queens on an n-by-n chessboard [10, Sequence
A099152]. A semi-queen has the same moves as a queen except for the northeast-southwest diagonal moves.
Note that S(n) ≥ Q(n).

T (n) is the number of arrangements of n nonattacking queens on a toroidal n-by-n chessboard [10, Sequence
A051906]. The toroidal board is obtained by identifying the edges of the board as if it were a torus. As a result,
the diagonals a queen can move along wrap around the board. Note that Q(n) ≥ T (n).

TS(n) is the number of arrangements of n nonattacking semi-queens on an n-by-n toroidal chessboard.
TS(n) is also the number of transversals in a cyclic Latin square [10, Sequence A006717]. Note that S(n) ≥
TS(n).

3 Derivation of the Main Results

We begin by introducing the n-by-n obstruction matrices Qn, Tn, Sn, and Zn, which will be used to compute
Q(n), T (n), S(n), and TS(n), respectively.

Qn contains the variables x1, y1, . . . , x2n−1, y2n−1. The variable xi corresponds to the ith northwest-
southeast diagonal (indexed from bottom left to top right), and yi corresponds to the ith northeast-southwest
diagonal (indexed from bottom right to top left). The (i, j)th entry of Qn is xn−i+jy2n−i−j+1.

Tn contains the variables x1, y1, . . . , x2n, y2n. The variable xi corresponds to the ith northwest-southeast
broken diagonal, and yi corresponds to the ith northeast-southwest broken diagonal. The (i, j)th entry of Tn is
x(n−i+j) modny(2n−i−j+1) modn.

Sn contains the variables x1, x2, . . . , x2n−1, and xi corresponds to the ith northwest-southeast diagonal.
The (i, j)th entry of Sn is xn−i+j .

Zn contains the variables x1, x2, . . . , xn, and xi corresponds to the ith northwest-southeast broken diagonal.
The (i, j)th entry of Zn is x(n−i+j) modn.

Example 3.1. Obstruction matrices for Q(n), T (n), S(n), and TS(n).

Q4 =







x4y7 x5y6 x6y5 x7y4
x3y6 x4y5 x5y4 x6y3
x2y5 x3y4 x4y3 x5y2
x1y4 x2y3 x3y2 x4y1






T4 =







x4y1 x1y2 x2y3 x3y4
x3y2 x4y3 x1y4 x2y1
x2y3 x3y4 x4y1 x1y2
x1y4 x2y1 x3y2 x4y3







S4 =







x4 x5 x6 x7

x3 x4 x5 x6

x2 x3 x4 x5

x1 x2 x3 x4







Z4 =







x4 x1 x2 x3

x3 x4 x1 x2

x2 x3 x4 x1

x1 x2 x3 x4







Definition 3.2. Let P be a polynomial, and let k ∈ N. Then g(P, k) is defined to be the sum of the coefficients
of the terms in P that are a product of exactly k distinct variables.

Note that when k = degP , the terms whose coefficients are summed by g(P, k) are multilinear. This leads
to the following fact:

Lemma 3.3. g(per(Qn), 2n) = Q(n), g(per(Tn), 2n) = T (n), g(per(Sn), n) = S(n), and g(per(Zn), n) = TS(n).
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Fig. 1. From top left to bottom right: The squares attacked by a queen, a semi-queen, a toroidal queen, and
a toroidal semi-queen.

Proof . This follows immediately from the definition of the permanent and the structure of Qn,Tn,Sn, and
Zn. Consider per(Qn) for instance. We can write this as a sum of n! terms of degree 2n. Each term in this
polynomial corresponds to a permutation matrix. If a term is square-free, then from the definition of Qn no
two elements in the corresponding permutation matrix lie along the same diagonal. Since a permutation matrix
has no two nonzero entries on the same row or column, it follows that this permutation matrix corresponds to
a solution for the n-queens problem.

Suppose that P is a polynomial in m variables. Let Sm,k be the subset of {0, 1}m that consists of the tuples
containing k ones; that is,

Sm,k = {(s1, . . . , sm) ∈ {0, 1}m :

m
∑

i=1

si = k}.

Define
f(P, k) =

∑

(s1,...,sm)∈Sm,k

P (s1, . . . , sm).

The following fact is now used to derive an expression for g in terms of f .

Fact 3.4. Let m ≥ k ≥ l ≥ 0. Assume

a(k) =

k
∑

i=l

b(i)

(

m− i

k − i

)

.

Then

b(k) =

k
∑

i=l

a(i)

(

m− i

k − i

)

(−1)k−i.
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Theorem 3.5. Let P be a polynomial in m variables, and let 1 ≤ k ≤ m. Then

g(P, k) =

k
∑

i=1

(−1)i+kf(P, i)

(

m− i

k − i

)

. (1)

Proof . Consider a term in P that is a product of i distinct variables where i ≤ k. It follows from the definition
of f that the coefficient of this term is counted by f(P, k) a total of

(

m−i
k−i

)

times. Therefore

f(P, k) =

k
∑

i=1

g(P, i)

(

m− i

k − i

)

.

Then by applying Fact 3.4 with a(k) = f(P, k), b(k) = g(P, k), and l = 1, equation (1) follows.

The following expressions follow directly from Lemma 3.3 and Theorem 3.5, and the fact that per(Qn),
per(Tn), per(Sn), and per(Zn) are polynomials in 4n− 2, 2n, 2n− 1, and n variables, respectively.

Theorem 3.6. Let Sm,k be the subset of {0, 1}m that consists of the tuples containing k ones, Un the set of
all n-by-n (0, 1) diagonally constant matrices, and Vn the set of all n-by-n (0, 1) circulant matrices. Then the
following identities hold:

Q(n) =

2n
∑

i=1

(−1)i
(

4n− i− 2

2n− i

)

∑

s∈S4n−2,i

per(Qn|s),

T (n) =

2n
∑

i=1

(−1)i+n
∑

s∈S2n,i

per(Tn|s),

S(n) =
∑

M∈Un

(−1)γ(M)+nper(M)

(

2n− γ(M)− 1

n− γ(M)

)

,

TS(n) =
∑

M∈Vn

(−1)σ(M)+nper(M),

where γ(M) is the number of nonzero diagonals in M, and σ(M) is the number of ones in the first row of M.

Note that multiple (0, 1) variable assignments to Qn and Tn can correspond to the same (0, 1) matrix. As
a result, one can think of the formulas for Q(n) and T (n) as summing over multisets of (0, 1) matrices. In the
cases of Sn and Zn, there is a one-to-one relationship between (0, 1) variable assignments and (0, 1) matrices,
so we can write S(n) and TS(n) as sums over sets of (0, 1) matrices.

3.1 Complexity Analysis

The above expressions are impractical to evaluate even for small values of n; however, they do provide nontrivial
time complexity bounds.

Corollary 3.7. Q(n), T (n), S(n), and TS(n) can be computed in quadratic space and in time O(n32n), O(n8n),
O(n8n), and O(n4n), respectively.

Proof . We can compute Q(n) as follows. There are O(24n) (0, 1)-tuples to enumerate in the summation. For
each such tuple s, we compute Qn|s in O(n2) time and space, and compute the permanent of this matrix in
O(n2n) time and with O(n2) space using Ryser’s formula [6], which states that

per(A) =
∑

S⊆{1,...,n}

(−1)|S|+n
n
∏

i=1

∑

j∈S

aij .

Thus Q(n) can be computed in O(n32n) time using O(n2) space. The other bounds are obtained similarly.

The only other algorithms we know of for Q(n) and T (n) with nontrivial complexity bounds run in time
O(f(n)8n) where f(n) is a low-order polynomial [8]. However, these algorithms require O(n28n) space, whereas
we only require O(n2) space. We do not know of any algorithms with nontrivial complexity bounds for the other
two problems.



5

3.2 Extension: Latin Squares

A Latin square of order n is an arrangement of n copies of the integers 1, 2, . . . , n in an n-by-n grid such that
every integer appears exactly once in each row and column. We now show how an expression for Ln, the number
of Latin squares of order n, follows naturally from the method used above.

Lemma 3.8. Let Bn be the n-by-n obstruction matrix containing the variables (x1, x2, . . . , xn2) defined by
(Bn)i,j = xi+n(j−1). Let An be the n2-by-n2 block diagonal matrix

An =











Bn 0 · · · 0
0 Bn · · · 0
...

...
. . .

...
0 0 · · · Bn











.

Then Ln = g(per(An), n
2).

Proof . A Latin square of order n can be thought of as an ordered set of n disjoint permutation matrices of
order n. On the other hand, a term in per(An) can be thought of as an ordered set of n permutation matrices
of order n, one along each copy of Bn. If this term contains n2 distinct variables, these permutation matrices
must be disjoint. Therefore the sum of the coefficients of the terms in per(An) containing n2 distinct variables
is exactly Ln.

Theorem 3.9. Let Ln be the number of Latin squares of order n. Then

Ln =
∑

M∈Mn

(−1)σ(M)+nper(M)n

where Mn is the set of all (0, 1) n-by-n matrices, and σ(M) is the number of nonzero entries in M.

Proof . From Lemma 3.8 and Theorem 3.5, it follows that

Ln =

n2

∑

i=1

(−1)i+n2

f(per(An), i)

=

n2

∑

i=1

(−1)i+n
∑

s∈S
n2,i

per(An|s)

=

n2

∑

i=1

(−1)i+n
∑

s∈S
n2,i

per(Bn|s)
n,

where the last step follows from the fact that per(An) = per(Bn)
n. Because Bn|u 6= Bn|v if u 6= v, we can

rewrite this as

Ln =
∑

M∈Mn

(−1)σ(M)+nper(M)n.

This formula was first given in [9].

4 Lower Bounds

In the last section, we showed that sums of coefficients in the permanents of the obstruction matricesQn,Tn,Sn,

and Zn correspond to the values of Q(n), T (n), S(n), and TS(n), respectively. We then gave a closed-form
expression for the function g that computes these sums. More precisely, g(P, k) was the sum of the coefficients
of the terms in the polynomial P containing k distinct variables.

Now since each entry in Qn is a monomial with coefficient 1, the coefficient of a term in det(Qn) is at most
the coefficient of the corresponding term in per(Qn). Therefore |g(det(Qn), 2n)| ≤ g(per(Qn), 2n) = Q(n). The
same argument applies to the other problems. As a result we have the following corollary:
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Corollary 4.1. Let Sm,k be the subset of {0, 1}m that consists of the tuples containing k ones, Un the set of
all n-by-n (0, 1) diagonally constant matrices, and Vn the set of all n-by-n (0, 1) circulant matrices. Then the
following inequalities hold:

Qdet(n) :=

∣

∣

∣

∣

2n
∑

i=1

(−1)i
(

4n− i− 2

2n− i

)

∑

s∈S4n−2,i

det(Qn|s)

∣

∣

∣

∣

≤ Q(n),

Tdet(n) :=

∣

∣

∣

∣

2n
∑

i=1

(−1)i+n
∑

s∈S2n,i

det(Tn|s)

∣

∣

∣

∣

≤ T (n),

Sdet(n) :=

∣

∣

∣

∣

∑

M∈Un

(−1)γ(M) det(M)

(

2n− γ(M)− 1

n− γ(M)

)
∣

∣

∣

∣

≤ S(n),

TSdet(n) :=

∣

∣

∣

∣

∑

M∈Vn

(−1)σ(M) det(M)

∣

∣

∣

∣

≤ TS(n),

where γ(M) is the number of nonzero diagonals in M, and σ(M) is the number of ones in the first row of M.

We now show that TSdet(n) is the permanent of Schur’s matrix of order n; see [10, Sequence A003112].
Let Mn = (ǫjk) be an n-by-n matrix where ǫ is an nth root of unity, and let Pn = per(Mn). The matrix Mn

is known as Schur’s matrix of order n. It has been of interest in number theory, statistics, and coding theory.
Its permanent is the topic of [4].

Theorem 4.2. For all n, |Pn| ≤ TS(n) ≤ S(n).

Proof . From Corollary 4.1, it suffices to show that TSdet(n) = |Pn|. This follows immediately from the fact
that Pn = g(det(Zn), n) [4].
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