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Abstract. Hwang’s quasi-power theorem asserts that a sequence of random variables whose

moment generating functions are approximately given by powers of some analytic function is
asymptotically normally distributed. This theorem is generalised to higher dimensional random

variables. To obtain this result, a higher dimensional analogue of the Berry–Esseen inequality

is proved, generalising a two-dimensional version by Sadikova.

1. Introduction

Asymptotic normality is a frequently occurring phenomenon in combinatorics, the classical
central limit theorem being the very first example. The first step in the proof is the observation
that the moment generating function of the sum of n identically independently distributed random
variables is the n-th power of the moment generating function of the distribution underlying the
summands. As similar moment generating functions occur in many examples in combinatorics,
a general theorem to prove asymptotic normality is desirable. Such a theorem was proved by
Hwang [18], usually called the “quasi-power theorem”.

Theorem (Hwang [18]). Let {Ωn}n≥1 be a sequence of integral random variables. Suppose that
the moment generating function satisfies the asymptotic expression

(1.1) Mn(s) := E(eΩns) = eWn(s)(1 +O(κ−1
n )),

the O-term being uniform for |s| ≤ τ , s ∈ C, τ > 0, where

(1) Wn(s) = u(s)φn + v(s), with u(s) and v(s) analytic for |s| ≤ τ and independent of n; and
u′′(0) 6= 0;

(2) limn→∞ φn =∞;
(3) limn→∞ κn =∞.

Then the distribution of Ωn is asymptotically normal, i.e.,

sup
x∈R

∣∣∣∣P(Ωn − u′(0)φn√
u′′(0)φn

< x

)
− Φ(x)

∣∣∣∣ = O

(
1√
φn

+
1

κn

)
,

where Φ denotes the standard normal distribution

Φ(x) =
1√
2π

∫ x

−∞
exp

(
− 1

2
y2
)
dy.

See Hwang’s article [18] as well as Flajolet-Sedgewick [8, Sec. IX.5] for many applications of this
theorem. A generalisation of the quasi-power theorem to dimension 2 has been provided in [13].
It has been used in [16], [17], [6], [15] and [19]. In [5, Thm. 2.22], an m-dimensional version of the
quasi-power theorem is stated without speed of convergence. Also in [2], such an m-dimensional
theorem without speed of convergence is proved. There, several multidimensional applications are
given, too.

In contrast to many results about the speed of convergence in classical probability theory
(see, e.g., [12]), the sequence of random variables is not assumed to be independent. The only
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2 CLEMENS HEUBERGER AND SARA KROPF

assumption is that the moment generating function behaves asymptotically like a large power.
This mirrors the fact that the moment generating function of the sum of independent, identically
distributed random variables is exactly a large power. The advantage is that the asymptotic
expression (1.1) arises naturally in combinatorics by using techniques such as singularity analysis
or saddle point approximation (see [8]).

The purpose of this article is to generalise the quasi-power theorem including the speed of
convergence to arbitrary dimension m. We first state this main result in Theorem 1 in this
section. In Section 2, a new Berry–Esseen inequality (Theorem 2) is presented, which we use to
prove the m-dimensional quasi-power theorem. In Section 3, we give some applications of the
multidimensional quasi-power theorem. The combinatorial idea behind the formulation of the
Berry–Esseen inequality is discussed in Section 4. Our Berry–Esseen bound is proved in Section 5.
The final Section 6 is then devoted to the proof of the quasi-power theorem.

We use the following conventions: vectors are denoted by boldface letters such as s, their
components are then denoted by regular letters with indices such as sj . For a vector s, ‖s‖
denotes the maximum norm max{|sj |}. All implicit constants of O-terms may depend on the
dimension m as well as on τ which is introduced in Theorem 1.

Our first main result is the following m-dimensional version of Hwang’s theorem.

Theorem 1. Let {Ωn}n≥1 be a sequence of m-dimensional real random vectors. Suppose that the
moment generating function satisfies the asymptotic expression

(1.2) Mn(s) := E(e〈Ωn,s〉) = eWn(s)(1 +O(κ−1
n )),

the O-term being uniform for ‖s‖ ≤ τ , s ∈ Cm, τ > 0, where

(1) Wn(s) = u(s)φn+v(s), with u(s) and v(s) analytic for ‖s‖ ≤ τ and independent of n; and
the Hessian Hu(0) of u at the origin is non-singular;

(2) limn→∞ φn =∞;
(3) limn→∞ κn =∞.

Then, the distribution of Ωn is asymptotically normal with speed of convergence O(φ
−1/2
n ), i.e.,

(1.3) sup
x∈Rm

∣∣∣∣P(Ωn − gradu(0)φn√
φn

≤ x

)
− ΦHu(0)(x)

∣∣∣∣ = O

(
1√
φn

)
,

where ΦΣ denotes the distribution function of the non-degenerate m-dimensional normal distribu-
tion with mean 0 and variance-covariance matrix Σ, i.e.,

ΦΣ(x) =
1

(2π)m/2
√

det Σ

∫
y≤x

exp
(
− 1

2
y>Σ−1y

)
dy,

where y ≤ x means y` ≤ x` for 1 ≤ ` ≤ m.
If Hu(0) is singular, the random variables

Ωn − gradu(0)φn√
φn

converge in distribution to a degenerate normal distribution with mean 0 and variance-covariance
matrix Hu(0).

Note that in the case of the singular Hu(0), a uniform speed of convergence cannot be guar-
anteed. To see this, consider the (constant) sequence of random variables Ωn which takes values
±1 each with probability 1/2. Then the moment generating function is (et + e−t)/2, which is of
the form (1.2) with φn = n, u(s) = 0, v(s) = log(et + e−t)/2 and κn arbitrary. However, the
distribution function of Ωn/

√
n is given by

P
(

Ωn√
n
≤ x

)
=


0 if x < −1/

√
n,

1/2 if − 1/
√
n ≤ x < 1/

√
n,

1 if 1/
√
n ≤ x,

which does not converge uniformly.
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In contrast to the original quasi-power theorem, the error term in our result does not contain
the summand O(1/κn). In fact, this summand could also be omitted in the original proof of the
quasi-power theorem by using a better estimate for the error En(s) = Mn(s)e−Wn(s) − 1, cf. the
proof of our Lemma 6.1.

The order of the error is optimal (without further assumptions on the random variables), as it
is the case for the one-dimensional Berry-Esseen inequality. See, for example, the approximation
of a binomial distribution by the normal distribution [21, § 1.2].

The proof of Theorem 1 relies on an m-dimensional Berry–Esseen inequality (Theorem 2). It
is a generalisation of Sadikova’s result [25, 26] in dimension 2. The main challenge is to provide
a version which leads to bounded integrands around the origin, but still allows to use excellent
bounds for the tails of the characteristic functions. To achieve this, linear combinations involving
all partitions of the set {1, . . . ,m} are used.

Note that there are several generalisations of the one-dimensional Berry–Esseen inequality [3, 7]
to arbitrary dimension, see, e.g., Gamkrelidze [9, 10] and Prakasa Rao [23]. However, using these
results would lead to a less precise error term in (1.3), see the end of Section 2 for more details.
For that reason we generalise Sadikova’s result, which was already successfully used by the first
author in [13] to prove a 2-dimensional quasi-power theorem. Also note that our theorem can deal
with discrete random variables, too, in contrast to [24], where density functions are considered.

For the sake of completeness, we also state the following result about the moments of Ωn.

Proposition 1.1. The cross-moments of Ωn satisfy

1∏m
`=1 k`!

E
( m∏
`=1

Ωk`n,`

)
= pk(φn) +O

(
κ−1
n φk1+···+km

n

)
,

for k` nonnegative integers, where pk is a polynomial of degree
∑m
`=1 k` defined by

pk(X) = [sk11 · · · skmm ]eu(s)X+v(s).

In particular, the mean and the variance-covariance matrix are

E(Ωn) = gradu(0)φn + grad v(0) +O(κ−1
n ),

Cov(Ωn) = Hu(0)φn +Hv(0) +O(κ−1
n ),

respectively.

2. A Berry–Esseen Inequality

This section is devoted to a generalisation of Sadikova’s Berry–Esseen inequality [25, 26] in
dimension 2 to dimension m. Before stating the theorem, we introduce our notation.

Let L = {1, . . . ,m}. For K ⊆ L, we write sK = (sk)k∈K for the projection of s ∈ CL to CK .
For J ⊆ K ⊆ L, let χJ,K : CJ → CK , (sj)j∈J 7→ (sk[k ∈ J ])k∈K be an injection from CJ into
CK . Similarly, let ψJ,K : CK → CK , (sk)k∈K 7→ (sk[k ∈ J ])k∈K be the projection which sets all
coordinates corresponding to K \ J to 0.

We denote the set of all partitions ofK by ΠK . We consider a partition as a set α = {J1, . . . , Jk}.
Thus |α| denotes the number of parts of the partition α. Furthermore, J ∈ α means that J is a
part of the partition α.

Now, we can define an operator which we later use to state our Berry–Esseen inequality. The
motivation behind this definition is explained at the end of this section.

Definition 2.1. Let K ⊆ L and h : CK → C. We define the non-linear operator

ΛK(h) :=
∑
α∈ΠK

µα
∏
J∈α

h ◦ ψJ,K

where

µα = (−1)|α|−1(|α| − 1)! .

We denote ΛL briefly by Λ.
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For any random variable Z, we denote its cumulative distribution function by FZ, its density
function by fZ (if it exists) and its characteristic function by ϕZ.

With these definitions, we are able to state our second main result, an m-dimensional version
of the Berry–Esseen inequality.

Theorem 2. Let m ≥ 1 and X and Y be m-dimensional random variables. Assume that FY is
differentiable.

Let

Aj = sup
y∈Rm

∂FY(y)

∂yj
,

Bj =

j∑
k=1

{
j

k

}
k! ,

C1 = 3

√
32

π
(
1−

(
3
4

)1/m) ,
C2 =

12

π

for 1 ≤ j ≤ m where
{
j
k

}
denotes a Stirling partition number (Stirling number of the second kind).

Let T > 0 be fixed. Then

(2.1)

sup
z∈Rm

|FX(z)− FY(z)| ≤ 2

(2π)m

∫
‖t‖≤T

∣∣∣∣Λ(ϕX)(t)− Λ(ϕY)(t)∏
`∈L t`

∣∣∣∣ dt
+ 2

∑
∅6=J(L

Bm−|J| sup
zJ∈RJ

∣∣FXJ
(zJ)− FYJ

(zJ)
∣∣

+
2
∑m
j=1Aj

T
(C1 + C2).

Existence of E(X) and E(Y) is sufficient for the finiteness of the integral in (2.1).

Let us give two remarks on the distribution functions occurring in this theorem: The distribution
function FY is non-decreasing in every variable, thus Aj > 0 for all j. Furthermore, our general
notations imply that FXJ

is a marginal distribution of X.
The numbers Bj are known as “Fubini numbers” or “ordered Bell numbers”. They form the

sequence A000670 in [20].
Recursive application of (2.1) leads to the following corollary, where we no longer explicitly

state the constants depending on the dimension.

Corollary 2.2. Let m ≥ 1 and X and Y be m-dimensional random variables. Assume that FY

is differentiable and let

Aj = sup
y∈Rm

∂FY(y)

∂yj
, 1 ≤ j ≤ m.

Then

(2.2) sup
z∈Rm

|FX(z)− FY(z)|

= O

( ∑
∅6=K⊆L

∫
‖tK‖≤T

∣∣∣∣ΛK(ϕX ◦ χK,L)(tK)− ΛK(ϕY ◦ χK,L)(tK)∏
k∈K tk

∣∣∣∣ dtK +

∑m
j=1Aj

T

)
where the O-constants only depend on the dimension m.

Existence of E(X) and E(Y) is sufficient for the finiteness of the integrals in (2.2).

In order to explain the choice of the operator Λ, we first state it in dimension 2:

(2.3) Λ(h)(s1, s2) = h(s1, s2)− h(s1, 0)h(0, s2).

This coincides with Sadikova’s definition. This also shows that our operator is non-linear as, e.g.,
Λ(s1 + s2)(s1, s2) 6= Λ(s1)(s1, s2) + Λ(s2)(s1, s2).

http://oeis.org/A000670
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In Theorem 2, we apply Λ to characteristic functions; so we may restrict our attention to
functions h with h(0) = 1. From (2.3), we see that Λ(h)(s1, 0) = Λ(h)(0, s2) = 0, so that
Λ(h)(s1, s2)/(s1s2) is bounded around the origin. This is essential for the boundedness of the
integral in Theorem 2. In general, this property will be guaranteed by our particular choice of
coefficients. It is no coincidence that for α ∈ ΠL, the coefficient µα equals the value µ(α, {L}) of the
Möbius function in the lattice of partitions: Weisner’s theorem (see Stanley [27, Corollary 3.9.3])
is crucial in the proof that Λ(h)(s)/(s1 . . . sm) is bounded around the origin (see the proof of
Lemma 4.1).

The second property is that our proof of the quasi-power theorem needs estimates for the tails
of the integral in Theorem 2. These estimates have to be exponentially small in every variable,
which means that every variable has to occur in every summand. This is trivially fulfilled as every
summand in the definition of Λ is formulated in terms of a partition.

Note that Gamkrelidze [10] (and also Prakasa Rao [23]) use a linear operator L mapping h to

(2.4) (s1, s2) 7→ h(s1, s2)− h(s1, 0)− h(0, s2).

When taking the difference of two characteristic functions, we may assume that h(0, 0) = 0 so that
the first crucial property as defined above still holds. However, the tails are no longer exponentially
small in every variable: the last summand h(0, s2) in (2.4) is not exponentially small in s1 because
it is independent of s1 and nonzero in general. However, the first two summands are exponentially
small in s1 by our assumption (1.2).

For that reason, using the Berry–Esseen inequality by Gamkrelidze [10] to prove a quasi-power

theorem leads to a less precise error term O(φ
−1/2
n logm−1 φn) in (1.3). It can be shown that the

less precise error term necessarily appears when using Gamkrelidze’s result by considering the
example of Ωn being the 2-dimensional vector consisting of a normal distribution with mean −1
and variance n and a normal distribution with mean 0 and variance n. This is a consequence of
the linearity of the operator L in Gamkrelidze’s result.

3. Examples of Multidimensional Central Limit Theorems

In this section, we give two examples from combinatorics where we can apply Theorem 1.
Asymptotic normality was already shown in earlier publications [4, 2], but we additionally provide
an estimate for the speed of convergence.

3.1. Context-Free Languages. Consider the following example of a context-free grammar G
with non-terminal symbols S and T , terminal symbols {a, b, c}, starting symbol S and the rules

P = {S → aSbS, S → bT, T → bS, T → cT, T → a}.

The corresponding context-free language L(G) consists of all words which can be generated starting
with S using the rules in P to replace all non-terminal symbols. For example, abcabababba ∈ L(G)
because it can be derived as

S → aSbS → abTbaSbS → abcTbabTbbT → abcabababba.

Let P(Ωn = x) be the probability that a word of length n in L(G) consists of x1 and x2 terminal
symbols a and b, respectively. Thus there are n− x1 − x2 terminal symbols c. For simplicity, this
random variable is only 2-dimensional. But it can be easily extended to higher dimensions.

Following Drmota [4, Sec. 3.2], we obtain that the moment generating function is

E(e〈Ωn,s〉) =
yn(es)

yn(1)

with yn(z) defined in [4]. Using [4, Equ. (4.9)], this moment generating function has an asymp-
totic expansion as in (1.2) with φn = n. Thus Ωn is asymptotically normally distributed after
standardisation (as was shown in [4]) and additionally the speed of convergence is O(n−1/2).

Other context-free languages can be analysed in the same way, either by directly using the
results in [4] (if the underlying system is strongly connected) or by similar methods. This has
applications, for example, in genetics (see [22]).
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3.2. Dissections of Labelled Convex Polygons. Let S1 ·∪· · · ·∪St+1 = {3, 4, . . .} be a partition.
We dissect a labelled convex n-gon into smaller convex polygons by choosing some non-intersecting
diagonals. Each small polygon should be a k-gon with k 6∈ St+1. Define an(r) to be the number of
dissections of an n-gon such that it consists of exactly ri small polygons whose number of vertices
is in Si, for i = 1, . . . , t. For convenience, we use a2(r) = [r = 0]. Asymptotic normality was
proved in [2, Sec. 3], see also [1, Ex. 7.1] for a one-dimensional version. We additionally provide
an estimate for the speed of convergence.

Let
f(z,x) =

∑
n≥2
r≥0

an(r)xrzn−1.

Then choosing a k-gon with k ∈ S1 ·∪ · · · ·∪ St and gluing dissected polygons to k − 1 of its sides
translates into the equation

f = z +

t∑
i=1

xi
∑
k∈Si

fk−1.

Following [1], this equation can be used to obtain an asymptotic expression for the moment
generating function as in (1.2) with φn = n. The asymptotic normal distribution follows after
suitable standardisation with speed of convergence O(n−1/2).

4. Combinatorial Background of the Operator Λ

Before we start with the proof of Theorem 2, we state and prove the property of our operator
Λ which motivates its Definition 2.1.

Lemma 4.1. Let K ( L and h : CL → C with h(0) = 1. Then

Λ(h) ◦ ψK,L = 0.

Before actually proving the lemma, we recall some of the theory about the Möbius function of
a partially ordered set (poset), see also Stanley [27, Section 3.7].

By the following definition, ΠL, the set of all partitions of L, is a poset: As usual, a partition
α ∈ ΠL is said to be a refinement of a partition α′ ∈ ΠL if

∀J ∈ α : ∃J ′ ∈ α′ : J ⊆ J ′.
In this case, we write α ≤ α′. This defines a partial order on ΠL.

The Möbius function on ΠL is denoted by µ: for α < α′, we set µ(α′, α′) = 1 and

µ(α, α′) = −
∑
β∈ΠL

α<β≤α′

µ(β, α′).

For α, α′ ∈ ΠL, the infimum α ∧ α′ of α and α′ is given by

{J ∩ J ′ : J ∈ α, J ′ ∈ α′, J ∩ J ′ 6= ∅}.
In fact, ΠL is a lattice (cf. Stanley [27, Example 3.10.4]). The greatest element is {L}.

For α ∈ ΠL, we have
µ(α, {L}) = (−1)|α|−1(|α| − 1)! = µα,

where |α| denotes the number of parts of the partition, see Stanley [27, (3.37)]. In particular, we
may rewrite the definition of Λ (Definition 2.1) as

(4.1) Λ(h) :=
∑
α∈ΠL

µ(α, {L})
∏
J∈α

h ◦ ψJ,L.

For any γ, β ∈ ΠL with γ ≤ β < {L}, Weisner’s theorem (see Stanley [27, Corollary 3.9.3])
applied to the interval [γ, {L}] asserts that

(4.2)
∑
α∈ΠL
α∧β=γ

µ(α, {L}) = 0.

We now turn to the actual proof of the lemma.
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Proof of Lemma 4.1. Consider the partition β = {K} ∪ {{k} : k ∈ L \K} of L, i.e., β consists of
K as one part and a collection of singletons. As K 6= L, we have β < {L}.

By definition of ψ, we have ψJ,L ◦ ψK,L = ψJ∩K,L for J , K ⊆ L. If α ∈ ΠL, then∏
J∈α

h ◦ ψJ∩K,L =
∏

J∈α∧β
J⊆K

h ◦ ψJ,L

because parts J ∈ α with J ∩ K = ∅ contribute h(0) = 1. Therefore, collecting the sum (4.1)
according to α ∧ β yields

Λ(h) ◦ ψK,L :=
∑
α∈ΠL

µ(α, {L})
∏
J∈α

h ◦ ψJ∩K,L =
∑
γ∈ΠL

∏
J∈γ
J⊆K

h ◦ ψJ,L
∑
α∈ΠL
α∧β=γ

µ(α, {L}).

As γ ≤ β < {L}, the inner sum vanishes by (4.2). �

5. Proof of the Berry–Esseen Inequality

This section is devoted to the proof of our Berry–Esseen inequality, Theorem 2. It is a gener-
alisation of Sadikova’s proof.

We start with an auxiliary one-dimensional random variable.

Lemma 5.1. Let P be the one-dimensional random variable with probability density function

fP (z) =
3

8π

( sin(z/4)

z/4

)4

.

Then its characteristic function is

(5.1) ϕP (t) =


1− 6t2 + 6|t|3 if 0 ≤ |t| ≤ 1/2,

2(1− |t|)3 if 1/2 ≤ |t| ≤ 1,

0 if 1 ≤ |t|
and

E(P 2) = 12,

E(|P |) ≤ C2.(5.2)

Let λ be the unique positive number such that

P(P ≤ λ) = P(P ≥ −λ) =
(3

4

)1/m

.

Then

(5.3) λ ≤ C1.

Proof. The characteristic function (5.1) is mentioned in [11, Section 39]; it is computed by standard
methods.

Differentiating ϕP twice, we see that the second moment is 12. To prove (5.2), we rewrite
E(|P |) as

E(|P |) =
12

π

∫ 1

0

sin4 z

z3
dz +

12

π

∫ ∞
1

sin4 z

z3
dz.

We use the estimates sin z ≤ z and |sin z| ≤ 1 on the intervals [0, 1] and [1,∞), respectively. Thus

E(|P |) ≤ 12

π

(1

2
+

1

2

)
=

12

π
.

To obtain a bound for λ, we follow Gamkrelidze [10]: we estimate the tail using |sin4(z)| ≤ 1
and get

1−
(3

4

)1/m

=
3

8π

∫ ∞
λ

( sin(z/4)

z/4

)4

dz ≤ 3

2π

∫ ∞
λ/4

(1

z

)4

dz =
3

2π

(
−1

3

) 1

z3

∣∣∣∞
z=λ/4

=
32

πλ3
.

This results in (5.3). �
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In the next step, we consider tuples of random variables distributed as P . They will be used
to ensure smoothness. We write 1 to denote a vector with all coordinates equal to 1.

Lemma 5.2. Let Q = (P1/T, . . . , Pm/T ) be the m-dimensional random variable where the Pj are
independent random variables with the same distribution as P in Lemma 5.1 and T is the fixed
constant defined in Theorem 2.

Then Q has density function and characteristic function

fQ(z) =

m∏
j=1

TfP (Tzj),

ϕQ(t) =

m∏
j=1

ϕP

( tj
T

)
,

respectively. The characteristic function vanishes outside [−T, T ]m.
Furthermore, ∫

z∈Rm

|zj |fQ

(
z +

θλ

T
1
)
dz ≤ C2 + λ

T
,(5.4) ∫

θz≤0

fQ

(
z +

θλ

T
1
)
dz =

3

4
(5.5)

hold for θ ∈ {±1} and j ∈ {1, . . . ,m}.

Proof. Because of independence, the distribution function and the characteristic function of Q is
the product of the distribution functions and the characteristic functions of the Pj/T , respectively.
Division by T transforms the density and characteristic functions as claimed. As ϕP (t) vanishes
outside [−1, 1] by (5.1), ϕQ(t) vanishes outside [−T, T ]m.

By a simple translation, the integral on the left hand side of (5.4) can be seen to be equal to

E
(∣∣∣Qj − θλ

T

∣∣∣).
Then (5.4) is a simple consequence of Qj = Pj/T , (5.2) and the triangle inequality.

By the same translation and the definition of λ, the integral on the left hand side of (5.5) is

P
(
θQ ≤ λ

T
1
)

=

m∏
j=1

P(θPj ≤ λ) =
3

4
.

�

From now on, we let Q be as in Lemma 5.2 and let Q be independent of X and independent
of Y. We first prove an inequality relating the difference between the distribution functions of X
and Y to that of the distribution functions of X + Q and Y + Q.

Lemma 5.3. We have

(5.6)

sup
z∈Rm

|FX+Q(z)− FY+Q(z)| ≤ sup
z∈Rm

|FX(z)− FY(z)|

≤ 2 sup
z∈Rm

|FX+Q(z)− FY+Q(z)|+
2
∑m
j=1Aj

T
(C1 + C2).

Proof. Let

S = sup
z∈Rm

|FX(z)− FY(z)|

S′ = sup
z∈Rm

|FX+Q(z)− FY+Q(z)|

and ε > 0. We choose θ ∈ {±1} such that S = supz∈Rm θ(FX(z)− FY(z)).
There is a zε ∈ Rm such that

S − ε ≤ θ(FX − FY)(zε).
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Let w ∈ Rn with θw ≤ 0. By monotonicity of FX, we have θFX(zε −w) ≥ θFX(zε). Thus

θ(FX − FY)(zε −w) ≥ θ(FX − FY)(zε)− θ(FY(zε −w)− FY(zε))

≥ S − ε−
m∑
j=1

Aj |wj |.

We multiply this inequality by fQ

(
w + θλ

T 1
)

and integrate over all w ∈ Rn with θw ≤ 0. By (5.5)
and (5.4), we get

(5.7) I1 :=

∫
θw≤0

θ(FX − FY)(zε −w)fQ

(
w +

θλ

T
1
)
dw ≥ 3

4
(S − ε)− C2 + λ

T

m∑
j=1

Aj .

Setting

I2 :=

∫
θw�0

θ(FX − FY)(zε −w)fQ

(
w +

θλ

T
1
)
dw

and using the estimate |θ(FX − FY)(zε −w)| ≤ S yields

(5.8) |I2| ≤ S
∫
θw�0

fQ

(
w +

θλ

T
1
)
dw =

S

4

by (5.5) and the fact that fQ is a probability density function.
Combining (5.7) and (5.8) yields

(5.9) |I1 + I2| ≥ |I1| − |I2| ≥ I1 − |I2| ≥
S

2
− C2 + λ

T

m∑
j=1

Aj −
3ε

4
.

As the sum of random variables corresponds to a convolution, we have

(5.10) (FX+Q − FY+Q)(z) =

∫
Rm

(FX − FY)(z−w)fQ(w) dw.

Replacing z and w by zε + θλ
T 1 and w + θλ

T 1, respectively, and using (5.9) leads to

S′ ≥
∣∣∣(FX+Q − FY+Q)

(
zε +

θλ

T
1
)∣∣∣ = |I1 + I2| ≥

S

2
− C2 + λ

T

m∑
j=1

Aj −
3ε

4

for all ε > 0. Taking the limit for ε→ 0 and rearranging yields the right hand side of (5.6).
The left hand side of (5.6) is an immediate consequence of (5.10). �

We are now able to bound the difference of the distribution functions by their characteristic
functions.

Lemma 5.4. We have

(5.11) sup
z∈Rm

∣∣∣∣ ∑
α∈ΠL

µα

(∏
J∈α

FXJ+QJ
−
∏
J∈α

FYJ+QJ

)
(z)

∣∣∣∣
≤ 1

(2π)m

∫
‖t‖≤T

∣∣∣∣Λ(ϕX)(t)− Λ(ϕY)(t)∏
`∈L t`

∣∣∣∣ dt.
Proof. Let a, z ∈ Rm with a ≤ z.

The random variable XJ+QJ admits a density function, because QJ admits a density function.
In particular, XJ + QJ is a continuous random variable. By Lévy’s theorem (see, e.g., [28,
Thm. 1.8.4]),

P(aJ ≤ XJ + QJ ≤ zJ) =
1

(2π)|J|
lim
Tj→∞
j∈J

∫
−Tj≤tj≤Tj

j∈J

ϕXJ+QJ
(tJ)

∏
j∈J

e−itjzj − e−itjaj
−itj

dtJ .
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As ϕXJ+QJ
(tJ) = ϕXJ

(tJ)ϕQJ
(tJ) and ϕQJ

(tJ) vanishes outside [−T, T ]J by Lemma 5.2, we can
replace the limit Tj →∞ by setting Tj = T , i.e.,

P(aJ ≤ XJ + QJ ≤ zJ) =
i|J|

(2π)|J|

∫
‖tJ‖≤T

ϕXJ
(tJ)ϕQJ

(tJ)
∏
j∈J

e−itjzj − e−itjaj
tj

dtJ .

Taking the product over all J ∈ α and summing over α ∈ ΠL yields

(5.12)
∑
α∈ΠL

µα
∏
J∈α

P(aJ ≤ XJ + QJ ≤ zJ)

=
im

(2π)m

∫
‖t‖≤T

ϕQ(t)
∏
`∈L

e−it`z` − e−it`a`
t`

∑
α∈ΠL

µα
∏
J∈α

ϕXJ
(tJ) dt

where Fubini’s theorem and the fact that ϕQ(t) =
∏
J∈α ϕQJ

(tJ) have been used. By definition
of ϕX, we have ϕXJ

(tJ) = ϕX(ψJ,L(t)). Therefore, we can use the definition of Λ(ϕX) to rewrite
(5.12) to

∑
α∈ΠL

µα
∏
J∈α

P(aJ ≤ XJ + QJ ≤ zJ) =
im

(2π)m

∫
‖t‖≤T

Λ(ϕX)(t)∏
`∈L t`

ϕQ(t)
∏
`∈L

(e−it`z` − e−it`a`) dt.

This equation remains valid when replacing X by Y; taking the difference results in

(5.13)
∑
α∈ΠL

µα

(∏
J∈α

P(aJ ≤ XJ + QJ ≤ zJ)−
∏
J∈α

P(aJ ≤ YJ + QJ ≤ zJ)

)
=

im

(2π)m

∫
‖t‖≤T

Λ(ϕX)(t)− Λ(ϕY)(t)∏
`∈L t`

ϕQ(t)
∏
`∈L

(e−it`z` − e−it`a`) dt.

If the integral on the right hand side of (5.11) is infinite, there is nothing to show. Thus we may
assume that it is finite. This also implies that

Λ(ϕX)(t)− Λ(ϕY)(t)∏
`∈L t`

ϕQ(t)

is an integrable function on Rm (as it vanishes outside [−T, T ]m). Then by the Riemann–Lebesgue
lemma, we may take the limit a` → −∞ for all ` ∈ L in (5.13) to obtain

∑
α∈ΠL

µα

(∏
J∈α

P(XJ + QJ ≤ zJ)−
∏
J∈α

P(YJ + QJ ≤ zJ)

)
=

im

(2π)m

∫
‖t‖≤T

Λ(ϕX)(t)− Λ(ϕY)(t)∏
`∈L t`

ϕQ(t)e−i〈t,z〉 dt.

Taking absolute values and rewriting the left hand side in terms of marginal distribution functions
yields (5.11). �

We now bound the contribution of the lower dimensional distributions.

Lemma 5.5. We have

sup
z∈Rm

∣∣∣∣ ∑
α∈ΠL

α 6={L}

µα

(∏
J∈α

FXJ+QJ
−
∏
J∈α

FYJ+QJ

)
(z)

∣∣∣∣ ≤ ∑
∅6=J(L

Bm−|J| sup
z∈RJ

∣∣FXJ
(z)− FYJ

(z)
∣∣.
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Proof. Let α = {J1, . . . , Jr} ∈ ΠL. Then∣∣∣∣∏
J∈α

FXJ+QJ
(zJ)−

∏
J∈α

FYJ+QJ
(zJ)

∣∣∣∣ =

∣∣∣∣ r∑
k=1

( k∏
j=1

FXJj
+QJj

(zJj )

r∏
j=k+1

FYJj
+QJj

(zJj )

−
k−1∏
j=1

FXJj
+QJj

(zJj )

r∏
j=k

FYJj
+QJj

(zJj )

)∣∣∣∣
=

∣∣∣∣ r∑
k=1

k−1∏
j=1

FXJj
+QJj

(zJj )

r∏
j=k+1

FYJj
+QJj

(zJj )

×
(
FXJk

+QJk
(zJj )− FYJk

+QJk
(zJj )

)∣∣∣∣
≤
∑
J∈α

∣∣FXJ+QJ
(zJ)− FYJ+QJ

(zJ)
∣∣

because the products over the distribution functions are bounded by 1.
Therefore,∣∣∣∣ ∑
α∈ΠL

α6={L}

µα

(∏
J∈α

FXJ+QJ
−
∏
J∈α

FYJ+QJ

)
(z)

∣∣∣∣ ≤ ∑
∅6=J(L

∣∣FXJ+QJ
(zJ)− FYJ+QJ

(zJ)
∣∣ ∑
α∈ΠL
J∈α

|µα|.

A partition α ∈ ΠL with J ∈ α can be uniquely written as α = {J} ∪ β for a β ∈ ΠL\J . Thus

∑
α∈ΠL
J∈α

|µα| =
∑

β∈ΠL\J

|β|! =

m−|J|∑
k=1

{
m− |J |

k

}
k! = Bm−|J|

because there are
{
m−|J|
k

}
partitions of L\J with k parts. Using the left hand side of (5.6) yields the

assertion (more precisely, of a version of the left hand side of (5.6) for marginal distributions). �

Now, we can complete the proof of the theorem.

Proof of Theorem 2. The estimate (2.1) follows from Lemma 5.3 (more precisely, the right hand
side of (5.6)), Lemma 5.4 and Lemma 5.5.

If the expectation of X exists, ϕX is differentiable. Therefore, Λ(ϕX) is differentiable, too. By
Lemma 4.1, Λ(ϕX)(t) has a zero whenever one of the t`, ` ∈ L, vanishes. Thus

Λ(ϕX)(t)∏
`∈L t`

is bounded around 0 and therefore bounded on [−T, T ]m. The same holds for Y. Thus the integral
on the right hand side of (2.1) converges. �

6. Proof of the Quasi-Power Theorem

We may now prove the m-dimensional quasi-power theorem, Theorem 1.

Let µn = φn gradu(0) and Σ = Hu(0). We define the random vector X = φ
−1/2
n (Ωn − µn).

For simplicity, we ignore the dependence on n in this and the following notations.
First, we establish bounds for the characteristic function of X.

Lemma 6.1. For Σ regular or singular, there exists an analytic function V (s) which is analytic
for ‖s‖ < τ

√
φn/2 such that

ϕX(s) = exp
(
−1

2
s>Σs + V (s)

)
and

(6.1) V (s) = O
(‖s‖3 + ‖s‖√

φn

)
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hold for all s ∈ CK with ‖s‖ < τ
√
φn/2.

For n → ∞, X converges in distribution to a normal distribution with mean 0 and variance-
covariance matrix Σ. In particular, Σ is positive (semi-)definite if it is regular (singular, respec-
tively).

Proof. By replacing u(s) and v(s) by u(s) − u(0) and v(s) − v(0), respectively, we may assume
that u(0) = v(0) = 0. We define E(s) by the relation Mn(s) = eWn(s)(1 +E(s)) and note that by
assumption, E(s) = O(κ−1

n ) uniformly for ‖s‖ ≤ τ . We note that this implies E(0) = 0.
By assumption, Mn(s) exists for ‖s‖ ≤ τ . Therefore, it is continuous for these s and, by

Morera’s theorem combined with applications of Fubini’s and Cauchy’s theorems, Mn(s) is analytic
for ‖s‖ ≤ τ . This also implies that E(s) is analytic for ‖s‖ ≤ τ . By Cauchy’s formula, we have

∂E(s)

∂sj
=

1

2πi

∮
|ζj |=τ

E(s1, . . . , sj−1, ζj , sj+1, . . . , sd)

(ζj − sj)2
dζj = O

( 1

κn

)
for ‖s‖ < τ/2. Thus

E(s) =

∫
[0,s]

〈gradE(t), dt〉 = O
(‖s‖
κn

)
for ‖s‖ < τ/2.

We calculate that

ϕX(s) = Mn

(
iφ−1/2
n s

)
exp

(
− iφ−1/2

n 〈µn, s〉
)

= exp
(
− 1

2
s>Σs + V (s)

)
with

V (s) = u(iφ−1/2
n s)φn + v(iφ−1/2

n s)− iφ−1/2
n 〈µn, s〉+

1

2
s>Σs + log(1 + E(iφ−1/2

n s)).

Since u(0) = v(0) = 0 and the first and second order terms of u cancel out, we have

V (s) = O
(‖s‖3 + ‖s‖√

φn

)
for ‖s‖ < τ

√
φn/2.

Note that

lim
n→∞

ϕX(s) = exp
(
− 1

2
s>Σs

)
for s ∈ Cm, which implies that, in distribution, X converges to the normal distribution with mean
zero and variance-covariance matrix Σ. Although we have to refine our estimates for applying
Theorem 2, we immediately conclude that Σ is positive (semi-)definite depending on whether it is
regular or not. �

Let now Σ be regular. By Y we denote a normally distributed random variable in Rm with
mean 0 and variance-covariance matrix Σ. Its characteristic function is

ϕY(s) = exp
(
− 1

2
s>Σs

)
.

The smallest eigenvalue of Σ is denoted by σ > 0.
We are now able to bound the functions occurring in the Berry–Esseen inequality.

Lemma 6.2. There exists a c < τ/2 such that

|Λ(ϕX)(s)− Λ(ϕY)(s)| ≤ exp
(
−σ

4
‖s‖2 +O(‖s‖)

)
O
(‖s‖3 + ‖s‖√

φn

)
holds for all s ∈ CL with ‖s‖ ≤ c

√
φn and ‖=s‖ ≤ 1.
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Proof. Let α ∈ ΠL. Then by Lemma 6.1, we have

(6.2)

∣∣∣∣∏
J∈α

(ϕX ◦ ψJ,L)(s)−
∏
J∈α

(ϕY ◦ ψJ,L)(s)

∣∣∣∣
= exp

(
−1

2
<
∑
J∈α

ψJ,L(s)>ΣψJ,L(s)

)∣∣∣∣exp

(∑
J∈α

V (ψJ,L(s))

)
− 1

∣∣∣∣.
For t ∈ RL, we have t>Σt ≥ σt>t ≥ σ‖t‖2. For complex w, we have | exp(w)− 1| ≤ |w| exp(|w|).
Splitting s into its real and imaginary parts in the first summand and using these inequalities for
the first and second factor of (6.2), respectively, yields∣∣∣∣∏

J∈α
(ϕX ◦ ψJ,L)(s)−

∏
J∈α

(ϕY ◦ ψJ,L)(s)

∣∣∣∣
≤ exp

(
−σ

2
‖s‖2 +O

(
‖s‖+

‖s‖3 + ‖s‖√
φn

))
O
(‖s‖3 + ‖s‖√

φn

)
by (6.1). For sufficiently small c, we obtain∣∣∣∣∏

J∈α
(ϕX ◦ ψJ,L)(s)−

∏
J∈α

(ϕY ◦ ψJ,L)(s)

∣∣∣∣ ≤ exp
(
−σ

4
‖s‖2 +O(‖s‖)

)
O
(‖s‖3 + ‖s‖√

φn

)
.

Multiplying by |µα| and summation over all α ∈ ΠL concludes the proof of the lemma. �

The last ingredient to prove the quasi-power theorem is a bound of the integrals occurring in
the Berry–Esseen inequality.

Lemma 6.3. Let c be as in Lemma 6.2. Then∫
‖s‖≤c

√
φn

∣∣∣Λ(ϕX)(s)− Λ(ϕY)(s)∏
`∈L s`

∣∣∣ ds = O
( 1√

φn

)
.

Proof. For simplicity, set h = Λ(ϕX)− Λ(ϕY). For a partition {J,K} of L, set

S(J,K) = {s ∈ RL : |sj | ≤ 1 for j ∈ J, 1 ≤ |sk| ≤ c
√
φn for k ∈ K}

and partition s into (sJ , sK). We use the notation

DJ =
∂|J|

∂zj1 · · · ∂zj|J|

when J = {j1, . . . , j|J|}. The product of the paths from 0 to sj for j ∈ J is denoted by [0, sJ ].
By Lemma 4.1, we have

(6.3) h(s) =

∫
[0,sJ ]

DJ(h(zJ , sK)) dzJ .

By Cauchy’s integral formula, we have

(6.4) DJ(h(zJ , sK)) =
1

(2πi)|J|

∮
ζJ

h(ζJ , sK)∏
j∈J(ζj − zj)2

dζJ

where ζj is integrated over the circle of radius 1 around zj for j ∈ J , thus ‖=ζJ‖ ≤ 1.
Using the estimate of Lemma 6.2 yields

(6.5)

|h(ζJ , sK)| = exp
(
−σ

4
‖(ζJ , sK)‖2 +O(‖(ζJ , sK)‖)

)
×O

(‖(ζJ , sK)‖3 + ‖(ζJ , sK)‖√
φn

)
= exp

(
−σ

4
‖s‖2 +O(‖s‖+ 1)

)
O
(‖s‖3 + 1√

φn

)
.
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Combining (6.3), (6.4) and (6.5) leads to∫
S(J,K)

∣∣∣ h(s)∏
`∈L s`

∣∣∣ ds
= O

(
1√
φn

∫
S(J,K)

1∏
`∈L|s`|

×
∣∣∣∣∫

[0,sJ ]

exp
(
−σ

4
‖s‖2 +O(‖s‖+ 1)

)
(‖s‖3 + 1) dzJ

∣∣∣∣ds).
= O

(
1√
φn

∫
S(J,K)

1∏
`∈L|s`|

exp
(
−σ

4
‖s‖2 +O(‖s‖+ 1)

)
(‖s‖3 + 1)

×
∣∣∣∣∫

[0,sJ ]

dzJ

∣∣∣∣ds).
The inner integral results in |

∏
j∈J sj |. The factors |sk| ≥ 1 for k ∈ K in the denominator can

simply be omitted. If K 6= ∅, we still have to bound∫
S(J,K)

exp
(
−σ

4
‖s‖2 +O(‖s‖+ 1)

)
(‖s‖3 + 1) ds

=
∑
k∈K

∫
S(J,K)
‖s‖=|sk|

exp
(
−σ

4
‖s‖2 +O(‖s‖+ 1)

)
(‖s‖3 + 1) ds

=
∑
k∈K

∫
S(J,K)
‖s‖=|sk|

exp
(
−σ

4
|sk|2 +O(|sk|+ 1)

)
(|sk|3 + 1) ds

=
∑
k∈K

∫
1≤|sk|≤c

√
φn

exp
(
−σ

4
|sk|2 +O(|sk|)

)
(|sk|3 + 1)

×
∫

1≤|sK\{k}|≤|sk|1

∫
|sJ |≤1

dsJdsK\{k}dsk

= 2|L|−1
∑
k∈K

∫
1≤|sk|≤c

√
φn

exp
(
−σ

4
|sk|2 +O(|sk|)

)
(|sk|3 + 1)|sk||K|−1

dsk

where the integration bounds are meant coordinate-wise. Then we use the fact that∫
x∈R

exp
(
−σ

4
x2
)
|x|t dx

is finite for all constants t ≥ 0. Thus, after completing the square in the argument of the expo-
nential function, the integral over sk is bounded by a constant, i.e.,∫

S(J,K)

exp
(
−σ

4
‖s‖2 +O(‖s‖+ 1)

)
(‖s‖3 + 1) ds = O(1).

We conclude that ∫
S(J,K)

∣∣∣ h(s)∏
`∈L s`

∣∣∣ ds = O
( 1√

φn

)
.

Summation over all partitions {J,K} of L completes the proof of the lemma. �

We now collect all results to prove Theorem 1.

Proof of Theorem 1. We set T = c
√
φn with c from Lemma 6.2. By Theorem 2 and Lemma 6.3,

we have

(6.6) sup
z∈Rm

|FX(z)− FY(z)| = O
( 1√

φn

)
+O

( ∑
∅6=J(L

sup
zJ∈RJ

∣∣FXJ
(zJ)− FYJ

(zJ)
∣∣).
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For ∅ 6= J ( L, we have ϕXJ
= ϕX◦χJ,L. Therefore, all prerequisites for applying the quasi-power

theorem on (Ωn)J are fulfilled. Therefore, we can apply (6.6) recursively and finally obtain

sup
z∈Rm

|FX(z)− FY(z)| = O
( 1√

φn

)
.

�

Note that it would also have been possible to apply Corollary 2.2; however, this would have re-
quired proving Lemmas 6.2 and 6.3 for subsets K of L, which would have required some notational
overhead using χK,L.

Proof of Proposition 1.1. This follows by the same arguments as in [18, Thm. 2]. �
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[22] Svetlana Poznanović and Christine E. Heitsch, Asymptotic distribution of motifs in a stochastic context-free

grammar model of RNA folding, J. Math. Biol. 69 (2014), no. 6, 1743–1772.
[23] Bhagavatula Lakshmi Surya Prakasa Rao, Another Esseen-type inequality for multivariate probability density

functions, Statist. Probab. Lett. 60 (2002), no. 2, 191–199.
[24] George G. Roussas, An Esseen-type inequality for probability density functions, with an application, Statist.

Probab. Lett. 51 (2001), no. 4, 397–408.

[25] S. M. Sadikova, On two-dimensional analogs of an inequality of Esseen and their application to the central
limit theorem, Teor. Verojatnost. i Primenen. 11 (1966), 369–380.

http://www.jstor.org/stable/2028691
http://dx.doi.org/10.1016/0097-3165(83)90062-6
http://dx.doi.org/10.1016/0097-3165(83)90062-6
http://dx.doi.org/10.1090/S0002-9947-1941-0003498-3
http://dx.doi.org/10.1002/(SICI)1098-2418(199701/03)10:1/2<103::AID-RSA5>3.0.CO;2-Z
http://dx.doi.org/10.1007/978-3-211-75357-6
https://hal.inria.fr/hal-01194683
https://hal.inria.fr/hal-01194683
http://dx.doi.org/10.1007/BF02392223
http://dx.doi.org/10.1007/BF02392223
http://dx.doi.org/10.1017/CBO9780511801655
http://dx.doi.org/10.1137/1122103
http://dx.doi.org/10.1007/b138932
http://dx.doi.org/10.2989/16073600709486217
http://arxiv.org/abs/1602.04055
http://arxiv.org/abs/1602.04055
http://dx.doi.org/10.1016/j.ejc.2015.03.004
http://dx.doi.org/10.1016/j.ejc.2015.03.004
http://dx.doi.org/10.1007/s00605-005-0364-6
http://dx.doi.org/10.1007/s10998-007-3081-z
http://dx.doi.org/10.1006/eujc.1997.0179
http://dmtcs.episciences.org/paper/view/id/1517
http://oeis.org
http://dx.doi.org/10.1007/978-3-662-04172-7
http://dx.doi.org/10.1007/s00285-013-0750-y
http://dx.doi.org/10.1007/s00285-013-0750-y
http://dx.doi.org/10.1016/S0167-7152(02)00312-7
http://dx.doi.org/10.1016/S0167-7152(02)00312-7
http://dx.doi.org/10.1016/S0167-7152(00)00181-4


16 CLEMENS HEUBERGER AND SARA KROPF

[26] , On two-dimensional analogues of an inequality of Esseen and their application to the central limit

theorem, Theory Probab. Appl. XI (1966), 325–335, English Translation of the paper in Teor. Verojatnost. i

Primenen.
[27] Richard P. Stanley, Enumerative combinatorics. Volume 1 , second ed., Cambridge Studies in Advanced Math-

ematics, vol. 49, Cambridge University Press, Cambridge, 2012.

[28] Nikolai G. Ushakov, Selected topics in characteristic functions, Modern Probability and Statistics, no. 4, VSP,
Utrecht, The Netherlands, 1999.

Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Austria

E-mail address: clemens.heuberger@aau.at

Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Austria and Institute of Statistical

Science, Academia Sinica, Taipei, Taiwan

E-mail address: sara.kropf@aau.at, sarakropf@stat.sinica.edu.tw

http://dx.doi.org/10.1137/1111035
http://dx.doi.org/10.1137/1111035
http://dx.doi.org/10.1017/CBO9781139058520
http://dx.doi.org/10.1515/9783110935981

	1. Introduction
	2. A Berry–Esseen Inequality
	3. Examples of Multidimensional Central Limit Theorems
	3.1. Context-Free Languages
	3.2. Dissections of Labelled Convex Polygons

	4. Combinatorial Background of the Operator 
	5. Proof of the Berry–Esseen Inequality
	6. Proof of the Quasi-Power Theorem
	References

