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ON A GRAPH CONNECTING HYPERBINARY EXPANSIONS

MAURIZIO BRUNETTI AND ALMA D’ANIELLO

ABSTRACT. Le n be any positive integer. A hyperbinary expansion of n is a representation of n as

sum of powers of 2, each power being used at most twice. In this paper we study some properties

of a suitable edge-coloured and vertex-weighted oriented graph A(n) whose nodes are precisely

the several hyperbinary representations of n. In particular, we identify those integersm ∈ N such

that the fundamental group of A(m) is abelian.

1. INTRODUCTION

A hyperbinary expansion of the positive integern is a word x1 . . . xk with xi ∈ {0, 1, 2}, x1 6= 0,

and n =
∑

k

i=1 xi2
k−i.

The last decades have seen a growing interest toward hyperbinary expansions, especially

since N. Calkin and H. S. Wilf proved in [6] that all positive rationals appear just once in the

sequence
{ b(n)

b(n + 1)

}

n>0
,

where b(0) = 1, and b(n) for n > 0 is the number of the hyperbinary expansions of n. In any

case, many intriguing properties of the function b : N0 → N had been already examined in [10],

where b(n) is called the 3-rd binary partition function and denoted by b(3;n).

More recently, A. De Luca and C. Reutenauer explained in [2] how hyperbinary expansions

are related to the nodes of the Christoffel tree, first introduced in [4]. For their part, hyper-m-

ary expansions for m > 2 have been considered in [7].

Let H(n) be the set of all hyperbinary expansions of a fixed n ∈ N. As explained in Section 2,

such set contains a unique expansion n ′ not containing 0’s. We refer to n ′ as the minimal

hyperbinary expansion of n, since any other element in H(n) is bigger than n ′ with respect to the

so-called shortlex ordering (see Corollary 2.7 below).

On the other hand, the maximal expansion n ′′ ∈ H(n) with respect to shortlex ordering

turns out to be the unique binary expansion of n.

The directed graph A(n) = (H(n),E(n)) we are going to introduce in Section 3 has n ′ as

root, and n ′′ as unique terminal node. This is one more reason to consider n ′ and n ′′ as the

extrema of H(n).

Among its features, the graph A(n) induces a new partial order on H(n) related to the num-

ber of ancestors of a fixed vertex n in A(n), giving an alternative significant method to measure

how far n is from being binary or minimal hyperbinary.

The graph A(n) is also useful to visualize some properties of expansions of longest length.

We discuss this topic in Section 4.
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The final two sections of this paper are devoted to identify those integers giving rise to

graphs with small cyclomatic numbers.

2. BASIC PROPERTIES AND TOOLS

To introduce our basic tools, we mix up some standard terminology and notations borrowed

from the theory of formal languages and the theory of directed graphs. Our main sources for

them are [3] and [5].

Let Σ∗ be the free monoid over the alphabet Σ = {0, 1, 2}. The elements of Σ∗ are called strings

or words. The trivial element in Σ∗ is the empty string. Once we introduce the equivalence

relation ∼ that identifies two words in Σ∗ differing only in zeros in the left-hand side, each

hyperbinary expansion in H = ∪n>0H(n) can be regarded as a suitable equivalence class in

Σ∗/ ∼. From such perspective the three words 00210, 0210 and 210 in Σ∗ all represent the same

element in H(10).

We now consider a string-rewriting system

R = {(02, 10), (12, 20)} ⊂ Σ∗ × Σ∗.

We call its elements rewrite rules. An alternative way to denote them is 02 → 10 and 12 ։ 20.

We also use the same type of arrows to denote any other single-step reduction induced by R, i.e.

x 0 2y → x 1 0y and x 1 2y ։ x 2 0y ∀ x,y ∈ Σ∗. (1)

Suppose now u and v in Σ∗ connected by a finite number k > 0 of single-step reductions. In

this case, we write

u
∗
→R v. (2)

The word u is called an ancestor of v, and v is a descendant of u. Furthermore, if k = 1, we also

say that u is a parent of v, and v a child of u.

We point out that in [3] and [5] the authors denote by ∗
→R the reflexive, transitive closure of

R; on the contrary, the binary relation (2) denoted here by the same symbol is just the transitive

closure of R, but it is not reflexive.

Note that R naturally defines a rewriting system on H = ∪n>0H(n) (denoted by RH), with

the caveat that the hyperbinary expansion 2 x1 · · · xk, also represented by 0 2 x1 · · · xk in Σ∗, is a

parent of 1 0 x1 · · · xk with respect to RH.

Proposition 2.1. Let n be any element in H(n). All ancestors and descendants of n with respect to

RH belong to H(n).

Proof. The statement immediately comes from the two trivial arithmetic identities

0 · 2s + 2 · 2s−1 = 1 · 2s + 0 · 2s−1 and 1 · 2s + 2 · 2s−1 = 2 · 2s + 0 · 2s−1 ∀ s ∈ N.

�

We now recall a renowned result concerning the function

b : n ∈ N0 7−→







0 if n = 0;

|H(n)| otherwise.
(3)
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Proposition 2.2. The sequence (b(n))n>0 may be defined recursively by

b(0) = b(1) = 1; b(2n + 1) = b(n); b(2n) = b(n) + b(n− 1). (4)

Proof. See [8, Corollary 2.7]. For the last two equalities, see also Propositions 3.3 and 3.4 below.

�

Proposition 2.2 shows that the sequence (b(n))n>0 is strictly related to the well studied

Stern’s diatomic sequence (s(n))n>0, i.e. the sequence A002487 of N.J.A. Sloane’s Encyclopedia

(see [11]) also known as Stern-Brocot sequence. More precisely, we have

b(n) = s(n + 1).

Corollary 2.3. The positive integer n admits only one hyperbinary expansion if and only if n = 2k − 1

for a suitable k ∈ N.

Proof. Note first that b(1) = b(21 − 1) = 1. Suppose n be equal to 2k − 1 for some k > 1. Since

n = 2(2k−1 − 1) + 1, by Proposition 2.2 and induction on k it follows that

b(n) = b(2k−1 − 1) = 1.

Let now n be equal to 2k − 1 − j for some positive j < 2k − 2k−1, and let n ′′ = x1 · · · xk be the

unique binary expansion of n. In this case, the set {i | xi = 0} is not empty, and we denote by h

its minimum. By definition,

n ′′ = 11 · · · 1
︸ ︷︷ ︸

h-2 times

1 0 xh+1 · · · xk. (5)

Such expansion has a parent given by 2x3 · · · xk if h = 2, and by

11 · · · 1
︸ ︷︷ ︸

h-2 times

0 2 xh+1 · · · xk (6)

if instead h > 2. In both cases the cardinality of H(2k − 1 − j) is not less than 2. �

For sake of completeness, we inform the reader that Corollary 2.3 could also be proved in-

ductively in a shorter (though less concrete) way from the striking equality

b(2k − 1 − j) = b(2k−1 − 1 + j) if 0 6 j < 2k

noted by S. Northshield in [8].

Proposition 2.4. Each n ∈ N admits a unique hyperbinary expansion without 0’s.

Proof. (Existence) Suppose we have found a hyperbinary expansion without 0’s for all integers

k 6 m. We now describe how to obtain an expansion of required type for m + 1. If m is even

and equal to 2k, just add a 1 on the right to the representation of k without 0’s. If m is odd,

replace by 2 the last 1 on the right in the hyperbinary representation ofm without 0’s.

(Uniqueness) Suppose the uniqueness of hyperbinary expansions without 0’s proved up to

the integerm− 1, and let

x1 · · · xℓ and y1 · · · yℓ ′ (7)

be two elements in H(m) without 0’s. Since xℓ and yℓ ′ depend on the parity of m, they are

necessarily equal. It follows that

x1 · · · xℓ−1 and y1 · · · yℓ ′−1 (8)
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are both hyperbinary expansions without 0’s of the integer (m − xℓ)/2. By the inductive hy-

pothesis, the two words in (8), and hence the two words in (7), coincide. �

Proposition 2.5. The only element in H(n) with no ancestors with respect to RH is the expansion n ′

without 0’s. The only element in H(n) with no descendants is n ′′, the binary expansion of n.

Proof. By Proposition 2.4, the element n ′ is well defined, and by the rules (1) it follows quite

easily that an expansion has parents if and only if it has a zero. To operatively find a parent

of an expansion n = x1 · · · xk not equal to n ′, we again set h being the minimum of the set

{i | xi = 0}. Since x1 is non-zero by definition, h is at least 2. The expansion n surely comes from

a single-step reduction of type ‘→’ if xh−1 = 1, and of type ‘։’ if xh−1 = 2.

From the rewrite rules (1) it also follows that the presence of a 2 is a necessary and sufficient

condition for a hyperbinary expansion to have children. �

In literature, a string x with no children with respect any set S of string-rewriting systems is

often called S-irreducible.

Assumed such notion, Proposition 2.5 can be reworded by saying that in H(n) there exists

only one RH-irreducible element: the binary expansion of n. In the same set, the expansion

n ′ without 0’s is the unique R−1
H

-irreducible element, where R−1
H

is the string-rewriting system

induced on H by

R−1 := {(10, 02), (20, 12)} ⊂ Σ∗ × Σ∗.

As for any other set made by finite sequence of objects, elements in H = ∪n>0H(n) can be

totally ordered by the shortlex ordering <SL (also known as radix or length-lexicographic order-

ing): sequences are primarily sorted by length with the shortest sequences first, and sequences

of the same length are sorted into lexicographical order. The next Proposition shows that the

string-rewriting system RH is compatible with the shortlex ordering.

Proposition 2.6. For any u and v in H(n) such that u
∗
→RH

v, we have u <SL v.

Proof. It suffices to restrict our attention to single-step reductions. They can be of three different

types:

I) 2y → 1 0y, II) x 0 2y → x 1 0y, and III) x 1 2y ։ x 2 0y, (9)

where x and y are suitable words in H. For reductions of type I) the parent is shorter than its

child. In the other two cases parent and child have the same length, but the former precedes

the latter with respect to the lexicographical order. �

Proposition 2.6 has several noteworthy consequences. Some of them concern the so-called

confluence (see [5, p. 11] for the formal definition) of RH and R−1
H

, and are framed in the next

Corollary.

Corollary 2.7. Let n be any fixed element in H(n).

i) All RH-reductions starting with n end with the binary expansion n ′′ of n.

ii) All R−1
H

-reductions starting with n end with the hyperbinary expansion n ′ ∈ H(n) without 0’s.

iii) The minimal and the maximal element in H(n) with respect to the shortlex ordering <SL are the

expansions n ′ and n ′′ respectively.
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Proof. By Proposition 2.6, the strings u1, . . . ,uk ∈ H(n) involved in the reduction

u1 →RH
· · · →RH

uk

are all distinct. It follows that u1 necessarily reaches n ′′ (the unique RH-irreducible element

by Proposition 2.5) through at most b(n) − 1 single-step reductions. The argument to prove

Part ii) is similar. The proof of Part iii) also comes from Proposition 2.5, once you note that, by

Proposition 2.6, the minimal element with respect to <SL has no ancestors, and the maximal

one has no descendants. �

3. SETTING UP THE GRAPH

We are now ready to define the oriented graph A(n) = (H(n),E(n)) announced in the In-

troduction. The set of arcs E(n) is precisely given by the set of RH-single-step reductions (9)

between hyperbinary expansions in H(n), i.e. there is an arc from the node x ∈ H(n) to y

if and only if y is a child of x with respect to RH. The definition of E(n) is well-posed by

Proposition 2.1.

To each arc in E(n) we assign one of the two following colors: color ‘→’ to RH-single-step

reductions in (9) of type I) or II), and color ‘։’ to RH-single-step reductions in (9) of type III.

We list below some properties of A(n) implied by definition or by results collected in Sec-

tion 2.

• The graph A(n) is simple, i.e. it has no loops (no node is a parent of itself) or multiple

edges (there is at most one arc connecting two nodes).

• E(n) is empty if and only if n = 2k − 1 for a suitable k ∈ N (see Corollary 2.3).

• A(n) has a single root (i.e. a node with no ancestors) given by the minimal hyperbinary

expansion n ′ (see Proposition 2.5).

• No node in A(n) is an ancestor of itself (see Proposition 2.6).

• A(n) is a flowchart, i.e. is pointed accessible in the sense of [1, p. 4]: for every node n 6= n′

there exists at least one path from the root to n (see Corollary 2.7, Part ii) ).

• The flowchart A(n) has a global sink: all paths end to the binary expansion n ′′, the

unique node without children (see Proposition 2.5 and Corollary 2.7, Part i) ).

The alphabet Σ used to compose words in H is a subset of N0. The map

ω : x1 · · · xk ∈ H 7−→ x1 + · · · + xk ∈ N.

is therefore well defined and allows us to weight each node of A(n).

A quick glimpse to RH-single-step reductions (9) is all you need to prove the following

Lemma.

Lemma 3.1. Let v ∈ H(n) be a child of u. Then ω(v) = ω(u) − 1.

By Lemma 4.1 and Corollary 2.7 we immediately get the following Proposition.

Proposition 3.2. The restriction of the map ω to H(n) has a global minimum point and a global

maximum point given by the sink n ′′ and the root n ′ respectively.
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Properties of the graph A(n) gathered so far suggest that the several nodes of A(n) can be

displayed like the vertices of a family tree. On the bottom line we put n ′, the common ancestor

of all nodes. ℓ rows above we display all nodes n such that

ω(n) = ω(n ′) − ℓ.

All children of a fixed node n will be arrayed consecutively from the left to the right in decreas-

ing shortlex ordering. The picture below visualizes the graphsA(10) andA(12). Forn 6= 2m−1,

we can use green, red and yellow to colour, respectively, the minimal hyperbinary expansion,

the binary hyperbinary expansion, and the remaining branching nodes (if existing).

122

202

1002 210

1010

A(10)
212

1012 220

1020

1100
A(12)

Thus, all nodes of A(n) are disposed along ω(n ′) − ω(n ′′) + 1 rows. Furthermore, the

presence of a fixed node n ∈ H(n) on a certain row measures how far n is from being binary

or minimal hyperbinary. In fact, after setting

i(n) = ω(n) −ω(n ′′), and j(n) = ω(n ′) −ω(n),

the expansion n is i(n) generations away from being binary, since, by Lemma 4.1, the num-

ber i(n) counts the RH(n)-single-step reductions needed to reduce n to the bynary expansion.

Analogously, n is j(n) generations away from being minimal hyperbinary.

Such criteria to establish a kind of distance from binarity and from minimal-hyperbinarity are

finer than simply counting the number of 2’s in n, and more mathematically significant than

the shortlex ordering: the expansions 122 and 202 in H(10) share the same number of 2’s, but

3 = i(122) 6= i(202) = 2 and 0 = j(122) 6= j(202) = 1;

Moreover, in H(20) we have

1212 <SL 2100 <SL 10012 <SL 10100,

yet the expansion 2100 is closer to be binary than 10012 since

1 = i(2100) < i(10012) = 2.

We now state two Propositions that, in some way, geometrically translate the statement of

Proposition 2.2.
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Proposition 3.3. For eachm ∈ N, there is a oriented graph isomorphism betweenA(m) andA(2m+1).

Proof. The map

ψ : m = x1 · · · xk ∈ H(m) 7−→ x1 · · · xk 1 ∈ H(2m + 1)

is a bijection, and preserves relations: if y is a child of x, then ψ(y) is a child of ψ(x) through a

single-step relation of the same type. The proof ends once you note that the word xk 1 has no

descendants; hence the expansions m and ψ(m) have the same number of children. �

The following Proposition involves the notion of a graph monomorphism consisting, from our

point of view, of an injective vertex map respecting connectivity between vertices and colors of

the arcs.

Proposition 3.4. The maps

φ ′ : x1 · · · xk ∈ H(m) 7−→ x1 · · · xk 0 ∈ H(2m)

and

φ ′′ : x1 · · · xk ∈ H(m − 1) 7−→ x1 · · · xk 2 ∈ H(2m)

induce two graph monomorphisms from A(m) and from A(m − 1) respectively to A(2m). Moreover

φ ′(H(m)) ∪ φ ′′(H(m − 1)) = H(2m). (10)

Proof. The proof is straightforward. Equation (10) comes from the fact that, being the integer

2m even, no hyperbinary expansions of 2m end with 1. �

Proposition 3.4 says that each graph A(2m) is essentially made by two pieces: we find a

subgraph isomorphic to A(m− 1) standing somewhat on the left; its nodes are given by the set

φ ′′(H(m − 1)). The remaining nodes in A(2m) and the arcs connecting them form a subgraph

isomorphic to A(m). The situation is visualized in the picture below, where the red-shaded

subgraph of A(18) is isomorphic to A(8), and the blue-shaded one is isomorphic to A(9).

1122

1202

2002 1210

10002 2010

10010

A(18)

By looking at the picture above, the reader has probably noted that all arcs in E(18) from

the red-shaded subgraph to the blue-shaded one are of the same type. This is actually a gen-

eral feature of all graphs A(2m) with m ∈ N, in a sense made precise by Proposition 3.5. Its

statement concerns bridging arcs, i.e. edges in A(2m) from a node in φ ′(H(m − 1)) to a node in

φ ′′(H(m)).

Proposition 3.5. Fixed any integer m > 2, all bridging arcs in E(2m) are equally colored. They are of

type ‘→’ ifm is odd, and of type ‘։’ otherwise.
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Proof. A node x1 · · · xk−1 2 ∈ φ ′′(H(m − 1)) has a child in φ ′′(H(m)) if and only if xk−1 6= 2.

In this case, the color of the bridging arc connecting them is ‘→’ if and only if xk−1 = 0. This

happens wheneverm − 1 is even. �

As a final remark on the general properties of the sequence of graphs {A(n) |n > 0 }, we

point out that its elements are not necessarily planar, the minimal integer such that A(n) is

non-planar being n = 36.

4. LONG VS. SHORT EXPANSIONS

A hyperbinary expansion x1 · · · xk of n is said to be short or long whether k = ⌊log2 n⌋ or

⌊log2 n⌋ + 1. In [2, Section 3], A. De Luca and C. Reutenauer explain why these are the only

possible lengths.

Lemma 4.1. The hyperbinary expansions of n of type 2 x2 · · · xh and 1 2 x3 · · · xh are necessarily short.

In other words, h is necessarily equal to ⌊log2 n⌋.

Proof. In the graphA(n), the node 2 x2 · · · xh has 1 0 x2 · · · xh among its children. Since the latter

has a longer length, the former is short. Analogously, the presence of the node 1 2 x3 · · · xh

implies the existence in A(n) of the subgraph

1 2 x3 · · · xh ։ 2 0 x3 · · · xh → 1 0 0 x3 · · · xh (11)

isomorphic toA(4). The third expansion in (11) is longer of its (necessarily short) ancestors. �

Proposition 4.2. Let n be any positive integer not equal to a power of 2. The long hyperbinary expan-

sions, together with those arcs in E(n) connecting them, form a subgraph L(n) of A(n) isomorphic to

A(n − 2k), where k = ⌊log2 n⌋.

Proof. By Lemma 4.1, a typical long hyperbinary expansion of n is either of type 1 0 x3 · · · xk+1

or 1 1 x3 · · · xk+1, where k = ⌊log2 n⌋. The one-to-one map between the nodes of L(n) and those

in A(n − 2k) is given by

ξ : 1 x2 x3 · · · xk+1 7−→ xh̄ · · · xk+1,

where h̄ = min { h > 2 | xh 6= 0 }. Such h̄ exists since, in our hypotheses, n is not a power of 2.

By construction, whenever the nodes n1 and n2 in L(n) are connected by an arc, ξ(n1) and

ξ(n2) in A(n − 2k) are connected by an arc of the same color. �

As an example, consider the case n = 20. Since 24 < 20 < 25, according to Proposition 4.2

the subgraph of A(20) of long expansions is isomorphic to A(4), as visualized below.

1212

2012 1220

202010012

10020 2100

10100

A(20)
12

20

100

A(4)
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Corollary 4.3. Let n be any positive integer, and k = ⌊log2 n⌋. The number ℓ(n) of long hyperbinary

expansions of n is given by b(n − 2k).

Proof. The only case left aside by Proposition 4.2 is when n = 2k for some k ∈ N0. We have to

prove that each n = 2k has just b(0) = 1 long expansion. This is trivially true for k 6 1.

When k > 1, we note that the nodes of the tree A(2k) are

1 0 . . . 0
︸ ︷︷ ︸

k times

; 2 0 . . . 0
︸ ︷︷ ︸

k-1 times

; 1 . . . 1
︸ ︷︷ ︸

h times

2 0 . . . 0
︸ ︷︷ ︸

k-h-1 times

for 0 < h < k.

Among such expansions only the first one is long. �

When n = 2k − 1, Corollary 4.3 says that the number of long expansions is equal to

b(2k − 1 − 2k−1) = b(2k−1 − 1) = 1.

In fact the unique hyperbinary expansion of 2k − 1 is long.

5. TREES

The fundamental group π1(G) of any connected graph G is a free group. The number v(G)

of its generators is called cyclomatic number or circuit rank of G.

Proposition 5.1. Let n be a positive integer not equal to 2m − 1. The following formula holds.

v(A(n)) =
∑

n 6=n ′′

(o(n) − 1),

where o(n) is the outdegree of n, i.e. the number of its children.

Proof. It is well known (see, for instance, [9, p. 67]) that

v(A(n)) = |E(n)| − (|H(n)| − 1).

The cardinality of E(n) is given by
∑

n 6=n ′′ o(n), since n ′′ has no children. The result follows

now easily. �

Lemma 5.2. The outdegree of a node n = x1 · · · xk ∈ H(n) is given by the number of its blocks of 2’s.

Proof. To simplify notation, we represent n by the word 0 x1 · · · xk ∈ Σ∗, and set x0 = 0.

Suppose n contains ℓ blocks of 2’s, and let xih be the first 2 of the h-th block. Since the el-

ements xi1−1, . . . , xiℓ−1 are all in the set {0, 1}, there are precisely ℓ different R-single-step re-

ductions operating on n, the h-th of them transforming the word xih−1 2 into yih−1 0, where

yih−1 = xih−1 + 1. �

Corollary 5.3. Let ℓ be the number of blocks of 2’s in the minimal hyperbinary expansion n ′ ∈ H(n).

We have v(A(n)) > ℓ − 1.

Proof. Immediate from Proposition 15 and Lemma 5.2. �

We are now ready to identify those integers n ∈ N such that v(A(n)) = 0.

Theorem 5.4. The graph A(2m) is a tree if and only ifm = 2t − ǫ for a suitable (t, ǫ) ∈ N× {0, 1}.
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Proof. By Corollary 5.3, the cyclomatic number v(A(2m)) is possibly 0 only if the minimal hy-

perbinary expansion n ′ ∈ H(2m) is equal to

1 . . . 1
︸ ︷︷ ︸

h times

2 . . . 2
︸ ︷︷ ︸

k-h times

for 0 6 h < k.

When h = 0, we get m = 2k − 1. The binary expansion of 2m is 1 . . . 1
︸ ︷︷ ︸

k times

0, and the graph A(2m)

is actually a tree with k+ 1 nodes.

Suppose now h > 0. If k−h = 1, we getm = 2h, and A(2m) is again a tree with k+ 1 nodes.

Suppose finally h > 0 and k− h > 1. In this case n ′ = x 1 2 2y for suitable x and y in Σ∗. This

implies that A(2m) contains a subgraph isomorphic to either G(1) or G(2) below

122y

202y

1002y 210y

1010y

G(1) ∼= A(10)
1122y

1202y

2002y 1210y

2010y

G(2)

depending whether x is empty or not. In both occurences, 1 = v(G(i)) 6 v(A(m)), hence A(m)

is not a tree. �

Theorem 5.5. The graph A(n) is a tree if and only if there exists (s, t) ∈ N0 × N0 such that

n = 2s+t+1 2s − 1 > 0. (12)

Proof. Suppose first n be even. By Theorem 5.4, the graph A(n) is a tree if and only if n =

2(2t − ǫ) for a suitable (t, ǫ) ∈ N × {0, 1}, and these are precisely the numbers appearing in

Equation (12) when s = 0.

Suppose now n be odd. By Corollary 5.3, the graphA(n) is possibly a tree only if the number

of blocks of 2’s in the minimal hyperbinary expansion n ′ of n is at most 1. If there are no 2’s in

n ′, then n = 2s − 1 for a suitable s > 0, and A(n) is actually a tree (with a single node and no

arcs). Such class of integers is obtained in Equation (12) by setting t = 0 and read ‘ ’ as ‘−’.

If instead

n ′ = x1 · · · xk 2 1 . . . 1
︸ ︷︷ ︸

s times

,

then the graph A(n) is isomorphic to A(m) with

m =
n − 2s + 1

2s
,

as a consequence of Proposition 3.3.
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Note that m is even, since its minimal hyperbinary expansion end with a 2. By Theorem 5.4

the graphA(m) is a tree if and only ifm = 2(2t−ǫ) for a suitable (t, ǫ) ∈ N×{0, 1}. Equation (12)

(with t > 0) now comes by solving

2(2t − ǫ) =
n − 2s + 1

2s
(13)

with respect to n. �

Remark Accomplished the proof of Theorem 5.5, the careful reader may have some doubts

whether the graphs A(2s+1 + 2s − 1) for s > 0 are actually trees. The answer, coherently with

the statement of Theorem 5.5, is positive. It can be verified directly, or by recognizing that the

integers at hand come out from Equation (13) when t = 1 and ǫ = 1; if fact they can also be

written as 2s+2 − 2s − 1.

Theorems 5.5 holds to a nice formula involving both the function b and the map ω.

Corollary 5.6. Let n be any positive integer. Denoted by n ′ and n ′′ the root and the sink of A(n), the

following inequality holds.

b(n) > ω(n ′) −ω(n ′′) + 1. (14)

The equality in (14) holds if and only if n = 2s+t+1 2s − 1 for a suitable (s, t) ∈ N0 × N0.

Proof. Remember that the number ω(n ′) − ω(n ′′) + 1 counts the rows along which the b(n)

nodes of A(n) are arrayed. Moreover, there is a single node on each row if and only if A(n) is

a tree. Now apply Theorem 5.5. �

6. WHEN π1(A(n)) IS Z

Let S1 be the set of integers n > 0 such that v(A(n)) = 1. The minimal n in S1 is 10, followed

by 12. Proposition 3.3 implies that

T = { 2ℓ(12 1) − 1 | ℓ > 0 } ⊆ S1. (15)

We intend to show that the set T is actually equal to S1.

Fixed any n ∈ S1, we know by Corollary 5.3 that the number of blocks of 2’s in the root n ′ of

A(n) is either 1 or 2. If the former is the case, we can assume that n ′ is represented by the word

1 . . . 1
︸ ︷︷ ︸

h times

2 . . . 2
︸ ︷︷ ︸

k times

1 . . . 1
︸ ︷︷ ︸

ℓ times

,

where h > 0 and k > 1 (otherwise A(n) would be a tree). It follows that A(n) contains a

subgraph G(3) rooted in

1 . . . 1
︸ ︷︷ ︸

h times

2 2 ,

and hence isomorphic to A(2h+2 + 2). By a direct analysis we get

h = v(G(3)) 6 v(A(n)) = 1.

The cyclomatic number of the graph A(n) when

n ′ = 1 2 . . . 2
︸ ︷︷ ︸

k times

1 . . . 1
︸ ︷︷ ︸

ℓ times
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can be computed by hand, and turns out to be k− 1. Thus we can infer that k = 2. Hence

n = 2ℓ(10 + 1) − 1 = 2ℓ(12 − 1) − 1 ∈ T

as we claimed.

Assume now n ′ having two blocks of 2’s, separated by a block of 1’s of length k > 0. By

Lemma 5.2, the expansion n ′ has two children. All the others branching nodes in A(n) have

consequently just one child by Proposition 15, and hence just one block of 2’s. This is only

possible if

n ′ = 2 1 2 1 . . . 1
︸ ︷︷ ︸

ℓ times

,

i.e. n = 2ℓ(12 + 1) − 1 ∈ T .

By the equality of sets T = S1 we also deduce that all graphs A(n) such that π1(A(n)) = Z

are either isomorphic to A(10) or A(12).
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