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Abstract
It is shown that the deterministic infinite trigonometric products∏

n∈N

[
1− p+ p cos

(
n−st

)]
=: Clp;s(t)

with parameters p ∈ (0, 1] & s > 1
2 , and variable t ∈ R, are inverse Fourier

transforms of the probability distributions for certain random series Ωζ
p(s) tak-

ing values in the real ω line; i.e. the Clp;s(t) are characteristic functions of the
Ωζ
p(s). The special case p = 1 = s yields the familiar random harmonic se-

ries, while in general Ωζ
p(s) is a “random Riemann-ζ function,” a notion which

will be explained and illustrated — and connected to the Riemann hypoth-
esis. It will be shown that Ωζ

p(s) is a very regular random variable when
p ∈ (0, 1

2) & s > 1
2 , having an infinitely-often differentiable probability density

function (PDF) on the ω line. More precisely, an elementary proof is given
that when p ∈ (0, 1

2) & s > 1
2 , then there exists Kp;s > 0, and εp;s(|t|) with

|εp;s(|t|)|≤Kp;s|t|1/(s+1), and Cp;s :=−1
s

∫∞
0 ln(1− p+ p cos ξ) 1

ξ1+1/sdξ, so that

∀ t ∈ R : Clp;s(t) = exp
(
−Cp;s |t|1/s + εp;s(|t|)

)
;

the regularity of Ωζ
p(s) follows. Incidentally, this theorem confirms a surmise by

Benoit Cloitre, that lnCl1/3;2(t) ∼ −C
√
t (t→∞) for some C > 0. Graphical

evidence suggests that Cl1/3;2(t) is a chaotic (empirically unpredictable) func-
tion of t. This is reflected in the rich structure of the pertinent PDF, the Fourier
transform of Cl1/3;2, and illustrated by random sampling of the Riemann-ζ
walks, whose branching rules allow the build-up of fractal-like structures.

c©2016/17 The authors. Reproduction for non-commercial purposes is permitted.
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1 Introduction and Summary
The Riemann hypothesis is perhaps the best-known open problem of mathematics.
It hypothesizes that all non-real zeros of Riemann’s zeta function ζ(s), s ∈ C, lie on
the straight line 1

2
+ iR, where ζ(s) is obtained from Euler’s real (Dirichlet-)series

ζ(s) =
∑
n∈N

1

ns
, s > 1, (1)

by analytic continuation to the complex plane; see [Edw74] for a good introduction.
The importance of Riemann’s hypothesis derives from the fact that its truth would
confirm deep putative insights into the distribution of prime numbers amongst the
natural numbers — a holy grail of number theory, and a feat which would have
applications chiefly in encryption, i.e. security issues (to whom they may concern).
It continues to fascinate the mathematical minds of professionals and amateurs alike.

The latter group of mathematicians includes Benoit Cloitre, who has been docu-
menting his experimental approach to number theory in general, and to the Riemann
hypothesis in particular, on his homepage [Clo16]. Some years ago he pondered (“for
no particular reason”)1 the deterministic infinite trigonometric product∏

n∈N

[
2

3
+

1

3
cos

(
t

n2

)]
=: PCl(t), t ∈ R, (2)

which appears to be fluctuating chaotically about some monotone trend; see Fig. 1
and Fig. 2 below. Cloitre “guessed” that lnPCl(t) ∼ −C

√
t when t → ∞ for some

constant C > 0, which captures the trend asymptotically, and he asked us whether we
can prove this. The proof requires only elementary undergraduate mathematics and
will be given in section 5. But why does PCl(t) fluctuate apparently chaotically about
its monotone trend? And what does this have to do with the Riemann hypothesis?

To answer these questions we note (see section 4) that any trigonometric product∏
n∈N

[
1− p+ p cos

(
t

ns

)]
=: Clp;s(t), t ∈ R, p ∈ (0, 1] & s >

1

2
, (3)

is the characteristic function of a “random Riemann-ζ function” Ωζ
p(s), i.e. Clp;s(t) ≡

Exp
(

exp
(
itΩζ

p(s)
))

=: Φ
Ωζp(s)

(t), where “Exp” means expected value. Here,

Ωζ
p(s) :=

∑
n∈N

Rp(n)
1

ns
, s >

1

2
, p ∈ (0, 1], (4)

where {Rp(n) ∈ {−1, 0, 1}}n∈N is a sequence of independent and identically dis-
tributed (i.i.d.) random coefficients, generated with the help of a pair of independent
coins; see section 2. We draw heavily on the probabilistically themed publications

1Private communication by B.C. on 02.2016; we took the liberty to attach Cl at Cloitre’s P(t).
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by Kac [Kac59], Morrison [Mor95], and Schmuland [Sch03], in which the random
harmonic series Ωharm ≡ Ωζ

1(1) is explored; in [Sch03] also the special case Ωζ
1(2) is

explored. We register that p = 1 and s = 1 in Clp;s(t) yields (cf. sect.5.2 in [Mor95])

ΦΩharm(t) =
∏
n∈N

cos
t

n
, (5)

while Cloitre’s PCl(t) is the special case p = 1
3
and s = 2 in Clp;s(t).

Both ζ(s) and −ζ(s) are possible outcomes for such random Riemann-ζ functions
Ωζ
p(s), namely the extreme cases in which each Rp(n), n ∈ N, comes out 1, respec-

tively −1. While this is trivial, we anticipate that also 1/ζ(s) is a possible outcome
for Ωζ

p(s), which is nontrivial and going to be interesting!
After introducing the notion of typicality for the random walks associated to

Ωζ
p(s) we will ask how typical ζ(s) and 1/ζ(s) are. It should come as no surprise that

ζ(s) is an extremely atypical outcome of a random Riemann-ζ walk, and so is −ζ(s).
However, for the particular value of p = 6/π2, its reciprocal 1/ζ(s) does exhibit
several aspects of typicality. Intriguingly, as pointed out to us by Alex Kontorovich, if
1/ζ(s) also exhibits some particular aspect of typicality, then the Riemann hypothesis
is true, and false if not ! This can be extracted from [Edw74], see section 3.

Which of the many aspects of typicality are exhibited by 1/ζ(s) is an interesting
open question which may go beyond settling the Riemann hypothesis. We will use a
paradox to argue, though, that 1/ζ(s) cannot possibly exhibit each and every aspect
of typicality, i.e. 1/ζ(s) cannot be a perfectly typical random Riemann-ζ walk.

Curiously, a well-known structure emerged unexpectedly during our inquiry into
Cloitre’s surmise that lnCl1/3;2(t) ∼ −C

√
t (t→∞) for some C > 0. Using elemen-

tary analysis we will prove in section 5 that if p ∈ (0, 1
2
) & s > 1

2
, then there exists

Kp;s > 0, and εp;s(|t|) with |εp;s(|t|)| ≤ Kp;s|t|1/(s+1), such that

∀ t ∈ R : Clp;s(t) = exp
(
−Cp;s |t|1/s + εp;s(|t|)

)
(6)

with
Cp;s = −1

s

∫ ∞
0

ln(1− p+ p cos ξ)
1

ξ1+1/s
dξ; (7)

the integral will be evaluated in terms of a rapidly converging series expansion. This
result not only vindicates Cloitre’s surmise as a corollary (and more; see below), we
note that the factor exp

(
−Cp;s |t|1/s

)
at r.h.s.(6) in itself is a characteristic function

— of so-called stable laws, first studied by Paul Lévy; see [PrRo69]. Stable laws exist
for all s ≥ 1/2, but here s = 1/2 is ruled out because Cp;1/2 = ∞. Be that as it
may, stable Lévy laws were discovered by answering a completely different question
[PrRo69, GaFr03], and the probabilistic reason why they would feature in the analysis
of our random Riemann-ζ functions is presently obscure. Some food for thought!
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Lest the reader gets the wrong impression that random Riemann-ζ functions
were small perturbations of Lévy random variables, we emphasize that they are not!
Although the “error term” εp;s(|t|) in (6) is small relative to |t|1/s when |t| is large
enough, exp(εp;s(|t|)) is not approaching 1 and in fact responsible for relatively large
chaotic fluctuations of Clp;s(t) about the Lévy trend; see Fig. 1 & Fig. 2.

In section 6 we will see that the “empirically unpredictable” behavior of Cl1/3;2(t)

is reflected in a fractal-like structured Fourier transform %ζ1/3;s(dω) of Cl1/3;2(t) (sec-
tion 4), the probability distribution of Ωζ

1/3(s), also illustrated in section 2 by random
sampling of the Riemann-ζ walks. We will show, though, that %ζp;s(dω) is not sup-
ported on a true fractal when p ∈ (0, 1

2
). Random variables supported on a fractal

are discussed in [DFT94], [Mor95], and [PSS00]; see our Appendix on power walks.
The remainder of our paper supplies the details of our inquiry, and we conclude

with a list of intriguing open questions.
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2 Random Riemann-ζ functions
Since the random Riemann-ζ functions Ωζ

p(s) considered in this article are of the
type (4), with the random coefficients Rp(n) ∈ {−1, 0, 1} generated by a two-coin
tossing process, all that needs to be done to complete their formal definition is to
explain this coin tossing process. In this vein, let’s write Rp(n) = σ(n)|Rp(n)|, where
σ(n) ∈ {−1, 1} and |Rp(n)| ∈ {0, 1}. One now repeatedly tosses both, a generally
loaded coin with Prob(H) = p ∈ (0, 1] (where “H” means “head”), and a fair one,
independently of each other and of all the previous tosses. The n-th toss of the
generally loaded coin decides whether |Rp(n)| = 0 or |Rp(n)| = 1; let’s stipulate that
|Rp(n)| = 1 when H shows, which happens with probability p, and |Rp(n)| = 0 else.
The concurrent and independent toss of the fair coin decides whether σ(n) = +1 or
σ(n) = −1, either outcome being equally likely. Incidentally, we remark that the
R1/3(n) can also be generated by rolling a fair die — if the n-th roll shows 1, then
R1/3(n) = 1, if it shows 6 then R1/3(n) = −1, and R1/3(n) = 0 otherwise (which is
the case 2/3 of the time, in the long run). Also, it is clear that when p = 1 then the
loaded coin is superfluous, i.e. R1(n) ∈ {−1, 1} is generated with a single, fair coin.

That’s it. Now let us understand which type of objects we have defined.

2.1 Random Riemann-ζ walks and their kin

Evaluating a random Riemann-ζ function Ωζ
p(s) for given p ∈ (0, 1] at any particular

s > 1
2
turns (4) into a numerical random series. Recalling that an infinite series is

defined as the sequence of its partial sums, viz.

Ωζ
p(s) =

{
N∑
n=1

Rp(n)
1

ns

}
N∈N

, (8)

and interpreting
∑N

n=1Rp(n) 1
ns

as the position of a walker after N random steps
Rp(n) 1

ns
, n = 1, ..., N , we can identify such an evaluation of Ωζ

p(s) for given p ∈ (0, 1]
at a particular s > 1

2
with a random walk on the real ω line. If the n-th toss of

the pair of coins comes out on “move,” the walker moves 1/ns units in the direction
determined by the fair coin; otherwise he stays put (note that such a “non-move” is
called a “step,” too). Starting at ω = 0, he keeps carrying out these random steps ad
infinitum. We call this a “random Riemann-ζ walk,” and its outcome (whenever it
converges) is a “random Riemann-ζ function” evaluated at s. Absolute convergence
is guaranteed for each and every such walk when s > 1 (because the series (1) for ζ(s)
converges absolutely for s > 1), and by a famous result of Rademacher conditional
convergence holds with probability 1 when s > 1

2
, see [Kac59], [Mor95], and [Sch03].

Since the harmonic series diverges logarithmically, the outcome of the random walks
with 1

2
< s ≤ 1 is distributed over the whole real line; see [Sch03] for s = 1.
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To have some illustrative examples, we first pick s = 2 and p = 1
3
. In Fig. 3 we

display (in black) the fractal tree (cf. [Man77], chpt.16; note its self-similarity) of
all possible walks for s = 2 when p ∈ (0, 1), plotted top-down to resemble a Galton
board figure. (The tree is truncated after 9 steps, for more steps would only produce
a black band between the current cutoff and the finish line). Also shown (in red) is
a computer-generated sample of 7 random Riemann-ζ walks with p = 1

3
& s = 2.

Fractal tree & 7 walks)

We also exhibit a histogram of the endpoints of 105 walks with 1000 steps (Fig. 4).

Histogram (s = 2, p = 1
3
)

We next pick s = 1 and two different choices of p, namely p = 1
3
and p = 1.

For s = 1 the random Riemann-ζ walks become so-called “random Harmonic Series,”
which have been studied by Kac [Kac59], Morrison [Mor95], and Schmuland [Sch03]
in the special case that p = 1. When p 6= 1 these harmonic random walks are
interesting variations on their theme. We refrain, though, from trying to display the
infinitely long harmonic random walk tree, for it is difficult to illustrate it faithfully.

6



Yet the histograms of the endpoints of 105 harmonic walks with 103 steps when p = 1
3

(Fig. 5) and p = 1 (Fig. 6) are easily generated.

Histogram (s = 1, p = 1
3
)

Histogram (s = 1, p = 1)

Our Fig. 6 resembles the smooth theoretical PDF of the endpoints of the harmonic
walk with p = 1, displayed in Fig. 3 of [Mor95] and Fig. 1 of [Sch03], quite closely;
cf. the histogram based on 5, 000 walks with 100 steps displayed in Fig. 4 of [Mor95].
When p = 1 one is always on the move, so the histogram is quite broad. Our Fig. 5
indicates that reducing p (in this case to p = 1/3) will lead to the build-up of a
“central peak.” The peak is even more pronounced in our Fig. 4 (where p = 1/3 and
s = 2) which reveals a rich, conceivably self-similar structure with side peaks, and
side peaks to the side peaks. Our Fig. 4 also makes one wonder whether the peaks,
if not fractal, could indicate that the first or second derivative of a theoretical PDF
might blow up. These questions will be investigated in section 5.
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But first, after having introduced random Riemann-ζ functions, at this point it is
appropriate to inject their truly intriguing relationship with the Riemann hypothesis.

3 Typicality and the Riemann Hypothesis
Loosely speaking, a typical feature of a random Riemann-ζ walk is a feature which ide-
ally occurs “with probability 1” (strong typicality), or at least “in probability” (weak
typicality); see below. A (strongly or weakly) perfectly typical random Riemann-ζ
walk is an empirical outcome of a random Riemann-ζ function evaluated at s which
exhibits all (strong or weak) typical features.

Since coin tosses are involved, for simplicity we look at the example of the set of
all infinitely long sequences of fair coin tosses first.

3.1 Typicality for coin toss sequences

We identify the events H with 1 and T with 0, and introduce the Bernoulli random
variable B ∈ {0, 1}, with Prob(B = 1) = 1

2
. Let Bn be an identical and independent

copy of B. Then by the strong law of large numbers (see [PrRo69]) one has

Prob
(

lim
N→∞

1

N

N∑
n=1

Bn =
1

2

)
= 1 (9)

whereas the weak law of large numbers (see [PrRo69]) says that for any ε > 0,

lim
N→∞

Prob
(∣∣∣∣ 1

N

N∑
n=1

Bn −
1

2

∣∣∣∣ > ε

)
= 0. (10)

Let bn ∈ {0, 1} denote the outcome of the coin toss Bn. Then based on either the
strong, or the weak law of large numbers we say that “ limN→∞

1
N

∑N
n=1 bn = 1

2
” is

a strongly, or weakly, typical feature for such an empirical sequence of outcomes
{bn}n∈N. Of course, not every empirical sequence {bn}n∈N does exhibit this typ-
ical feature; take, for instance, {bn}n∈N = {1, 1, 1, 1, ...}. We therefore say that
{1, 1, 1, 1, ...} is an atypical empirical sequence for the fair coin tossing process. More
generally, any empirical sequence {bn}n∈N for which

∣∣∣ 1
N

∑N
n=1 bn −

1
2

∣∣∣ > ε occurs in-
finitely often is said to be an atypical empirical sequence for this coin tossing process.

Next, consider the sequence {bn}n∈N = {1, 0, 1, 0, 1, 0, ...}. Could this be a per-
fectly typical sequence? Clearly, limN→∞

1
N

∑N
n=1 bn = 1

2
, but anyone who has ever

flipped a coin a dozen times, again and again, knows that “typically” it doesn’t hap-
pen to obtain six consecutive 1-0 pairs — here we borrow the common sense usage

8



of “typicality;” indeed, on average the alternating pattern of six consecutive 1-0 pairs
occurs less than once in 4,000 repetitions of a dozen coin tosses, and the likelihood
of k 1-0 pairs decreases to zero with k increasing to infinity in a trial of length 2k.

Yet, in an infinite sequence of coin tosses, with probability 1 the pattern of six
consecutive 1-0 pairs occurs infinitely often; more generally, for any k ∈ N, with
probability 1 a pattern with k consecutive 1s, or a pattern with k consecutive 0s, as
well as k consecutive 1-0 pairs, all occur infinitely often. Thus recurrences of such
k-patterns are strongly typical features of this coin tossing process.

Let’s look at one more strongly typical feature — a variation on this theme will
turn out to be related to the Riemann hypothesis. Namely, since by either the weak
or the strong law of large numbers we can informally say that when N is large enough
then

∑N
n=1 bn ≈

1
2
N , i.e.

∑N
n=1(2bn−1) ≈ 0 in a perfectly typical empirical sequence,

we next ask for the typical size of the fluctuations about this theoretical mean, i.e.
how large can they be, typically? Khinchin’s law of the iterated logarithm states that
for any ε > 0, with probability 1 the event |

∑N
n=1(2Bn − 1)| > (1 − ε)

√
2N ln lnN

will occur infinitely often, while the event |
∑N

n=1(2Bn − 1)| > (1 + ε)
√

2N ln lnN
has probability 0 of occurring infinitely often in the sequence {Bn}n∈N. Thus,∣∣∣ N∑

n=1

(2bn − 1)
∣∣∣ > (1− ε)

√
2N ln lnN (11)

occurs for infinitely many N in a perfectly typical empirical sequence {bn}n∈N, and∣∣∣ N∑
n=1

(2bn − 1)
∣∣∣ > (1 + ε)

√
2N ln lnN (12)

will happen at most finitely many times.
Countlessly many more features occur with probability 1, many of them trivially

(like Prob(
∑N

n=1Bn < N+ε) = 1), but many others not, and some of them are deep.
This makes it plain that it is impossible, or at least extremely unlikely, that anyone
will ever give an explicit characterization of a perfectly typical empirical sequence of
coin tosses. (It is even conceivable that no such sequence exists!) By contrast, once
a particular feature has been proven to occur with probability 1 (the strong version),
or in probability (the weak version), it is straightforward to ask whether a given
empirical sequence exhibits this particular aspect of typicality.

We are now armed to address the connection of the Riemann hypothesis with the
notion of typicality of random Riemann-ζ functions.

9



3.2 Typicality for random Riemann-ζ functions

We begin by listing a few typical features of random Riemann-ζ walks. Let rp(n) ∈
{−1, 0, 1} denote the outcome of the random variable Rp(n), and for given p ∈ (0, 1]
and s > 1

2
let ωζp(s) denote the outcome for the random Riemann-ζ walk Ωζ

p(s), i.e.

ωζp(s) =

{
N∑
n=1

rp(n)
1

ns

}
N∈N

. (13)

Then the fair coin tossing process of the previous subsection now yields that

lim
N→∞

1

N

N∑
n=1

rp(n) = 0 (14)

is a feature typically exhibited by an outcome ωζp(s), independently of p and s. Next,

lim
N→∞

1

N

N∑
n=1

|rp(n)| = p (15)

is a p-dependent feature typically exhibited by an ωζp(s), independently of s. Lastly,
Rademacher’s result mentioned above actually shows that typically

lim
N→∞

N∑
n=1

rp(n)
1

ns
= ωζp(s) (16)

exists on the real ω line whenever s > 1
2
. All these are strongly typical features.

We now inquire into the typicality of the following outcomes of random Riemann-ζ
functions with s > 1

2
: Riemann’s ζ-function (1) itself, viz. ζ(s) =

∑
n∈N 1/ns under-

stood as a (not necessarily convergent) sequence of its partial sums; its reciprocal

1

ζ(s)
=
∑
n∈N

µ(n)
1

ns
, (17)

where µ(n) ∈ {−1, 0, 1} is the Möbius function (see [Edw74]); and also

ζ(2s)

ζ(s)
=
∑
n∈N

λ(n)
1

ns
, (18)

10



where λ(n) ∈ {−1, 1} is Liouville’s λ-function (see [Slo64]). All are possible outcomes
of a random Riemann-ζ walk with s > 1

2
, any2 p ∈ (0, 1). In terms of the outcomes

rp(n) of the coin tossing process, Riemann’s zeta function corresponds to rp(n) = 1
for all n ∈ N, its reciprocal to rp(n) = µ(n), and the ratio ζ(2s)/ζ(s) to rp(n) = λ(n).
Can any of these ωζp(s) be perfectly typical outcomes, at least for some p values?

As to ζ(s) itself, it is clear that it must be atypical, since rp(n) = 1 for all n ∈ N
manifestly violates the p- and s-independent typicality feature (14). Yet ζ(s) does
not necessarily violate each and every aspect of typicality! For instance, if p = 1
then (15) holds for ζ(s) (though not for any other p ∈ (0, 1)). Moreover, while the
sequence of its partial sums diverges to infinity when s ∈ (1

2
, 1] in violation of the

typicality feature (16), this feature is verified by ζ(s) if s > 1. In any event, since
ζ(s) is an extreme outcome, it is intuitively clear that it will violate most aspects of
typicality — in this sense, we say that ζ(s) is extremely atypical for all p ∈ (0, 1].

On to its reciprocal. It is known that the Prime Number Theorem3 is equivalent
to the actual frequencies of the values µ(n) = 1 and µ(n) = −1 being equal in the
long run, so 1/ζ(s) exhibits the typicality feature (14). It is also known that the
actual frequency of values µ(n) 6= 0 equals 1/ζ(2) (= 6/π2) in the long run, so 1/ζ(s)
also exhibits the typicality feature (15) if p = 1/ζ(2) (though clearly not for any
other p value). Furthermore, 1/ζ(s) satisfies the typicality feature (16) for all s > 1

2
.

Could 1/ζ(s) perhaps be a perfectly typical random Riemann-ζ function for all s > 1
2

when p = 1/ζ(2)? Recall that this would mean that for each s > 1
2
the pertinent

actual walk is a perfectly typical walk, i.e. a walk which exhibits all features of the
theoretical random-walk law which occur with probability 1 (or at least in probability).

Similarly, the Prime Number Theorem is equivalent to the actual frequencies of
the values λ(n) = 1 and λ(n) = −1 being equal in the long run, so also the ratio
ζ(2s)/ζ(s) exhibits the typicality feature (14). Furthermore, if (and only if) p = 1
then ζ(2s)/ζ(s) exhibits the typicality feature (15). Lastly, ζ(2s)/ζ(s) also exhibits
the typicality feature (16) for all s > 1

2
. Could also ζ(2s)/ζ(s) perhaps be a perfectly

typical random Riemann-ζ function for all s > 1
2
when p = 1?

A moment of reflection reveals that this would be truly paradoxical : if 1/ζ(s) and
/ or ζ(2s)/ζ(s) are perfectly typical random Riemann-ζ functions for the mentioned
p-values, then one can learn a lot about them by studying what is typical for random
walks with those p-values, without ever looking at 1/ζ(s) or ζ(2s)/ζ(s). Of course,
if one learns something about 1/ζ(s) and / or ζ(2s)/ζ(s), then one also learns some-
thing about ζ(s) — but how can one learn something about an extremely atypical

2ζ(s) and ζ(2s)/ζ(s) are possible outcomes also when p = 1, while 1/ζ(s) is not.
3This is the statement that the number of primes less than x is asymptotically given by

∫ x
2

dξ
ln ξ ,

with relative error going to zero as x→∞; see [Edw74].
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random Riemann-ζ function by studying what is typical for such random walks? The
obvious way out of this dilemma is to conclude:
Neither 1/ζ(s) nor ζ(2s)/ζ(s) can be perfectly typical random Riemann-ζ functions!

The upshot is that both 1/ζ(s) and ζ(2s)/ζ(s) must feature some atypical empir-
ical statistics, encoded in the sequences {µ(n)}n∈N and {λ(n)}n∈N. Obviously these
atypical features must be inherited from the correlations in the distribution of prime
numbers; recall that the coin tossing process, by contrast, is correlation-free. Since
the Riemann hypothesis about the location of the non-real zeros of ζ(s) is equivalent
to some detailed knowledge about the distribution of and correlations amongst prime
numbers, it may well be that some particular atypical empirical feature of 1/ζ(s) and
ζ(2s)/ζ(s) will be equivalent to the Riemann hypothesis. Which kind of feature, if
any, remains anybody’s best guess — to the best of our knowledge.

Surprisingly, and indeed intriguingly, it is known though that a certain typical
feature, if indeed exhibited by the 1/ζ(s) walk for p = 1/ζ(2), beyond the agreement
of empirical and theoretical frequencies, is equivalent to the Riemann hypothesis ! We
are grateful to Alex Kontorovich for having pointed this out to us.

Namely, let us extend the definition of the random Riemann-ζ walk 1/ζ(s) to
s = 0, not by analytic extension, but in terms of the sequence of its partial sums:

1

ζ(0)
:=

{
N∑
n=1

µ(n)

}
N∈N

. (19)

Note that for s ≤ 1
2
the 1/ζ(s) random walk may well wander off to infinity, but

the rate at which this happens is crucial (recall Khinchin’s law of the iterated log-
arithm which we mentioned in subsection 3.1). As explained in [Edw74], chpt.12.1,
Littlewood proved the equivalence:

∀ε > 0 : lim
N→∞

N−
1
2
−ε
∣∣∣ N∑
n=1

µ(n)
∣∣∣ = 0 ↔ The Riemann hypothesis is true. (20)

And as explained in [Edw74], chpt.12.3, Denjoy noted that if one assumes that the
±1 values of µ(n) are distributed as if they were generated by fair and independent
coin flips, then the central limit theorem implies that limN→∞N

− 1
2
−ε|
∑N

n=1 µ(n)| = 0
holds with probability 1. Of course, µ(n) = 0 is still determined by its formula, but
the empirical frequency of µ(n) = 0 occurrences is 1− 6/π2 in the long run, and by
adopting Denjoy’s reasoning one can show that for p = 6/π2 one has that

∀ε > 0 : Prob

(
lim
N→∞

N−
1
2
−ε
∣∣∣ N∑
n=1

R6/π2(n)
∣∣∣ = 0

)
= 1. (21)
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Thus l.h.s.(20) would be a typical feature exhibited by the 1/ζ(0) walk at p = 6/π2.
Paraphrasing Morrison: The Riemann Hypothesis is endlessly fascinating. Isn’t it?

4 The Characteristic Function of Ωζ
p(s)

We now show that the infinite trigonometric products Clp;s(t) given in (3) are char-
acteristic functions of the Ωζ

p(s), i.e. Clp;s(t) = Exp
(

exp
(
itΩζ

p(s)
))
, where “Exp” is

expected value (not to be confused with the exponential function exp). Since Ωζ
p(s)

is an infinite sum of independent random variables Rp(n)/ns (see (4)), exp
(
itΩζ

p(s)
)

is an infinite product of independent random variables exp
(
itRp(n)/ns

)
, and by a

well-known theorem in probability theory, expected values of products of indepen-
dent random variables are products of the their individual expected values. And so
we have (temporarily ignoring issues of convergence)

Exp
(

exp
(
itΩζ

p(s)
))

= Exp
(∏
n∈N

exp
(
itRp(n) 1

ns

))
=
∏
n∈N

Exp
(

exp
(
itRp(n) 1

ns

))
=
∏
n∈N

(
1
2
pe−it/n

s

+ (1− p) + 1
2
peit/n

s
)

=
∏
n∈N

(
1− p+ p cos

(
t
ns

))
≡ Clp;s(t), (22)

where we have used Euler’s formula to rewrite 1
2

(
eit/n

s
+ e−it/n

s)
= cos

(
t/ns

)
.

That was straightforward. Next we explain the relationship between the char-
acteristic functions Clp;s(t) of Ωζ

p(s) and the probability distribution %ζp;s(dω) of the
endpoints of these random Riemann-ζ walks on the ω line. Formally this is accom-
plished by realizing that Clp;s(t) is the inverse Fourier transform of %ζp;s(dω), viz.

Exp
(

exp
(
itΩζ

p(s)
))

=

∫
R
eitω%ζp;s(dω). (23)

Therefore we obtain %ζp;s(dω) by taking the Fourier transform of Clp;s(t). As recalled
in [Mor95], the Fourier transform of a product equals the convolution product (“∗”,
see below) of the Fourier transforms of its factors, and so we find

%ζp;s(dω) =
(
∗
∏
n∈N

1

2π

∫
R
e−iωt

[
1
2
pe−it/n

s

+ (1− p) + 1
2
peit/n

s
]
dt
)

(dω)

=
(
∗
∏
n∈N

[
1
2
pδ− 1

ns
+ (1− p)δ0 + 1

2
pδ 1

ns

])
(dω); (24)

13



here, “∗
∏
” denotes repeated convolution (cf. [Mor95]), and δωk is a Dirac measure.4

This distribution looks intimidating, but it only conveys what we know already!
Namely, formally (24) is the limitN →∞ of theN -fold partial convolution products5

%(N)
p;s (dω) :=

(
∗

N∏
n=1

[
1
2
pδ− 1

ns
+ (1− p)δ0 + 1

2
pδ 1

ns

])
(dω). (25)

Now recall that the convolution product, which for two integrable functions f and g is
defined by (f∗g)(ω) =

∫
f(ω′)g(ω−ω′)dω′, extends to delta measures where it acts as

follows: δa ∗ δb = δa+b (see [Mor95]). Therefore, by multiplying out the convolution
product at r.h.s.(25), using the distributivity of “∗” one finds that %(N)

p;s (dω) is a
weighted sum of point measures at the possible outcomes

ω(N)
p (s) :=

N∑
n=1

rp(n)
1

ns
∈ L(N)

p (s), rp(n) ∈ {−1, 0, 1}, (26)

of the random walk truncated after N steps,

Ω(N)
p (s) :=

N∑
n=1

Rp(n)
1

ns
. (27)

The set of locations L(N)
p (s) ⊂ R is finite, and generically6 consists of 3N distinct real

points if p ∈ (0, 1), and of 2N distinct real points if p = 1. Thus, %(N)
p;s (dω) becomes

%(N)
p;s (dω) =

∑
L(N)
p (s)

P
(
ω(N)
p (s)

)
δ
ω
(N)
p (s)

(dω); (28)

the sum runs over all ω(N)
p (s) ∈ L(N)

p (s), and P
(
ω

(N)
p (s)

)
:= Prob

(
Ω

(N)
p (s) = ω

(N)
p (s)

)
.

These probabilities P
(
ω

(N)
p (s)

)
are readily computed from the tree diagram in Fig. 3,

or by inspecting (26): if in order to reach ω(N)
p (s) you need to move m ≤ N times

(whether left or right has equal probability), then P
(
ω

(N)
p (s)

)
= (p/2)m(1 − p)N−m,

independently of s. Note that there are 2m
(
N
m

)
possible outcomes for an N -step walk

with m ≤ N moves, and indeed
∑N

m=0 2m
(
N
m

)
(p/2)m(1− p)N−m = (1− p+ p)N = 1.

4If I ⊂ R is any closed interval, then
∫
I
δωk

(dω) = 1 if ωk ∈ I and
∫
I
δωk

(dω) = 0 if ωk 6∈ I.
5We temporarily suppress the suffix “ζ” so as not to overload the notation.
6It may in principle happen for certain discrete values of s (but not of p) that different N -

step paths lead to the same outcome ω(N)
p (s). However, since s > 1

2 is a continuous parameter,
this degenerate situation is not generic. Note though that it may well happen that we humans
“inadvertendly” pick precisely those non-generic cases, for instance if degeneracy occurs when s ∈ N!
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Let’s look at two examples. After 1 step with p ∈ (0, 1) there are 3 possible
positions, and the distribution (25) with N = 1 reads

%(1)
p;s(dω) =

(
1
2
pδ−1 + (1− p)δ0 + 1

2
pδ1

)
(dω). (29)

After 2 steps with p ∈ (0, 1) we have 9 possible positions, and (25) with N = 2 reads

%(2)
p;s(dω) =

([
1
2
pδ−1 + (1− p)δ0 + 1

2
pδ1

]
∗
[

1
2
pδ− 1

2s
+ (1− p)δ0 + 1

2
pδ 1

2s

])
(dω)

=
(

1
4
p2δ−1− 1

2s
+ 1

2
p(1− p)δ−1+0 + 1

4
p2δ−1+ 1

2s

)
(dω)+(

1
2
p(1− p)δ

0− 1
2s

+ (1− p)2δ0+0 + 1
2
p(1− p)δ

0+ 1
2s

)
(dω)+(

1
4
p2δ

1− 1
2s

+ 1
2
p(1− p)δ1+0 + 1

4
p2δ

1+ 1
2s

)
(dω), (30)

which is precisely (28) with N = 2; we have facilitated the comparison by writing all
two-step walks which lead to the locations of the point masses explicitly, including
the “non-moves.” Similarly one can compute the N -th partial convolution product,
although this soon gets cumbersome and does not illuminate the process any further.

The theory of convergence of probability measures (e.g. ref.[1] in [Sch03]) shows
that the sequence of partial products (25) does converge to a probability measure
(24) if s > 1

2
. Unfortunately, the expression (24) does not readily give up its secrets.

In particular, each measure (25) is singular with respect to (w.r.t.) Lebesgue
measure dω, so could it be that the N → ∞ limit (24) is singular as well — e.g.,
supported by a fractal? And if not, when %ζp;s(dω) is absolutely continuous w.r.t. dω,
is its PDF perhaps not differentiable at its peaks, as hinted at by Fig. 4?

The answers to these questions will be extracted from Clp;s(t) in the next section.

5 The Main Theorem
In this section we use elementary calculus techniques to prove the following result:

Theorem 5.1 Let p ∈ (0, 1
2
) & s > 1

2
. Then

∀ t ∈ R : Clp;s(t) = exp
(
−Cp;s |t|1/s + εp;s(|t|)

)
, (31)

where |εp;s(|t|)| ≤ Kp;s|t|1/(s+1) for some constant Kp;s > 0, and where

Cp;s := −1

s

∫ ∞
0

ln(1− p+ p cos ξ)
1

ξ1+1/s
dξ = AsBp;s, (32)
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with

As :=

∫ ∞
0

sin ξ
1

ξ1/s
dξ = Γ

(
1− 1

s

)
cos
(
π
2s

)
(33)

(where it is understood that A1 = lims→1 Γ
(
1− 1

s

)
cos
(
π
2s

)
[= π

2
]), and

Bp;s :=
∞∑
n=0

(−1)n
(

p

1− p

)n+1
1

2n

dn−1
2
e∑

k=0

(
n
k

)
(1 + n− 2k)1/s

1 + n− k
. (34)

Cloitre’s surmise follows from Theorem 5.1. Indeed, we have the stronger result:

Corollary 5.2 For p = 1/3 and s = 2, Theorem 5.1 reduces to

∀ t ∈ R : PCl(t) = e−C
√
|t|+ε(|t|), (35)

with correction term bounded as |ε(|t|)| ≤ K|t|1/3 for some K > 0, and with

C =

∫
R

sin ξ2

2 + cos ξ2
dξ =

√
π

2

∞∑
n=0

(−1)n
1

22n+1

dn−1
2
e∑

k=0

(
n
k

) √
1 + n− 2k

1 + n− k
; (36)

numerically, C = 0.319905585...
√
π ≈ 0.32

√
π.

Remark 5.3 By a simple change of variables, and the fact that ξ2 is even, we have

C =

∫
R

sin ξ2

2 + cos ξ2
dξ = 2

∫ ∞
0

sin ξ2

2 + cos ξ2
dξ =

∫ ∞
0

sin ξ

2 + cos ξ

1

ξ1/2
dξ = C 1

3
;2

(37)

Theorem 5.1 implies that Ωζ
p(s) is a very regular random variable when p ∈ (0, 1

2
).

Namely, by (31) the integral of |t|mClp;s(t) exists for any m ∈ {0, 1, 2, ...}, so by
general Fourier theory the Fourier transform of Clp;s(t) is an infinitely often differ-
entiable function (see, e.g., [Sch03]). Also, Clp;s(0) = 1, so its Fourier transform has
integral 1. We already know that its Fourier transform is positive. Thus we have

Corollary 5.4 The random variable Ωζ
p(s) defined by its characteristic function (3)

with p ∈ (0, 1
2
) and s > 1

2
converges with probability 1. It is continuous, having an

arbitrarily differentiable (but generally not real analytic) probability density f
Ωζp(s)

(ω).

16



Corollary 5.4 settles our questions concerning the distribution of Ωζ
1/3(2). Despite

the seemingly self-similar structure hinted at in Fig. 4, Ωζ
1/3(2) cannot be supported

on a fractal subset of the ω line. Also, despite the appearance of singular peaks
hinted at in Fig. 4, the PDF of Ωζ

1/3(2) is infinitely often continuously differentiable.
It remains to prove Theorem 5.1. To offer some guidance we explain our strategy.
First of all, since p ∈ (0, 1

2
), we have Clp;s(t) > 0, so we can take its logarithm

and obtain the infinite series

lnClp;s(t) =
∑
n∈N

ln
[
1− p+ p cos

(
n−st

)]
, t ∈ R, (38)

with p ∈ (0, 1
2
) & s > 1

2
. We then follow the proof of Theorem 1 of [Kie13] which

establishes that if s > 1, then for all t ∈ R one has
∑

n∈N sin
(
n−st

)
= αssign(t)|t|1/s+

ε(|t|), with αs = Γ
(
1− 1

s

)
sin
(
π
2s

)
and |ε(|t|)| ≤ Ks|t|1/(s+1) for some Ks > 0.

Secondly, by the reflection symmetry about t = 0 of Clp;s(t) it suffices to consider
t > 0. Yet we need to distinguish 0 ≤ t ≤ ts and t ≥ ts for some ts > 0.

The near side 0 ≤ t ≤ ts will be estimated with the help of a Maclaurin expansion
and turn out to be subdominant.

The far side t ≥ ts will be handled by splitting the infinite series into two parts,

∑
n∈N

(· · ·n) =

Ns(t/τ)∑
n=1

(· · ·n) +
∞∑

n=Ns(t/τ)+1

(· · ·n), (39)

where (· · ·n) = ln
[
1− p+ p cos

(
n−st

)]
, and where Ns(t/τ) := d(st/τ)1/(s+1)e, with

τ < π/2. The first (finite) sum in (39) will be shown to yield only a subdominant
error bound. The second (infinite) sum in (39) will be interpreted as a Riemann sum
approximation to an integral over the real line, the trend function, plus a subdomi-
nant error bound. We now outline this argument.

Since τ < π/2, when t gets large any two consecutive arguments t/ns and
t/(n+ 1)s of the cosine functions will come to lie within one quarter period of cosine
whenever n > d(st/τ)1/(s+1)e. Moreover, with increasing n, for fixed t/τ , the consec-
utive arguments t/ns and t/(n+ 1)s will be more and more closely spaced. And so,
when τ is sufficiently small, with increasing t the part of the sum of lnClp;s(t) with
n > Ns(t/τ) becomes an increasingly better Riemann sum approximation to∫ ∞

Ns(t/τ)+1

ln
[
1− p+ p cos

(
ν−st

)]
dν.
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More precisely, using the variable substitution ν−st = ξ, we have (informally)

∞∑
n=Ns(t/τ)+1

ln
[
1− p+ p cos

(
n−st

)]
≈ t1/s 1

s

∫ t/(Ns(t/τ)+1)s

0

ln [1− p+ p cos ξ]
1

ξ1+1/s
dξ. (40)

Since s > 1/2, the upper limit of integration at r.h.s.(40) goes to ∞ like Kt1/(s+1)

when t→∞. The limiting integral is an improper Riemann integral which converges
absolutely for all s > 1/2, yielding

1
s

∫ ∞
0

ln [1− p+ p cos ξ]
1

ξ1+1/s
dξ ≡ −Cp;s. (41)

This heuristic argument will be made rigorous by supplying the subdominant error
bounds, using only senior level undergraduate mathematics.

Lastly, the integral (41) will be evaluated with the help of a rapidly converging
geometric series expansion and a recursion which involves the Catalan numbers.
Proof of Theorem 5.1:

First of all, if ts > 0 is sufficiently small, then for the near side 0 ≤ t ≤ ts
we have the Maclaurin expansion lnClp;s(t) = −1

2
p ζ(2s)t2 + O(t4). It follows that

| lnClp;s(t) + Cp;st
1/s| ≤ Kt1/(s+1) for some K > 0 when 0 ≤ t ≤ ts. Here and in all

estimates below, K is a generic positive constant which may depend on p, s, τ, ts.
As for the far side t ≥ ts, the first sum at r.h.s.(39) is estimated by∣∣∣Ns(t/τ)∑
n=1

ln
[
1− p+ p cos

(
n−st

)] ∣∣∣ ≤ | ln(1−2p)|d(st/τ)1/(s+1)e ≤ Kt1/(s+1), (42)

where we used the triangle inequality and∣∣ ln [1− p+ p cos
(
n−st

)] ∣∣ ≤ | ln(1− 2p)|.
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For the second sum at r.h.s.(39) we find, for some νn ∈ [n, n+ 1],∣∣∣ ∞∑
n=Ns(t/τ)+1

ln
[
1− p+ p cos

(
n−st

)]
−
∫ ∞
Ns(t/τ)+1

ln
[
1− p+ p cos

(
ν−st

)]
dν
∣∣∣ = (43)

∣∣∣ ∞∑
n=Ns(t/τ)+1

(
ln
[
1− p+ p cos

(
n−st

)]
−
∫ n+1

n

ln
[
1− p+ p cos

(
ν−st

)]
dν
)∣∣∣ = (44)∣∣∣ ∞∑

n=Ns(t/τ)+1

(
ln
[
1− p+ p cos

(
n−st

)]
− ln [1− p+ p cos (ν−sn t)]

)∣∣∣ = (45)

∣∣∣ ∞∑
n=Ns(t/τ)+1

∫ t/ns

t/νsn

p sin(ξ)

1− p+ p cos(ξ)
dξ
∣∣∣ ≤ (46)

p

1− 2p

∞∑
n=Ns(t/τ)+1

∫ t/ns

t/νsn

∣∣ sin ξ∣∣dξ ≤ (47)

p

1− 2p

∞∑
n=Ns(t/τ)+1

t
(

1
ns
− 1

νsn

)
≤ (48)

p

1− 2p

∞∑
n=Ns(t/τ)+1

t
(

1
ns
− 1

(n+1)s

)
= (49)

p

1− 2p
td(st/τ)1/(s+1) + 1e−s ≤ (50)

Kt
1
s+1 ;

here, (43) is obviously true, whereas (44) expresses the mean value theorem for some
νn ∈ [n, n + 1], and (45) holds by the fundamental theorem of calculus; inequality
(46) holds by the triangle inequality in concert with cos ξ ≥ −1, (47) holds since
| sin ξ| ≤ 1, followed by elementary integration, while (48) is due to the monotonic
decrease of ν 7→ ν−s for s > 1/2, with νn ∈ [n, n+ 1]; equality (49) holds because the
sum at l.h.s.(49) is telescoping; lastly, inequality (50) holds because dxe differs from
x by at most 1, and for large x one can basically ignore the +1 in its argument.

For the integral in (43) the variable substitution ν−st = ξ yields

t1/s 1
s

∫ t/(Ns(t/τ)+1)s

0

ln [1− p+ p cos ξ]
dξ

ξ1+1/s
= t1/s

[
−Cp;s − 1

s

∫ ∞
t/(Ns(t/τ)+1)s

ln [1− p+ p cos ξ]
dξ

ξ1+1/s

]
.(51)

Using again the estimate | ln [1− p+ p cos ξ] | ≤ − ln(1− 2p), we find (for t ≥ 1):

t1/s

∣∣∣∣∣
∫ ∞
t/(Ns(t/τ)+1)s

ln [1− p+ p cos ξ]
1

sξ1+1/s
dξ

∣∣∣∣∣ ≤ | ln(1− 2p)|d(st/τ)1/(s+1) + 1e (52)

≤ Kt1/(s+1). (53)
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This completes the proof of (31).
It remains to prove (32), (33), (34). Integration by parts yields

Cp;s ≡ −1
s

∫ ∞
0

ln [1− p+ p cos ξ]
1

ξ1+1/s
dξ =

∫ ∞
0

p sin ξ

1− p+ p cos ξ

1

ξ1/s
dξ, (54)

where the integral at r.h.s.(54) converges absolutely when s ∈ (1/2, 1), but only
conditionally when s ≥ 1. With the help of the geometric series r.h.s.(54) becomes

p

1− p

∫ ∞
0

sin ξ

1 + p
1−p cos ξ

1

ξ1/s
dξ =

∞∑
n=0

(−1)n
(

p

1− p

)n+1∫ ∞
0

sin ξ cosn ξ
1

ξ1/s
dξ; (55)

the exchange of summation and integration is justified for s ∈ (1/2, 1) by Fubini’s
theorem, and for s ≥ 1 by a more careful limiting argument involving the definition
of the conditional convergent integrals as limit R → ∞ of integrals from 0 to R.
Repeatedly using the trigonometric identity 2 sin(α) cos(β) = sin(α+β)−sin(α−β),
eventually followed by a simple rescaling of the integration variable, now yields∫ ∞

0

sin ξ cosn ξ
1

ξ1/s
dξ =

∫ ∞
0

sin ξ
1

ξ1/s
dξ

1

2n

dn−1
2
e∑

k=0

[(
n
k

)
−
(

n
k − 1

)]
(1 + n− 2k)

1
s
−1, (56)

where it is understood that when k = 0 one has
(

n
−1

)
= 0. The integral at r.h.s.(56)

is As given in (33). Inserting (56) into (55) and pulling out As yields r.h.s.(32) with

Bp;s :=
∞∑
n=0

(−1)n
(

p

1− p

)n+1
1

2n

dn−1
2
e∑

k=0

[(
n
k

)
−
(

n
k − 1

)]
(1 + n− 2k)

1
s
−1, (57)

and a simple manipulation of r.h.s.(57) now yields (34).
This completes the entirely elementary proof of Theorem 5.1. QED

6 Lévy Trends and Fluctuations
In this section we display the PDFs for a small selection of random Riemann-ζ
walks Ωζ

p(s), obtained by numerical Fourier transform of their characteristic func-
tions Clp;s(t). We compare them with the Fourier transform of their trend functions
exp

(
−Cp;s |t|1/s

)
, which are known as Lévy-stable distributions with stability param-

eter α = 1/s, skewness parameter β = 0, scale parameter c = Cs
p;s, and median

µ = 0; see [PrRo69]. The comparison will highlight the importance of the fluctating
factors exp

(
εp;s(|t|)

)
in the characteristic functions Clp;s(t).
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The first figure shows the PDF fΩζp(s)(ω) for Cloitre’s parameter values p = 1/3

and s = 2, together with the pertinent Lévy PDF (here C and S are Fresnel integrals)

fΩLévy
1/2;0;C2;0

(ω) = 2πu3
(

sin
(
π
2
u2
)[

1
2
− S(u)

]
+ cos

(
π
2
u2
)[

1
2
− C(u)

])
, (58)

where u = C/
√

2π|ω| and C = C1/3;2; cf. the histogram Fig. 4.

Fig. 7 reveals that the stable distribution (58) obtained by Fourier transform of
the Lévy trend factor exp(−C

√
|t|), which captures the “large scale” behavior of

PCl(t) asymptotically exactly but misses all of its “small scale” details (recall Fig. 1
and Fig. 2), only very crudely resembles the distribution obtained by the Fourier
transform of PCl(t). Also, we recall that the random variable Ωζ

1/3(2) takes its values
in the interval [−ζ(2), ζ(2)], so fΩζ

1/3
(2)(ω) vanishes identically outside this interval.

By contrast, Lévy-stable PDF are “heavy-tailed” (except when α = 2, i.e. s = 1/2,
which is excluded here); in particular, it follows from (58) (see also [PrRo69]) that

fΩLévy
1
2 ;0;C;0

(ω) ∼ C2
1/3;2

√
π/(2|ω|)3/2 (ω →∞). (59)

Next we turn to the borderline case s = 1, which is particularly interesting. When
p 6= 1 this random walk is a generalization of the harmonic random walk (p = 1)
studied by Kac [Kac59], Morrison [Mor95], and Schmuland [Sch03]. Furthermore,
when p ∈ (0, 1

2
) the “trend factor” of the characteristic function for Ωζ

p(1) becomes
e−Cp;1|t|: the characteristic function of a Cauchy random variable with “theoretical
spread” Cp;1 (which is explicitly computable; see below). The next Figure displays
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the PDF fΩζ
1/3

(1)(ω) for the harmonic random walk with p = 1/3, together with the
Cauchy distribution of theoretical spread C1/3;1 about 0; cf. the histogram in Fig. 5.

The discrepancy between the PDF fΩζ
1/3

(1)(ω) for the harmonic random walk with

p = 1
3
and the Cauchy distribution of theoretical spread C1/3;1 about 0 visible in Fig. 8

is not quite as flagrant as the corresponding discrepancy in Fig. 7. Not so outside
the shown interval, though: the Cauchy distribution is heavy-tailed, while fΩζ

1/3
(1)(ω)

has moments of all order. This can be shown by adaptation of the estimates for
fΩζ

1/2
(1)(ω) given by Schmuland [Sch03], or by noticing that Cl1/3;1(t) has infinitely

many derivatives at t = 0 and invoke Fourier theory (as also explained in [Sch03]).
We also vindicate our claim that one can compute Cp;1 explicitly. First of all,

d(n−1)/2e∑
k=0

(
n
k

)
1 + n− 2k

1 + n− k
=

(
n
bn/2c

)
, (60)

which is A001405 in Sloane’s OEIS. Now 1
20

(
0
b0/2c

)
= 1 while 1

2n

(
n
bn/2c

)
= 1

2n−1

(
n−1
bn−1/2c

)
when n = 2m with m ∈ N, and using that

∑∞
m=0

1
22m

(
2m
m

)
x2m = 1√

1−x2 we compute

Bp;1 =
∞∑
n=0

(−1)n
(

p

1− p

)n+1
1

2n

(
n
bn/2c

)
= 1−

√
1− 2p for p ∈ (0, 1

2
); (61)

so with A1 = π
2
we obtain Cp;1 = A1Bp;1 in closed form, displayed in Fig. 9.
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7 Open Problems
The following problems seem to be particularly worthy of further pursuit.

7.1 The interval 1
2 ≤ p ≤ 1

Theorem 5.1 cannot be true for p ∈ [1/2, 1] because Clp;s(t) has zeros when p ≥ 1/2,
and for p > 1/2 will even be sign-changing. Indeed, when p ∈ (1/2, 1], then (31)
cannot hold with real εp;s(|t|). When p = 1/2, then Clp;s(t) is non-negative and (31)
could seem to still hold, but the function εp;s(|t|) must diverge to −∞ whenever
Clp;s(t) = 0; so the absolute bound on the error term εp;s(|t|) stated in Theorem 5.1
must fail. A modified version of Theorem 5.1 may well hold for all p ∈ (0, 1], though.

Namely, the integral in (32) is continuous as function of p ∈ (0, 1
2
] for all s >

1/2. Assuming that also p 7→ Clp;s(t) is continuous at p = 1/2 we can con-
clude that the limit limp↗1/2 exp

(
εp;s(|t|)

)
=: F1/2;s(|t|) exists for s > 1/2, too,

and then our Theorem 5.1 has an analog for p = 1/2, stating that Cl1/2;s(t) =

exp
(
−C1/2;s |t|1/s

)
F1/2;s(|t|), where F1/2;s is a subdominant, fluctuating, non-negative

function with zeros whenever t ∈ {±ns(2k − 1)π|k ∈ N, n ∈ N}.
Moreover it is easy to show (see our excercise at the end of the Appendix) that

Cl1/2;s(t) = Cl21;s(t/2), which implies that also Cl1;s(t) = exp
(
−C1;s |t|1/s

)
F1;s(|t|),

where F1;s is a subdominant, fluctuating and sign-changing function, having zeros
whenever t ∈ {±ns(2k − 1)π/2|k ∈ N, n ∈ N}, satisfying F1;s(|t|)2 = F1/2;s(2|t|), and
where C1;s = 2−1+1/sC1/2;s. So Theorem 5.1 also has an analog for p = 1.

Furthermore, a half-angle identity and an obvious substitution of variables yields∫ ∞
0

ln(1
2

+ 1
2

cos ξ)
1

ξ1+1/s
dξ =

∫ ∞
0

ln(cos2 ξ
2
)

1

ξ1+1/s
dξ = 21− 1

s

∫ ∞
0

ln | cos ξ| 1

ξ1+1/s
dξ; (62)

l.h.s.(62)=−sC1/2;s, and with C1;s = 2−1+1/sC1/2;s now r.h.s.(62)=−s21− 1
sC1;s.
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With the boundary values of the interval [1
2
, 1] covered, it is reasonable to suspect

Conjecture 7.1 Let p ∈ [1
2
, 1] & s > 1

2
. Then ∃Kp;s > 0 such that

∀ t ∈ R : Clp;s(t) = exp
(
−Cp;s |t|1/s

)
Fp;s(|t|), (63)

where Cp;s is given by the absolutely convergent, multiply improper Riemann integral

Cp;s := −1

s

∫ ∞
0

ln |1− p+ p cos ξ| 1

ξ1+1/s
dξ, (64)

and Fp;s is a generally sign-changing function, bounded by |Fp;s(|t|)| ≤ exp(Kp;s|t|
1
s+1 ).

It should be straightforward to prove this, but the proof, and the evaluation of
Cp;s, will not anymore be undergraduate business. For p = 1

2
and s = 1 one has7

C1/2;1 =pv
∫∞

0
sin ξ

1+cos ξ
1
ξ
dξ=pv

∫∞
0

tan ξ
ξ

dξ=C1;1(= π
2
; see [BeGl77]), where “pv” means

principal value, so presumably Cp;s=pv
∫∞

0
p sin ξ

1−p+p cos ξ
1

ξ1/s
dξ for p ∈ [1

2
, 1] and s > 1

2
.

7.2 Why Lévy trends?
What is the probabilistic reason for the occurrence of the symmetric Lévy 1

s
-stable

distributions associated with the trend factors when p ∈ (0, 1/2) (or p ∈ (0, 1])? We
recall that X is a Lévy-stable random variable if and only if X = c1X1 + c2X2, where
X1 and X2 are i.i.d. copies of X and c1 and c2 are suitable positive constants; see
also [GaFr03]. Where is this “Lévy stability” hiding in the random Riemann-ζ walks?

7.3 Are there “perfectly typical” random Riemann-ζ walks?
If the (possibly uncountable) intersection of all typical subsets of the set of random
Riemann-ζ walks for given p ∈ (0, 1] and s > 0 is non-empty, then the answer is
“Yes!” — in that case it would be very interesting to exhibit a perfectly typical walk
explicitly, if at all possible. It is also conceivable that the intersection set is empty.

7.4 Complex random Riemann-ζ walks
What happens if one extends Ωζ

p(s) to complex s? The Riemann hypothesis implies
for ζ(s) itself that its extremal walks with Im(s) 6= 0 converge to the origin if and
only if Re(s) = 1/2 and Im(s) is the imaginary part of a nontrivial zero of ζ(s). Does
Re(s) = 1/2 play a special role also for the random Riemann-ζ walks?

7Personal communications by Larry Glasser and Norm Frankel, Dec. 2016
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Appendix on Power Walks
If instead of a step size which decreases by the power law n 7→ n−s one uses an expo-
nentially decreasing step size n 7→ s−n with s > 1, the outcome is a “random geomet-
ric series” (a sum over powers of 1/s with random coefficients Rp(n) ∈ {−1, 0, 1}),

Ωpow
p (s) :=

∑
n∈N

Rp(n)
1

sn
, s > 1, p ∈ (0, 1]; (65)

the pertinent walks are called “geometric walks.” With more general random coeffi-
cients one simply speaks of “random power series” and their “power walks.”

All these random variables Ωpow
p (s) have characteristic functions with infinite

trigonometric product representations obtainable from our (22) by replacing ζ → pow

and n−s → s−n. Some of these can be evaluated in terms of elementary functions.
We register a few special cases, beginning with three geometric walks and ending
with a countable family of more general (but simple) power walks.
(i) Setting p = 1 and s = 2 gives the chacteristic function (see formula (1) of [Mor95])

ΦΩpow
1 (2)(t) =

∏
n∈N

cos

(
t

2n

)
≡ sin t

t
, (66)

an infinite product8 representation of the sinc function derived by Euler algebraically
by exploiting the trigonometric angle-doubling formulas (see [Mor95]). Recall that
sinc(t) =

∫ 1

−1
1
2
eitωdω is the (inverse) Fourier transform of the PDF fΩunif(ω) of the

uniform random variable Ωunif on [−1, 1], i.e. fΩunif(ω) = 1
2
if ω ∈ [−1, 1], and

fΩunif(ω) = 0 otherwise. Indeed, Ωpow
1 (2) is a random walk representation of Ωunif

equivalent to the binary representation of [0, 1]: recalling that any real number x ∈
[0, 1] has a binary representation9 x = 0.b1b2b3... ≡

∑
n∈N bn/2

n with bn ∈ {0, 1}, and
noting that if x ∈ [0, 1] then ω := 2x − 1 ∈ [−1, 1], it follows that any real number
ω ∈ [−1, 1] has a binary representation ω =

∑
n∈N r2(n)/2n with r2(n) ∈ {−1, 1}. It

is manifest that any such representation of ω is an outcome of Ωpow
1 (2).

(ii) Ωpow
1 (3) is the random variable for which the characteristic function

ΦΩpow
1 (3)(t) =

∏
n∈N

cos

(
t

3n

)
=: ΦΩCantor(t/2) (67)

8By substituting π/2 for t and repeatedly using a trigonometric angle-halving identity one arrives
at Viète’s infinite product for 2/π, allegedly the first infinite product ever proposed.

9Those representations are not unique and one needs to consider their equivalence classes to
identify them uniquely with their real outcome on [0, 1], cf. [Kac59].
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is a trigonometric product discussed in [Mor95]. Morrison explains that ΦΩCantor(t) is
the characteristic function of a random variable ΩCantor that is uniformly distributed
over the Cantor set constructed from [−1, 1] by removing middle thirds ad infinitum.
For uniform distributions on other Cantor sets, see [DFT94].

We remark that this is a nice example of a random walk whose endpoints are
distributed by a singular distribution, in the sense that the Cantor set obtained from
[−1, 1] has Lebesgue measure 0. As pointed out to us by one of the referees, the
distribution of Ωpow

1 (s) is singular and concentrated on some Cantor set for all s > 2.
The referee also pointed out that for 1 < s < 2 the story is more complicated:
Solomyak [Sol95] proved that the distribution of Ωpow

1 (s) is absolutely continuous
(i.e., it is equivalent to a PDF, an integrable function) for almost every s ∈ (1, 2);
see also [PeSo96]. However, the distribution of Ωpow

1 (s) is not absolutely continuous
for all s ∈ (1, 2) — in 1939 Erdős found values of s ∈ (1, 2) for which the distribution
is singular; these are still the only ones known. See [PSS00] for further reading.
(iii) Setting p = 2

3
and s = 3 yields

ΦΩpow
2/3

(3)(t) =
∏
n∈N

[
1

3
+

2

3
cos

(
t

3n

)]
≡ sin(t/2)

t/2
, (68)

which becomes formula (9) of [Mor95] under the rescaling t 7→ 2t. (As pointed out
to us by the other referee, this infinite product representation of the sinc function
appears also as Exercise 3 on page 11 of [Kac59].) Recalling our discussion of exam-
ple (i), we conclude that (68) is the characteristic function of the uniform random
variable on the interval [−1

2
, 1

2
], expressed as a random walk equivalent to the ternary

representation of the real numbers in [0, 1], shifted to the left by −1
2
.

(iv) The sinc representations (66) and (68) (after rescaling t 7→ 2t) are merely the first
two members of a countable family of infinite trigonometric product representations
of sin t/t derived by Kent Morrison [Mor95], and given by

sin t

t
=
∏
n∈N

s−1∑
m=1−s

1− (−1)s+m

2s
cos
(m
sn
t
)
, 1 < s ∈ N; (69)

s even in (69) is formula (12) in [Mor95], s odd in (69) is formula (13) in [Mor95].
These representations of the characteristic function of the uniform random variable
over [−1, 1] are obtained by considering random walks that enter with equal likelihood
into any one of s branches which “s-furkate” off of every vertex of a symmetric tree
centered at 0, equivalent to the usual “s-ary” representation of the real numbers in
[0, 1] (shifted to the left by −1

2
and scaled up by a factor 2). When s > 3 these are

no longer random geometric series, but still simple random power series.
(v) Here is our excercise: Prove that Φ

Ω×
1/2

(s)
(t) = Φ2

Ω×
1 (s)

(t/2), where×= pow or×= ζ .
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