
LR-Drawings of Ordered Rooted Binary Trees and
Near-Linear Area Drawings of Outerplanar Graphs ?

Fabrizio Frati, Maurizio Patrignani, Vincenzo Roselli

Dipartimento di Ingegneria, University Roma Tre, Italy
{frati,patrigna,roselli}@dia.uniroma3.it

Abstract. We study a family of algorithms, introduced by Chan [SODA 1999], for drawing ordered
rooted binary trees. Any algorithm in this family (which we name an LR-algorithm) takes in input
an ordered rooted binary tree T with a root rT , and recursively constructs drawings ΓL of the
left subtree L of rT and ΓR of the right subtree R of rT ; then either it applies the left rule, i.e.,
it places ΓL one unit below and to the left of rT , and ΓR one unit below ΓL with the root of
R vertically aligned with rT , or it applies the right rule, i.e., it places ΓR one unit below and to
the right of rT , and ΓL one unit below ΓR with the root of L vertically aligned with rT . In both
cases, the edges between rT and its children are represented by straight-line segments. Different
LR-algorithms result from different choices on whether the left or the right rule is applied at any
non-leaf node of T . We are interested in constructing LR-drawings (that are drawings obtained via
LR-algorithms) with small width. Chan showed three different LR-algorithms that achieve, for an
ordered rooted binary tree with n nodes, width O(n0.695), width O(n0.5), and width O(n0.48).

We prove that, for every n-node ordered rooted binary tree, an LR-drawing with minimum width
can be constructed in O(n1.48) time. Further, we show an infinite family of n-node ordered rooted
binary trees requiring Ω(n0.418) width in any LR-drawing; no lower bound better than Ω(logn)
was previously known. Finally, we present the results of an experimental evaluation that allowed
us to determine the minimum width of all the ordered rooted binary trees with up to 455 nodes.

Our interest in LR-drawings is mainly motivated by a result of Di Battista and Frati [Algorithmica
2009], who proved that n-vertex outerplanar graphs have outerplanar straight-line drawings in
O(n1.48) area by means of a drawing algorithm which resembles an LR-algorithm.

We deepen the connection between LR-drawings and outerplanar straight-line drawings by proving
that, if n-node ordered rooted binary trees have LR-drawings with f(n) width, for any function
f(n), then n-vertex outerplanar graphs have outerplanar straight-line drawings in O(f(n)) area.

Finally, we exploit a structural decomposition for ordered rooted binary trees introduced by Chan
in order to prove that every n-vertex outerplanar graph has an outerplanar straight-line drawing

in O
(
n · 2
√

2 log2 n√logn
)

area.

1 Introduction

In this paper we study algorithms for constructing geometric representations of ordered rooted binary
trees. This research topic has been investigated for a long time, because of the importance and the
ubiquitousness of ordered rooted binary trees in computer science. Geometric models for representing
ordered rooted binary trees were already discussed almost 50 years ago in Knuth’s foundational book “The
Art of Computer Programming” [13]. We explicitly mention here the notorious Reingold and Tilford’s
algorithm [16] (counting more than 570 citations, according to Google Scholar) and invite the reader to
consult the survey by Rusu [17] as a reference point for a plethora of other tree drawing algorithms.

We introduce some definitions. A rooted tree T is a tree with one distinguished node called root, which
we denote by rT . For any node s 6= rT in T , the parent of s is the neighbor of s in the path between s and
rT in T ; also, for any node s in T , the children of s are the neighbors of s different from its parent. For
any node s 6= rT in T , the subtree of T rooted at s is defined as follows: remove from T the edge between
s and its parent, thus separating T in two trees; the one containing s is the subtree of T rooted at s.
A rooted binary tree is a rooted tree such that every node has at most two children. An ordered rooted
binary tree T is a rooted binary tree in which any node s 6= rT is either designated as the left child or as
the right child of its parent, so that a node with two children has a left and a right child. The subtree of

? Research partially supported by MIUR Project MODE.

ar
X

iv
:1

61
0.

02
84

1v
3

 [
cs

.C
G

]
 2

2
O

ct
 2

01
6

T rooted at the left (right) child of a node s is the left (right) subtree of s; we also call left (right) subtree
of a path P in T any left (right) subtree of a node in P whose root is not in P .

At the Tenth Symposium on Discrete Algorithms held in 1999, Chan [2,3] introduced a simple family
of algorithms to draw ordered rooted binary trees; we name the algorithms in this family LR-algorithms.
An LR-algorithm is defined as follows. Consider an ordered rooted binary tree T . If T has one node, then
represent it as a point in the plane. Otherwise, recursively construct drawings ΓL of the left subtree L
of rT and ΓR of the right subtree R of rT . Denote by B(Γ) the bounding box of a drawing Γ , i.e., the
smallest axis-parallel rectangle containing Γ in the closure of its interior. Then apply either:

ΓL

ΓR

1

1
1

rL

rR

rT

(a)

ΓR

ΓL

1

1
1

rR

rL

rT

(b)

Fig. 1: (a) Illustration for the left rule. (b) Illustration for the right rule.

– the left rule (see Fig. 1(a)), i.e., place ΓL so that the top side of B(ΓL) is one unit below rT and so
that the right side of B(ΓL) is one unit to the left of rT , and place ΓR so that the top side of B(ΓR)
is one unit below the bottom side of B(ΓL) and so that rR is vertically aligned with rT ; or

– the right rule (see Fig. 1(b)), i.e., place ΓR so that the top side of B(ΓR) is one unit below rT and so
that the left side of B(ΓR) is one unit to the right of rT , and place ΓL so that the top side of B(ΓL)
is one unit below the bottom side of B(ΓR) and so that rL is vertically aligned with rT .

By fixing different criteria for choosing whether to apply the left or the right rule at each internal
node of T , one obtains different LR-algorithms. We call LR-drawing the output of an LR-algorithm.

LR-drawings are a special class of ideal drawings, which constitute the main topic of investigation
in Chan’s paper [2, 3] and are a very natural drawing standard for ordered rooted binary trees. They
require the drawing to be: (i) planar, i.e., no two curves representing edges should cross – this property
helps to distinguish distinct edges; (ii) straight-line, i.e., each curve representing an edge is a straight-line
segment – this property helps to track an edge in the drawing; (iii) strictly upward, i.e., each node is
below its parent – this property helps to visualize the parent-child relationship between nodes; and (iv)
strongly order-preserving, i.e., the left (right) child of a node is to the left (resp. right) or on the same
vertical line of its parent – this property allows to easily distinguish the left and right child of a node.

As well-established in the graph drawing literature (see, e.g., [6,12,15]), an optimization objective of
primary importance for a drawing algorithm is to construct drawings with a small area. This is usually
formalized by requiring the vertices to lie in a grid, that is, at points with integer coordinates, by defining
the width and height of Γ as the number of grid columns and rows intersecting Γ , respectively1, and by
then defining the area of Γ as its width times its height.

Ideal drawings of n-node ordered rooted binary trees can be easily constructed in O(n2) area. For
example, the width and the height of any LR-drawing are at most n and exactly n, respectively. Because
of the strictly-upward property, any ideal drawing of an n-node ordered rooted binary tree requires
Ω(n) height if the tree contains a path with Ω(n) nodes from the root to a leaf. Thus, in order to
construct ideal drawings with small area, the main goal is to minimize the width of the drawing. Chan
exhibited several algorithms to construct ideal drawings. Three of them are in fact LR-algorithms that
construct LR-drawings with O(n0.695), O(n0.5), and O(n0.48) width, respectively. Better bounds than
those resulting from LR-algorithms are however known for the width of ideal drawings. Namely, Garg
and Rusu proved that every n-node ordered rooted binary tree has an ideal drawing with O(log n) width

1 According to this definition, the width of Γ is the geometric width of B(Γ) plus one, and similar for the height.

2

and O(n log n) area [10], which are the best possible bounds [5]. Nevertheless, there are several reasons
to study LR-drawings with small width and area.

Fig. 2

First, while one might design complicated schema to decide whether to apply the left
or the right rule at any internal node of an ordered rooted binary tree, the geometric con-
struction underlying an LR-algorithm is very easy to understand and implement. Second,
as noted by Chan [2,3] an LR-drawing satisfies a number of additional geometric properties
with respect to a general ideal drawing. For example, in an LR-drawing any two disjoint
subtrees are separable by a horizontal line and any angle formed by the two edges between
a node and its children is at least π/4. Third, let w∗T denote the minimum width of any
LR-drawing of an ordered rooted binary tree T ; also, let w∗n be the maximum value of w∗T
among all the ordered rooted binary trees T with n nodes. In this paper we are interested
in computing w∗T efficiently and in determining the asymptotic behavior of w∗n. The value
of w∗T obeys a natural recursive formula; namely w∗T = minP {1 + maxL{w∗L}+ maxR{w∗R}},
where the minimum is among all the paths P starting at rT , and the first and second max-
ima are among all the left and right subtrees of P , respectively2. Our study of LR-drawings
with small width might hence find application in problems (not necessarily related to graph
drawing) in which a similar recurrence appears. Fourth and most importantly for this pa-
per, LR-drawings with small width have a strong connection with outerplanar straight-line
drawings of outerplanar graphs with small area, as will be described later.

In Section 2 we prove that, for every n-node ordered rooted binary tree T , an LR-
drawing of T with minimum width w∗T (and with minimum area) can be constructed in
O(n · w∗T) ∈ O(n1.48) time. Chan [2, 3] noted that “By dynamic programming, one can
compute in polynomial time the exact minimum area of” any LR-drawing of T . Our sub-
quadratic time bound is obtained by investigating the representation sequence of T , which
is a sequence of O(w∗T) integers that conveys all the relevant information about the width
of the LR-drawings of T . Further, we show that, for infinitely many values of n, there exists an n-node

ordered rooted binary tree Th requiring Ω
(
n

1
log2(3+

√
5)

)
∈ Ω(n0.418) width in any LR-drawing; no lower

bound better than Ω(log n) was previously known [5]. Since the height of any LR-drawing of an n-node
tree is n, Th requires Ω(n1.418) area in any LR-drawing; hence near-linear area bounds cannot be achieved
for LR-drawings, differently from general ideal drawings. Note that the exponents in these lower bounds
are only 0.062 apart from the corresponding upper bounds. Finally, we exploited again the concept of
representation sequence in order to devise an experimental evaluation that determined the minimum
width of all the ordered rooted binary trees with up to 455 nodes. The most interesting outcome of
this part of our research is perhaps the similarity of the trees that we have experimentally observed to
require the largest width with the trees Th we defined for the lower bound. Fig. 2 shows a minimum-width
LR-drawing of a smallest tree requiring width 8 in any LR-drawing; this tree is also shown in Fig. 7(a).

Section 3 deals with small-area drawings of outerplanar graphs. An outerplanar graph is a graph
that excludes K4 and K2,3 as minors or, equivalently, a graph that admits an outerplanar drawing,
that is a planar drawing in which all the vertices are incident to the outer face. Small-area outerplanar
drawings have long been investigated. Biedl proved that every n-vertex outerplanar graph admits an
outerplanar polyline drawing in O(n log n) area [1], where a polyline drawing represents each edge as a
piece-wise linear curve. Garg and Rusu proved that every n-vertex outerplanar graph with maximum
degree d admits an outerplanar straight-line drawing in O(d · n1.48) area [11]. The first sub-quadratic
area upper bound for outerplanar straight-line drawings of n-vertex outerplanar graphs was established
by Di Battista and Frati [7]; the bound is O(n1.48). Frati also proved an O(d · n log n) area upper bound
for outerplanar straight-line drawings of n-vertex outerplanar graphs with maximum degree d [9].

By looking at the O(d · n1.48) and O(n1.48) area bounds above, it should come with no surprise that
outerplanar straight-line drawings are related to LR-drawings of ordered rooted binary trees, for which
the best known area upper bound is O(n1.48) [2, 3]. We briefly describe the way this relationship was
established in [7]. Let G be a maximal outerplanar graph with n vertices and let T be its dual tree (T has

2 The intuition for this formula is that in any LR-drawing Γ of T a path P starting at rT lies on a grid column
`; thus the width of Γ is the number of grid columns that intersect Γ to the left of ` – which is the maximum,
among all the left subtrees L of P , of the minimum width of an LR-drawing of L – plus the number of grid
columns that intersect Γ to the right of ` – which is the maximum, among all the right subtrees R of P , of the
minimum width of an LR-drawing of R – plus one – which corresponds to `.

3

a node for each internal face of G and has an edge between two nodes if the corresponding faces of G are
adjacent). Di Battista and Frati [7] proved that, if T has a star-shaped drawing (which will be defined
later) in a certain area, then G has an outerplanar straight-line drawing in roughly the same area; they
also showed how to construct a star-shaped drawing of T in O(n1.48) area; this algorithm is similar to
an LR-algorithm, which is the reason why the O(n1.48) bound arises.

We prove that if an n-node ordered rooted binary tree T has an LR-drawing with width ω, then T has
a star-shaped drawing with width O(ω) (and area O(n · ω)). Our geometric construction is very similar
to the one presented in [7], however it is enhanced so that no property other than the width bound3 is
required to be satisfied by the LR-drawing of T in order to ensure the existence of a star-shaped drawing
of T with area O(n · ω). Due to this result and to the relationship between the area requirements of
star-shaped drawings and outerplanar straight-line drawings established in [7], any improvement on the
O(n0.48) width bound for LR-drawings of ordered rooted binary trees would imply an improvement on
the O(n1.48) area bound for outerplanar straight-line drawings of n-vertex outerplanar graphs. However,
because of the lower bound for the width of LR-drawings proved in the first part of the paper, this
approach cannot lead to the construction of outerplanar straight-line drawings of n-vertex outerplanar
graphs in o(n1.418) area.

We prove that, for any constant ε > 0, the n-vertex outerplanar graphs admit outerplanar straight-line
drawings in O(n1+ε) area. More precisely, our drawings have O(n) height and O(2

√
2 logn

√
log n) width;

the latter bound is smaller than any polynomial function of n. Hence, this establishes a near-linear area
bound for outerplanar straight-line drawings of outerplanar graphs, improving upon the previously best
known O(n1.48) area bound [7]. In order to achieve our result we exploit a structural decomposition for
ordered rooted binary trees introduced by Chan [3], together with a quite complex geometric construction
for star-shaped drawings of ordered rooted binary trees.

2 LR-Drawings of Ordered Rooted Binary Trees

In this section we study LR-drawings of ordered rooted binary trees.

2.1 Representation sequences

Our investigation starts by defining a combinatorial structure, called representation sequence, which can
be associated to any ordered rooted binary tree T and which conveys all the relevant information about
the width of the LR-drawings of T . We first establish some preliminary properties and lemmata.

Consider an LR-drawing Γ of an ordered rooted binary tree T . The left width of Γ is the number
of grid columns intersecting Γ to the left of the grid column on which rT lies. The right width of Γ is
defined analogously. By definition of width, we have the following.

Property 1. The width of an LR-drawing Γ is equal to its left width, plus its right width, plus one.

For any α, β ∈ N0, we say that a pair (α, β) is feasible for T if T admits an LR-drawing whose left
width is at most α and whose right width is at most β. This definition implies the following.

Property 2. Consider an ordered rooted binary tree T . If a pair (α, β) is feasible for T , then every pair
(α′, β′) with α′, β′ ∈ N0, α′ ≥ α, and β′ ≥ β is also feasible for T .

The next lemma will be used several times in the following.

Lemma 1. The pairs (0, w∗T) and (w∗T , 0) are feasible for an ordered rooted binary tree T .

Proof. We prove that the pair (0, w∗T) is feasible for T ; the proof for the pair (w∗T , 0) is symmetric.
The proof is by induction on the number n of nodes of T . If n = 1, then in any LR-drawing Γ of T

both the left and the right width of Γ are 0, hence the pair (0, 0) is feasible for T . By Property 2, the
pair (0, 1) is also feasible for T . This, together with w∗T = 1, implies the statement for n = 1.

3 On the contrary, in order to prove the area bound for star-shaped drawings, [7] exploits a lemma from [2, 3],
stating that, given any ordered rooted binary tree T , there exists a root-to-leaf path P in T such that, for any
left subtree α and right subtree β of P , |α|0.48 + |β|0.48 ≤ (1− δ)|T |0.48, for some constant δ > 0.

4

ΓL

ΓR

rT

≤ w∗T

≤ w∗T

ΓR

Γ′L

rT

≤ w∗T + 1

⇒
≤ w∗T

Fig. 3: Illustration for the proof of Lemma. 1.

If n > 1, then assume that neither the left subtree L nor the right subtree R of rT is empty. The
case in which L or R is empty is easier to handle. Refer to Fig. 3. Consider any LR-drawing ΓT of T
with width w∗T . Denote by ΓL and ΓR the LR-drawings of L and R in ΓT , respectively. The width of
each of ΓL and ΓR is at most w∗T , given that the width of ΓT is w∗T . Apply induction on L to construct
an LR-drawing Γ ′L of L with left width 0 and right width at most w∗T . Construct an LR-drawing Γ ′T of
T by applying the right rule at rT , while using ΓR as the LR-drawing of R and Γ ′L as the LR-drawing
of L. Then the left width of Γ ′T is equal to the left width of Γ ′L, hence it is 0. Further, the right width
of Γ ′T is equal to the maximum between the width of ΓR and the right width of Γ ′L, which are both at
most w∗T ; hence the pair (0, w∗T) is feasible for T . �

Property 2 implies that there exists an infinite number of feasible pairs for T . Despite that, the set
of feasible pairs for T can be succinctly described by its Pareto frontier, which is the set of the feasible
pairs (α, β) for T such that no feasible pair (α′, β′) for T exists with (i) α′ < α and β′ ≤ β or (ii) α′ ≤ α
and β′ < β.

More formally, the representation sequence of an ordered rooted binary tree T , which we denote by
ST , is an ordered list of integers (indexed by the numbers 0, 1, 2, . . .) satisfying the following properties:

(a) the value ST (i) of the element of ST with index i is the smallest integer j such that T admits an
LR-drawing with left width at most i and right width j; and

(b) the value of the second to last element of ST is greater than 0 and the value of the last element of
ST is equal to 0.

We let kT denote the number of elements in ST . Note that the values ST (0), . . . ,ST (kT − 1) in a
representation sequence ST are non-increasing, given that if a pair (i,ST (i)) is feasible for T , then the
pair (i+1,ST (i)) is also feasible for T , by Property 2. For example, the tree T3 shown in Fig. 4(b) (which
we use for the lower bound on the width of LR-drawings) has ST3

= [6, 5, 5, 3, 3, 1, 0].
Note that, if T is a root-to-leaf path, then ST = [0], since T has an LR-drawing in which all the nodes

are on the same vertical line. Also, any complete binary tree T with height h+ 1 (i.e., with h+ 1 nodes
on any root-to-leaf path) has ST = [h, . . . , h, 0], where h elements are equal to h. This is can be proved
by induction and by the following lemma.

Lemma 2. Consider any ordered rooted binary tree T . Let T ′ be the tree such that the left subtree L and
the right subtree R of rT ′ are two copies of T . Then ST ′ = [w∗T︸︷︷︸

index 0

, . . . , w∗T︸︷︷︸
index w∗T−1

, 0︸︷︷︸
index w∗T

].

Proof. First, we prove that ST ′(i) = w∗T , for i = 0, . . . , w∗T − 1.
We prove that ST ′(i) ≥ w∗T . Consider any LR-drawing ΓT ′ of T ′ with left width i ≤ w∗T − 1. If ΓT ′

used the left rule at rT ′ , then the LR-drawing of L in ΓT ′ would be entirely to the left of rT ′ ; hence, the
left width of ΓT ′ would be at least w∗T , while it is at most i, by assumption. It follows that ΓT ′ uses the
right rule at rT ′ and the LR-drawing of R in ΓT ′ is entirely to the right of rT ′ ; hence, ST ′(i) ≥ w∗T .

We prove that ST ′(i) ≤ w∗T . Consider an LR-drawing ΓR of R with width w∗T , and an LR-drawing
ΓL of L with left width at most i and right width w∗T ; ΓL exists since pair (0, w∗T) is feasible for L, by
Lemma 1. Construct an LR-drawing ΓT ′ of T ′ by applying the right rule at rT ′ , while using ΓL and ΓR
as LR-drawings for L and R, respectively. Since rT ′ and rL are on the same vertical line, the left width

5

of ΓT ′ is equal to the left width of ΓL, which is at most i, and the right width of ΓT ′ is the maximum
between the right width of ΓL and the width of ΓR, which are both equal to w∗T . Hence, ST ′(i) ≤ w∗T .

Finally, we prove that ST ′(w∗T) = 0. Consider an LR-drawing ΓL of L with width at most w∗T , and
an LR-drawing ΓR of R with left width at most w∗T and right width 0; the latter drawing exists by
Lemma 1. Construct an LR-drawing ΓT ′ of T ′ by applying the left rule at rT ′ , while using ΓL and ΓR as
LR-drawings for L and R, respectively. Since rT ′ and rR are on the same vertical line, the right width
of ΓT ′ is equal to the right width of ΓR, which is 0, and the left width of ΓT ′ is the maximum between
the left width of ΓR and the width of ΓL, which are both at most w∗T . Hence, ST ′(w∗T) = 0. �

As a final lemma of this section we bound the number of elements in a representation sequence.

Lemma 3. Consider any ordered rooted binary tree T . Then the length kT of ST is either w∗T or w∗T +1.

Proof. First, kT ≤ w∗T − 1 would imply that the last element of ST has index less than or equal
to w∗T − 2 and value 0. By Property 1, there would exist an LR-drawing of T with width at most
w∗T − 2 + 0 + 1 < w∗T , which is not possible by definition of w∗T . It follows that kT ≥ w∗T .

Second, Lemma 1 implies that the pair (w∗T , 0) is feasible for T , hence kT = w∗T or kT = w∗T + 1,
depending on whether the pair (w∗T − 1, 0) is feasible for T or not. �

2.2 Algorithms for Optimal LR-drawings

There are two main reasons to study the representation sequence ST of an ordered rooted binary tree T .
The first one is that the minimum width among all the LR-drawings of T can be easily retrieved from
ST ; the second one is that ST can be easily constructed starting from the representation sequences of
the subtrees of rT . The next lemmata formalize these claims.

Lemma 4. For any ordered rooted binary tree T , the minimum width among all the LR-drawings of T
is equal to minkT−1i=0 {i+ ST (i) + 1}.

Proof. Consider any LR-drawing Γ of T with minimum width w∗T , and let α and β be the left and
right width of Γ , respectively. By Property 1, we have that w∗T = α+β+ 1. By definition of ST , we have
that ST (α) ≤ β. Finally, by the minimality of w∗T we have ST (α) = β, which proves the statement. �

Lemma 5. Let T be an ordered rooted binary tree. Let L and R be the (possibly empty) left and right
subtrees of rT , respectively. The following statements hold true.

– If L and R are both empty, then ST = [0].
– If L is empty and R is not, then ST = SR.
– If R is empty and L is not, then ST = SL.
– Finally, if neither L nor R is empty, then

ST = [max{SL(0), w∗R}︸ ︷︷ ︸
index 0

, . . . ,max{SL(w∗L − 1), w∗R}︸ ︷︷ ︸
index w∗L−1

,SR(w∗L)︸ ︷︷ ︸
index w∗L

, . . . ,SR(kR − 1)︸ ︷︷ ︸
index kR−1

].

Proof. We distinguish four cases, based on whether L and R are empty or not.

– If both L and R are empty, then T consists of a single node, hence there is only one LR-drawing Γ
of T ; both the left and the right width of Γ are 0, hence ST = [0].

– If L is empty and R is not, we prove that ST (i) = SR(i), for any i = 0, . . . , kR − 1.
First, we prove that ST (i) ≤ SR(i). Consider an LR-drawing ΓR of R with left width at most i and
right width SR(i). Construct an LR-drawing ΓT of T by applying the left rule at rT , while using
ΓR as the LR-drawing of R. Since rT and rR are on the same vertical line, the left (right) width of
ΓT is equal to the left (resp. right) width of ΓR, which is at most i (resp. which is SR(i)). Hence,
ST (i) ≤ SR(i).
Second, we prove that SR(i) ≤ ST (i). Consider an LR-drawing ΓT of T with left width at most i
and right width ST (i); denote by ΓR the LR-drawing of R in ΓT . If ΓT uses the left rule at rT , then
rT and rR are on the same vertical line; then the left (right) width of ΓR is equal to the left (resp.
right) width of ΓT , which is at most i (resp. which is ST (i)). Hence, SR(i) ≤ ST (i). If ΓT uses the
right rule at rT , then ΓR is entirely to the right of rT , hence ST (i) = w∗R. By Lemma 1, the pair
(0, w∗R) is feasible for R, hence SR(i) ≤ w∗R. Hence, SR(i) ≤ ST (i).

6

– If R is empty and L is not, the discussion is symmetric to the one for the previous case.
– Finally, assume that neither L nor R is empty. In order to compute the value of ST (i), we distinguish

the case in which i ≤ w∗L − 1 from the one in which i ≥ w∗L.

• Suppose first that i ≤ w∗L − 1; we prove that ST (i) = max{SL(i), w∗R}.
First, we prove that ST (i) ≤ max{SL(i), w∗R}. Consider an LR-drawing ΓL of L with left width
at most i and right width SL(i). Also, consider an LR-drawing ΓR of R with width w∗R. Construct
an LR-drawing ΓT of T by applying the right rule at rT , while using ΓL and ΓR as LR-drawings
for L and R, respectively. Since rT and rL are on the same vertical line, the left width of ΓT
is equal to the left width of ΓL, which is at most i, and the right width of ΓT is equal to the
maximum between the right width of ΓL and w∗R. Hence, ST (i) ≤ max{SL(i), w∗R}.
Second, we prove that ST (i) ≥ max{SL(i), w∗R}. Consider any LR-drawing ΓT of T with left
width at most i and right width ST (i). We have that ΓT uses the right rule at rT . Indeed, if ΓT
used the left rule at rT , then the LR-drawing of L in ΓT would be entirely to the left of rT ; hence,
the left width of ΓT would be at least w∗L, while it is at most i, by assumption. Since ΓT uses
the right rule at rT , the LR-drawing of R in ΓT is entirely to the right of rT , hence ST (i) ≥ w∗R.
Further, rT and rL are on the same vertical line, thus the LR-drawing of L in ΓT has left width
at most i, and hence right width at least SL(i); this implies that ST (i) ≥ SL(i).

• Suppose next that i ≥ w∗L; we prove that ST (i) = SR(i).
First, we prove that ST (i) ≤ SR(i). Consider an LR-drawing ΓL of L with width w∗L. Also,
consider an LR-drawing ΓR of R with left width at most i and right width SR(i). Construct an
LR-drawing ΓT of T by applying the left rule at rT , while using ΓL and ΓR as LR-drawings for
L and R, respectively. Since rT and rR are on the same vertical line, the right width of ΓT is
equal to the right width of ΓR, which is SR(i), and the left width of ΓT is equal to the maximum
between w∗L and the left width of ΓR; since w∗L and the left width of ΓR are both at most i, we
have ST (i) ≤ SR(i).
Second, we prove that SR(i) ≤ ST (i). Consider any LR-drawing ΓT of T with left width at most
i. If ΓT uses the left rule at rT , then rT and rR are on the same vertical line, thus the LR-drawing
of R in ΓT has left width at most i and right width at most ST (i). It follows that SR(i) ≤ ST (i).
If ΓT uses the right rule at rT , then the LR-drawing of R in ΓT is entirely to the right of rT ,
hence ST (i) ≥ w∗R. By Lemma 1, the pair (0, w∗R) is feasible for R, hence, SR(i) ≤ w∗R. It follows
that SR(i) ≤ ST (i).

This concludes the proof. �

We are now ready to show that the representation sequence of an ordered rooted binary tree T , and
consequently the minimum width and area of any LR-drawing of T , can be computed efficiently.

Theorem 1. The representation sequence of an n-node ordered rooted binary tree T can be computed in
O(n ·w∗T) ∈ O(n ·w∗n) ∈ O(n1.48) time. Further, an LR-drawing with minimum width can be constructed
in the same time.

Proof. We compute the representation sequence associated to each subtree T ′ of T (and the value
w∗T ′) by means of a bottom-up traversal of T . If T ′ is a single node, then ST ′ = [0] and w∗T ′ = 1. If
T ′ is not a single node, then assume that the representation sequences associated to the subtrees of
rT ′ have already been computed. By Lemma 5, the value ST ′(i) can be computed in O(1) time by the
formula max{SL(i), w∗R} if 0 ≤ i ≤ w∗L − 1, or by the formula SR(i) if w∗L ≤ i ≤ kR − 1. Further, by
Lemma 3 the representation sequence ST ′ has O(w∗T ′) ∈ O(w∗T) entries, hence it can be computed in
O(w∗T ′) ∈ O(w∗T) time; the value w∗T ′ can also be computed in O(w∗T ′) time from ST ′ as in Lemma 4.
Summing the O(w∗T) bound up over the n nodes of T gives the O(n ·w∗T) bound. The bounds O(n ·w∗n)
and O(n1.48) respectively follow from the fact that w∗T ≤ w∗n, by definition, and w∗n ∈ O(n0.48), by the
results of Chan [3].

Once the representation sequence for each subtree of T has been computed, an LR-drawing ΓT of T
with width w∗T can be constructed in O(n · w∗T) time by means of a top-down traversal of T . First, find
a pair (αT , βT) such that αT + βT + 1 = w∗T and such that ST (αT) = βT . This pair exists and can be
found in O(w∗T) time by Lemma 4. Further, let x(rT) = 0 and y(rT) = 0.

Now assume that, for some subtree T ′ of T (initially T ′ = T), a quadruple (αT ′ , βT ′ , x(rT ′), y(rT ′))
has been associated to T ′, where αT ′ and βT ′ represent the left and right width of an LR-drawing ΓT ′

7

of T ′ we aim to construct, respectively, and x(rT ′) and y(rT ′) are the coordinates of rT ′ in ΓT ′ . Let L
and R be the left and right subtrees of rT ′ , respectively.

– If w∗L ≤ αT ′ , then the left rule is used at rT ′ to construct ΓT ′ . Find a pair (αL, βL) satisfying
αL + βL + 1 = w∗L and SL(αL) = βL. This pair exists and can be found in O(w∗L) ∈ O(w∗T)
time by Lemma 4. Let x(rL) = x(rT ′) − βL − 1 and y(rL) = y(rT ′) − 1. Visit L with quadruple
(αL, βL, x(rL), y(rL)) associated to it; also, let αR = αT ′ , βR = βT ′ , x(rR) = x(rT ′), and y(rR) =
y(rT ′)− |L| − 1. Visit R with quadruple (αR, βR, x(rR), y(rR)) associated to it.

– If w∗L > αT ′ , then the right rule is used at rT ′ to construct ΓT ′ . Find a pair (αR, βR) satisfying
αR + βR + 1 = w∗R and SR(αR) = βR. This pair exists and can be found in O(w∗R) ∈ O(w∗T)
time by Lemma 4. Let x(rR) = x(rT ′) + αR + 1 and y(rR) = y(rT ′) − 1. Visit R with quadruple
(αR, βR, x(rR), y(rR)) associated to it; also, let αL = αT ′ , βL = βT ′ , x(rL) = x(rT ′), and y(rL) =
y(rT ′)− |R| − 1. Visit L with quadruple (αL, βL, x(rL), y(rL)) associated to it.

The correctness of the algorithm comes from Lemma 5 (and its proof). The O(n · w∗T) running time
comes from the fact that the algorithm uses O(w∗T) time at each node of T . �

Corollary 1. A minimum-area LR-drawing of an n-node ordered rooted binary tree T can be constructed
in O(n · w∗T) ∈ O(n · w∗n) ∈ O(n1.48) time.

Proof. Since any LR-drawing has height exactly n, the statement follows from Theorem 1. �

2.3 A Polynomial Lower Bound for the Width of LR-drawings

We describe an infinite family of ordered rooted binary trees Th that require large width in any LR-
drawing. In order to do that, we first define an infinite family of sequences of integers. Sequence σ1
consists of the integer 1 only; for any ` > 1, sequence σ` is composed of two copies of σ`−1 separated by
the integer `, that is, σ` = σ`−1, `, σ`−1. Thus, for example, σ4 = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1. For
i = 1, . . . , 2` − 1, we denote by σ`(i) the i-th term of σ`. While here we defined σ` as a finite sequence
with length 2`− 1, the infinite sequence σ` with `→∞ is well-known and called ruler function: The i-th
term of the sequence is the exponent of the largest power of 2 which divides 2i. See entry A001511 in
the Encyclopedia of Integer Sequences [18].

u1
v1

v2
u2

v3

u3

u4

T1

T1

T1

T1

T2

T2

T2 T2T2T2

u1
v1u2

T1

T1

T1

T1

(a)

(b)

u1
v1

u2

T1
T1

T1

T1

u7v7

T2

T2

T1
T1T2

T2

T3 T3

T3 T3

T1
T1

(c)

u8

u1
v1

v2
u2

v3
u3

vk/2
uk/2

vk−1

uk−1

uk

L1=T1

R1=T1

R2=T2

R3=T1

Rk/2=Th−1

L2=T2

L3=T1

Rk−1=T1

Lk−1=T1

Lk/2=Th−1

(d)
Th−1 Th−1

Fig. 4: Illustration for Theorem 2. (a) T2. (b) T3. (c) T4. (d) Th.

We now describe the recursive construction of Th. Tree T1 consists of a single node. If h > 1, tree
Th is defined as follows (refer to Fig. 4). First, Th contains a path (u1, v1, u2, v2, . . . , uk−1, vk−1, uk) with

8

2h − 1 nodes (note that k = 2h−1), where u1 is the root of Th; for i = 1, . . . , k − 1, node vi is the right
child of ui and node ui+1 is the left child of vi. Further, take two copies of Th−1 and let them be the
left and right subtrees of uk, respectively. Finally, for i = 1, . . . , k− 1, take two copies of Tσh−1(i) and let
them be the left subtree Li of ui and the right subtree Ri of vi, respectively. In the next two lemmata,
we prove that tree Th requires a “large width” in any LR-drawing and that it has “few” nodes.

Lemma 6. The width of any LR-drawing of Th is at least 2h − 1.

Proof. The proof is by induction on h. The base case h = 1 is trivial.
In order to discuss the inductive case, we define another infinite family of sequences of integers, which

we denote by π`. Sequence π1 consists of the integer 1 only; for any ` > 1, we have π` = π`−1, 2
`−1, π`−1.

Thus, for example, π4 = 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1. For i = 1, . . . , 2` − 1, we denote by π`(i) the
i-th element of π`. The infinite sequence π` with `→∞ is well-known: The i-th term of the sequence is
equal to 2x+1 − 1, where x is the exponent of the largest power of 2 which divides i. See entry A038712
in the Encyclopedia of Integer Sequences [18].

While sequence σh−1 was used for the construction of Th (recall that Li and Ri are two copies of
Tσh−1(i)), sequence πh−1 is useful for the study of the minimum width of an LR-drawing of Th. Indeed, by

induction any LR-drawing of Li requires width 2σh−1(i)− 1, which is equal to πh−1(i). Hence, the widths
required by L1, . . . , Lk−1 are πh−1(1), . . . , πh−1(k−1), respectively; that is, they form the sequence πh−1.
A similar statement holds true for R1, . . . , Rk−1. We are going to exploit the following.

Property 3. Let ` and x be integers such that ` ≥ 1 and 1 ≤ x ≤ 2` − 1. For any x consecutive elements
in π`, there exists one whose value is at least x.

Proof. We prove the statement by induction on `. If ` = 1, then x = 1 and the statement follows
since π1(1) = 1. Now assume that ` > 1 and consider any x consecutive elements in π`. Recall that
π` = π`−1, 2

` − 1, π`−1. If all the x elements belong to the first repetition of π`−1 in π`, or if all the x
elements belong to the second repetition of π`−1 in π`, then x ≤ 2`−1 − 1 and the statement follows by
induction. Otherwise, since the x elements are consecutive, the “central” element whose value is 2` − 1
is among them. Then the statement follows since x ≤ 2` − 1. �

We are now ready to discuss the inductive case of the lemma. Consider the subtrees T (u1), . . . , T (uk)
of Th rooted at u1, . . . , uk, respectively (note that T (u1) = Th). We claim that T (uj) requires width
2h−1 + k − j in any LR-drawing, for j = 1, . . . , k. The lemma follows from the claim, as the latter (with
j = 1) implies that Th requires width 2h−1 + k − 1 = 2h − 1 in any LR-drawing.

Assume, for a contradiction, that the claim is not true, and let j ∈ {1, . . . , k} be the maximum index
such that there exists an LR-drawing Γ of T (uj) whose width is less than 2h−1 + k − j. First, since the
subtrees of uk are two copies of Th−1 and since by the inductive hypothesis Th−1 requires width 2h−1−1
in any LR-drawing, by Lemma 2 the representation sequence of T (uk) is

ST (uk) = [2h−1 − 1︸ ︷︷ ︸
index 0

, . . . , 2h−1 − 1︸ ︷︷ ︸
index 2h−1−2

, 0︸︷︷︸
index 2h−1−1

].

Hence, T (uk) requires width 2h−1 in any LR-drawing, which implies that j < k. Let α and β be the left
and right width of Γ , respectively. In order to derive a contradiction, we prove that α+β+1 ≥ 2h−1+k−j.

Suppose first (refer to Fig. 5(a)) that Γ is constructed by using the left rule at uj , . . . , uk−1 and
the right rule at vj , . . . , vk−1, hence nodes uj , . . . , uk−1, uk and vj , . . . , vk−1 are all aligned on the same
vertical line. Then α (β) is larger than or equal to the widths of Lj , . . . , Lk−1 (resp. of Rj , . . . , Rk−1) in
Γ . We prove that α ≥ 2h−1 − 1 or β ≥ 2h−1 − 1. If Γ has left width α ≤ 2h−1 − 2, then the LR-drawing
of T (uk) in Γ also has left width at most 2h−1 − 2, given that uj and uk are vertically aligned; since
ST (uk)(2

h−1 − 2) = 2h−1 − 1, it follows that the right width of the LR-drawing of T (uk) in Γ is at least

2h−1 − 1, and Γ has right width β ≥ 2h−1 − 1. This proves that α ≥ 2h−1 − 1 or β ≥ 2h−1 − 1. Assume
that α ≥ 2h−1 − 1, as the case β ≥ 2h−1 − 1 is symmetric. By induction, the width of the drawing of
Ri in Γ is at least πh−1(i). Hence, the widths of the subtrees Rj , . . . , Rk−1 form a sequence of k− j ≥ 1
consecutive elements of πh−1. By Property 3, there exists an element πh−1(i) whose value is at least
k − j. Then β ≥ k − j and α+ β + 1 ≥ (2h−1 − 1) + (k − j) + 1 = 2h−1 + k − j, a contradiction.

Suppose next (refer to Fig. 5(b)) that, for some integer m with j ≤ m ≤ k − 1, drawing Γ is
constructed by using the left rule at uj , . . . , um−1, the right rule at vj , . . . , vm−1, and the right rule at

9

uj

vj

Lj

Rj

uj+1

Lj+1

uk−1

vk−1

Lk−1

Rk−1

uk

Th−1

Th−1

(a)

uj

Lj

Rj

uj+1

Lj+1

um−1

vm−1

Lm−1

Rm−1

um vm

vj

(b)

Fig. 5: Illustration for the proof of Lemma 6. (a) Γ uses the left rule at uj , . . . , uk−1 and the right rule
at vj , . . . , vk−1. (b) Γ uses the left rule at uj , . . . , um−1 and the right rule at vj , . . . , vm−1, um.

um. Hence, nodes uj , . . . , um and vj , . . . , vm−1 are all aligned on the same vertical line d, however vm is
to the right of d. Since Lj , . . . , Lm−1 lie to the left of d in Γ , we have that α is larger than or equal to the
widths of Lj , . . . , Lm−1. By the maximality of j, we have that T (um+1) requires width 2h−1 +k− (m+1)
in any LR-drawing. Since the drawing of the subtree of Th rooted at vm is to the right of d in Γ , it
follows that the drawing of T (um+1) is also to the right of d in Γ , hence β ≥ 2h−1 + k − (m+ 1). Now,
if m = j, we have that α + β + 1 ≥ (2h−1 + k − j − 1) + 1 = 2h−1 + k − j, a contradiction. Hence, we
can assume that m > j. By induction, the width of the drawing of Li in Γ is at least πh−1(i). Hence,
the widths of the subtrees Lj , . . . , Lm−1 form a sequence of m − j ≥ 1 consecutive elements of πh−1.
By Property 3, there exists an element πh−1(i) whose value is at least m − j. Then α ≥ m − j and
α+ β + 1 ≥ (m− j) + (2h−1 + k −m− 1) + 1 = 2h−1 + k − j, a contradiction.

Finally, the case in which, for some integer m with j ≤ m ≤ k− 1, drawing Γ is constructed by using
the left rule at uj , . . . , um, the right rule at vj , . . . , vm−1, and the left rule at vm is symmetric to the
previous one. This concludes the proof of the lemma. �

Lemma 7. The number of nodes of Th is at most (3 +
√

5)h.

Proof. Denote by nh the number of nodes of tree Th. By the way Th is recursively defined and since,
for i = 0, . . . , h − 2, sequence σh−1 contains 2i integers equal to h − i − 1 (i.e., it contains one integer
equal to h− 1, two integers equal to h− 2, . . . , 2h−2 integers equal to 1), we have:

nh = (2nh−1 + 1)︸ ︷︷ ︸
subtree rooted at uk

+ (2(2h−1 − 1))︸ ︷︷ ︸
nodes u1,v1,...,uk−1,vk−1

+ 2(nh−1 + 2nh−2 + · · ·+ 2h−2n1)︸ ︷︷ ︸
subtrees of u1,v1,...,uk−1,vk−1

= 2nh−1 + 2h − 1 +

h−1∑
i=1

2inh−i < 2nh−1 + 2h +

h−1∑
i=1

2inh−i.

We now prove that nh ≤ ch, for some constant c to be determined later, by induction on h. The
statement trivially holds for h = 1, as long as c ≥ 1, given that n1 = 1. Now assume that nj ≤ cj , for
every j ≤ h− 1. Substituting nj ≤ cj into the upper bound for nh we get

nh ≤ 2ch−1 + 2h +

h−1∑
i=1

2ich−i = 2ch−1 +

h∑
i=1

2ich−i.

10

By the factoring rule ch+1 − 2h+1 = (c− 2)(ch + 2ch−1 + · · ·+ 2h−1c+ 2h) we get

h∑
i=1

2ich−i =
ch+1 − 2h+1

c− 2
− ch =

2ch

c− 2
− 2h+1

c− 2
.

Substituting that into the upper bound for nh we get

nh ≤ 2ch−1 +
2ch

c− 2
− 2h+1

c− 2
< 2ch−1 +

2ch

c− 2
=

4ch − 4ch−1

c− 2
,

where the second inequality holds as long as c > 2.

Thus, we want c to satisfy 4ch−4ch−1

c−2 ≤ ch; dividing by ch−1 and simplifying, the latter becomes

c2 − 6c + 4 ≥ 0. The associated second degree equation has two solutions c = 3 ±
√

5. Hence, nh ≤ ch

holds true for c ≥ 3 +
√

5. This concludes the proof of the lemma. �

Finally, we get the main result of this section.

Theorem 2. For infinitely many values of n, there exists an n-node ordered rooted binary tree that
requires width Ω(nδ) and area Ω(n1+δ) in any LR-drawing, with δ = 1/ log2(3 +

√
5) ≥ 0.418.

Proof. By Lemma 6 the width of any LR-drawing of Th is wh ≥ 2h−1. Also, by Lemma 7 tree Th has
nh ≤ (3 +

√
5)h nodes, which taking the logarithms becomes h ≥ log(3+

√
5) nh. Substituting this formula

into the lower bound for the width, we get wh ≥ 2log(3+
√

5) nh − 1. Changing the base of the logarithm
provides the statement about the width. Since any LR-drawing has height exactly n, the statement about
the area follows. �

2.4 Experimental Evaluation

It is tempting to evaluate w∗n by computing, for every n-node ordered rooted binary tree T , the minimum
width w∗T of any LR-drawing of T and by then taking the maximum among all such values. Although
Theorem 1 ensures that w∗T can be computed efficiently, this evaluation is not practically possible,
because of the large number of n-node ordered rooted binary trees, which is the n-th Catalan number(
2n
n

)
1

n+1 ≈ 4n; see, e.g., [14].
We overcame this problem as follows. We say that a tree T ′ dominates a tree T if: (i) nT ′ ≤ nT ; (ii)

kT ′ ≥ kT ; and (iii) for i = 0, . . . , kT − 1, it holds ST ′(i) ≥ ST (i). In order to perform an experimental
evaluation of w∗n, we construct a set Tn of ordered rooted binary trees with at most n nodes such that
every ordered rooted binary tree with at most n nodes is dominated by a tree in Tn.

First, the dominance relationship ensures that, if an n-node ordered rooted binary tree exists requiring
a certain width in any LR-drawing, then a tree in Tn also requires (at least) the same width in any LR-
drawing (in a sense, the trees in Tn are the “worst case” trees for the width of an LR-drawing).

Second, the size of Tn can be kept “small” by ensuring that no tree in Tn dominates another tree in
Tn. We could construct Tn for n up to 455, with T455 containing more than two million trees.

Third, Tn can be constructed so that, for every T ∈ Tn, the left and right subtrees of rT are also in
Tn. This is proved by induction on |T |. The base case |T | = 1 is trivial. Further, if a tree T in Tn has the
left subtree L of rT that is not in Tn, then L can be replaced with a tree in Tn that dominates L; this
tree exists since |L| < |T |. This results in a tree T ′ that dominates T . A similar replacement of the right
subtree of rT ′ results in a tree T ′′ that dominates T and such that the left and right subtrees of rT ′′ are
both in Tn; then we replace T with T ′′ in Tn. Replacing all the trees with |T | nodes in Tn completes the
induction. Consequently, Tn can be constructed starting from Tn−1 by considering a number of n-node
trees whose size is quadratic in |Tn−1|. Every time a tree T is considered, its dominance relationship
with every tree currently in Tn is tested. If a tree in Tn dominates T , then T is discarded; otherwise, T
enters Tn and every tree in Tn that is dominated by T is discarded. Note that the dominance relationship
between two trees T and T ′ can be tested in time proportional to the size of ST and ST ′ .

By means of this approach, we were able to compute the value of w∗n for n up to 455. Table 1 shows the
minimum integer n such that there exists an n-node ordered rooted binary tree requiring a certain width

11

w; for example, all the trees with up to 455 nodes have LR-drawings with width at most 22, and all the
trees with up to 426 nodes have LR-drawings with width at most 21. Our experiments were performed
with a monothread Java implementation on a machine with two 4-core 3.16GHz Intel(R) Xeon(R) CPU
X5460 processors, with 48GB of RAM, running Ubuntu 14.04.2 LTS. The computation of the trees with
455 nodes in T455 took more than one month.

w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

n 1 3 7 11 19 27 35 47 61 77 95 111 135 159 185 215 243 275 311 343 383 427

Table 1: The table shows, for every integer w between 1 and 22, the minimum number n of nodes of a
tree requiring w width in any LR-drawing.

We used the Mathematica software [21] in order to find a function of the form w = a · nb + c that
better fits the values of Table 1, according to the least squares optimization method (see, e.g., [19]).
Recall that by Theorem 2 and by Chan results [3], w∗n is asymptotically between Ω(n0.418) and O(n0.48).
We obtained w = 1.54002 ·n0.443216− 0.549577 as an optimal function; see Fig. 6. This seems to indicate
that the best known upper and lower bounds are not tight.

Fig. 6: Function w = 1.54002 · n0.443216 − 0.549577 (blue line) and data from Table 1 (red dots).

w=3
w=3

w=4 w=4

(a)

88

8 8

8

8

8 8888 8 8 8

8

8

w=3

w=12 w=12

w=3

w=7 w=7
w=3 w=3

(b)

Fig. 7: (a) A tree with n = 47 nodes requiring width 8 in any LR-drawing. (b) A tree with n = 343 nodes
requiring width 20 in any LR-drawing.

As a final remark, we note that the structure of the trees corresponding to the pairs (n,w) in Table 1
(see Fig. 7) is similar to the structure of the trees that provide the lower bound of Theorem 2, which
might indicate that the lower bound is close to be tight: In particular, the left (and right) subtrees of the
thick path in Fig. 7(b) require width 1, 3, 1, 7, 1, 3, 1 from top to bottom, as in the lower bound tree T4

12

from Theorem 2; also, the subtrees of the last node of the thick path are isomorphic, as in T4 (although
these subtrees require width 7 in T4, while they require width 12 in Fig. 7(b)).

3 Straight-Line Drawings of Outerplanar Graphs

In this section we study outerplanar straight-line drawings of outerplanar graphs.

3.1 From Outerplanar Drawings to Star-Shaped Drawings

Let G be a maximal outerplanar graph, that is, a graph to which no edge can be added without violating
its outerplanarity. We assume that G is associated with any (not necessarily straight-line) outerplanar
drawing. This allows us to talk about the faces of G, rather than about the faces of a drawing of G. We
denote by f∗ the outer face of G. The dual tree T of G has a node for each face f 6= f∗ of G (we denote
by f both the face of G and the corresponding node of T); further, T has an edge (f1, f2) if the faces f1
and f2 of G share an edge e along their boundaries; we say that e and (f1, f2) are dual to each other.

u∗ v∗

w

v

l

l
l

l

l

lfl l

r

r

r

r r

r
r

r

fr

u rT

f

(a)

p∗u p∗v

l l

l

l
l

l

r

r
r

r

r
r

r

r

s

rT

t

Pl(s) Pr(t)

l

(b)

Fig. 8: (a) A maximal outerplanar graph G (shown with white circles and thin line segments) and its
dual tree T (shown with green circles and thick line segments). The labels l and r on the edges of T
show whether a node is the left or the right child of its parent, respectively. The gray faces fl and fr
are the left and the right child of the face f . The arrows show a bijective mapping γ from the nodes of
T to the vertices of G′ such that an edge (s, t) belongs to T if and only if the edge (γ(s), γ(t)) belongs
to G′. (b) A star-shaped drawing ΓT of T (shown with green circles and thick line segments). The gray
regions show the polygons Pl(s) and Pr(t) for two nodes s and t of T . Adding the thin edges and the
white vertices at p∗u and p∗v turns ΓT into an outerplanar straight-line drawing ΓG of G.

We now turn T into an ordered rooted binary tree. Refer to Fig. 8(a). First, pick any edge (u∗, v∗)
incident to f∗, where v∗ is encountered right after u∗ when walking in clockwise direction along the
boundary of f∗; root T at the node corresponding to the internal face of G incident to (u∗, v∗). Second,
since G is maximal, all its internal faces are delimited by cycles with 3 vertices, hence T is binary. Third,
an outerplanar drawing of G naturally defines whether a child of a node of T is a left or right child.
Namely, consider any non-leaf node f of T . If f 6= f∗, then let g be the parent of f and let (u, v) be
the edge of G dual to (f, g). If f = f∗, then let u = u∗ and v = v∗. In both cases, let w 6= u, v be the
third vertex of G incident to f ; assume, w.l.o.g. that u, v, and w appear in this clockwise order along
the boundary of f . Let (f, fl) and (f, fr) be the edges of T dual to (u,w) and (v, w), respectively. Then
fl and fr are the left and right child of f , respectively; note that one of these children might not exist
(if (u,w) or (v, w) is incident to f∗). Henceforth, we regard T as an ordered rooted binary tree.

We introduce some definitions. The leftmost (rightmost) path of T is the maximal path s0, . . . , sm
such that s0 = rT and si is the left (resp. right) child of si−1, for i = 1, . . . ,m. For a node s of T , the
left-right (right-left) path of s is the maximal path s0, . . . , sm such that s0 = s, s1 is the left (resp. right)
child of s0, and si is the right (resp. left) child of si−1, for i = 2, . . . ,m. For a node s of T , let Cl(s)
(resp. Cr(s)) denote the cycle composed of the left-right (resp. right-left) path s0, . . . , sm of s plus edge

13

(s0, sm) – this cycle degenerates into a vertex or an edge if m = 0 or m = 1, respectively. Finally, a
drawing of T is star-shaped if it satisfies the following properties (refer to Fig. 8(b)):

1. The drawing is planar, straight-line, and order-preserving (that is, for every degree-3 node s of T ,
the edge between s and its parent, the edge between s and its left child, and the edge between s and
its right child appear in this counter-clockwise order around s).

2. For each node s of T , draw the edge of Cl(s) not in T (if such an edge exists) as a straight-line segment
and let Pl(s) be the polygon representing Cl(s). Then Pl(s) is simple (that is, not self-intersecting)
and every straight-line segment between s and a non-adjacent vertex of Pl(s) lies inside Pl(s). A
similar condition is required for the polygon Pr(s) representing Cr(s).

3. For any node s of T , the polygons Pl(s) and Pr(s) lie one outside the other, except at s; also, for any
two distinct nodes s and t of T , the polygons Pl(s) and Pr(s) lie outside polygons Pl(t) and Pr(t),
and vice versa, except at common vertices and edges along their boundaries.

4. There exist two points p∗u and p∗v such that the straight-line segments connecting p∗u with the nodes
of the leftmost path of T , connecting p∗v with the nodes of the rightmost path of T , and connecting
p∗u with p∗v do not intersect each other and, for any node s of T , they lie outside polygons Pl(s) and
Pr(s), except at common vertices.

We now describe the key ideas developed in [7] in order to relate outerplanar straight-line drawings
of outerplanar graphs to star-shaped drawings of their dual trees. Let G be a maximal outerplanar graph
and T be its dual tree; also, let G′ be the graph obtained from G by removing vertices u∗ and v∗ and
their incident edges. Then T is a subgraph of G′; in fact, there exists a bijective mapping γ from the
nodes of T to the vertices of G′ such that an edge (s, t) belongs to T if and only if the edge (γ(s), γ(t))
belongs to G′ (see Fig. 8(a)). Further, the graph obtained by adding to T , for every node s in T , edges
connecting s with all the (not already adjacent) nodes on the left-right and on the right-left path of s is
G′. Properties 1–3 of a star-shaped drawing ensure that, in order to obtain an outerplanar straight-line
drawing of G′, one can start from a star-shaped drawing of T and just draw the edges of G′ not in T as
straight-line segments. Finally, an outerplanar straight-line drawing of G is obtained by mapping u∗ and
v∗ to p∗u and p∗v (defined as in Property 4 of a star-shaped drawing), respectively, and by drawing their
incident edges as straight-line segments (see Fig. 8(b)).

If one starts from a star-shaped drawing ΓT of T in a certain area A, an outerplanar straight-line
drawing ΓG of G can be constructed as described above; then the area of ΓG might be larger than A,
since points p∗u and p∗v might lie outside the bounding box of ΓT . However, ΓG is equal to the area of the
smallest axis-parallel rectangle4 containing p∗u, p∗v, and ΓT . We formalize this in the following.

Lemma 8. (Di Battista and Frati [7]) If T admits a star-shaped drawing ΓT , then G admits an out-
erplanar straight-line drawing ΓG whose area is equal to the area of the smallest axis-parallel rectangle
containing p∗u, p∗v, and ΓT .

In the next sections we will show algorithms for constructing star-shaped drawings ΓT of ordered
rooted binary trees T in which the smallest axis-parallel rectangle containing ΓT , p∗u, and p∗v has asymp-
totically the same area as ΓT .

3.2 Star-Shaped Drawings with O(ω) Width

In this section we show that, if an ordered rooted binary tree admits an LR-drawing with width ω,
then it admits a star-shaped drawing with width O(ω). In fact, we will prove the existence of two star-
shaped drawings with that width, each satisfying some additional geometric properties. Because of the
similarity of our constructions with the ones in [7], we will not prove formally that the constructed
drawings are star-shaped, and we will only provide the main intuition for that. Further, the illustrations
of our constructions will show the points p∗u and p∗v (represented by white disks) and the straight-line
segments (represented by gray lines) to be added to the star-shaped drawings according to Properties 2
and 4 from Section 3.1. Given a drawing Γ of a tree, we often say that a vertex u sees another vertex v
if the straight-line segment between u and v does not cross Γ .

Consider a star-shaped drawing Γ of an ordered rooted binary tree T . Denote by Bl(Γ), Bt(Γ),
Br(Γ), and Bb(Γ) the left, top, right, and bottom side of B(Γ), respectively.

4 By the width and the height of a rectangle we mean the number of grid columns and rows intersecting it,
respectively. By the area of a rectangle we mean its width times its height.

14

rT

p∗u
p∗v

l

l

l

l

l

r

r

r

r

(a)

s1=t1

s2

sq

t2

tp

l

l

l

r

r

r

p∗u

p∗v

(b)

Fig. 9: (a) A schematization of the shape of a bell-like star-shaped drawing. (b) A schematization of the
shape of a flat star-shaped drawing.

We say that Γ is bell-like (see Fig. 9(a)) if: (i) rT lies on Bt(Γ); and (ii) any point p∗u above Bt(Γ)
and to the left of Bl(Γ) and any point p∗v above Bt(Γ) and to the right of Br(Γ) satisfy Property 4 of a
star-shaped drawing.

We say that Γ is flat (see Fig. 9(b)) if: (i) the leftmost path (s1 = rT , . . . , sq) and the rightmost path
(t1 = rT , . . . , tp) of T lie on Bl(Γ); and (ii) y(si−1) > y(si), for i = 2, . . . , q, and y(ti−1) < y(ti), for
i = 2, . . . , p.

We now present the main lemma of this section.

Lemma 9. Consider an n-node ordered rooted binary tree T and suppose that T admits an LR-drawing
with width ω. Then T admits a bell-like star-shaped drawing with width at most 4ω − 2 and height at
most n, and a flat star-shaped drawing with width at most 4ω and height at most n.

In the remainder of the section we prove Lemma 9 by exhibiting two algorithms, called bell-like
algorithm and flat algorithm, that construct bell-like and flat star-shaped drawings of trees, respectively.
Both algorithms use induction on ω; each of them is defined in terms of the other one. The base case of
both algorithms is ω = 1. This implies that T is a root-to-leaf path (v1 = rT , . . . , vn), as in Fig. 10(a).

l

r

v1

l

r
r

l
l
l
r

r

l
l

v2

vn

(a)

l

r

v1

l

r
r

l
l

l
r

r

l
l

v2

vn

l

p∗u
p∗v

x=2x=1

(b)

v1
v2

Ω′

vj+1vj

vj−1

p∗v

p∗u

r

r

l

l

l

r
r
r

l
l

vj+2

x=1 x=2 x=3 x=4

v1

v2

vj+2

vj+1vj

p∗v
p∗u

r

l

l
l

l
l r

r

Ω′

(c)

Fig. 10: (a) An LR-drawing with width 1 of a tree T . (b) A bell-like star-shaped drawing with width 2
of T . Any points p∗u and p∗v in the shaded regions see all the nodes of the leftmost and rightmost path
of T , respectively. (c) A flat star-shaped drawing with width 4 of T , if vj+2 is the left (see top) or right
(see bottom) child of vj+1.

15

The bell-like algorithm constructs a bell-like star-shaped drawingΩ of T as follows (refer to Fig. 10(b)).
For i = 1, . . . ,m, set y(vi) = −i. Also, set x(vi) = 2 for every node vi such that i < n and such that vi+1

is the left child of vi, and set x(vi) = 1 for every other node vi. Then Ω has width at most 2 = 4ω − 2
and height n. Further, Ω is readily seen to be a bell-like star-shaped drawing. In particular, the left-right
path of each node vi is either a single node, or is a single edge, or is represented by the legs and the
base with smaller length of an isosceles trapezoid (which possibly degenerates to a triangle); thus vi sees
its left-right path. Similarly vi sees its right-left path, and hence Ω satisfies Property 2 of a star-shaped
drawing. Moreover, the leftmost path of T is either a single node (if v2 is the right child of v1) or is a
polygonal line that is strictly decreasing in the y-direction and non-increasing in the x-direction from rT
to its last node. A similar argument for the rightmost path, together with the fact that rT lies on Ωt,
implies that Ω satisfies the bell-like property.

The flat algorithm constructs a flat star-shaped drawing Π of T as follows (refer to Fig. 10(c)).
Assume that v2 is the left child of v1; the other case is symmetric. Let (v1, . . . , vj) be the leftmost path of
T , where j ≥ 2. If j = n, then Π is constructed by setting x(vi) = 1 and y(vi) = −i, for i = 1, . . . , n (then
Π has width 1 < 4ω and height n). Otherwise, vj+1 is the right child of vj . Use the bell-like algorithm
to construct a bell-like star-shaped drawing Ω′ with width at most 2 of the subtree of T rooted at vj+2

(note that this subtree has an LR-drawing with width 1 since T does). We distinguish two cases.

– If vj+2 is the left child of vj+1 (as in Fig. 10(c) top), then set x(vi) = 1 and y(vi) = −i, for i = 1, . . . , j,
x(vj+1) = 4, and y(vj+1) = −j. Place Ω′ so that Bt(Ω

′) is on the line y = −j−1, and so that Bl(Ω
′)

is on the line x = 2. Since vj is above Bt(Ω
′) and to the left of Bl(Ω

′), it sees all the nodes of
its right-left path, given that Ω′ satisfies the bell-like property; since vj+1 is above Bt(Ω

′) and to
the right of Br(Ω

′), it sees all the nodes of its left-right path; hence Π satisfies Property 2 of a
star-shaped drawing.

– If vj+2 is the right child of vj+1 (as in Fig. 10(c) bottom), then set x(vj) = 1, y(vj) = 0, x(vj−1) = 1,
and y(vi) = 1; rotate Ω′ by 180◦ and place it so that Bb(Ω

′) is on the line y = 2, and so that Bl(Ω
′)

is on the line x = 2; finally, place vertices v1, . . . , vj−2, if any, on the line x = 1, so that vj−2 is one
unit above Bt(Ω

′), and so that y(vi) = y(vi+1) + 1, for i = 1, . . . , j − 3. Since vj−1 is below Bb(Ω
′)

and to the left of Bl(Ω
′), it sees all the nodes of its left-right path, given that Ω′ is rotated by 180◦

and satisfies the bell-like property; since vj+1 is below Bb(Ω
′) and to the right of Br(Ω

′), it sees all
the nodes of its right-left path; hence Π satisfies Property 2 of a star-shaped drawing.

In both cases the leftmost path of T lies on Bl(Π), with rT = v1 as the vertex with largest y-
coordinate; hence Π satisfies the flat property. This concludes the description of the base case.

We now discuss the inductive case, in which ω > 1. Refer to Fig. 11(a). Let Γ be an LR-drawing
of T with width ω; let ωl and ωr be the left and right width of Γ , respectively; we are going to use
ωl + ωr + 1 = ω, which holds by Property 1 of an LR-drawing; in particular, ωl, ωr < ω. Define a path
P = (v1, . . . , vm) as follows. First, let v1 = rT ; for i = 1, . . . ,m − 1, node vi+1 is the left or right child
of vi, depending on whether Γ uses the right or the left rule at vi, respectively; finally, vm is either a
leaf, or a node with no left child at which Γ uses the right rule, or a node with no right child at which
Γ uses the left rule. Note that P lies on a single vertical line in Γ . Denote by li or ri the child not in P
of vi, depending on whether that node is a left or right child of vi, respectively; denote by Li (by Ri)
the subtree of T rooted at li (resp. ri). Note that Li (Ri) admits an LR-drawing with width at most ωl
(resp. ωr), hence by induction it also admits a bell-like star-shaped drawing with width at most 4ωl − 2
(resp. 4ωr − 2), and a flat star-shaped drawing with width at most 4ωl (resp. 4ωr).

The bell-like algorithm constructs a bell-like star-shaped drawingΩ of T as follows. Refer to Fig. 11(b).
Let j ≥ 1 (h ≥ 1) be the smallest index such that Γ uses the left (resp. right) rule at vj . Index j (h)
might be undefined if Γ uses the right (resp. left) rule at every node of P . Inductively construct a bell-like
star-shaped drawing Ωj of Lj (if this subtree exists) and a bell-like star-shaped drawing Ωh of Rh (if
this subtree exists); inductively construct a flat star-shaped drawing Πi of every other subtree Li or Ri
of P . Similarly to the base case, set x(vi) = 2 or x(vi) = 1, depending on whether the left child of vi is
vi+1 or not, respectively. Next, we define the placement of Ωj , of Ωh, and of each Πi with respect to vj ,
vh, and vi, respectively. Drawing Ωj (Ωh) is placed so that Br(Ωj) (Bl(Ωh)) lies on the line x = 0 (resp.
x = 3) and so that Bt(Ωj) (Bt(Ωh)) is one unit below vj (resp. vh). For every right subtree Ri 6= Rh of
P , drawing Πi is placed so that Bl(Πi) lies on the line x = 3 and so that y(ri) = y(vi); further, for every
left subtree Li 6= Lj of P , drawing Πi is first rotated by 180◦, and then it is placed so that Br(Πi) lies

16

v5

v6

l

l

l

v1

v2

v3

v4

v7

r

r

r

ωl ωr

R1

R2

L3

L4

R5

L6

L7

r

r

r

l

l

l

l

(a)

l

r

v1
r

r

l

l

l

r

l

p∗v

L7

L6

R5

L4

v2

v3

v4

v5

v6

v7

r

p∗u

r
rl

l

R2

r

l

l
l r

ll

r

r r

l

ll
r

l

r

r

R1

L3

(b)

r l

r

r

r

r

s1=t1=v1=rT

t2

t3

t4 Tl(4)

Tl(3)

Tl(2)

r
l

l

Tr(2)

D

C

Tr(4)

Tr(5)

s4

s5

s6

v3=s3

v2=s2 r

l

l

r
l

l

r

r

r

r

l

l

l

r

l

l

r4

l4

v4

l

l

r

l l

r

l r
p∗u

p∗v

(c)

Fig. 11: (a) An LR-drawing Γ of T . (b) A bell-like star-shaped drawing Ω of T . In this example j = 3
and h = 1. (c) A flat star-shaped drawing Π of T . In this example j = 3, p = 4, and q = 6.

on the line x = 0 and so that y(li) = y(vi). Finally, for i = 1, . . . ,m − 1, set y(vi) so that the bottom
side of the smallest axis-parallel rectangle containing vi and the drawing of its subtree Li or Ri is one
unit above the top side of the smallest axis-parallel rectangle containing vi+1 and the drawing of its
subtree Li+1 or Ri+1. This completes the construction of Ω. The height of Ω is at most n, since every
grid row intersecting Ω contains a node of P or intersects a subtree of P . Further, the width of Ω is
equal to the maximum width of the drawing of a subtree Li, which is at most 4ωl by induction, plus the
maximum width of the drawing of a subtree Ri, which is at most 4ωr by induction, plus two, since the
nodes of P lie on two grid columns. Hence the width of Ω is at most 4ωl+4ωr+2 = 4ω−2. The leftmost
path of T is composed of the path (v1, . . . , vj , lj) and of the leftmost path of Lj . Since (v1, . . . , vj , lj) is
represented in Ω by a polygonal line that is strictly decreasing in the y-direction and non-increasing in
the x-direction from v1 to lj , and since every point to the left of Bl(Ωj) and above Bt(Ωj) sees all the
nodes of the leftmost path of Lj , by induction, we get that every point to the left of Bl(Ω) and above
Bt(Ω) sees all the nodes of the leftmost path of T . A similar argument for the rightmost path, together
with the fact that rT lies on Bt(Ω), implies that Ω satisfies the bell-like property. Concerning Property 2
of a star-shaped drawing, we note that vj sees all the nodes of its left-right path since it is above Bt(Ωj)
and to the right of Br(Ωj), and since Ωj satisfies the bell-like property. Also, if vi+1 is the left child of
vi and vi+2 is the right child of vi+1, as with i = 2 in Fig. 11(b), then the representation of the left-right
path of vi in Ω consists of the legs and of the base with smaller length of a trapezoid, of a horizontal
segment between the lines x = 2 and x = 3, and of a vertical segment on the line x = 3; hence vi sees all
the nodes of its left-right path.

The flat algorithm constructs a flat star-shaped drawing Π of T as follows. Refer to Fig. 11(c). Assume
that v2 is the left child of v1; the other case is symmetric.

First, we construct a drawing ΠR of the right subtree R1 of rT . Let (t1 = rT , . . . , tp) be the rightmost
path of T . For i = 2, . . . , p, let Tl(i) be the left subtree of ti. Since v2 is the left child of v1, drawing Γ
uses the right rule at v1, hence R1 admits an LR-drawing with width at most ωr. Tree Tl(i) also admits
an LR-drawing with width at most ωr, given that it is a subtree of R1. By induction Tl(i) admits a flat
star-shaped drawing Πl(i) with width at most 4ωr ≤ 4ω − 4. Set x(ti) = 1 for i = 2, . . . , p. Next, we
define the placement of each Πl(i) with respect to ti. Drawing Πl(i) is placed so that Bl(Πl(i)) is on the
line x = 2 and so that the root of Tl(i) is on the same horizontal line as ti. Finally, set y(ti) so that, for
i = 3, . . . , p, the bottom side of the smallest axis-parallel rectangle containing ti and Πl(i) is one unit

17

above the top side of the smallest axis-parallel rectangle containing ti−1 and Πl(i − 1). This completes
the construction of ΠR.

Second, we construct a drawing ΠL of the left subtree L1 of rT . Let (s1 = rT , . . . , sq) be the leftmost
path of T and, for i = 2, . . . , q, let Tr(i) be the right subtree of si. Further, let j ≥ 2 be the largest
integer for which (s1, . . . , sj) belongs to P ; that is, si = vi holds true for i = 1, . . . , j. Although vj might
be the last node of P , we assume that vj+1 exists; the construction for the case in which vj+1 does not
exist is much simpler. By the maximality of j, we have that vj+1 is the right child of vj . Let C and D
be the left and right subtrees of vj+1, respectively (possibly one or both of these subtrees are empty).
Each of C and D admits an LR-drawing with width ω, given that Γ has width ω. Construct bell-like
star-shaped drawings ΩC of C and ΩD of D with width at most 4ω − 2. Note that, for i = 2, . . . , j − 1,
drawing Γ uses the right rule at vi, hence the LR-drawing of Tr(i) in Γ has width at most ωr ≤ ω − 1.
Further, since Γ uses the left rule at vj , the LR-drawing of Lj in Γ has width at most ωl ≤ ω − 1; since
tree Tr(i) is a subtree of Lj , for i = j + 2, . . . , q, it also admits an LR-drawing with width at most ωl.
Hence, for i = 2, . . . , q with i 6= j, j + 1, tree Tr(i) admits a flat star-shaped drawing Πr(i) with width
at most 4ω − 4. We now place all these drawings together.

– For i = 2, . . . , j − 2, set x(si) = 1 and place Πr(i) so that Bl(Πr(i)) is on the line x = 2 and so that
the root of Tr(i) is on the same horizontal line as si; for i = 2, . . . , j− 3, set y(si) so that the bottom
side of the smallest axis-parallel rectangle containing si and Πr(i) is one unit above the top side of
the smallest axis-parallel rectangle containing si+1 and Πr(i + 1). This part of the construction is
vacuous if j ≤ 3 as in Fig. 11(c).

– Place Πr(j − 1) so that Bl(Πr(j − 1)) is on the line x = 2 and, if j ≥ 4, so that the bottom side of
the smallest axis-parallel rectangle containing sj−2 and Πr(j − 2) is one unit above Bt(Πr(j − 1)).

– Rotate ΩD by 180◦ and place it so that Bl(ΩD) is on the line x = 2 and Bt(ΩD) is one unit below
the smallest axis-parallel rectangle containing sj−2, Πr(j − 2), and Πr(j − 1).

– Set x(vj−1) = 1 and place vj−1 one unit below the bottom side of the smallest axis-parallel rectangle
containing sj−2, Πr(j−2), Πr(j−1), and ΩD; further, set x(vj) = 1, y(vj) = y(vj−1)−1, x(vj+1) =
4ω, and y(vj+1) = y(vj).

– Place ΩC so that Bl(ΩC) is on the line x = 2 and Bt(ΩC) is one unit below vj .
– Finally, for i = j + 1, . . . , q, set x(si) = 1 and place Πr(i) so that Bl(Πr(i)) is on the line x = 2

with the root of Tr(i) on the same horizontal line as si; also, set y(si) so that the bottom side of the
smallest axis-parallel rectangle containing si−1 and Πr(i− 1) (or containing vj and ΩC if i = j + 1)
is one unit above the top side of the smallest axis-parallel rectangle containing si and Πr(i).

This completes the construction of ΠL. If j = 2, then rT has been drawn in ΠL; hence, we obtain a
drawing Π of T by placing ΠR and ΠL so that Bb(ΠR) is one unit above Bt(ΠL). If j ≥ 3, then rT has
not been drawn in ΠL; hence, we obtain Π by placing rT , ΠR, and ΠL so that x(rT) = 1 and so that
rT is one unit below Bb(ΠR) and one unit above Bt(ΠL).

The only grid columns intersecting Π are the lines x = i with i = 1, . . . , 4ω. Indeed, the nodes of
the leftmost and rightmost path of T lie on the line x = 1, while vj+1 lies on the line x = 4ω. Drawings
Πl(i) and Πr(i) have the left sides of their bounding boxes on the line x = 2 and have width at most
4ω − 4; finally, drawings ΩC and ΩD have the left sides of their bounding boxes on the line x = 2 and
have width at most 4ω − 2. It follows that the width of Π is 4ω.

The flat property is clearly satisfied by Π. That Π is a star-shaped drawing can be proved by
exploiting the same arguments as in the proof that Ω is a star-shaped drawing. In particular, vj−1 sees
all the nodes of its left-right path since it is placed below Bb(ΩD) and to the left of Bl(ΩD), since ΩD
is rotated by 180◦, and since ΩD satisfies the bell-like property. This concludes the proof of Lemma 9.

Since points p∗u and p∗v can be chosen in any bell-like or flat star-shaped drawing Γ so that the
smallest axis-parallel rectangle containing p∗u, p∗v, and Γ has asymptotically the same area as Γ , it
follows by Lemmata 8 and 9 that, if an ordered rooted binary tree T admits an LR-drawing with width
ω, then the outerplanar graph T is the dual tree of admits an outerplanar straight-line drawing with
width O(ω) and area O(n · ω).

3.3 Star-Shaped Drawings with O
(
2
√

2 log2 n√log n
)

Width

In this section we show that every n-node ordered rooted binary tree T admits a star-shaped drawing

with height O(n) and width O
(

2
√

2 log2 n
√

log n
)

. Similarly to the previous section, we show two different

18

algorithms to construct star-shaped drawings of T . The first one, which is called strong bell-like algorithm,
constructs a bell-like star-shaped drawing of T . The second one, which is called strong flat algorithm,
constructs a flat star-shaped drawing of T . Throughout the section, we denote by f(n) the maximum
width of a drawing of an n-node ordered rooted binary tree constructed by means of any of these
algorithms. Both algorithms are parametric, with respect to a parameter A < n to be fixed later.
Further, both algorithms work by induction on n and exploit a structural decomposition of T due to
Chan et al. [2–4], for which we include a proof, for the sake of completeness. See Fig. 12.

Lemma 10. (Chan et al. [2–4]) There exists a path P = (v1, . . . , vk) in T such that: (i) v1 = rT ; (ii)
the subtree of T rooted at vk has at least n − A nodes; and (iii) each subtree of vk has less than n − A
nodes.

Proof. Let v1 = rT . Suppose that P has been constructed up to a node vj , for some j ≥ 1, such that
the subtree of T rooted at vj has at least n−A nodes. If a child of vj is the root of a subtree of T with
at least n−A nodes, then let vj+1 be that child. Otherwise, k = j terminates the definition of P . �

l

r

r

v1

v2

v3

v4

v5

vk−1

vk

< n− A

nodes

≤ A

nodes

PR

T1

T2

T4

T5

Tk−1

L1

Lp

l

l

l

l

l

l

l

l

r

r

r

r

r

r

r

r }l

l

Fig. 12: An illustration for the structural decomposition of T exploited in Section 3.3. The tree in this
example has 3 switches, the first of which is triple (v3, v4, v5).

We will say that the path P is the spine of T . For the sake of the simplicity of the algorithm’s
description, we will assume that k > 1 (the case in which k = 1 is easy to handle) and that vk is the right
child of vk−1 (the case in which vk is the left child of vk−1 is symmetric). For i = 1, . . . , k− 1, denote by
Ti the subtree of T rooted at the child of vi not in P . Let PR be the rightmost path of the subtree of T
rooted at vk and let L1, . . . , Lp be the subtrees of PR. Notice that each tree Ti has at most A nodes (by
condition (ii) of Lemma 10) and each tree Li has less than n−A nodes (by condition (iii) of Lemma 10).
Let a switch of the spine P be a triple (vi, vi+1, vi+2) with i ≤ k − 2 such that: (i) vi+1 is the left child
of vi and vi+2 is the right child of vi+1; or (ii) vi+1 is the right child of vi and vi+2 is the left child of
vi+1. Let s be number of switches of P . For i = 1, . . . , s, let π(i) be such that (vπ(i), vπ(i)+1, vπ(i)+2) is
the i-th switch of P . Note that π(i+ 1) ≥ π(i) + 1, for i = 1, . . . , s− 1.

The strong flat algorithm uses different constructions for the case in which s ≤ 7 and the case in
which s ≥ 8. Further, the strong bell-like algorithm uses different constructions for the case in which
s ≤ 4 and the case in which s ≥ 5. We start by describing the construction which is used by the strong
flat algorithm if s ≤ 7.

Strong flat algorithm with s ≤ 7. This is the easiest case of the recursive algorithm. The spine P ,
together with the leftmost and rightmost paths of T and of certain subtrees of T , is going to be drawn
on a set of at most s + 1 grid columns. In fact, the first vertices of the spine (up to vπ(1)+1) are drawn

19

r
l

r
l

l

r

r

l

l

r
l

r

v2

vk−1

p∗v

p∗u

v1=rT

P0

0 1

vk

T2

Tk−1

L1

l

l
Lp

r

r

(a)

Tπ(1)

r
l

r
l

p∗v

p∗u

0 1

l

l

r

r

l

r

P0

P1

r

T2

l

l

l

l

v1=rT

v2

vπ(1)

vπ(1)+1
vπ(1)+2

T ′

r

r

r

(b)

r
l

r
l

l

r

r

l

l

r
l

r

v2

vπ(1)
p∗v

p∗u

v1=rT

P0

0 1

T2

Tπ(1)

l

l

r

r

l

r

P1

vπ(1)+1 T ′

vπ(1)+2

(c)

Fig. 13: Illustration for the strong flat algorithm when s ≤ 7. (a) The case s = 0. (b) The case 1 ≤ s ≤ 7
with s odd. (c) The case 1 ≤ s ≤ 7 with s even.

on the line x = 0; then the drawing moves at most one grid column to the right at every switch of the
spine. The resulting drawing of the spine P has a “zig-zag” shape, where each part of this zig-zag is a
subpath of P drawn on a single grid column from top to bottom or vice versa. We now formally describe
this construction; the description uses induction on s.

In the base case we have s = 0; refer to Fig. 13(a). Since s = 0, it follows that P has no switches, hence
vi+1 is the right child of vi, for i = 1, . . . , k − 1, given that vk is the right child of vk−1 by hypothesis.
Let P0 be the leftmost path of the left subtree of T . Recursively construct a flat star-shaped drawing of
the trees T2, . . . , Tk−1, of the trees L1, . . . , Lp, and of the subtrees of P0.

For i = 2, . . . , k − 1, augment the recursively constructed drawing of Ti by placing the parent of rTi

one unit to the left of rTi
; similarly augment the recursively constructed drawings of the trees L1, . . . , Lp,

and of the subtrees of P0. Further, construct a drawing (consisting of a single point) of every node that
has not been drawn yet (these are the nodes of the leftmost path of T with no right child and the nodes
of the rightmost path of T with no left child). We now place all these drawings together.

First, set the x-coordinate of every node in the leftmost and rightmost path of T to be 0. Since each
tree that has been individually drawn contains a node in the leftmost or rightmost path of T (due to the
above described augmentation of each recursively constructed drawing), this assignment determines the
x-coordinate of every node of T .

Second, we assign a y-coordinate to every node of T . This is done so that every grid row contains a
node or intersects a subtree. Rather than providing explicit y-coordinates, we establish a total order σ for
a set that contains one node for each individually drawn tree; then a y-coordinate assignment is obtained
by forcing, for any two nodes uj and uj+1 that are consecutive in σ, the top side of the bounding box
of the drawing comprising uj to be one unit below the bottom side of the bounding box of the drawing
comprising uj+1. Order σ consists of the nodes of the leftmost path of T in reverse order (that is, from
the unique leaf to rT) followed by the nodes of the rightmost path of the right subtree of T in straight
order (that is, from the root to the unique leaf). This completes the construction of a drawing Γ of T .

20

In the inductive case we have 1 ≤ s ≤ 7. By hypothesis, we have that vk is the right child of vk−1;
hence, if s is odd then vi+1 is the left child of vi, for i = 1, . . . , π(1), otherwise vi+1 is the right child
of vi, for i = 1, . . . , π(1). We formally describe the construction for the case in which s is odd, which is
illustrated in Fig. 13(b). The construction for the other case is symmetric (see Fig. 13(c)).

Let P0 be the rightmost path of the right subtree of T , let P1 be the leftmost path of the left subtree of
vπ(1)+1, and let T ′ be the subtree of T rooted at vπ(1)+2. Recursively construct a flat star-shaped drawing
of trees T2, . . . , Tπ(1), of the subtrees of P0, and of the subtrees of P1. Further, notice that the subpath
of P contained in T ′ has either s − 1 or s − 2 switches (indeed, it has s − 2 switches if vπ(2) = vπ(1)+1

and it has s − 1 switches otherwise). Then the drawing of T ′ can be constructed inductively. We stress
the fact that the spine is not recomputed for T ′ according to Lemma 10, but rather the construction of
the drawing of T ′ is completed by using the subpath of P between vπ(1)+2 and vk as the spine for T ′.

For i = 2, . . . , π(1), augment the recursively constructed drawing of Ti by placing the parent of rTi

one unit to the left of rTi ; similarly augment the drawings of T ′ and of the subtrees of P0 and P1. Further,
construct a drawing (consisting of a single point) of every node that has not been drawn yet. We now
place all these drawings together.

First, set the x-coordinate of every node in the leftmost and rightmost paths of T to be 0. This
determines the x-coordinate of every node of T . Second, we establish a total order σ for a set that contains
one node for each individually drawn tree; then a y-coordinate assignment is obtained by forcing, for
any two nodes uj and uj+1 that are consecutive in σ, the top side of the bounding box of the drawing
comprising uj to be one unit below the bottom side of the bounding box of the drawing comprising uj+1.
Order σ consists of the nodes of P1 in reverse order, then of the nodes vπ(1)+1, vπ(1), vπ(1)−1, . . . , v1, and
then of the nodes of P0 in straight order. This completes the construction of a drawing Γ of T . We get
the following.

Lemma 11. Suppose that s ≤ 7. Then the strong flat algorithm constructs a flat star-shaped drawing
whose height is at most n and whose width is at most 8 + max{f(A), f(n−A)}.

Proof. It is readily seen that Γ is star-shaped and flat. In particular, consider any node u in the
leftmost or rightmost path of T . By construction, u is on the line x = 0. Further, all the nodes that are not
adjacent to u and that are in the left-right path or in the right-left path of u lie on the line x = 1 (indeed,
all such nodes are in the leftmost or rightmost paths of some subtrees of T for which flat star-shaped
drawings have been recursively constructed and embedded with the left sides of their bounding boxes on
the line x = 1); hence u sees all such nodes. That any node that is not in the leftmost or rightmost path
of T sees all the non-adjacent nodes in its left-right path and in its right-left path comes from induction.
Drawing Γ has height at most n since any horizontal grid line intersecting Γ passes through a node in
the leftmost or rightmost path of T or intersects a recursively constructed drawing. Further, it can be
proved by induction on s that the width of Γ is at most s+ 1 + max{f(A), f(n− A)}. Indeed, if s = 0
then all the subtrees that are drawn by a recursive application of the strong flat algorithm have either at
most A nodes or at most n− A nodes and have the left side of their bounding boxes on the line x = 1;
this suffices to prove the statement, since no node has an x-coordinate that is smaller than 0. If s > 0,
then the statement follows inductively, given that the spine of T ′ has at most s−1 switches and no node
of T ′ has an x-coordinate that is smaller than 1. �

We now describe the strong bell-like algorithm for the case in which s ≤ 4.
Strong bell-like algorithm with s ≤ 4. In this case the leftmost or the rightmost path of T ,

depending on whether s is odd or even, respectively, is going to be drawn on a single grid column;
in particular, this grid column is the leftmost or the rightmost grid column intersecting the drawing,
depending on whether s is odd or even, respectively. Similarly to the strong flat algorithm, the spine P ,
together with the leftmost and rightmost paths of T and of certain subtrees of T , is going to be drawn
on a set of s+ 1 grid columns; also, P is going to have a “zig-zag” shape. We now formally describe this
construction; the description uses induction on s.

In the base case we have s = 0; refer to Fig. 14(a). Then vi+1 is the right child of vi, for i = 1, . . . , k−1,
given that vk is the right child of vk−1 by hypothesis. Recursively construct a bell-like drawing Γ1 of T1;
also, by means of the strong flat algorithm, construct a flat star-shaped drawing of the trees T2, . . . , Tk−1
and of the trees L1, . . . , Lp. Rotate each of the constructed flat star-shaped drawings by 180◦.

For i = 2, . . . , k − 1, augment the drawing of Ti by placing the parent of rTi
one unit to the right of

rTi
; similarly augment the drawings of the trees L1, . . . , Lp. Augment Γ1 by placing v1 one unit above

21

l

l

l

vk

Tk−1

L1

l

lLp

r

0−1

T1

v1=rT

l

p∗u
p∗v

v2T2

vk−1

l

r

r

r

r

r

(a)

1

T1

p∗u
p∗v

T2

r

Tπ(1)

T ′

vπ(1)

vπ(1)+1
vπ(1)+2

v2 r

r

l

l

r

l

r

l

r
l

l

r

v1=rT

0

P1

(b)

L1

l

l

l

vπ(1)+1

l

lLp

r

0−1

T1

v1=rT

l

p∗u
p∗v

v2T2

vπ(1)

l

r

r

r

r

r

T ′

Tπ(1)

vπ(1)+2

P1

(c)

Fig. 14: Illustration for the strong bell-like algorithm when s ≤ 4. (a) The case s = 0. (b) The case
1 ≤ s ≤ 4 with s odd. (c) The case 1 ≤ s ≤ 4 with s even.

Bt(Γ1) and one unit to the right of Br(Γ1). Further, construct a drawing (consisting of a single point)
of every node that has not been drawn yet (these are the nodes of the rightmost path of T with no left
child). We now place all these drawings together.

First, set the x-coordinate of every node in the rightmost path of T to be 0. This determines the
x-coordinate of every node of T . Second, we establish a total order σ for a set that contains one node for
each individually drawn tree; then a y-coordinate assignment is obtained by forcing, for any two nodes
uj and uj+1 that are consecutive in σ, the top side of the bounding box of the drawing comprising uj to
be one unit below the bottom side of the bounding box of the drawing comprising uj+1. Order σ consists
of the nodes of the rightmost path of T in reverse order. This completes the construction of a drawing
Γ of T .

In the inductive case we have 1 ≤ s ≤ 4. By hypothesis, we have that vk is the right child of vk−1;
hence, if s is odd (even) then vi+1 is the left (resp. right) child of vi, for i = 1, . . . , π(1). We first describe
the construction for the case in which s is odd, which is illustrated in Fig. 14(b).

Let P1 be the leftmost path of the left subtree of vπ(1)+1 and let T ′ be the subtree of T rooted at
vπ(1)+2. Recursively construct a bell-like drawing Γ1 of T1; also, by means of the strong flat algorithm,
construct a flat star-shaped drawing of the trees T2, . . . , Tπ(1) and of the subtrees of P1. Further, notice
that the part of P contained in T ′ has either s − 1 or s − 2 switches (indeed, it has s − 2 switches if
vπ(2) = vπ(1)+1 and it has s−1 switches otherwise). Then a flat star-shaped drawing of T ′ is constructed
by means of the strong flat algorithm; we stress the fact that the spine is not recomputed for T ′ according
to Lemma 10, but rather the construction of the drawing of T ′ is completed by using the subpath of P
between vπ(1)+2 and vk as the spine for T ′.

For i = 2, . . . , π(1), augment the drawing of Ti by placing the parent of rTi one unit to the left of
rTi ; similarly augment the drawings of T ′ and of the subtrees of P1. Augment Γ1 by placing v1 one unit
above Bt(Γ1) and one unit to the left of Bl(Γ1). Further, construct a drawing (consisting of a single
point) of every node that has not been drawn yet (these are the nodes of the leftmost path of T with
no right child). These drawings are placed together as in the case in which s = 0. In particular, set the

22

x-coordinate of every node in the leftmost path of T to be 0, thus determining the x-coordinate of every
node of T . Further, the y-coordinate assignment is such that the top side of the bounding box of the
drawing comprising a node of the leftmost path of T is one unit below the bottom side of the bounding
box of the drawing comprising the parent of that node. This completes the construction of a drawing Γ
of T .

The case in which s is even, which is illustrated in Fig. 14(c), is symmetric to the previous one and
very similar to the case s = 0. In particular, the rightmost path of T is drawn on the rightmost grid
column intersecting the drawing. Further, each recursively constructed flat star-shaped drawing of a
subtree of the rightmost path of T has to be rotated by 180◦ and placed so that its root is one unit to
the left of its parent. We get the following.

Lemma 12. Suppose that s ≤ 4. Then the strong bell-like algorithm constructs a bell-like star-shaped
drawing whose height is at most n and whose width is at most 5 + max{f(A), f(n−A)}.

Proof. Assume that s is odd; the case in which s is even is symmetric.
It is readily seen that Γ is star-shaped. In particular, it can be proved similarly to the proof of

Lemma 11 that every node different from rT sees all the nodes in its left-right path and in its right-left
path that are not adjacent to it, and that rT sees all the nodes in its left-right path that are not adjacent
to it. Further, rT sees all the nodes in its right-left path that are not adjacent to it, since all such nodes
are in the leftmost path of T1, since the drawing Γ1 of T1 is bell-like, and since rT is one unit above
Bt(Γ1) and one unit to the left of Bl(Γ1).

Drawing Γ is also bell-like. Indeed: (i) rT lies on Bt(Γ) by construction; (ii) the nodes of the leftmost
path of T lie on the line x = 0 in decreasing order of y-coordinates from rT to the unique leaf, and no
other node of T has an x-coordinate smaller than 1; (iii) the drawing Γ1 of T1 is bell-like, rT is one unit
above and at least one unit to the left of rT1

, and every node of T different from rT and not in T1 is
below Bb(Γ1). These statements imply that any point p∗u above Bt(Γ) and to the left of Bl(Γ) and any
point p∗v above Bt(Γ) and to the right of Br(Γ) satisfy Property 4 of a star-shaped drawing.

Drawing Γ has height at most n since any horizontal grid line intersecting Γ passes through a node
on the leftmost path of T or intersects a recursively constructed drawing. Concerning the width of Γ ,
note that the only subtree T1 that is drawn by a recursive application of the strong bell-like algorithm
has at most A nodes (or at most n−A nodes if k were equal to 1) and has the left side of its bounding
box on the line x = 1, while no node of T has an x-coordinate that is smaller than 0. The argument for
the subtrees that are recursively drawn by means of the strong flat algorithm is analogous to the one in
the proof of Lemma 11. �

In general, it might hold that s = Ω(A); hence, if the strong flat algorithm and the strong bell-like
algorithm used the constructions described above for every value of s, then recurring over the trees
L1, . . . , Lp one would get a drawing with Ω(n) width. For this reason, the strong flat algorithm and
the strong bell-like algorithm exploit different geometric constructions when s ≥ 8 and when s ≥ 5,
respectively. We now describe the strong bell-like algorithm in the case in which s ≥ 5.

Strong bell-like algorithm with s ≥ 5. The general idea of the upcoming construction is the
following. We would like to construct a bell-like star-shaped drawing Γ whose width is given by either
(i) a constant plus the width of a recursively constructed drawing of a tree with at most n−A nodes, or
(ii) a constant plus the widths of the recursively constructed drawings of two trees, each with at most
A nodes. Part of the construction we are going to show is very similar to the construction of the (non-
strong) bell-like algorithm from Section 3.2: Starting from rT , we draw the spine P of T on two adjacent
grid columns, with the left subtrees of P to the left of P and with the right subtrees of P to the right
of P (note that the width of this part of Γ is a constant plus the widths of the recursively constructed
drawings of two trees, each with at most A nodes). Before reaching vk, however, the construction changes
significantly. In particular, the drawing of P touches Br(Γ) and then continues on the grid column one
unit to the left of Br(Γ). The remainder of P , including vk and together with the rightmost path PR of
the subtree of T rooted at vk, is drawn entirely on that grid column, with its subtrees to the left of it
(note that the width of this part of Γ is a constant plus the width of a recursively constructed drawing
of a tree with at most n−A nodes).

In order to guarantee that Γ is a bell-like star-shaped drawing, it is vital that the drawings of T1
and Tπ(1)+1 are bell-like. This requirement can be easily met if the parents v1 and vπ(1)+1 of the roots of
these subtrees occur in the first part of P , which is drawn on two adjacent grid columns. On the other

23

r

r

L2

r

vπ(s)

r

r

l

l

r

r

Tπ(s)

r

l

l

rl

l

r

L1

0−1−ω−3

vπ(s)+1

vπ(s)−1

−ω

T1

r

r

l

l
vπ(1)

vπ(1)+1

l

Tπ(1)+1

r

vπ(1)+2
r

r

r
r

l

l

vπ(2)

rll

l

r

vπ(s−1)

l

l

l

l

vk

p∗u

p∗v

v1

l

Tπ(s)−1

−2ω−2

l

Tπ(s)+1

(a)

r

vπ(s)
l

r

Tπ(s)

vπ(s−1)

l

rl

l

r

r

rl

r

vπ(s)+1

lr

r

r

l

r

l

r

r

r

l

r l

r

l
vπ(s)−1

Tπ(s−2)

vπ(s−2)

vπ(s)

vπ(s)+1vπ(s)−1
=vπ(s−1)

r

l

l
l
l

Tπ(s)

Tπ(s)+1

Tπ(s)+1

l

l r

l

Tπ(s)−1

(b)

r

r

l

l

p∗v

p∗u

v1=rT

0 1

T2

Tπ(1)

l

vπ(1)+1

r
l

v2

r

l

vπ(1)

vπ(1)+2
l

r
l

C

D
r

r

p∗u

p∗v

v1=rT

T2

Tπ(1)

vπ(1)+1

v2

vπ(1)

0 1

l
r

r

r
l

r
l

l

l r

l

r

l

r
vπ(1)+2

D

C

(c)

Fig. 15: (a) Illustration for the strong bell-like algorithm when s ≥ 5. (b) A closer look at the cases in
which π(s − 1) < π(s) − 1 (top) or π(s − 1) = π(s) − 1 (bottom). (c) Illustration for the strong flat
algorithm when s ≥ 8, in the case in which v2 is the left child of v1 (top) or the right child of v1 (bottom).

hand, if v1 and vπ(1)+1 occurred in the second part of P , then the requirement on T1 and Tπ(1)+1 would
conflict with the geometric constraints our construction needs to satisfy in order to place the final part
of P , together with PR, on the grid column one unit to the left of Br(Γ). This is the reason why we need
the spine to have some number of switches (in fact at least 5 switches).

24

We now detail our construction. Refer to Fig. 15(a). First, we draw some subtrees recursively. We
use the strong bell-like algorithm to construct a bell-like star-shaped drawing of T1, of Tπ(1)+1, of Tπ(s),
and of Tπ(s)+1. Further, we use the strong flat algorithm to construct a flat star-shaped drawing of every
subtree Tj of P such that 2 ≤ j ≤ k − 1 with j /∈ {π(1) + 1, π(s), π(s) + 1}. Let ω denote the maximum
width among the constructed drawings of the trees Tj , with 1 ≤ j ≤ k−1; notice that any such a subtree
has at most A nodes. Finally, we use the strong flat algorithm to construct flat star-shaped drawings of
the trees L1, . . . , Lp, which have at most n−A nodes.

We now describe an x-coordinate assignment for the nodes of T ; for the part of P up to vπ(s)−1 (that
is, up to one node before the last switch of P), this assignment is done similarly to the (non-strong)
bell-like algorithm from Section 3.2 (for technical reasons, however, the nodes of T are here assigned non-
positive x-coordinates). For i = 1, . . . , π(s)− 1, node vi is placed on the line x = −ω− 2 or x = −ω− 1,
depending on whether vi+1 is the right or the left child of vi, respectively. Further, for i = 1, . . . , π(s)−1,
the recursively constructed drawing of Ti is assigned x-coordinates such that the left side of its bounding
box is on the line x = −ω if Ti is the right subtree of vi, or it is first rotated by 180◦ and then assigned
x-coordinates so that the right side of its bounding box is on the line x = −ω− 3 if Ti is the left subtree
of vi. Note that the part of T to which x-coordinates have been assigned so far lies in the closed vertical
strip −2ω − 2 ≤ x ≤ −1, given that the width of the drawing of Ti is at most ω, for i = 1, . . . , π(s)− 1.
Set x(vπ(s)) = 0; also set the x-coordinate of every node vi, with i = π(s) + 1, . . . , k − 1, and of every
node in PR to be −1. Rotate the drawing of Tπ(s) by 180◦ and assign x-coordinates to it so that the
left side of its bounding box is on the line x = −ω. Finally, assign x-coordinates to the drawings of
Tπ(s)+1, . . . , Tk−1, L1, . . . , Lp so that the right sides of their bounding boxes are on the line x = −2.

We now describe a y-coordinate assignment for the nodes of T . Part of this assignment varies de-
pending on whether π(s − 1) < π(s) − 1 (see Figs. 15(a) and 15(b) top) or π(s − 1) = π(s) − 1 (see
Fig. 15(b) bottom). First, we define the y-coordinates of certain nodes with respect to the ones of their
subtrees. We let node v1 (node vπ(1)+1, node vπ(s)+1) have y-coordinate equal to 1 plus the y-coordinate
of the root of T1 (resp. of Tπ(1)+1, resp. of Tπ(s)+1). Further, for j = 1, . . . , p, we let the root of Lj have
the same y-coordinate as its parent. Also:

– If π(s − 1) < π(s) − 1, then we let the root of Tj have the same y-coordinate as its parent for
j = 2, . . . , k − 1 with j /∈ {π(1) + 1, π(s)− 1, π(s), π(s) + 1}.

– If π(s − 1) = π(s) − 1, then we let the root of Tj have the same y-coordinate as its parent for
j = 2, . . . , k − 1 with j /∈ {π(1) + 1, π(s− 2), π(s), π(s) + 1}.

We construct a drawing (consisting of a single point) of every node that has not yet been drawn,
including vπ(s), including vπ(s)−1 (if π(s− 1) < π(s)− 1), and including vπ(s−2) (if π(s− 1) = π(s)− 1).
Note that the y-coordinates of Tπ(s) have not been defined relatively to the one of vπ(s); analogously, if
π(s− 1) < π(s)− 1 (if π(s− 1) = π(s)− 1), then the y-coordinates of Tπ(s)−1 (resp. of Tπ(s−2)) have not
been defined relatively to the one of vπ(s)−1 (resp. of vπ(s−2)).

We now place all these drawings together. Namely, we define a total order σ of the nodes and
subtrees of T that have been individually drawn; then we can recover a y-coordinate assignment from
σ by interpreting it as a top-to-bottom order of the subtrees (note that, in the previously described
constructions, the order σ represented a bottom-to-top order of the subtrees), so that the bottom side of
the bounding box of a subtree is one unit above the top side of the bounding box of the next subtree in
σ. The order σ starts with the nodes v1, v2, . . . , vπ(s−2)−1.

– If π(s−1) < π(s)−1, then the order σ continues with vπ(s−2), . . . , vπ(s−1)−1, with vπ(s−1)+1, . . . , vπ(s)−2,
with Tπ(s)−1, with Tπ(s), with vπ(s)−1 and vπ(s) (which have the same y-coordinate), and with vπ(s−1).

– If π(s−1) = π(s)−1, then the order σ continues with Tπ(s−2), with Tπ(s), with vπ(s−2), . . . , vπ(s−1)−1,
and with vπ(s−1) and vπ(s) (which have the same y-coordinate).

The order σ terminates with the nodes vπ(s)+1, . . . , vk−1 and with the nodes of PR in straight order.
This concludes the construction of the drawing Γ . We have the following.

Lemma 13. Suppose that s ≥ 5. Then the strong bell-like algorithm constructs a bell-like star-shaped
drawing whose height is at most n and whose width is at most 3 + max{2f(A), f(n−A)}.

Proof. It is readily seen that Γ is star-shaped and bell-like. Most interestingly:

25

– If π(s− 1) < π(s)− 1, then vπ(s−1) sees all the nodes of its right-left path that are not adjacent to
it. Indeed, the subpath (vπ(s−1)+1, . . . , vπ(s)−1) of the right-left path of vπ(s−1) is represented by a
straight-line segment on the vertical line x = −ω−1, which is one unit to the right of vπ(s−1), so that
vπ(s)−1 is the point of this segment with the smallest y-coordinate and is above vπ(s−1); hence, this
segment does not block the visibility between vπ(s−1) and vπ(s), which has the same y-coordinate as
vπ(s)−1 and is to the right of it, and between vπ(s−1) and vπ(s)+1, which is below vπ(s−1). Finally,
vπ(s−1) sees all the nodes of the leftmost path of Tπ(s)+1, given that the drawing of Tπ(s)+1 is bell-like
and that vπ(s−1) lies to the left and above the left side and the top side of the bounding box of the
drawing of Tπ(s)+1, respectively (note that x(vπ(s−1)) = −ω − 2, while Tπ(s)+1 has x-coordinates in
the range −ω − 1 ≤ x ≤ −2).

– If π(s− 1) = π(s)− 1, then vπ(s−2) sees all the nodes of its left-right path that are not adjacent to
it. Indeed, the subpath (vπ(s−2)+1, . . . , vπ(s−1)) of the left-right path of vπ(s−2) is represented by a
straight-line segment on the vertical line x = −ω − 2, which is one unit to the left of vπ(s−2); hence,
this segment does not block the visibility between vπ(s−2) and vπ(s), which is to the right of vπ(s−2)
and below it. Finally, vπ(s−2) sees all the nodes of the rightmost path of Tπ(s), given that the drawing
of Tπ(s) is bell-like and is rotated by 180◦, and that vπ(s−2) lies to the left and below the left side
and the bottom side of the bounding box of the drawing of Tπ(s), respectively.

We remark that, if π(s− 1) = π(s)− 1, then the algorithm constructs a flat star-shaped drawing of
Tπ(s−2) and places this drawing so that the bottom side of its bounding box is above vπ(s−2), in order to
“make space” for the drawing of Tπ(s). On the other hand, in order to ensure the bell-like property for
Γ , the construction employs a bell-like drawing of Tπ(1)+1. Hence, we need π(1) + 1 to be smaller than
π(s − 2). However, we have π(1) + 1 ≤ π(2) and π(2) < π(3), hence π(1) + 1 < π(s − 2) holds true if
s ≥ 5, which is the case by hypothesis.

The height of Γ is at most n, since every grid row intersecting Γ contains a node of P or intersects
a subtree of P . Concerning the width, note that Γ intersects no grid line x = i with i > 0. Consider the
smallest i such that the line ` with equation x = i intersects B(Γ).

– Suppose that ` intersects a tree among T1, . . . , Tπ(s). Each of these trees lies either between the lines
x = −ω and x = −1, or between the lines x = −2ω − 2 and x = −ω − 3; hence i ≥ −2ω − 2 and
the width of Γ is at most 3 + 2ω ≤ 3 + 2f(A), where ω ≤ f(A) holds true since every tree among
T1, . . . , Tπ(s) has at most A nodes and by the definition of the function f(n).

– Next, suppose that ` intersects a tree among Tπ(s)+1, . . . , Tk−1. The drawing of each of these trees
has the right side of its bounding box on the line x = −2; also, each of these trees has at most A
nodes, hence it has width at most f(A). It follows that the width of Γ is at most 2 + f(A).

– Finally, suppose that ` intersects a tree among L1, . . . , Lp. The drawing of each of these trees has
the right side of its bounding box on the line x = −2; also, each of these trees has at most n − A
nodes, hence it has width at most f(n−A). It follows that the width of Γ is at most 2 + f(n−A).

This concludes the proof of the lemma. �

It remains to describe the strong flat algorithm for the case in which s ≥ 8.
Strong flat algorithm with s ≥ 8. The geometric construction for this case is the same as the one

for the inductive case of the (non-strong) flat algorithm from Section 3.2, however the drawing algorithms
which are recursively invoked by the two constructions differ; refer to Fig. 15(c).

First, every subtree of the leftmost and rightmost paths of T different from Tπ(1)+1 is recursively drawn
by means of the strong flat algorithm. Denote by C and D the left and right subtrees of vπ(1)+2. Bell-like
star-shaped drawings of C and D are recursively constructed by means of the strong bell-like algorithm,
however there is one difference in the recursive construction of these drawings. Note that the spine P of
T “enters” exactly one between C and D (recall that P contains the nodes vπ(1), vπ(1)+1, vπ(1)+2, vπ(1)+3,
hence vπ(1)+3 is the root of C or D); let X be the one between C and D whose root is vπ(1)+3 and Y
be the one between C and D whose root is different from vπ(1)+3. Then the strong bell-like algorithm is
applied recursively for Y , while X is drawn by means of the construction of the strong bell-like algorithm
with s ≥ 5, by using the subpath of P between vπ(1)+3 and vk as the spine for it (that is, the spine is
not recomputed for X according to Lemma 10, but the path (vπ(1)+3, vπ(1)+4, . . . , vk) is used as spine
instead). Notice that, since π(1) < π(2) < π(3) < π(4), we have that π(1) + 3 ≤ π(4), hence the spine
(vπ(1)+3, vπ(1)+4, . . . , vk) contains at least 5 switches.

26

The remainder of the construction is the same as for the inductive case of the (non-strong) flat
algorithm from Section 3.2. Indeed, the nodes of the leftmost and rightmost paths of T are assigned x-
coordinate equal to 0; further, all the recursively drawn subtrees are embedded in the plane so that the left
sides of their bounding boxes lie on the line x = 1 (the drawing of D is rotated by 180◦ before embedding
it). Node vπ(1)+2 is assigned x-coordinate equal to 1 plus the maximum x-coordinate assigned to any
other node in the drawing. Every node different from v1 and vπ(1) is assigned the same y-coordinate as its
right or left child, depending on whether it belongs to the leftmost or rightmost path of T , respectively.
Distinct subtrees are arranged vertically so that, from bottom to top, the nodes of the leftmost path of T
appear first – in reverse order – and then the nodes of the rightmost path of T appear next – in straight
order. Depending on whether v2 is the left child (see Fig. 15(c) top) or the right child (see Fig. 15(c)
bottom) of v1, we respectively have that:

– The bottom side of the bounding box of Tπ(1) is one unit above the top side of the bounding box of
D; the bottom side of the bounding box of D is one unit above vπ(1); vπ(1) is one unit above vπ(1)+1

and vπ(1)+2, which have the same y-coordinate; vπ(1)+1 and vπ(1)+2 are one unit above the top side
of the bounding box of C; and the bottom side of the bounding box of C is one unit above the top
side of the bounding box of the left child of vπ(1)+1 and of its right subtree.

– The top side of the bounding box of Tπ(1) is one unit below the bottom side of the bounding box of
C; the top side of the bounding box of C is one unit below vπ(1); vπ(1) is one unit below vπ(1)+1 and
vπ(1)+2, which have the same y-coordinate; vπ(1)+1 and vπ(1)+2 are one unit below the bottom side
of the bounding box of D; and the top side of the bounding box of D is one unit below the bottom
side of the bounding box of the right child of vπ(1)+1 and of its left subtree.

We have the following.

Lemma 14. Suppose that s ≥ 8. Then the strong flat algorithm constructs a bell-like star-shaped drawing
whose height is at most n and whose width is at most 5 + max{2f(A), f(n−A)}.

Proof. It is readily seen that Γ is star-shaped and flat, and that its height is at most n. The width
of the drawing is given by 2, corresponding to the grid column x = 0 and to the grid column containing
vπ(1)+2, plus the width of a recursively drawn subtree. The latter is the maximum between f(A) (this is
the maximum width of any tree different from X that is recursively drawn) and 3+max{2f(A), f(n−A)},
which is the maximum width of the constructed drawing of X, as given by Lemma 13. This concludes
the proof of the lemma. �

We are now ready to state the main theorem of this section.

Theorem 3. Every n-vertex outerplanar graph admits an outerplanar straight-line drawing with area

O
(
n · 2
√

2 log2 n
√

log n
)

.

Proof. Let G be an n-vertex outerplanar graph and let T be its dual tree. We apply the strong
flat algorithm to T (with a parameter A that will be specified shortly), thus obtaining a drawing Γ .
Lemmata 11–14 ensure that Γ is a flat star-shaped drawing with height O(n). Points p∗u and p∗v satisfying
Property 4 of a star-shaped drawing can be chosen in Γ (in fact in any flat star-shaped drawing) so that
the width and the height only increase by a constant number of units. Due to this consideration and to
Lemma 8, in order to conclude the proof of the theorem it only remains to argue that the width of Γ is

in O
(

2
√

2 log2 n
√

log n
)

. This proof follows almost verbatim a proof by Chan [2]. Recall that we denote

by f(n) the maximum width of a drawing of an n-node ordered rooted binary tree constructed by means
of the strong flat or bell-like algorithm.

By Lemmata 11–14 we have that f(n) ≤ max{8+2f(A), 8+f(n−A)}. Iterating over the second term
with the same value of A we get f(n) ≤ max{8+2f(A), 8+f(n−A)} ≤ max{8+2f(A), 16+f(n−2A)} ≤
max{8 + 2f(A), 24 + f(n− 3A)} ≤ · · · ≤ max{8 + 2f(A), 8(nA − 1) + f(A)} ≤ 2f(A) + 8 nA + 8.

We now set A = n

2
√

2 log2 n
, which gives us the recurrence

f(n) ≤ 2f

(
n

2
√

2 log2 n

)
+ 8 · 2

√
2 log2 n + 8.

27

We remark that the iteration with the same value of A mentioned in the computation of the recursive
formula corresponds to using A = n

2
√

2 log2 n
whenever we need to recursively draw a tree that has more

than n

2
√

2 log2 n
nodes. Once the tree size drops to n

2
√

2 log2 n
or less, the drawing algorithms are applied

recursively by recomputing the parameter A based on the actual number of nodes in the tree that has
to be drawn.

It remains to solve the recurrence equation, which is done again as by Chan [2]. Namely, set m =

2
√

2 log2 n, which is equivalent to n = 2
(log2 m)2

2 , and set g(m) = f(n). Then

g(m) ≤ 2f

2
(log2 m)2

2

m

+ 8m+ 8 = 2f

(
2

(
(log2 m)2

2 −log2m

))
+ 8m+ 8

≤ 2f

(
2

(
(log2 m−1)2

2

))
+ 8m+ 8 = 2g

(m
2

)
+ 8m+ 8.

The inequality g(m) ≤ 2g
(
m
2

)
+ 8m + 8 trivially implies that g(m) ∈ O(m logm), and hence that

f(n) ∈ O(2
√

2 log2 n
√

log n), which concludes the proof of the theorem. �

We conclude the section by remarking that the function 2
√

2 log2 n
√

log n is asymptotically smaller

than any polynomial function of n; that is, for any constant ε > 0, it holds true that 2
√

2 log2 n
√

log n < nε

for sufficiently large n.

4 Conclusions

In the first part of the paper we studied LR-drawings of ordered rooted binary trees. We proved that an
LR-drawing with optimal width for an n-node ordered rooted binary tree can be constructed in O(n1.48)
time. It would be interesting to improve the running time to an almost-linear bound; this might however
require new insights on the structure of LR-drawings. We also proved that there exist n-node ordered
rooted binary trees requiring Ω(n0.418) width in any LR-drawing; this bound is close to the upper bound
of O(n0.48) due to Chan [2]. It seems unlikely that Chan’s bound is tight (he writes “The exponent
p = 0.48 is certainly not the best possible”) and the experimental evaluation we conducted seems to
confirm that; thus the quest for LR-drawings with o(n0.48) width is a compelling research direction.

In the second part of the paper we established a strong connection between LR-drawings of ordered
rooted binary trees and outerplanar straight-line drawings of outerplanar graphs. Namely we proved
that, if an ordered rooted binary tree T has an LR-drawing with a certain width and area, then the
outerplanar graph G whose dual tree is T has an outerplanar straight-line drawing with asymptotically
the same width and area. We also proved that n-vertex outerplanar graphs admit outerplanar straight-

line drawings in almost-linear area; our area upper bound is O
(
n · 2
√

2 log2 n
√

log n
)

. We believe that

an O(n log n) area bound cannot be achieved by only squeezing the drawing in one coordinate direction
while keeping the size of the drawing linear in the other direction; hence, we find very interesting to
understand whether every outerplanar graph admits an outerplanar straight-line drawing whose width
and height are both sub-linear. We remark that a similar question has a negative answer for general
planar graphs [20] and even for series-parallel graphs, that are graphs that exclude K4 as a minor (and
form hence a super-class of outerplanar graphs): There exist n-vertex series-parallel graphs that require
Ω(n) size in one coordinate direction in any straight-line planar drawing [8].

References

1. T. C. Biedl. Small drawings of outerplanar graphs, series-parallel graphs, and other planar graphs. Discrete
& Computational Geometry, 45(1):141–160, 2011.

2. T. M. Chan. A near-linear area bound for drawing binary trees. In R. E. Tarjan and T. J. Warnow, editors,
ACM-SIAM Symposium on Discrete Algorithms, pages 161–168, 1999.

3. T. M. Chan. A near-linear area bound for drawing binary trees. Algorithmica, 34(1):1–13, 2002.

28

4. T. M. Chan, M. T. Goodrich, S. R. Kosaraju, and R. Tamassia. Optimizing area and aspect ratio in straight-
line orthogonal tree drawings. Comput. Geom., 23(2):153–162, 2002.

5. P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings of
binary trees. Comput. Geom., 2:187–200, 1992.

6. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice-Hall, 1999.

7. G. Di Battista and F. Frati. Small area drawings of outerplanar graphs. Algorithmica, 54(1):25–53, 2009.
8. F. Frati. Lower bounds on the area requirements of series-parallel graphs. Discrete Mathematics & Theoretical

Computer Science, 12(5):139–174, 2010.
9. F. Frati. Straight-line drawings of outerplanar graphs in O(dnlogn) area. Comput. Geom., 45(9):524–533,

2012.
10. A. Garg and A. Rusu. Area-efficient order-preserving planar straight-line drawings of ordered trees. Int. J.

Comput. Geometry Appl., 13(6):487–505, 2003.
11. A. Garg and A. Rusu. Area-efficient planar straight-line drawings of outerplanar graphs. Discrete Applied

Mathematics, 155(9):1116–1140, 2007.
12. M. Kaufmann and D. Wagner, editors. Drawing Graphs, Methods and Models, volume 2025 of Lecture Notes

in Computer Science. Springer, 2001.
13. D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms. Addison-Wesley,

1968.
14. E. Mäkinen. Generating random binary trees - A survey. Inf. Sci., 115(1-4):123–136, 1999.
15. T. Nishizeki and M. S. Rahman. Planar Graph Drawing, volume 12 of Lecture Notes Series on Computing.

World Scientific, 2004.
16. E. M. Reingold and J. S. Tilford. Tidier drawings of trees. IEEE Trans. Software Eng., 7(2):223–228, 1981.
17. A. Rusu. Tree drawing algorithms. In R. Tamassia, editor, Handbook on Graph Drawing and Visualization,

pages 155–192. Chapman and Hall/CRC, 2013.
18. N. J. A. Sloane. The on-line encyclopedia of integer sequences. https://oeis.org/.
19. S. M. Stigler. Gauss and the invention of least squares. Ann. Statist., 9(3):465–474, 1981.
20. L. G. Valiant. Universality considerations in VLSI circuits. IEEE Transactions on Computers, 30(2):135–140,

1981.
21. Wolfram Research Inc. Mathematica 10. http://www.wolfram.com, 2014.

29

https://oeis.org/
http://www.wolfram.com

	LR-Drawings of Ordered Rooted Binary Trees and Near-Linear Area Drawings of Outerplanar Graphs
	Fabrizio Frati, Maurizio Patrignani, Vincenzo Roselli

