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Abstract

Stirling numbers of both kinds are linked to each other via two combinatorial identities due to Schläfli

and Gould. Using q-analogs of Stirling numbers defined as inversion generating functions, we provide

q-analogs of the two identities. The proof is computational and we leave open the problem of finding a

more combinatorial one.

1 Introduction

(Unsigned) Stirling numbers of the first and second kinds, respectively denoted S1(n, k) and S2(n, k), form
two infinite triangular arrays of integers with numerous combinatorial properties (see A130534 and A008277
in [17]). They can be defined via their exponential generating functions:

∑

0≤k≤n

S1(n, k)x
k z

n

n!
=

1

(1− z)x
,

∑

0≤k≤n

S2(n, k)x
k z

n

n!
= ex(e

z−1).

A well-known way to relate the two Stirling triangles is to define two matrices A and B by

Ai,j =

{

(−1)i−jS1(i, j) if i ≥ j,

0 otherwise,
Bi,j =

{

(−1)i−jS2(i, j) if i ≥ j,

0 otherwise,

which are then related by A−1 = B. But there is another way: the following two identities express Stirling
numbers of the first and second kind in terms of each other, in a symmetric way:

S1(n, k) = (−1)n−k

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

)

S2(n− k + j, j), (1)

S2(n, k) = (−1)n−k

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

)

S1(n− k + j, j). (2)

The first one is essentially due to Schläfli [14, 15], and to Schlömilch [16] in a different form. It is particularly
interesting because we can deduce an exact formula for S1(n, k) as a double sum, using the exact formula

S2(n, k) =
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn.
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One century later, Gould [5] obtained the second one. The proofs of both results rely on the analysis of
exponential generating functions of Stirling numbers, and are present in several textbooks such as [2], [3],
[11]. See also [6] and [18] for recent works related with these identities.

Our goal is to show that both (1) and (2) remains true when S1(n, k) and S2(n, k) are replaced with
natural q-analogs, denoted S1[n, k] and S2[n, k] (see Theorems 6.1 and 7.1). The q-analog S2[n, k] was studied
in [10], and the q-analog S1[n, k] is new and gives a natural companion to S2[n, k]. Indeed, they share similar
properties: they can be defined combinatorially in terms of inversions (see Definitions 4.3 and 5.3), and their
ordinary generating functions have continued fraction expansions (see Theorems 4.4 and 5.4), from which
we can obtain closed formulas in terms of binomial and q-binomial coefficients (see Theorems 4.5 and 5.5).

Note that this study of the new q-analog S1[n, k] is not just for its own sake, since the proofs of Theo-
rems 6.1 and 7.1 rely on the formula in Theorem 5.5. Once we know the closed formulas for S1[n, k] and
S2[n, k], which take the form of expansions of (1−q)n−kS1[n, k] and (1−q)n−kS2[n, k] as linear combinations
of the “shifted” q-binomial coefficients

q(
j+1
2 )

[

i

j

]

q

,

the proof of our identities are essentially a coefficient wise calculation. In particular, they do not involve
q-binomials, they are binomial identities of hypergeometric type.

The existence of such q-analogs for the two identities is somewhat unexpected, for two different reasons.
Firstly, they are extremely simple, since each Stirling number is just replaced with its q-analog (this simplicity
is the reason why we were able to find the identities via computer experiments). Secondly, the known proofs
of the original identities rely on the exponential generating functions of Stirling numbers, whereas the q-
Stirling numbers only have nice ordinary generating functions. The proof is not really enlightening, since it
is computational, and a more combinatorial proof is still to be found. For example, it would be natural to
try to interpret the alternating sums as an inclusion-exclusion process.

2 Common definitions and formulas

We use the standard notation for q-binomial coefficients: if 0 ≤ k ≤ n,

[

n

k

]

q

=
[n]q!

[k]q![n− k]q!
,

where [n]q! = [1]q[2]q . . . [n]q and [i]q = 1 + q + · · ·+ qi−1. And
[

n

k

]

q
= 0 if k < 0 or k > n. We have:

[

n

k

]

q

=

[

n− 1

k − 1

]

q

+ qk
[

n− 1

k

]

q

= qn−k

[

n− 1

k − 1

]

q

+

[

n− 1

k

]

q

. (3)

The Pochhammer symbol is (α)m = α(α + 1) . . . (α+m− 1). The general hypergeometric series is:

r+1Fr

(

α1 ; . . . ; αr+1

β1 ; . . . ; βr

∣

∣

∣ z
)

=
∑

n≥0

(α1)n . . . (αr+1)nz
n

(β1)n . . . (βr)nn!
.

We will need the Pfaff-Saalschütz summation theorem (see [1, Section 4.4] or [13, Chapter 5, §51]):

3F2

( −m ; α ; β
γ ; α+ β − γ −m+ 1

∣

∣

∣ 1
)

=
(γ − α)m(γ − β)m
(γ)m(γ − α− β)m

, (4)

where m is a nonnegative integer. Note that we have in particular, by letting β tend to infinity:

2F1

( −m ; α
γ

∣

∣

∣ 1
)

=
(γ − α)m
(γ)m

. (5)
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These equalities hold as long as the denominator in the right hand side does not vanish.
We also need the contiguity relation:

(α3 − α4)× 4F3

(

α1 ; α2 ; α3 ; α4

β1 ; β2 ; β3

∣

∣

∣1
)

= α3× 4F3

(

α1 ; α2 ; α3 + 1 ; α4

β1 ; β2 ; β3

∣

∣

∣1
)

− α4 × 4F3

(

α1 ; α2 ; α3 ; α4 + 1
β1 ; β2 ; β3

∣

∣

∣1
)

.

(6)

It is written here for a 4F3 series but holds in general for r+1Fr . It is elementary to prove, but see [13,
Equation 14, p. 82].

We will use three kinds of lattice paths in the discrete quarter plane N
2:

• A Dyck path of length 2n is a path from (0, 0) to (2n, 0) with steps (1, 1) or (1,−1).

• A Motzkin path of length n is a path from (0, 0) to (n, 0) with steps (1, 1) or (1, 0) or (1,−1).

• A Schröder path of length 2n is a path from (0, 0) to (2n, 0) with steps (1, 1) or (1,−1) or (2, 0).

Note that in a Dyck or Motzkin path (but not in a Schröder path), the number of steps equals the length.
The y-coordinate of (x, y) ∈ N

2 is called its height. Similarly, the height of a level step (1, 0) or (2, 0) in some
particular path is well defined, and other steps in the path have an initial height and final height (the path
is seen as going from left to right).

Suppose know that we assign weights to some steps of the path according to some specific rules. The
weight is usually a number or a monomial in some indeterminates or a sum of those. The weight of the path
is the product of the weights of his steps, and the weighted generating function is the sum of such weights,
over some set of paths that depends on the context. Also, if some step in a path has a weight x+ y we can
as well consider that this path comes in two different “colored” versions, one where this step has weight x
and the other where it is y.

Weighted Motzkin paths are the appropriate tool for the combinatorial study of continued fractions that
naturally arise as the moment generating function of orthogonal polynomials (see [1, 4]), called J-fractions.

Theorem 2.1 (cf. [4]). Let Mn be the weighted generating function of Motzkin paths of length n, where the
weights are:

• ai for a step (1,−1) starting at height i,

• bi for a step (1, 0) at height i.

Then we have:
∑

n≥0

Mnz
n =

1

1− b0z −
a1z

2

1− b1z −
a2z

2

1− b2z −
a3z

2

. . .

.

The theorem below is about another kind of continued fractions, called T-fractions. They were shown
by Roblet and Viennot [12] to be connected with two-points Padé approximants and with an enumeration
of Dyck paths with certain weights.

Theorem 2.2 (cf. [12]). Let D2n be the weighted generating function of Dyck paths of length 2n, where the
weights are:

• bi for a step (1,−1) starting at height i and following a step (1, 1),

• ci for a step (1,−1) starting at height i and following a step (1,−1).

3



Then we have:
∑

n≥0

D2nz
n =

1

1− (b1 − c1)z −
c1z

1− (b2 − c2)z −
c2z

1− (b3 − c3)z −
c3z

. . .

.

Also, note that the straightforward analog of Theorem 2.1 in the case of T-fractions gives the following:

Theorem 2.3. Let S2n be the weighted generating function of Schröder paths of length 2n, where the weights
are:

• ci for a step (1,−1) starting at height i,

• di for a step (2, 0) at height i.

Then we have:
∑

n≥0

S2nz
n =

1

1− d0z −
c1z

1− d1z −
c2z

1− d2z −
c3z

. . .

.

Proof. We can decompose a Schröder path as a a concatenation of smaller Schröder paths, by cutting every
time the path reaches height 0. This shows

∑

D2nz
n = (1 − X)−1 where X is the generating function of

indecomposable paths.
If an indecomposable path is not a single step (2, 0) at height 0, it begins with a step (1, 1), ends with

a step (1,−1), and removing these two steps gives another Schröder path (of length 2 less) with respect to
a shifted origin. Since a step (2, 0) at height 0 has weight d0 and an ending step (1,−1) has weight c1, we
have X = d0z + c1zY where Y is the weighted generating function of Schröder paths where the weights are
appropriately shifted.

So we have
∑

n≥0

D2nz
n =

1

1− d0z − c1zY

and iterating the argument gives the continued fraction.

3 Specific notation

Through the whole paper, we use two four-parameter families of integers defined by:

A
n,k
i,j =

(

n

k + i

)(

n

k − j

)

−

(

n

k + i+ 1

)(

n

k − j − 1

)

, (7)

B
n,k
i,j =

(

n+ j − 1

k − 1

)(

n− i− 1

k − 1

)

−

(

n+ j

k − 1

)(

n− i− 2

k − 1

)

. (8)

By factorizing these expression, we get the alternative formulas:

A
n,k
i,j =

i+ j + 1

n+ 1

(

n+ 1

k − j

)(

n+ 1

k + i+ 1

)

, (9)

B
n,k
i,j =

i+ j + 1

n+ j

(

n+ j

k − 1

)(

n− i− 2

k − 2

)

. (10)
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The four parameters n, k, i, j are non-negative integers such that 0 ≤ j ≤ i ≤ n−k, and we use the convention
that

(

−2
−2

)

=
(

−1
−1

)

= 1, and
(

u
v

)

= 0 if v < 0 and u > v.
It is worth observing that we have:

A
n,k
i,j = A

n,k−1
i+1,j−1, B

n,k
i,j = B

n+1,k
i+1,j−1,

so that we could use three-parameter families of integers. But curiously, this observation does not seem to
be of any help in the present work.

Also, we will use the Narayana numbers (see A001263 in [17]), defined by:

Nn,k =
1

n

(

n

k − 1

)(

n

k

)

if 1 ≤ k ≤ n. We slightly extend this definition by the convention N0,0 = 1, and Nn,0 = 0 if n ≥ 1.

4 q-Stirling numbers of the second kind

This section mostly presents results taken from [10].

Definition 4.1. Let π be a set partition of {1, . . . , n}. We denote cr(π) the number of crossings of π,
i.e. pairs ((i, k), (j, l)) with i < j < k < l such that i, k (respectively j, l) are two neighbour elements of a
block of π.

We represent a set partition by drawing arcs between each pair of neighbour elements in every block.
Then cr(π) is seen to be the number of intersection points between the arcs. For example in the left part of
Figure 1, the set partition 156|24|38|79A has three crossings: ((2, 4), (3, 8)), ((1, 5), (3, 8)), and ((3, 8), (7, 9)).

Definition 4.2. Let δn denote the staircase Young diagram, with row lengths n, n− 1, . . . , 1 from bottom
to top (using French notation). A rook placement is a (partial) filling of δn with some dots (also called
rooks), such that there is at most one dot in each row and in each column. Let inv(R) denote the number
of inversions in a rook placement R, i.e. cells having a dot to its left in the same row and another below in
the same column.

In a rook placement, we represent inversions by a cross. In the right part of Figure 1, we have a rook
placement with three inversions.

1 2 3 4 5 6 7 8 9 A

1

2

3

4

5

6

7

8

9

A

×

×

×

Figure 1: A set partition, and a rook placement.
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There is a simple bijection between set partitions of {1, . . . , n} with k blocks and rook placements in δn−1

with n− k rooks. We first label the outer corners of δn−1 with integers from 1 to n, from the top left corner
to the bottom right one. Then, for each arc (i, j) in the set partition, we put a cross at the intersection of
the column having i above it and the row having j to its right. For example the set partition in the left
part of Figure 1 corresponds to the rook placement to its right. It is easily seen that the crossings of a set
partition are in bijection with the inversions of the corresponding rook placement.

It is well known that S2(n, k) is the number of set partitions of {1, . . . , n} with k blocks, and the q-analog
is given by:

Definition 4.3. If 0 ≤ k ≤ n, let S2[n, k] =
∑

π q
cr(π) where the sum is over set partitions π of {1, . . . , n}

with k blocks. Alternatively, S2[n, k] =
∑

R q
inv(R) where the sum is over rook placements in δn−1 with n−k

rooks.

In [10], we studied the notion of crossings in several combinatorial objects, from the point of view of
orthogonal polynomials and their moments. In particular, by giving a bijection between set partitions and
weighted Motzkin paths and using Theorem 2.1, we got:

Theorem 4.4 (cf. [10]).

∑

0≤k≤n

S2[n, k]x
kzn =

1

1− xz −
[1]qxz

2

1− (x+ [1]q)z −
[2]qxz

2

1− (x+ [2]q)z −
[3]qxz

2

. . .

.

And it is possible to extract a formula for each coefficient from the continued fraction:

Theorem 4.5 (cf. [10]).

(1− q)n−kS2[n, k] =

k
∑

j=0

n−k
∑

i=j

(−1)iAn,k
i,j q

(

j+1
2

)

[

i

j

]

q

. (11)

Remark 4.6. Although it is not needed for our purpose, let us mention that we found an alternative formula
in the course of this work. If n > 0, we have:

(1− q)n−kS2[n, k] =

k−1
∑

j=0

n−k
∑

i=j

(−1)iAn−1,k−1
i,j qi+

(

j
2

)

[

i

j

]

q

. (12)

See Remark 5.11 in the next section.

Remark 4.7. Note that partitions with no crossing are the noncrossing partitions in the sense of Krew-
eras [8]. Since the number of noncrossing partitions of {1, . . . , n} in k blocks is Nn,k (see Corollaire 4.1 in
loc. cit.), we have:

S2[n, k]|q=0 = Nn,k. (13)

5 q-Stirling numbers of the first kind

Definition 5.1. Let Sn denote the group of permutations of {1, . . . , n}. A permutation is represented by
its graph, a n× n grid where we put a dot at each cell with coordinates (i, σ(i)) for 1 ≤ i ≤ n. Let σ ∈ Sn,
then a right-to-left maxima of σ is an integer i ∈ {1, . . . , n} such that σ(i) > σ(j) if i < j ≤ n. Let rlm(σ)
denote the number of right-to-left maxima of σ. The bounding path of σ ∈ Sn is the path characterized by
the following properties:

6



×

× ×

×

×

x

q1

x

q2 x

x

q1

q1

q0

Figure 2: Bounding path and special inversions of the permutation 869237514 (left) and a weighted Dyck
path (right).

• It starts at (0, n) and ends at (n, 0).

• It has 2n unit steps going East or South, in coordinates: (1, 0) or (0,−1).

• All cells (i, σ(i)) are below it.

• It is as low as possible among paths satisfying the previous three properties.

In the left part of Figure 2, we have the graph of the permutation 869237514 and its bounding path as a
dashed line. After the appropriate rotation so that the steps (1, 0) and (0,−1) respectively become (1, 1) and
(1,−1), it is easily seen that the bounding path becomes a Dyck path of length 2n, see the right of Figure 2.
Moreover, each right-to-left maxima in the permutation corresponds to a peak in its bounding path, i.e. a
step (1, 1) immediately followed by a step (1,−1) to its right.

Let σ ∈ Sn. We recall that an inversion of σ is a pair (i, j) such that 1 ≤ i < j ≤ n and σ(i) > σ(j).

Definition 5.2. A special inversion of a permutation σ is an inversion (i, j) such that there exists k satisfying
j < k ≤ n and σ(i) < σ(k). Let inv′(σ) denote the number of special inversions of σ.

The inversion (i, j) can be identified with the cell (j, σ(i)) (as in the previous section). Then it is special
if and only if this cell (j, σ(i)) is below the bounding path. In this case, we represent this special inversion
by putting a × in the cell (j, σ(i)). See the left part of Figure 2 where there are 5 special inversions.

It is well known that S1(n, k) is the number of permutations σ ∈ Sn having k right-to-left maxima. The
q-analog is given by:

Definition 5.3. Let S1[n, k] =
∑

σ q
inv′(σ) where we sum over permutations σ ∈ Sn having k right-to-left

maxima.

There is also a continued fraction expansion for the generating function of q-Stirling numbers of the first
kind, but this time it is a T-fraction. The theorem below is a variant of the results in [12, Section 3].

Theorem 5.4.

∑

0≤k≤n

S1[n, k]x
kzn =

1

1− (x− [1]q)z −
[1]qz

1− (x− [2]q)z −
[2]qz

1− (x− [3]q)z −
[3]qz

. . .

. (14)

7



Proof. Note that
n
∑

k=0

S1[n, k]x
k =

∑

σ∈Sn

qinv
′(σ)xrlm(σ).

To get the generating function of this quantity, the idea is to build a bijection φ between Sn and the set Pn

of weighted Dyck paths of length 2n such that:

• a step (1,−1) following a step (1, 1) has weight x,

• a step (1,−1) following a step (1,−1) and starting at height i has a weight qj where 0 ≤ j ≤ i− 1.

Moreover we require that the weight of φ(σ) is qinv
′(σ)xrlm(σ). The result then follows using Theorem 2.2.

This bijection is given in [12, Section 3], but let us define it (for the convenience of the reader and because
we have different conventions).

Let σ ∈ Sn. First, the underlying Dyck path of φ(σ) is its bounding path. Then, the weight of the ith
step (1,−1) in the Dyck path is:

• x if this step follows a step (1, 1),

• qj where j is the number of × in the ith row (from top to bottom) in the graph of σ, otherwise.

See Figure 2 for an example, where the weighted Dyck path on the right is the image of the permutation on
the left. It is clear that the weight of φ(σ) is qinv

′(σ)xrlm(σ).
To prove φ(σ) ∈ Pn, we need to check that the weights are valid. Consider the ith step (1,−1) in the

Dyck path. Let h be its initial height, so that there are h+ i− 1 steps (1, 1) to its left. Now if we consider
the path in the graph of the permutation (as in the left part in Figure 2), we see that in the ith row, the
number of cells to the right of the bounding path is n− (h+ i− 1). But all these cells are inversions (with
the convention that inversions are identified with cells of the permutation graph as explained above) that
are not special. The number of inversions in the ith row is at most n− i so the number of special inversions
in this row is smaller than (n− i)− (n− h− i+ 1) = h− 1. It follows that φ(σ) ∈ Pn.

Now if we have a path in Pn, its image under the inverse bijection is obtained by building the permutation
graph from top to bottom as follows. If the ith step (1,−1) has weight x, the dot in the ith row is placed
just to the left of the bounding path. If its weight is qj , it is placed in the (j + 1)th cell (from right to left)
among cells to the left of the bounding path that have no dot above in the same row. We omit details about
why this is well defined and why this is the inverse bijection of φ.

We will use the combinatorics of paths to prove the formula below:

Theorem 5.5.

(1− q)n−kS1[n, k] =

n−k
∑

j=0

n−k
∑

i=j

(−1)jBn,k
i,j q

(

j+1
2

)

[

i

j

]

q

. (15)

Alternatively:

Theorem 5.6.

(1− q)n−kS1[n, k] =
n−k
∑

j=0

n−k
∑

i=j

(−1)jBn+1,k+1
i,j qi+

(

j
2

)

[

i

j

]

q

. (16)

Our proof heavily relies on the combinatorics of Schröder and Motzkin paths.

Lemma 5.7. The sum
∑n

k=0(1 − q)n−kS1[n, k]x
k is the generating function of weighted Schröder paths of

length 2n such that:

• the weight of a step (1,−1) starting at height i is 1− qi,

• the weight of a step (2, 0) at height i is x− 1 or qi+1.

8



Proof. Making the substitution x→ x(1− q)−1 and z → z(1− q) in (14) gives:

∑

0≤k≤n

(1− q)n−kS1[n, k]x
kzn =

1

1− (x − 1 + q)z −
(1− q)z

1− (x− 1 + q2)z −
(1 − q2)z

1− (x− 1 + q3)z −
(1− q3)z

. . .

.

So the result follows from Theorem 2.3.

Note that in the previous lemma, instead of giving a weight x− 1 + qh+1 to a step (2, 0) at height h, we
distinguish two possibilities. The reason will appear in the proof of the next lemma.

Definition 5.8. For k, n having the same parity and such that 0 ≤ k ≤ n, let µn,k be the generating
functions of weighted Motzkin paths of length n such that:

• there are k horizontal steps,

• the weight of a step (1, 0) at height h is qh,

• the weight of a step (1,−1) starting at height h is 1− qh.

Lemma 5.9.

n
∑

k=0

(1 − q)n−kS1[n, k]x
k =

n
∑

i=0

n−i
∑

j=0

(

2n− i− j

j

)

(x− 1)jqiµ2n−2j−i,i. (17)

Proof. We give a bijective proof. Consider a weighted path p as described in Lemma 5.7. Let j be its number
of steps (2, 0) with weight x− 1, and i its number of steps (2, 0) with weight qh+1. Then, define a weighted
Motzkin path ψ(p) by the following operations:

• remove from p each step (2, 0) with weight x− 1,

• transform each step (2, 0) with weight qh+1 into a step (1, 0) with weight qh.

(Of course we need to connect all remaining steps to get a valid path.) The length of ψ(p) is 2n− 2j − i, it
has i steps (1, 0), and its weights are as in Definition 5.8. Moreover the weight of p is (x− 1)jqi times that
of ψ(p).

To finish this bijective proof of (17), we need to check that
(

2n−i−j
j

)

is the number of such paths p as

before that have the same image under ψ. Note that these paths p have length 2n and i+ j steps (2, 0), so
their total number of steps is 2n − i − j. Hence,

(

2n−i−j
j

)

is the number of possible locations of the steps

(2, 0) with weight x − 1, among all steps. But it is clear that we can recover p from ψ(p) and the location
of these steps and we can conclude.

Lemma 5.10.

µn,k =

n−k
2

∑

u=0

(−1)uq(
u+1
2 )

[

k + u

u

]

q

((

n
n−k
2 − u

)

−

(

n
n−k
2 − u− 1

))

.

Proof. From the definition in terms of weighted Motzkin paths,
∑n

k=0 µn,ka
k can be seen as the nth moment

of some sequence of orthogonal polynomials, called the continuous Big q-Hermite polynomials [7]. They
are obtained from Al-Salam-Chihara orthogonal polynomials [7] by setting some parameter to 0. Then the
formula for µn,k can be obtained, for example, from [9, Theorem 6.1.1].
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Proof of Theorem 5.6. Taking the coefficient of xk in both sides of (17), we get:

(1− q)n−kS1[n, k] =
n−k
∑

i=0

n−i
∑

j=k

(

2n−i−j
j

)

(−1)j−k
(

j
k

)

qiµ2n−2j−i,i

=

n−k
∑

i=0

n−i
∑

j=k

(

2n−i−j
j

)

(−1)j−k
(

j
k

)

qi
n−j−i
∑

u=0

(−1)uq(
u+1
2 )

[

u+ i

u

]

q

(

(

2n−2j−i
n−j−i−u

)

−
(

2n−2j−i
n−j−i−u−1

)

)

=

n−k
∑

i=0

n−i
∑

u=0

qi(−1)uq(
u+1
2 )

[

u+ i

u

]

q

n−i−u
∑

j=k

(

2n−i−j
j

)

(−1)j−k
(

j
k

)

(

(

2n−2j−i
n−j−i−u

)

−
(

2n−2j−i
n−j−i−u−1

)

)

.

Then the latter sum over j is Eu − Eu+1 where we defined:

Eu =

n−i−u
∑

j=k

(

2n− i− j

j

)

(−1)j−k

(

j

k

)(

2n− 2j − i

n− j − i− u

)

=

n−i−u−k
∑

j=0

(

2n− i − k − j

j + k

)

(−1)j
(

j + k

k

)(

2n− 2j − 2k − i

n− j − k − i− u

)

=
n−i−u−k

∑

j=0

(−1)j
(2n− i− k − j)!

(2n− 2k − 2j − i)!j!k!

(

2n− 2j − 2k − i

n− j − k − i− u

)

.

And, using (α − j)! = (−1)j α!
(−α)j

, we have:

Eu =

n−i−u−k
∑

j=0

(−1)j
(2n− i− k − j)!

j!k!
×

1

(n− j − k − i− u)!(n− j − k + u)!

=
(2n− i− k)!

(n− k − i− u)!(n− k + u)!k!

n−i−u−k
∑

j=0

(−n+ k + i+ u)j(−n+ k − u)j
(−2n+ i+ k)jj!

=
(2n− i− k)!

(n− k − i− u)!(n− k + u)!k!
×

(−n+ i+ u)n−k−i−u

(−2n+ i+ k)n−k−i−u

=
(2n− i− k)!

(n− k − i− u)!(n− k + u)!k!
×

(n− i− u)!(n+ u)!

k!(2n− i− k)!
=

(

n+ u

k

)(

n− i− u

k

)

.

So, from (8) we get

Eu − Eu+1 = B
n+1,k+1
u+i,u .

So,

(1− q)n−kS1[n, k] =

n−k
∑

i=0

n−i
∑

u=0

B
n+1,k+1
u+i,u (−1)uqi+(

u+1
2 )

[

u+ i

u

]

q

.

We can restrict the summation on indices such that u+ i ≤ n− k since otherwise Bn+1,k+1
u+i,u = 0. This gives

(16).

Proof of Theorem 5.5. We show that (16) implies (15). Using the recursion for q-binomial coefficient in (3)
a couple of times, we have:

qi+(
j

2)
[

i

j

]

q

= q(
j+1
2 )

[

i+ 1

j + 1

]

q

− q(
j+1
2 )

[

i

j + 1

]

q

= q(
j+2
2 )

[

i

j + 1

]

q

+ q(
j+1
2 )

[

i

j

]

q

− q(
j+2
2 )

[

i− 1

j + 1

]

q

− q(
j+1
2 )

[

i− 1

j

]

q

.
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So:

(1− q)n−kS1[n, k] =
∑

0≤j≤i≤n−k

B
n+1,k+1
i,j (−1)jqi+(

j

2)
[

i

j

]

q

=
∑

0≤j≤i≤n−k

B
n+1,k+1
i,j (−1)jq(

j+2
2 )

[

i

j + 1

]

q

+
∑

0≤j≤i≤n−k

B
n+1,k+1
i,j (−1)jq(

j+1
2 )

[

i

j

]

q

−

∑

0≤j≤i≤n−k

B
n+1,k+1
i,j (−1)jq(

j+2
2 )

[

i− 1

j + 1

]

q

−
∑

0≤j≤i≤n−k

B
n+1,k+1
i,j (−1)jq(

j+1
2 )

[

i− 1

j

]

q

=
∑

1≤j≤i≤n−k

B
n+1,k+1
i,j−1 (−1)j+1q(

j+1
2 )

[

i

j

]

q

+
∑

0≤j≤i≤n−k

B
n+1,k+1
i,j (−1)jq(

j+1
2 )

[

i

j

]

q

−

∑

1≤j≤i<n−k

B
n+1,k+1
i+1,j−1 (−1)j+1q(

j+1
2 )

[

i

j

]

q

−
∑

0≤j≤i<n−k

B
n+1,k+1
i+1,j (−1)jq(

j+1
2 )

[

i

j

]

q

.

Note that in the last two sums, we can include the terms where i = n− k, since Bn+1,k+1
n−k+1,j = 0 (the second

binomial vanishes in (10)). We can also include the terms where j = 0 in the first and third sums, since

they cancel each other out (to do that we also need to check from the formula that Bn+1,k+1
0,−1 = 0 and

B
n+1,k+1
n−k+1,−1 = 0). Eventually we get:

(1 − q)n−kS1[n, k] =
∑

0≤j≤i≤n−k

(−Bn+1,k+1
i,j−1 +B

n+1,k+1
i,j +B

n+1,k+1
i+1,j−1 −B

n+1,k+1
i+1,j )(−1)jq(

j+1
2 )

[

i

j

]

q

.

To obtain (15), it remains to prove:

−Bn+1,k+1
i,j−1 +B

n+1,k+1
i,j +B

n+1,k+1
i+1,j−1 −B

n+1,k+1
i+1,j = B

n,k
i,j . (18)

But this is easy to do by elementary manipulation on binomial coefficients. We omit details.

Remark 5.11. It is possible to link (11) and (12), in the same way that we linked (15) and (16). The

related identity on the coefficients An,k
i,j is

A
n−1,k−1
i,j−1 +A

n−1,k−1
i,j +A

n−1,k−1
i+1,j−1 +A

n−1,k−1
i+1,j = A

n,k
i,j . (19)

Despite the similarity, we have got no clear link between (19) and (18).

Remark 5.12. We have seen that the bijection φ from the proof of Theorem 5.4 gives an interpretation of
S1[n, k] in terms of weighted Dyck paths of length 2n with k peaks. It follows that S1[n, k]|q=0 is the number
of such weighted Dyck paths where all weights are 1. It is well known that the number of Dyck paths of
length 2n with k peaks is Nn,k, so that:

S1[n, k]|q=0 = Nn,k. (20)

6 The first identity

Theorem 6.1. If 0 ≤ k ≤ n, we have:

S1[n, k] = (−1)n−k

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

)

S2[n− k + j, j]. (21)
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Proof. We compute the right-hand side of (21) using (11), and simplify the result to get the right-hand side
of (15). Up to the simple factor (q − 1)n−k, this gives:

(1 − q)n−k

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

)

S2[n− k + j, j]

=

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

) j
∑

i=0

n−k
∑

h=i

(−1)hAn−k+j,j
h,i q

(

i+1
2

)

[

h

i

]

q

=

n−k
∑

h=0

h
∑

i=0

(−1)hDn,k
h,i q

(

i+1
2

)

[

h

i

]

q

,

where Dn,k
h,i , the sum to be simplified, is defined by

D
n,k
h,i =

n−k
∑

j=i

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

)

A
n−k+j,j
h,i .

To check the exchange of summation, note that the range of indices h, i, j is defined by 0 ≤ h, i, j ≤ n − k

and i ≤ h, j. To finish the proof, it remains only to show:

D
n,k
h,i = (−1)n+k+h+iB

n,k
h,i . (22)

We rewrite the sum as an hypergeometric series, using the factorized formula for An−k+j,j
h,i in Equation (9):

D
n,k
h,i =

n−k
∑

j=i

(−1)j
(n− 1 + j)!

(n− k + j)!(k − 1)!
×

(2n− k)!

(n− k − j)!(n+ j)!
×

h+ i+ 1

n− k + j + 1

×
(n− k + j + 1)!

(j − i)!(n− k + i− 1)!
×

(n− k + j + 1)!

(j + h+ 1)!(n− k − h)!

=
(h+ i+ 1)(2n− k)!

(k − 1)!(n− k − h)!(n− k + i+ 1)!

n−k
∑

j=i

(−1)j
(n− 1 + j)!(n− k + j + 1)!

(n− k − j)!(n+ j)!(j + h+ 1)!(j − i)!

=
(h+ i+ 1)(2n− k)!

(k − 1)!(n− k − h)!(n− k + i+ 1)!

∑

j≥0

(−1)j+i (n− 1 + j + i)!(n− k + j + i+ 1)!

(n− k − j − i)!(n+ j + i)!(j + i+ h+ 1)!j!
.

Then, we use (m)j =
(m+j−1)!
(m−1)! if m ≥ 0 to find:

D
n,k
h,i =

(h+ i + 1)(2n− k)!(n− 1 + i)!

(k − 1)!(n− k − h)!

∑

j≥0

(−1)j+i (n+ i)j(n− k + i+ 2)j
(n− k − j − i)!(n+ j + i)!(j + i+ h+ 1)!j!

=
(h+ i+ 1)(2n− k)!

(n+ i)(k − 1)!(n− k − h)!

∑

j≥0

(−1)j+i (n+ i)j(n− k + i+ 2)j
(n− k − j − i)!(n+ i+ 1)j(j + i+ h+ 1)!j!

=
(2n− k)!

(n+ i)(k − 1)!(n− k − h)!(h+ i)!

∑

j≥0

(−1)j+i (n+ i)j(n− k + i+ 2)j
(n− k − j − i)!(n+ i+ 1)j(i+ h+ 2)jj!

.

For the last step, we use (−m)j = (−1)j m!
(m−j)! to find:

D
n,k
h,i =

(−1)i(2n− k)!

(n+ i)(k − 1)!(n− k − h)!(h+ i)!(n− k − i)!

∑

j≥0

(k + i− n)j(n+ i)j(n− k + i+ 2)j
(n+ i+ 1)j(i+ h+ 2)jj!

. (23)
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The Pfaff-Saalschütz summation (4) can be applied if h = i, since then the sum over j becomes:

3F2

(

k − n+ i ; n− k + 2 + i ; n+ i

n+ i+ 1 ; 2i+ 2

∣

∣

∣
1

)

.

It follows:

D
n,k
i,i =

(−1)i(2n− k)!

(n+ i)(k − 1)!(n− k − i)!(2i)!(n− k − i)!
×

(k − 1)n−k−i(1)n−k−i

(n+ i+ 1)n−k−i(k − i − n− 1)n−k−i

=
(−1)i(n+ i)!

(n+ i)(k − 1)!(n− k − i)!(2i)!
×

(k − 1)n−k−i

(k − i− n− 1)n−k−i

=
(−1)i(n+ i)!

(n+ i)(k − 1)!(n− k − i)!(2i)!
×

(n− i− 2)!

(k − 2)!
×

(−1)n−k−i(2i+ 1)!

(n− k + i+ 1)!

= (−1)n−k 2i+ 1

n+ i
×

(n+ i)!

(k − 1)!(n+ i − k + 1)!
×

(n− i− 2)!

(n− k − i)!(k − 2)!
= (−1)n−kB

n,k
i,i ,

using the factorized formula in (10). So (22) holds when h = i.

Then, we give a simple relation between Dn,k
h,i and Dn,k

h,i+1, and check that the same holds between Bn,k
h,i

and Bn,k
h,i+1 (up to a minus sign). In Equation (23), we can use

(n+i)j
(n+i+1)j

= n+i
n+i+j

= 1− j

n+i+j
, to get:

D
n,k
h,i =

(−1)i(2n− k)!

(n+ i)(k − 1)!(n− k − h)!(h+ i)!(n− k − i)!

∑

j≥0

(k + i− n)j(n+ i)(n− k + i+ 2)j
(n+ i+ j)(i+ h+ 2)jj!

=
(−1)i(2n− k)!

(n+ i)(k − 1)!(n− k − h)!(h+ i)!(n− k − i)!
×





∑

j≥0

(k + i− n)j(n− k + i+ 2)j
(i+ h+ 2)jj!

−
∑

j≥1

(k + i− n)j(n− k + i+ 2)j
(n+ i+ j)(i + h+ 2)j(j − 1)!



 .

The first sum over j can be evaluated using (5). It is equal to:

(h+ k − n)n−k−i

(i+ h+ 2)n−k−i

.

The numerator is the product (h + k − n)(h + k − n + 1) . . . (h − i − 1). Since h + k − n ≤ 0, this is 0 if

h − i − 1 ≥ 0 i.e. i + 1 ≤ h (which we can assume since we want a relation between Dn,k
h,i and Dn,k

h,i+1). As
for the second sum, using (α)j+1 = α(α+ 1)j , we have:

∑

j≥1

(k + i− n)j(n− k + i+ 2)j
(n+ i+ j)(i+ h+ 2)j(j − 1)!

= (k+i−n)(n−k+i+2)
(i+h+2) ×

∑

j≥0

(k + i− n+ 1)j(n− k + i+ 3)j
(n+ i+ j + 1)(i + h+ 3)jj!

= (k+i−n)(n−k+i+2)
(i+h+2)(n+i+1) ×

∑

j≥0

(k + i− n+ 1)j(n+ i+ 1)j(n− k + i+ 3)j
(n+ i+ 2)j(i+ h+ 3)jj!

.

Denote S the latter sum, then we have:

D
n,k
h,i =

(−1)i(2n− k)!

(n+ i)(k − 1)!(n− k − h)!(h+ i)!(n− k − i)!
×

(k + i− n)(n− k + i+ 2)

(i+ h+ 2)(n+ i+ 1)
× S,

and from (23):

D
n,k
h,i+1 =

(−1)i+1(2n− k)!

(n+ i + 1)(k − 1)!(n− k − h)!(h+ i + 1)!(n− k − i− 1)!
× S.
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It follows:
(n+ i)(i+ h+ 2)Dn,k

h,i = −(h+ i+ 1)(n− k + i+ 2)Dn,k
h,i+1. (24)

From (10) we also have:

B
n,k
h,i

B
n,k
h,i+1

=
(h+ i+ 1)(n+ i+ 1)

(

n+i
k−1

)

(h+ i+ 2)(n+ i)
(

n+i+1
k−1

) =
(h+ i+ 1)(n+ i− k + 2)

(h+ i+ 2)(n+ i)
. (25)

Equations (24) and (25) implies that (22) also holds in the range 0 ≤ i ≤ h, since we have already seen that
it holds when h = i. This completes the proof.

Note that the particular case q = 0 in the previous theorem, together with (13) and (20), gives the
following identity (that will be used in the next section).

Corollary 6.2. If 0 ≤ k ≤ n, we have:

Nn,k = (−1)n−k

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

)

Nn−k+j,j . (26)

7 The second identity

Theorem 7.1. If 0 ≤ k ≤ n, we have:

S2[n, k] = (−1)n−k

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

)

S1[n− k + j, j]. (27)

Proof. The scheme of proof is the same as in the previous section. Using (15), the right hand side of (27) is
(up to the simple factor (q − 1)n−k ):

(1− q)n−k

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

)

S1[n− k + j, j]

=

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

) n−k
∑

i=0

n−k
∑

h=i

(−1)iBn−k+j,j
h,i q

(

i+1
2

)

[

h

i

]

q

=

n−k
∑

h=0

h
∑

i=0

(−1)iCn,k
h,i q

(

i+1
2

)

[

h

i

]

q

,

where Cn,k
h,i is defined by:

C
n,k
h,i =

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

)

B
n−k+j,j
h,i .

To obtain the right hand side of (11) and finish the proof, we need to prove:

n−k
∑

h=0

h
∑

i=0

(−1)iCn,k
h,i q

(

i+1
2

)

[

h

i

]

q

= (−1)n−k

n−k
∑

h=0

h
∑

i=0

(−1)hAn,k
h,i q

(

i+1
2

)

[

h

i

]

q

. (28)

We will show that in the case i > 0, we have:

C
n,k
h,i = (−1)n+k+h+iA

n,k
h,i . (29)
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Even if this does not hold for i = 0, this is overcome as follows. We note that in both sides of (28), the
terms where i = 0 are constant terms. So, after proving (29) for i > 0, it remains only to check that both
constant terms of (28) agree, or equivalently, that both constant terms of (27) agree. But this follows from
(26) since our q-Stirling numbers at q = 0 are the Narayana numbers, see (13) and (20).

So, let us prove (29) for i > 0. To do this, we also define

C̄
n,k
h,i =

n−k
∑

j=0

(−1)j
(

n− 1 + j

n− k + j

)(

2n− k

n− k − j

)(

n− k + j + i− 1

j − 1

)(

n− k + j − h− 1

j − 1

)

.

so that, from (7), we have:

C
n,k
h,i = C̄

n,k
h,i − C̄

n,k
h+1,i+1.

Then, it suffices to prove

C̄
n,k
h,i = (−1)n+k+h+i

(

n

k + h

)(

n

k − i

)

, (30)

since (29) follows, using (8). Note that we need to define C̄n,k
h,i in the case h = n− k+ 1 and check that this

is 0, and this is easily done because
(

n−k+j−h−1
j−1

)

= 0 then. So we keep assuming h ≤ n− k.

We rewrite the sum for C̄n,k
h,i in hypergeometric form:

C̄
n,k
h,i =

n−k
∑

j=0

(−1)j
(n− 1 + j)!(2n− k)!(n− k + j + i− 1)!(n− k + j − h− 1)!

(n− k + j)!(k − 1)!(n− k − j)!(n+ j)!(j − 1)!2(n− k + i)!(n− k − h)!

= −
∑

j≥0

(−1)j
(n+ j)!(2n− k)!(n− k + j + i)!(n− k + j − h)!

(n− k + j + 1)!(k − 1)!(n− k − j − 1)!(n+ j + 1)!j!2(n− k + i)!(n− k − h)!

= −
(2n− k)!

(k − 1)!

∑

j≥0

(−1)j
(n+ j)!(n− k + i+ 1)j(n− k + j − h)!

(n− k + j + 1)!(n− k − j − 1)!(n+ j + 1)!(n− k − h)!j!2

= −
(2n− k)!

(k − 1)!

∑

j≥0

(−1)j
(n+ j)!(n− k + i+ 1)j(n− k − h+ 1)j

(n− k + j + 1)!(n− k − j − 1)!(n+ j + 1)!(1)jj!

= −
(2n− k)!

(k − 1)!(n− k + 1)!

∑

j≥0

(−1)j
(n+ j)!(n− k + i+ 1)j(n− k − h+ 1)j

(n− k + 2)j(n− k − j − 1)!(n+ j + 1)!(1)jj!

= −
(2n− k)!

(n+ 1)(k − 1)!(n− k + 1)!

∑

j≥0

(−1)j
(n+ 1)j(n− k + i+ 1)j(n− k − h+ 1)j
(n− k + 2)j(n− k − j − 1)!(n+ 2)j(1)jj!

.

For the last step, use (−m)j = (−1)j m!
(m−j)! to find:

C̄
n,k
h,i = − (2n−k)!

(n+1)(n−k−1)!(n−k+1)!(k−1)! 4F3

(

k − n+ 1 ; n+ 1 ; n− k − h+ 1 ; n− k + i+ 1
1 ; n+ 2 ; n− k + 2

∣

∣

∣1

)

. (31)

Note that h and i only appear in the argument of the hypergeometric sum. So we can use Equation (6) to

find a relation between C̄n,k
h,i and the same with shifted indices, as follows:

−(h+ i)C̄n,k
h,i = (n− k − h+ 1)C̄n,k

h−1,i − (n− k + i + 1)C̄n,k
h,i+1. (32)
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On the other side, we have:

(n− k − h+ 1)

(

n

k + h− 1

)(

n

k − i

)

−(n− k + i+ 1)

(

n

k + h

)(

n

k − i− 1

)

= (k + h)

(

n

k + h

)(

n

k − i

)

− (k − i)

(

n

k + h

)(

n

k − i

)

= (h+ i)

(

n

k + h

)(

n

k − i

)

.

This means that the right hand side of (30) satisfy the same relation as C̄n,k
h,i in (32). So, proceeding by

induction on h, we are left to prove (30) in the initial case h = n− k, since the case 0 ≤ h ≤ n− k follows.

Note that in (32), the factor in front of C̄n,k
h−1,i does not vanish in this range.

From (31), we have:

C̄
n,k
n−k,i = −

(2n− k)!

(n+ 1)(n− k − 1)!(n− k + 1)!(k − 1)!
3F2

(

k − n+ 1 ; n+ 1 ; i− k + n+ 1
n− k + 2 ; n+ 2

∣

∣

∣1

)

, (33)

and our goal is to prove

C̄
n,k
n−k,i = (−1)i

(

n

k − i

)

. (34)

We use (6) once again, to find:

(k − i)C̄n,k
n−k,i =

(2n−k)!
(n−k−1)!(n−k+1)!(k−1)! 2F1

(

k − n+ 1 ; i− k + n+ 1
n− k + 2

∣

∣

∣1

)

− (n− k + i+ 1)C̄n,k
n−k,i+1.

The series can be evaluated using (5):

2F1

(

k − n+ 1 ; i− k + n+ 1
n− k + 2

∣

∣

∣1

)

=
(−i+ 1)n−k−1

(n− k + 2)n−k−1
.

The numerator is the product (−i + 1) . . . (n − k − i − 1), so it is 0 if i ≥ 1 and i ≤ n − k − 1. So, in the
range 1 ≤ i ≤ n− k − 1, we have:

(k − i)C̄n,k
n−k,i = −(n− k + i+ 1)C̄n,k

n−k,i+1.

Since the right hand side of (34) satisfies the same relation, it remains only to prove (34) for the special
value i = 1. From (33), we have:

C̄
n,k
n−k,1 = −

(2n− k)!

(n+ 1)(n− k − 1)!(n− k + 1)!(k − 1)!
2F1

(

k − n+ 1 ; n+ 1
n+ 2

∣

∣

∣1

)

= −
(2n− k)!

(n+ 1)(n− k − 1)!(n− k + 1)!(k − 1)!
×

(1)n−k−1

(n+ 2)n−k−1

= −
(2n− k)!

(n+ 1)(n− k + 1)!(k − 1)!(n+ 2)n−k−1
= −

n!

(n− k + 1)!(k − 1)!
= −

(

n

k − 1

)

.

This completes the proof of (34), hence of (30), hence of (29), hence of (28), and the result follows.

16



S1[n, k]

k\n 0 1 2 3 4 5 6 7

0 1 . . . . . . .

1 0 1 . . . . . .

2 0 1 1 . . . . .

3 0 q + 1 3 1 . . . .

4 0 q3 + 2q2 + 2q + 1 5q + 6 6 1 . . .

5 0 q6 + 3q5 + 5q4 + 6q3 + 5q2 + 3q + 1 7q3 + 15q2 + 18q + 10 15q + 20 10 1 . .

6 0 q10 + 4q9 + 9q8 + 15q7 + 20q6+ 9q6 + 28q5 + 50q4+ 28q3 + 63q2 + 84q + 50 35q + 50 15 1 .

22q5 + 20q4 + 15q3 + 9q2 + 4q + 1 67q3 + 63q2 + 42q + 15

7 0 q15 + 5q14 + 14q13 + 29q12 + 49q11 + 71q10 + 90q9+ 11q10 + 45q9 + 105q8 + 184q7 + 264q6+ 45q6 + 144q5 + 270q4+ 84q3 + 196q2+ 70q 21 1

101q8 + 101q7 + 90q6 + 71q5 + 49q4 + 29q3 + 14q2 + 5q + 1 315q5 + 313q4 + 258q3 + 168q2 + 80q + 21 388q3 + 392q2 + 280q + 105 280q + 175 +105

S2[n, k]

k\n 0 1 2 3 4 5 6

0 1 . . . . . .

1 0 1 . . . . .

2 0 1 1 . . . .

3 0 1 3 1 . . .

4 0 1 q + 6 6 1 . .

5 0 1 q2 + 4q + 10 5q + 20 10 1 .

6 0 1 q3 + 5q2 + 10q + 15 q3 + 9q2 + 30q + 50 15q + 50 15 1

7 0 1 q4 + 6q3 + 15q2 + 20q + 21 q5 + 5q4 + 22q3 + 63q2 + 105q + 105 7q3 + 42q2 + 126q + 175 35q + 105 21

8 0 1 q6 + 8q5 + 28q4+ q9 + 7q8 + 29q7 + 83q6 + 191q5+ q9 + 6q8 + 30q7 + 110q6 + 315q5+ 9q6 + 72q5 + 270q4 + 804q3+ 84q3 + 378q2

56q3 + 70q2 + 56q + 36 376q4 + 616q3 + 756q2 + 630q + 336 720q4 + 1380q3 + 2016q2 + 2016q + 1176 1680q2 + 2352q + 1764

T
a
b
le

1
:
S
m
a
ll
va
lu
es

o
f
th
e
q-S

tirlin
g
n
u
m
b
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[16] O. Schlömilch: Recherches sur les coefficients des facultés analytiques. J. Reine Angew. Math. 44(1852),
344–355.

[17] N. J. A. Sloane, editor: The On-Line Encyclopedia of Integer Sequences. Published electronically at
https://oeis.org, 2016.

[18] Z.-H. Sun: Some inversion formulas and formulas for Stirling numbers. Graphs Combin. 29 (2013),
1087–1100.

18

https://oeis.org

	1 Introduction
	2 Common definitions and formulas
	3 Specific notation
	4 q-Stirling numbers of the second kind
	5 q-Stirling numbers of the first kind
	6 The first identity
	7 The second identity

