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Abstract

Let q > r ≥ 1 be coprime positive integers. We empirically study the record gaps
Gq,r(x) between primes p ≤ x of the form p = qn+ r. Extensive computations suggest
that Gq,r(x) < ϕ(q) log2 x almost always; more precisely, Gq,r(x) ∼ a(log(li x/ϕ(q))+b),
where a = ϕ(q)x/ li x is the expected average gap between primes p = qn+ r ≤ x, and
b = O((log q)1/2 log log x) is a correction term. The distribution ofGq,r(x) near its trend
is close to the Gumbel extreme value distribution. However, the question whether there
exists a limiting distribution of Gq,r(x) is open.

1 Introduction

Let q and r be fixed positive integers such that 1 ≤ r < q and gcd(q, r) = 1. Dirichlet
proved in 1837 that the integer qn+ r is prime infinitely often; this is Dirichlet’s theorem on
arithmetic progressions. The prime number theorem tells us that the total number of primes
≤ x is asymptotic to li x, i.e., π(x) ∼ lix. Moreover, the generalized Riemann hypothesis
implies that primes are distributed approximately equally among the ϕ(q) residue classes
modulo q corresponding to specific values of r. Thus each residue class contains a positive
proportion, about 1

ϕ(q)
, of all primes below x. Accordingly, the average prime gap below x

is about x/ li x ∼ log x, while the average gap between primes p = qn + r ≤ x is about
ϕ(q)x/ lix ∼ ϕ(q) log x.

In this paper we empirically study the growth and distribution of the values of the function
Gq,r(x), the record (maximal) gap between primes of the form qn+ r below x, for x < 1012.
The special case G2,1(x), i.e. the maximal gaps between primes below x, has been studied
by many authors [1, 3, 4, 7, 8, 13, 14, 18, 21, 22]. Computational experiments investigating
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the actual distribution of (properly rescaled) values Gq,r(x) are of interest, in part, because
in Cramér’s probabilistic model of primes [3] there exists a limiting distribution of maximal
prime gaps [9], namely, the Gumbel extreme value distribution.

The fact that values of certain arithmetic functions have limiting distributions is among
the most beautiful results in number theory. A well-known example is the limiting distri-
bution of ω(n), the number of distinct prime factors of n. The Erdős-Kac theorem states
that, roughly speaking, the values of ω(n) for n ≤ x follow the normal distribution with
the mean log log x and standard deviation

√
log log x, as x → ∞. Note that it is virtually

impossible to observe the Erdős-Kac normal curve for ω(n) in a computational experiment
because such an experiment would involve factoring a lot of gigantic values of n. By con-
trast, computations described in Section 3 and Appendix are quite manageable and do allow
one to draw maximal gap histograms, which turn out to closely fit the Gumbel distribution.
These results, together with [9], support the hypothesis that there is a limiting distribution
of (properly rescaled) values of Gq,r(x). However, a formal proof or disproof of existence of
a Gumbel limit law for maximal gaps between primes in residue classes seems beyond reach.

2 Notation and abbreviations

pk the k-th prime; {pk} = {2, 3, 5, 7, 11, . . .}
π(x) the prime counting function: the total number of primes pk ≤ x
πq,r(x) the prime counting function in residue class r modulo q:

the total number of primes p = qn + r ≤ x, n ∈ N
0

gcd(q, r) the greatest common divisor of q and r
ϕ(n) Euler’s ϕ function: the number of positive m ≤ n with gcd(m,n) = 1
G(x) the record (maximal) gap between primes ≤ x
Gq,r(x) the record (maximal) gap between primes p = qn + r ≤ x
a = a(q, x) the expected average gap between primes p = qn+ r ≤ x;

defined as a = ϕ(q)x/ li x; used in the Gq,r(x) trend equation (1)
b = b(q, x) the correction term in equation (1)
i.i.d. independent and identically distributed
cdf cumulative distribution function
pdf probability density function
Exp(x;α) the exponential distribution cdf: Exp(x;α) = 1− e−x/α

Gumbel(x;α, µ) the Gumbel distribution cdf: Gumbel(x;α, µ) = e−e
−

x−µ

α

α the scale parameter of exponential/Gumbel distributions, as applicable
µ the location parameter (mode) of the Gumbel distribution
γ the Euler-Mascheroni constant: γ = 0.57721 . . .
log x the natural logarithm of x

li x the logarithmic integral of x: lix =

∫ x

0

dt

log t
=

∫ x

2

dt

log t
+ 1.04516 . . .
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3 Numerical results

Using the PARI/GP program maxgap.gp (see Appendix) we have computed the values of
Gq,r(x) for many different values of q in the range from 4 to 15000 for x < 1012. We used all
admissible values of r ∈ [1, q− 1], gcd(q, r) = 1, to assemble a complete data set of maximal
gaps for a given q. Below we summarize these numerical results.

Table 1. Example: record gaps between primes p = 1000n+ 1

Start of gap End of gap (p) Gap Gq,r(p) Rescaled gap w, eq. (7)

3001 4001 1000 −0.7152793957
4001 7001 3000 −0.3807033581
9001 13001 4000 −0.5014278923
28001 51001 23000 3.3856905292
294001 318001 24000 1.4131420099
607001 633001 26000 1.0363075229
4105001 4132001 27000 −0.8849971087
5316001 5352001 36000 0.3933925543
14383001 14424001 41000 0.0360536511
26119001 26163001 44000 −0.2102813328
46291001 46336001 45000 −0.7494765793
70963001 71011001 48000 −0.8198719265
95466001 95515001 49000 −1.0343372505
114949001 115003001 54000 −0.5445782196
229690001 229752001 62000 −0.2996631434
242577001 242655001 78000 1.8227176550
821872001 821958001 86000 1.1782430130
3242455001 3242545001 90000 −0.2118232294
7270461001 7270567001 106000 0.5535925382
11281191001 11281302001 111000 0.5044228464
32970586001 32970700001 114000 −0.6657570997
50299917001 50300032001 115000 −1.1413988974
63937221001 63937353001 132000 0.3133056088
92751774001 92751909001 135000 0.0905709933
286086588001 286086729001 141000 −0.9100787710
334219620001 334219767001 147000 −0.5413814289
554981875001 554982043001 168000 0.7559934308
1322542861001 1322543032001 171000 −0.2444699459
2599523890001 2599524073001 183000 −0.1376484006
4651789531001 4651789729001 198000 0.3405219324
7874438322001 7874438536001 214000 0.9493170656
8761032430001 8761032657001 227000 1.9158059981
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3.1 The growth trend of maximal gaps Gq,r(x)

Let us begin with a simple example. For q = 1000, r = 1, running the program maxgap.gp

produces the results shown in Table 1. It is easy to check that all gaps Gq,r(p) in the table
satisfy the inequality Gq,r(p) < ϕ(q) log2 p, suggesting several possible generalizations of
Cramér’s conjecture (see Sect. 5.2).

Figure 1 shows all values of Gq,r(p) for q = 1000, ∀r ∈ [1, q − 1], gcd(q, r) = 1, p < 1012.
The horizontal axis log2 p reflects the actual end-of-gap prime p = qn + r of each maximal
gap. The results for other values of q closely resemble Fig. 1.

Figure 1: Record gaps Gq,r(p) between primes p = qn + r < 1012 in residue classes mod q,

with q = 1000, ϕ(q) = 400, gcd(q, r) = 1. Plotted (bottom to top): average gaps a = ϕ(q)·p
li p

between primes ≤ p in residue classes mod q (solid curve); trend curve T of eq. (1) (white
dotted curve); the conjectural (a.s.) upper bound for Gq,r(p): y = ϕ(q) log2 p (dashed line).

The vast majority of record gaps Gq,r(x) are near a smooth trend curve T :

Gq,r(x) ∼ T (q, x) = a · (log li x

ϕ(q)
+ b), (1)

where a is the expected average gap between primes in a residue class mod q, defined as

a = a(q, x) = ϕ(q)
x

li x
, (2)
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and b is a correction term. Clearly, for b = 0 or for any negative b = o(log x), we have

T (q, x) . ϕ(q) log2 x and a(q, x) . ϕ(q) log x as x → ∞.

We can heuristically derive equations (1) and (2) as follows. Extreme value theory predicts
that, for N consecutive events occurring at i.i.d. random intervals with cdf Exp(ξ;α) =
1− e−ξ/α (i. e. at average intervals α), the most probable maximal interval between events is
about α logN , while the width of extreme value distribution is O(α); see [6]. As N → ∞, the
distribution of maximal intervals approaches the Gumbel distribution Gumbel(x;α, µ) with
scale α and mode µ = α logN . In eqs. (1), (2) we simply take N = πq,r(x) ≈ li x/ϕ(q) and
α ≈ a(q, x) ≈ x/N ≈ ϕ(q)x/ li x. However, extreme value theory alone cannot accurately
predict the actual behavior of the correction term b in (1). It is reasonable to expect that,
similar to a, the term b is a function of both q and x

lix
(the average prime gap below x).

Indeed, empirically1 we have

b = b(q, x) = c0 − c1 log
x

li x
, (3)

where the approximate values2 of c0 and c1 are

c0 ≈ 2.7
√

logϕ(q)− 1.2, (4)

c1 ≈ 0.57
√

logϕ(q) + 1. (5)

Computations show that formulas (1)–(5) are applicable at least for 20 ≤ ϕ(q) ≤ 15000,
106 < x < 1012. (For smaller q the data become scarce.) As we can see in Figure 1, these
formulas reflect the actual trend of Gq,r(x) quite well.

Equations (3)–(5) mean that the correction term b = b(q, x) is unbounded and (eventu-
ally) negative: b(q, x) → −∞ as x → ∞, q = const. Combining (3)–(5) with the inequality
ϕ(q) < q for q > 1, we can also conclude that

b = b(q, x) = O(
√

log q log log x). (6)

1 It quickly became apparent that a bounded correction term |b| ≤ 1 did not work in Gq,r(x) trend (1).
But if instead of Gq,r(x) we look at the trend of record gaps in an increasing sequence of numbers n at
random intervals g = ⌈ξ⌉, where ξ is a random variable with cdf Exp(x;ϕ(q) log n), then |b| < 1 in the trend
equation does work. (We have verified this in computational experiments using the program randomgap.gp;
see Appendix.)

2 We leave it up to interested readers to ponder the possible expressions of c0 and c1 in terms of e, γ
or combinations thereof. (For instance, could eq. (5) take a more precise form c1 = γ

√

logϕ(q) + 1 — or

possibly c1 = e−γ
√

logϕ(q) + 1?) However, the numerical values of c0 and c1 are perhaps not as interesting
as the unbounded growth of the correction term b = O(

√
log q log log x) in (1). The situation here resembles

Legendre’s approximation to the prime counting function, π(x) ∼ x

log x−1.08366
[19, A228211], where the

numerical value of the constant 1.08366 is of historical interest only. Nevertheless, for the purpose of
distribution fitting in Section 3.2 we do need some realistic formula for the Gq,r(x) trend, and eqs. (1)–(5)
do this job well, at least for 20 ≤ ϕ(q) ≤ 15000, 106 < x < 1012.
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3.2 The distribution of maximal gaps

We have thus found that the maximal gaps between primes in each residue class are mainly
observed within a strip of increasing width O(a) around the trend curve T (q, x) of eq. (1),
where a = a(q, x) is the expected average gap between primes in the respective residue class.
Now let us take a closer look at the distribution of maximal gaps in the neighborhood of
this trend curve. We perform a rescaling transformation similar to [7, Sect. 5.2]: subtract
the trend T (q, x) from actual gap sizes, and then divide the result by the “natural unit” a.
All record gap values Gq,r(p) are mapped to standardized values w:

Gq,r(x) → w =
Gq,r(x)− T (q, x)

a
, where a = a(q, x) =

ϕ(q)x

lix
. (7)

Figure 2 shows the histograms of standardized maximal gaps for q = 10007. (Histograms
for other q look similar to Fig. 2.) We can see at once that the histograms and fitting
distributions are skewed: the right tail is longer and heavier. This skewness is a well-known
feature of extreme value distributions. Among all two-parameter distributions supplied by
the distribution fitting software [12], the best fit is the Gumbel distribution. This opens up
the question whether the Gumbel distribution is the limit law for properly rescaled sequences
of the Gq,r(x) values as x → ∞; cf. [8, 9]. Does such a limiting distribution exist at all?

If we look at three-parameter distributions, then one of the best fits is the Generalized

Extreme Value (GEV) distribution, which includes the Gumbel distribution as a special case.
The shape parameter in the best-fit GEV distributions is very close to zero; note that the
Gumbel distribution is a GEV distribution whose shape parameter is exactly zero.

There are notable differences between our situation shown in Fig. 2 and the distributions
of maximal gaps between prime k-tuples shown in [7, Fig. 4] — even though in either case
the Gumbel distribution is a good fit, with the majority of record gaps occurring within ±2a
of the respective trend curve.

• In our case (Figs. 1 and 2), the available data is not scarce — quite the opposite: there
are thousands of data points available. On the other hand, data on maximal gaps
between prime k-tuples is scarce; at present we have fewer than 100 data points for
any given type of prime k-tuple [7, Tables 2–4].

• In case of maximal gaps between prime k-tuples, k ≥ 2, a smaller correction term
|b| ≤ 1 usually works well; see [7, Sect. 4-5]. (In our randomgap.gp model runs, even
b ≈ 0 did work; see Appendix.) By contrast, for maximal gaps between primes in
a residue class, the trend equations (1)–(5) involve an unbounded correction term
b = O(

√
log q log log x).

As noted by Brent [2], primes seem to be less random than twin primes. We can add that,
likewise, record gaps between primes in a residue class seem to be somewhat less random
than those for prime k-tuples. Our record gaps analysis also shows that primes p = qn + r
do not go quite as far from each other as in the randomgap.gp model. Pintz [15] discusses
various other aspects of the “random” and not-so-random behavior of primes.
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Figure 2: Histograms of rescaled maximal gaps w and fitted Gumbel distributions (pdf) for
8-, 9-, 10-, 11-, and 12-digit primes p = qn+ r, with q = 10007, 1 ≤ r < q.
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4 A new conjecture on Gq,r(x) trend. Wolf’s conjecture

Our extensive computations and eqs. (1)–(5) suggest the following interesting conjecture
describing the growth of maximal gaps between primes in residue classes.

Conjecture on the trend of Gq,r(x). For any q > r ≥ 1 with gcd(q, r) = 1, there exist
real numbers c0 = c0(q) and c1 = c1(q) such that

Gq,r(x) ∼ T (q, x) =
ϕ(q)x

li x
(log

lix

ϕ(q)
− c1 log

x

li x
+ c0) as x → ∞, (8)

and the difference Gq,r(x)− T (q, x) changes its sign infinitely often.

On the other hand, Marek Wolf [21, 22] gives the following approximation for G(x), the
maximal prime gap below x, in terms of the prime counting function π(x).

Wolf’s conjecture:

G(x) ∼ g(x) =
x

π(x)
(2 log π(x)− log x+ c) [21, p. 11]. (9)

Wolf’s reasoning also implies that the difference G(x)−g(x) changes its sign infinitely often.

Conjectures (8) and (9) are related. Indeed, for q = 2 equation (5) gives c1 = 1; therefore,
using the fact that ϕ(2) = 1 and applying the approximations

x

π(x)
≈ x

li x
≈ log x− 1, log π(x) ≈ log lix ≈ log x− log log x,

we can rewrite both (8) and (9) in this common form:

G2,1(x) ∼ T (2, x) = log2 x− 2 log x log log x+O(log x) as x → ∞. (10)

So the maximal prime gap predictions (8) and (9) agree up to O(logx). Moreover, one can
ensure that (8) and (9) agree up to o(log x) using an appropriate choice of c0 for q = 2.

5 Generalizations of some familiar conjectures

corroborated by experimental data

In this section we discuss several generalizations of familiar conjectures that are related to
(and in some cases suggested by) the numerical results of Section 3. This discussion places
our computational experiments in a broader context. Some of the conjectures (Sect. 5.2)
have been proposed by the author earlier on the PrimePuzzles.net website [17]. We always
assume that 1 ≤ r < q and gcd(q, r) = 1.
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5.1 Generalized Riemann hypothesis

The Riemann hypothesis is a statement about non-trivial zeros of the Riemann ζ-function.
An “elementary” reformulation of the RH is the prime number theorem with an O(x1/2+ε)
error term. It states that π(x), the total number of primes ≤ x, satisfies

π(x) = li x+O(x1/2+ε) for any ε > 0, as x → ∞.

The generalized Riemann hypothesis is a similar statement concerning non-trivial zeros of
Dirichlet’s L-functions. An “elementary” reformulation of the GRH says that πq,r(x), the
total number of primes p = qn+ r ≤ x, n ∈ N

0, satisfies

πq,r(x) =
li x

ϕ(q)
+Oq(x

1/2+ε) for any ε > 0, as x → ∞.

Roughly speaking, the GRH means that for large x the numbers πq,r(x) and ⌊li x/ϕ(q)⌋
almost agree in the left half of their digits. Thus the GRH justifies our assumption that
average gaps between primes ≤ x in each residue class mod q are nearly the same size,
ϕ(q)x/ lix. Consequently, it is reasonable to expect that maximal gaps in each residue class
have about the same growth trend and obey approximately the same distribution around
their trend. This is indeed observed in our computational experiments.

(A weaker unconditional result similar to the GRH is the Siegel–Walfisz theorem.)

5.2 Generalizations of Cramér’s conjecture

If G(x) is the maximal gap between primes below x, Cramér [3] conjectured in the 1930s
that G(x) = O(log2 x). Clearly G(x) = G2,1(x) for all x ≥ 5. We give four conjectures
(from most to least plausible), each of which can be considered a generalization of Cramér’s
conjecture to maximal gaps Gq,r(p) between primes in a residue class modulo q. Everywhere
we assume that the maximal gap Gq,r(p) ends at the prime p.

5.2.1 “Big-O” formulation

Generalized Cramér conjecture A. For any q > r ≥ 1 with gcd(q, r) = 1, we have

Gq,r(p) = O(ϕ(q) log2 p).

This weakest generalization of Cramér’s conjecture seems quite likely to be true.

5.2.2 “Almost-all” formulation

Generalized Cramér conjecture B. Almost all maximal gaps Gq,r(p) satisfy

Gq,r(p) < ϕ(q) log2 p for any q > r ≥ 1 with gcd(q, r) = 1.

9



For q = 2 and r = 1, the above two generalizations of Cramér’s conjecture are compat-
ible with the heuristics of Granville [5]. On the other hand, the stronger formulations in
subsections 5.2.3 and 5.2.4 contradict Granville’s heuristic reasoning which suggests

lim sup
p→∞

G2,1(p)

log2 p
≥ 2e−γ = 1.12291 . . . [5, p. 24].

5.2.3 “Limit superior” formulation

Generalized Cramér conjecture C. For any q > r ≥ 1 with gcd(q, r) = 1, we have

lim sup
p→∞

Gq,r(p)

ϕ(q) log2 p
= 1.

5.2.4 “Naive” formulation

Generalized Cramér conjecture D. For any q > r ≥ 1 with gcd(q, r) = 1, we have

Gq,r(p) < ϕ(q) log2 p if p is large enough.

Here p is the prime at the end of the maximal gap Gq,r(p).

The latter generalization of Cramér’s conjecture seems a little far-fetched. Nevertheless,
we are yet to see even a single counterexample with Gq,r(p) > ϕ(q) log2 p. In February
2016, conjecture D has been posted at the website PrimePuzzles.net [17]. This website is
frequented by many computation-savvy people; yet no one came up with a counterexample.

5.3 Generalizations of Shanks conjecture

As above, let G(p) be the maximal prime gap ending at the prime p. Shanks [18] conjectured
that the infinite sequence of maximal prime gaps satisfies the asymptotic equivalence

G(p) ∼ log2 p as p → ∞ [18, p. 648].

Our numerical experiments suggest the following natural generalizations of the Shanks con-
jecture to describe the behavior of Gq,r(p).

5.3.1 “Almost-all” formulation

Generalized Shanks conjecture I. For any q > r ≥ 1 with gcd(q, r) = 1, there exists an
infinite sequence S that comprises almost all maximal gaps Gq,r(p) such that every gap in S
satisfies the asymptotic equality

Gq,r(p) ∼ ϕ(q) log2 p as p → ∞.

10



For q = 2 and r = 1, this formulation is compatible with heuristics of Granville [5] implying
that there should exist an exceptional infinite subsequence of G2,1(p) satisfying

G2,1(p) ∼ M log2 p for some M ≥ 2e−γ > 1.

Indeed, our “almost-all” formulation simply means that any exceptional subsequence is very
thin; that is, a zero proportion of maximal gaps G2,1(p) have exceptionally large sizes pre-
dicted by Granville.

5.3.2 Strong formulation

Generalized Shanks conjecture II. All maximal gaps Gq,r(p) satisfy

Gq,r(p) ∼ ϕ(q) log2 p as p → ∞.

This strong formulation contradicts Granville’s heuristics cited above.

5.4 Generalizations of Firoozbakht’s conjecture

Firoozbakht [16] conjectured that (p
1/k
k )k∈N is a decreasing sequence. Equivalently,

pk+1 < p
1+1/k
k for all k ≥ 1. (11)

The conjecture has been verified for all pk < 4 · 1018 [10]. An independent verification was
also performed by Wolf (unpublished); see [20]. Firoozbakht’s conjecture implies

pk+1 − pk < log2 pk − log pk − 1 for all k > 9 [11, Th. 1]. (12)

5.4.1 The Sun–Firoozbakht conjecture for primes in residue classes

Z.-W. Sun [20, Conjecture 2.3] generalized Firoozbakht’s conjecture (11) as follows:

Let q > r ≥ 1 be positive integers with r odd, q even and gcd(r, q) = 1. Denote by pn(r, q)
the n-th prime in the progression r, r+ q, r+ 2q . . . Then there exists n0(r, q) such that the
sequence (pn(r, q)

1/n)n≥n0(r,q) is strictly decreasing. In particular, one can take n0(r, q) = 2
for q ≤ 45.

Remark. If the latter conjecture is true, n0(r, q) may be quite large. For example, with
q = 1168 and r = 141 we must have n0(r, q) > 1893. Indeed,

170108931/1893 < 171639011/1894

(17010893 and 17163901 are the 1893rd and 1894th primes p ≡ 141 mod 1168).
Assuming the GRH and reasoning along the lines of [11], we can prove that the Sun-

Firoozbakht conjecture implies

pn+1(r, q)− pn(r, q)

ϕ(q)
< log2 pn(r, q)− log pn(r, q)− 1 for all n large enough. (13)

This in turn implies the generalized Cramér conjectures 5.2.1, 5.2.2, and 5.2.4, as well as a
modified form of 5.2.3 with lim sup

p→∞

Gq,r(p)/(ϕ(q) log
2 p) ≤ 1.
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5.4.2 “Almost all” form of the Sun–Firoozbakht conjecture

The Sun–Firoozbakht conjecture of sect. 5.4.1 might be excessively strong. A weaker, more
plausible statement is the “almost all” formulation below.

For any coprime q > r ≥ 1, the endpoints pn(r, q), pn+1(r, q) of almost all record gaps
Gq,r(x) satisfy inequality (13).

Here, again, pn(r, q) denotes the n-th prime in the arithmetic progression r, r+ q, r+ 2q . . .

12



6 Appendix: Details of computational experiments

Interested readers can reproduce and extend our results using the programs below.

6.1 PARI/GP program maxgap.gp

\\ Usage example: q=1000;for(r=1,q-1,if(gcd(q,r)==1,maxgap(q,r,1e12)))

default(realprecision,11)

\\ li(x) computes the logarithmic integral of x

li(x) = return(real(-eint1(-log(x))))

\\ pmin(q,r) computes the least prime p = qn + r, for n=0,1,2,3,...

pmin(q,r) = forstep(p=r,1e11,q, if(isprime(p), return(p)))

\\ maxgap(q,r,end) computes maximal gaps g between primes p = qn + r

\\ as well as rescaled gap values (w and h).

\\ Results are written on screen and in the c:\xgap folder.

\\ Computation ends when primes exceed the end parameter.

maxgap(q,r,end) = {

re=0;

s=pmin(q,r);

t=eulerphi(q);

SqrtLogPhi=sqrt(log(t));

while(s<end,

m=s+re; p=m+q;

while(!isprime(p), p+=q);

while(!isprime(m), m-=q);

g=p-m;

if(g>re,

re=g; Lip=li(p); a=t*p/Lip;

h=g/a-log(Lip/t);

w=g/a-log(Lip/t)+(0.57*SqrtLogPhi+1)*log(p/Lip)-2.7*SqrtLogPhi+1.2;

f=ceil(log(p)/log(10));

write("c:\\xgap\\1e"f"_"q".txt",

w" "h" "g" "m" "p" q="q" r="r);

print(w" "h" "g" "m" "p" q="q" r="r);

if(g/t>log(p)^2, write("c:\\xgap\\1e"f"_"q".txt","extra large"));

);

s=p;

)

}

13



6.2 PARI/GP program randomgap.gp

\\ Usage example: q=1000;for(r=1,q-1,if(gcd(q,r)==1,randomgap(q,r,1e10)))

default(realprecision,11)

\\ exprv(m) returns an exponential random variable with mean m

exprv(m) = return(-m*log(random(1.0)))

\\ randomgap(q,r,end) writes to c:\ygap\ a set of files with record gaps

\\ in a growing sequence of integers p separated by "random" gaps which

\\ are exponentially distributed with mean m = phi(q)*log(p).

\\ The parameter r is included to mimic maxgap(q,r,end).

randomgap(q,r,end) = {

re=0; p=max(2,r); t=eulerphi(q);

while(p<end,

g=ceil(exprv(t*log(p)));

s=p;

p+=g;

if(g>re,

re=g;

Lip=real(-eint1(-log(p))); \\li(p)

a=t*p/Lip;

h=g/a-log(Lip/t);

f=ceil(log(p)/log(10));

write("c:\\ygap\\rand"f"_"q".txt",

h" "g" "s" "p" q="q" r="r);

print(h" "g" "s" "p" q="q" r="r);

)

)

}

6.3 Notes on distribution fitting

To study the distributions of standardized maximal gaps Gq,r(p) we used the distribution
fitting software EasyFit [12]. Data files created with maxgap.gp or randomgap.gp are easily
imported into EasyFit: from the File menu, choose Open, select the data file, then specify
Field Delimiter = space, click Update, then OK.

Caution: PARI/GP writes real numbers near zero in a mantissa-exponent format with

a space preceding the exponent (e.g. 1.7874829515 E-5), whereas EasyFit expects such
numbers without a space (e.g. 1.7874829515E-5). Therefore, before importing into EasyFit,
search the data files for " E-" and replace all occurrences with "E-".
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