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ON WITHIN-PERFECTNESS AND NEAR-PERFECTNESS

PETER COHEN, KATHERINE CORDWELL, ALYSSA EPSTEIN, CHUNG HABIKWAN, ADAM LOTT,
AND STEVEN J. MILLER

ABSTRACT. The analytic aspect of within-perfectness and near-peréss was considered by Erdds, Pomer-
ance, Harman, Wolke, Pollack and Shevelev. We generalesetboncepts by introducing a threshold function
k, which is positive and increasing ¢h, oo). Let? > 1. A natural number is an(¢; k)-within-perfect number

if |o(n) —¢n| < k(n). A natural numbem is a k-near-perfect number if. can be written as a sum of all
but at most:(n) of its divisors. We study the asymptotic densities and beundour new notions ak varies.
We denote the number éfnear-perfect numbers up oby #N (k; x). For k-near-perfectness in whidhis a
constant, we improve the previous result of Pollack and 8leeconsiderably by establishing for> 4,

#N(k;z) < — jo®)

log 1
o (loglog )

wherejo (k) is the smallest integer such that
log(k+1) logh

Jo(k) > log 2 log2’
and unconditionally for a large class of positive integers 4 we have
. - x f(k)
#N(k;z) =<k 1Ogl,(log log )",
where ( )
_|log(k+4
o) = |EEE ] s,

For4 < k <9, we determine asymptotic formulae N (k; z).
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1. INTRODUCTION

Let o(n) be the sum of all positive divisors af. A natural numben is perfectif o(n) = 2n, is ¢-perfect

if o(n) = ¢n and ismultiply perfectif n | o(n). Perfect numbers have played a prominent role in classical
number theory for millennia. Euclid and Euler proved thas an even perfect number if and onlyrifis of

the form2r—1(2P — 1), wherep and2” — 1 are both prime. A well-known conjecture claims that ther ar
infinitely many even, but no odd, perfect numbers. Despiefdiat that these conjectures remain unproven,
there has been significant progress on studying the distiibof perfect numbers during the 20th century
[Vol [Ka, [EX]. The sharpest known result is due to Hodkfand Wirsing, who established that the
number of multiply perfect numbers up tds at mostz°!) asz — co.

Pomerance [Po] studied a closely related notion. d_et 2 andk be integers. We call a natural number
(¢, k)-almost-perfecif o(n) = ¢n + k. By estimating the count adporadicsolutions of the congruence
o(n) = k(modn), he proved that as — oo, the number of /¢, k)-almost-perfect numbers up tois at
mostz/ log x.

We can further generalize the notion @f k)-almost perfect number by replacing the constant intéger
above by a threshold functiok(y) and/ is a real number at leagt We call a natural numbes (¢; k)-
within-perfectif |o(n) — ¢n| < k(n). This was first studied by Wolké [Wo] and Harman [Ha] in ternfis o
Diophantine approximatiam.They showed that for any reél> 1 and for anyc € (0.525, 1), there exists
infinitely many natural numbers that afe y©)-within-perfect.

We describe the phase-transition behaviour of the deasifisvithin-perfect numbers in terms of the distri-
bution function ofo(n)/n, where DavenporfDa] proved that this distribution fuootiexists. Our result is
as follows.

Theorem 1.1. Let D(-) denote the distribution function ef(n)/n. We may extend the definition bf-) to
R by definingD(u) = 0 for u < 1. LetW (¢; k) the set of all(¢; k)-within-perfect numbers.

(@) If k(n) = o(n), thenW (¢; k) has asymptotic density O.

(b) If k(n) ~ cn for somec > 0, thenW (¢; k) has asymptotic densit} (¢ + ¢) — D({ — ¢).

(c) If k(n) < n, thenW (¢; k) has positive lower density and upper density strictly lessi.

(d) If n = o(k(n)), thenW (¢; k) has asymptotic density 1.

By refining the techniques of Pomerance, we have the follgwésults which describe the distribution of
within-perfect numbers in the sublinear regime more pedygis

Theorem 1.2. Let/ > 2 be an integer an@ be a positive constant. L&/ ({; k; x) = W (¢; k) N [1, z].
(a) Suppose there aréperfect numbers. Then there exists a constant c¢;(¢) such that ifk > ¢;,

then
1
e =ckl) = > — >0 (1.1)
m<k/l m
o(m)=~Im
and asz — oo,
H#W (Ll kyz) ~ co T 1.2)
log =
For £k <¢1,asz — oo,
HW (U k) < 2kat/2He) (1.3)

whereo(1) does not depend anand/.

LAnalogous problems were also considered by@&rdSchinzel[[Sc], Harmari [Ha], and Alkan-Ford-Zahares&lF¢Zal,
IAlFoZaZ].
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(b) Suppose there is noperfect number. Then for all > 0, asx — oo,
HW (U k) < 2kat/2Ho0) (1.4)
whereo(1) does not depend anand/.

Theorem 1.3. Supposé:(y) < y* for large y and k is a positive increasing unbounded function. Consider
the following set

Z‘::{@:m21}CQ. (1.5)
m
(a) If ¢ e X, then we have

lim w - Z 1 (1.6)

e 1’/ log z o(m) = ¢m

unconditionally fore € (0,1/3) and if we assume Conjecture P.7, then we hgv8)for € € (0,1).

b) fee(@Q@nlyc0)\X, £=a/b,a>b>1,a,bare coprime integers and € (0,1/3), then we
have the following upper bound

#W (L k) = O(max{a,b*}gmint3/4 <F2/3)roll)) (1.7)
asx — oo. Assume Conjectufe 2.7. Now foe (0, 1), we have ag — oo
#W (L k;2) = O(max{a, b®}z<(log 2)°M). (1.8)

From Theoreri 113, we can see that a more natural, informdissebution function for within-perfect num-
bers in the sublinear regime is the following

D.(r) = lim #W(r;y%x)

1.9
z—oo  x/logx (1.9)

for r € [1,00). In terms of this new distribution function, we have the daling simple result.
Corollary 1.4. For e € (0,1/3), D, is discontinuous on a dense subseflofc).

Another line of generalization of perfect numbers was améttl by Siergiski [Si] in which a natural num-
ber ispseudoperfecif it is a sum of some subset of its proper divisors. Pseudepenumbers are clearly
abundant (i.e.g(n) > 2n). The asymptotic density of abundant numbers is betweetv62and 0.24765
[De,[Koh]. Therefore a substantial proportion of naturainters are not pseudoperfect. Nonetheless, Erdos
and Benkoskil[Erd, BeEr] proved that the asymptotic derfsityppseudoperfect numbers, as well as that of
abundant numbers that are not pseudoperfeavéimd numbersn [BeET]), exist and are positive.

Pollack and Shevelev [PoSh] studied a subclass of pseddopeumbers. A natural number is said to be
k-near-perfectf it is a sum of all of its proper divisors witht mostk exceptions. Those exceptions are said
to beredundant divisorslt turns out restricting the number of exceptional divisaould lead to asymptotic
density 0. More precisely, they showed that the numbérréar-perfect numbers up 4ds at mostz3/4+o(1)

B and in general fok > 1 the number of:-near-perfect numbers upids at mostZ (log log z)9() where

O (1) can be taken to bk — 1 and is at Ieas[%j —3.

By allowing k to increase with — in other words, we let larger natural numbertave more exceptional
divisors — we explore the possibility of a positive dendity:)-near-perfect number set. If such a set exists,
we look for its critical order of magnitude and at the phasadition behavior. We have the following
theorem.

2This is a result stated i [ANPOPo]. In the original paper ofl@&k and Shevelev_[PoSh], the upper bound was given by
5/6-+0(1)
xT .
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Theorem 1.5. Denote byN (k) the set of allk-near-perfect numbers. L& (k;z) = N(k) N [1,z]. If the
asymptotic density a¥ (log y)'°8%+¢) isc € [0,1] for somee > 0, then for any positive strictly increasing
functionk such thatk(y) > (log )82+ for large y, the asymptotic density &f (k) is alsoc.

Before stating our next theorem, we introduce the followingion. Letk be a natural number. We say a
finite subsetB of N (k) is k-admissiblef for any mi, my € B with m; # ms, we have one of the following

(1) Atleast one of the natural numbéesn[m;, ma]/m1, lem[m1, ma]/mq is not square-free.
(2) If both of the natural numbetsm|my, mo]/m1, lem[m1, ma]/mqo are square-free, then
ged(lem[my, ma]/my, my) andged(lem[my, my]/mo, my) are strictly greater thah

We let% (k) be the set of alk-admissible subsets ard be the constant

M = % sup sup Z ¢(n21)7 (2.10)
T keNBe%(k) pop ™

whereg(+) is the Euler’s totient function.

Theorem 1.6. Letk be a positive strictly increasing function.
(@) Ifk(y) > (logy)'°&2+< for somee € (0,1), thenN (k) has positive lower density of at leasf and

4981
0715251 ~ ——— < M < 0.24765. 1.11
00715251 ~ — s < < 0.24765 (1.11)
(b) If k(y) < (logy)€ for somee € (0,log 2). ThenN (k) has asymptotic density. In fact, we have
HN (ki) <o e, (1.12)
(log )7
where

rle) = 1 U H10s2 7100 oy (1.13)

log 2
For a more precise upper bound, see the discussion in S€&fibn

On the other hand, by modifying the method [of [PoSh], we imerthe their result by proving asymptotic
formulae of#N (k; z) for4 < k < 9 and determining exact orders#fN (k; x) for a large portion of integers
k > 4. We conject that we can replace ‘liminf’ by ‘lim’ and>* by ‘=" in (.20) and [I.2R) respectively.

Theorem 1.7.For4 < k < 9, we have
X

#N(k;x) ~ ¢ (1.14)
log
asxr — oo, where . A 0017
1 1 93 17901
“TETE TR TT® T 12600 T 360360 (1.15)
Theorem 1.8. For k > 4, asx — oo
#N(k;x) <x z (log log m)j‘)(k), (1.16)
log =
wherej, (k) is the smallest integer such that
. log(k+1) logh
k — . 1.17
jo(k) > log 2 log 2 ( )
Let f be the following function defined for integers> 4.
log(k + 4)
k)=|——F7—1| —3. 1.18
) = [ B 5 (118
For integerk € [4,00)z \ ({10,11} U {272 —i:s > 3,i = 5,6}), we have
#N(k;2) =5, —— (log log z)f®). (1.19)
log
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Moreover,
#N (k;x) S G

T > , (1.20)
z—o0 - (loglog z)"—2 (r—2)!

wherer > 2 and

17/84 if k=3.2"—6
cr = ¢ 493/1260 if ke [3-2" —5,4-2" — 8]z (1.21)
179017/360360 if k=4-2"—7.
Ifkeld-2" —4,6-2" — 7|z for somer > 1, then

#Nkz) 1
z=o0 pi-(loglogz) =t = 6(r —1)I"

(1.22)

Our last theorem is motivated by the following questionediby Erdés and Benkoski in [BEEr]. They asked

if o(n)/n can be arbitrarily large for weird. They suggested that the answer should be negative but this
remains to be an open problem. We ask for an analogueetaactly-perfect,, where a natural number is
said to bek-exactly-perfecif it is a sum of all of its proper divisors witexactlyk exceptions. We have the
following weaker result.

Theorem 1.9. Denote the set of akl-exactly-perfect numbers @#y(k) and we writeE (k; ) := E(k)N[1, x].
Let M be the set of all natural numbers of the foRp whereq is a prime such tha2? — 1 is also a prime.
LetE.(k;x) = {n <z :n € E(k)ando(n) > 2n + n‘}, wheree € (0,1/3). Assume that there is no odd
perfect number. For largé andk ¢ M, we have

. #E (k)
A #E(kz)

Moreover, we have the following unconditional results. &ipn (I.23)holds fork = 8,252 —4 (2 < s <
8),3-2°-5(2<5<8),3-2°—6 (3<s5<8),2°72 —7(2<s <8 andfork = 4,6, we have

. #E(k;x)
M FE kD)

(1.23)

(1.24)

We use the following notations throughout this article.

o We write f(z) =< g(x) if there exist positive constants, c, such that;g(x) < f(z) < cag(z) for
sufficiently largezx.

o We write f(z) ~ g(z) if lim, oo f(z)/g(z) = 1.

e We write f(z) = O(g(x)) or f(z) < g(z) if there exists a positive consta6t such thatf (z) <

Cg(x) for sufficiently larger.

We write f(x) = o(g(x)) if lim,_,o f(z)/g(x) = 0.

In all cases, subscripts indicate dependence of impliedtaats on other parameters.

Denote by{a, b]z the collection of alintegersn such thats < n < b.

Denote bylog,, = the k-th iterate of logarithm. For examplig, x = log z, log, = = log log x.

2. (¢;k)-WITHIN-PERFECT NUMBERS

In this section, we prove our results 6f k)-within-perfect numbers, namely Theoreins| [.1] 1.2[andIfh.3.
Theoreni 1L, we interpret the within-perfect conditionemts of the Davenport distribution functidn(-)
and then use its continuity. In Theorém]1.2 1.3, we apgmyrésults concerning the solutions of the
congruencer(n) = k (modn).
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2.1. Phase-transition behavior of asymptotic densities ofV(¢; k). Distribution function is a crucial no-
tion in this section. We state its definition as follows.

Definition 2.1 (Distribution function) Let —co < a < b < co. A functionF : (a,b) — R is a distribution
function if F' is increasing, right continuoud;(a+) = 0, and F'(b—) = 1. An arithmetic functiory : N — R
has a distribution function if there exists a distributiam€tion F' such that

lim l#{n <z:f(n)<u}=F(u)

T—00 I

at all points of continuity of.

It is a theorem of Davenpori [Da] thatn)/n has a continuous and strictly increasing distribution fiamc
on [1,00). Denote byD(-) the distribution function otr(n)/n and extend the definition aD(-) to R by

definingD(u) = 0 for u < 1. The problem concerning the existence of a distributiorction for an additive
arithmetic function is completely resolved by tBed6s-Wintner Theorerfiier\Wi]. For details, see [Te].

Proof of Theoreri Il11For par (@), label all of thé/; k)-within-perfect numbers by:; in increasing order.
Then for anyj € N,

M _g‘ < M (2.1)
g g
Fix e > 0. Since
1im P04 _ 2.2)
Jj—00 ’I’Lj

there existd, € N such that for any > L, we have

‘M < €. (2.3)
j
Hence we have
1 1 k(n; L
“#{n<aslo(n) —tn] < k(n)} < 5#{;’2L:njgx, ”EZJ>_4< SZ”}*;
< l#{j>L n; <, o(ny) —E' <e}+£
X TLJ xr
Sl#{néx: w—€'<e}+£. (2.4)
X n xr

Now,

lim sup l#{n <x:lo(n)—fn| < k(n)} < limsup 1#{71 <z: ‘% — E‘ < e} = D({+¢e)—D(l—e).

z—00 L T—$00

By Davenport’s theorem)(-) is continuous. Letting — 0, we have

linisup l#{n <z:|o(n)—4In| <k(n)} = 0. (2.6)
This completes the proof of part[a).
For par{(D), fixe > 0. There existsV € N such that for any» > N,

c—e<@<c+e. 2.7)
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Forz > N, observe that

e gt

1y

1 1
< —#{n < wilo(n) — tn] < k(n)} — _#{n < \a()—@n\<k<>}

1

S%#{néx 'U(n ‘<c—|—€}— {

which implies, by Davenports Theorem,

m—€‘<c—e}

n

E' <c—|—e}, (2.8)

lim #{n <z:lo(n)—4In| <k(n)} = D(l+c)— D —c). (2.9)

T—00 I
The proof of parf (d) is essentially the same as that of{ pdristowe omit the details here.
For par{(d), for anyj € N there exists:; € N such that for any. > n;,

n 1

— < - (2.10)

Forz > n;, we have

Lp(n<alotn) —tnl <jn} < Ut g{n; <n<a:loln) — fn] < jn)
g7”+ “#{n <z :lo(n) — | < k(n)} (2.11)

and

D({+j) = liniinfl#{n <z:lo(n)—4In| <jn} < lirginf l#{n <z:lo(n)—4In|<k(n)} < 1
T—00 I T—00 I

Letting j — oo and by Davenport’s theorem, we have the conclusion for gt ( O

2.2. Explicit bounds for W (¢; k; x) for k being constant. In this section/ > 2 andk are integers. Denote
by S(¢, k) the set of all(¢, k)-almost-perfect numbers arff{¢, k; x) = S(¢, k) N [1,z]. Following Anavi,
Pollack, Pomerance and Shevelev [AnPoPo[ Po, PoPo, PoShikevthe following definitions regarding the
solutions of a special type of congruence involving thehanitic functiono (n).

Definition 2.2. Letk be an integer. Consider the congruence in natural numbers
o(n) = k (mod n). (2.13)
A natural numbenm is aregular solutiorof (2.1) ifn is of the form
n = pm wherep is prime,p t m, m | o(m), ando(m) = k. (2.14)
Other solutions of(2.13)are known asporadic solutions

It was first observed in [Po] that the sporadic solutions oceuch less frequently than the regular solutions.
The following are the known results on this theme.

Lemma 2.3(Pomerance [Ro])For each fixed integek, the number of sporadic solutions up:tas at most
zexp(—(1/v/2 + o(1))y/Iog zloglog z) asx — oo.

Lemma 2.4 (Pollack-Shevelev [PoSh]lLetz > 3. Uniformly for integersk with |k| < /3, the number of
sporadic solutions up ta is at mostz2/3+°(1) [

Lemma 2.5(Anavi-Pollack-Pomerancé [AnPoPolniformly for integersk with || < x'/4, the number of
sporadic solutions up te is at mostz!/2+t°() asz — oco.

3 In fact, o(1) can be taken to b&'/,/log Tog = for some absolute constafit > 0The explicit choice ob(1) follows from the
estimate of Pollacky", ., ged(o(n),n) < o' ¢/ Vieslog= for 5 > 3. See[[PoSh].
4 The choice ob(1) here can also be made explicit, see [AnFoPo].
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Lemma 2.6 (Pollack-Pomerancé [PoPo]Vniformly for integersk with 0 < |k| < z!/4, the number of
solutions up ta of the congruenc€.13)for whicho(n) is odd is at mospk|z!/4+°M) asz — oo . [

However, the above lemmas should be far from best possiblerdiog to Remark 3 of [AnPoPo]. In fact,
Anavi, Pollack and Pomerance conjected the following based heuristic regarding the average number of
sporadic solutions.

Conjecture 2.7 (Anavi-Pollack-Pomerance [AnPoPo])yhe number of sporadic solutions@13)less than
or equal toz is at most(log #)°() uniformly forz > 3 and|k| < z/2.

We first settle the distribution d¥ (¢; k) for the case: being a constant by establishing the following lemma.
This lemma refines the original result due to Pomerance (sedl@ry 3 of [P0d]).

Lemma 2.8. For fixed integers:, £ with ¢ > 2, asx — oo, we have
(a) If k/¢is an¢-perfect number, then

#S(0, ks z) ~ (2.15)

(b) If /¢ is not ané-perfect number, then
#S(, k) < a2, (2.16)
In the case of is even and: is odd, the upper bound can be replaced bjy:'/*+(1).
Proof of Lemma&2]8If n € S(¢, k), theno(n) = k (mod n). Considem of the form [2.14). Then
(14 p)k =0o(p)o(m) =o(n) = lpm + k.
This implieso(m) = k = ¢m. So,m is an/-perfect number.

(a) If k/¢is ¢-perfect, then obviouslyn € N : n = p(k/¢), pt (k/¢)} is the set of all regular solutions
of o(n) = k (mod n) and it is a subset of (¢, k). Then by Lemma&aZ2]5, for large we have

#{n <z:n=pk/0), pt(k/0)} < #S5(Cks2) < #{n <a:n=pk/0), pt(k/O} +a'/2H0.
(2.17)
By the Prime Number Theorem, as— oo, we have
{

< N g ~ — A
#n < wn=p(k/0). i (5/0) ~ pio
The results for paft (a) follow from equatioris (2.17) and@&.

(b) If k/¢is not an/-perfect number, then the congruerice (R.13) has no regullgion. Then#S (¢, k; x) <
z1/2+°(1) follows directly from Lemm&2]5.

(2.18)

It is an elementary fact that(n) is odd if and only ifn is a perfect square or two times a perfect
square. So it is trivial that if is even and: is odd, #S (¢, k; z) = O(z'/?), which surpasses the
upper bound:!/2+°(1)  In this case we use LemmaR.6.

O

By assuming Conjectufe 2.7, Lemial2.8 can be strengthensalytthat#.S (¢, k; =) is at most(log x)o(l)
if k/¢ is not/-perfect. Conjecture2.7 is best possible from the simpkenkation that powers df are in
S(2,—1). However,(log z)°") should not always be the correct order of magnitude+si(¢, k; =) when
k/¢ is not perfect. For example: it is widely conjectured thatréhare no quasiperfect numbers, and the
number of perfect numbdﬂs.lp tox is asymptotic to

eV

log 2

log log x, (2.19)

5 We can take:*™ to beexp(O(log z/ loglog x)).
6A heuristic argument from Pomerance (which can be foundatf|JBuggests that there are no odd perfect numbers.
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where~ is the Euler-Mascheroni constant.

Remark 2.9. The results of this lemma are illustrated in Figlte 1.

14000 ;
12000 ;
10000 ;
8000 ;
6000 ;
4000 ;

2000 [

-100 -50 50 100

FIGURE 1. Thez-axis isk and they-axis is the number of2, k)-almost-perfect numbers
up to10%. There are spikes at= 12 andk = 56, illustrating the results of Lemnia2.8.

Proof of Theorerh 1]2Suppose/-perfect numbers exist. Leby = mq(¢) be the smallest one. Take =
fmg. Hence for a constarit > ¢y,

0=y —>0. (2.20)
m<k/l
o(m)=~Im
Then
#W (b k) logx . logx ' '
/hogs = o X #Slrme) == >, #SUrw) + Y #S(Ura)).
|r|<k |r|<k |r| <k
r /L is ¢-perfect r /¢ is not¢-perfect
(2.21)
By Lemmag 2.6 and 2.8, there exists an absolute conétant) such that forr > max{k?, C},
> #S(0,r;x) < 2kal/ZHo), (2.22)
[r|<k
r /¢ is not¢-perfect
So
log 2k log x
T Z #S(f,?",x) < m — 0 as x — oo. (223)
r|<k
r/lis ‘nc‘)té-perfect
By Lemmd 2.8, as — oo, we have
log x l
i > #Slrmo s Y = (2.24)
|r|<k |r| <k
r /¢ is ¢-perfect r /L is ¢-perfect
Therefore fork > ¢;, we have ag — o,
H#W (Ll k) ~ o T (2.25)
log

The rest of the cases, i.d., (1.3). {1.4), are trivial. a
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2.3. Within-Perfectness for sublinear function .

Proof of Theoreri 113We first prove the lower bound. Fix any natural numbeBincek is increasing and
unbounded, there exists = yo(k, ) such that fory > vy, we havek(y) > r. Then

#{yo <n<z:lo(n) — o] <1} < #{yo <n < :lo(n) — o] < k(n)}. (2.26)
From this we have
#W (Lr2) + Oyo) < #W (L ks ) (2.27)

and by Theorer 112, we have

liming 20 ERD) S g PVETIE) 1 (2.28)

z—oo  x/logx z—oo  z/logx m

m<r/l
o(m)=~Im

Lettingr — oo, we find

lim inf w > Z

2.29
z—oo  x/logw (2.29)

For the upper bound, assumiéy) < y° for largey ande € (0,1/3). Let W' (;k;z) = {n < z :
lo(n) — ¢n| < k(x)}. Clearly sincek is increasing#W (¢; k;x) < #W' (£;k;2) < #W' (64 x). We
rewrite the Diophantine inequality describedWﬁ'(&yﬁ; x) as a collection of Diophantine equations over
certain range, i.e.,

o(n) —¢n = k, wherek € Z, |k| < z¢. (2.30)
In particular, we have a collection of congruences of thenf@.13):
o(n) = k (mod n), wherek € Z, |k| < z°. (2.31)
By Lemmd 2.4, the number of € W' (¢; y¢; ) not of the form[Z.14) is
< 9peg2/3+o() = 2w2/3+6+0(1)7 (2.32)

which is negligible. So we may assumes of the form [Z.1#%).
Next by the Prime Number Theorem and the Hornfeck-Wirsingaofem, we have

4{n < 2+ nis of the form [ZTH) witty < 27} < —> 220 <, ””E+O(1), (2.33)
log ¢ log x
which is again negligible. Hence, we may assuimis of the form [2.1#) withp > z¢.
Now suppose that(m) = rm for somer > ¢+ 1 and p > z¢. Then
o(n) —fn = o(p)o(m) —lpm = (1+p)(rm) —Lpm = m(r +p(r —{))
> p>a-. (2.34)

We haven does not belong t&’ (¢; 4¢; ), which is a contradiction.

On the other hand, consider the case whefe) = rm with 2 < r < ¢ — 1 andp > z¢. Note that
7+ p(r—£) > 0impliesp < r < £ — 1. Forz > (2¢)"/¢, we have a contradiction. Now suppose that
r+ p(r —{) < 0. Then|o(n) — ¢n| < z€if and only if m[(¢ — r)p — r] < z¢. By Merten’s estimate, the
number of such is

z€ 1 1
< Z Z m < (0—2)x° Z m < 2(0—2)x° Z -

2<r<l—1z¢<p<z re<p<z

< (¢ —2)zfloglog x. (2.35)

Therefore, we may assumeis of the form [2.14) wittp > z¢ ando(m) = ¢m.
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By partial summation and Hornfeck-Wirsing Theorem, we Havenyz > 1,

logm  [“logt ~ logz “ logt
z; = po(t)_er/l o <L, (2.36)
o(m) = tm

whereP(z) = #{m < z:o(m) = ¢m}. From these we can see that both of the series

logm 1
yooEm oy — (2.37)
o(m) =4m m o(m) =4Im m

1—e

converge. We have > n=pm > zmandsom < =z

Form < z17¢, since
logm

0< <l—e<1, (2.38)
log x
we have )
1 B 1
1- 227 o (221, (2.39)
log x log x

Let ¢ be any constant greater thanBy the Prime Number Theorem, there exis§s= xo(c) > 0 such that
for z > x, we have

m(z) < (2.40)

Then forz > x(l)/e, we have the number of of the form [2.1#%), withp > z€ ando(m) = ¢m, is bounded
above by

I R~ R M R (e D )

Clogw'

m<z!—e m<at—e <gle m<al—e
o(m)=~Im o(m)=~tm o(m)=~Im o(m)=~tm
T 1 cT
— 4+ 0| 7——3 |- 2.41
<Clog:1: (z);é m <(log:n)2> (2:41)
Therefore,
lim sup w <c Z i (2.42)
t—oo  x/logx olraymtm m
Since the choice of constant> 1 is arbitrary, we have
lim sup w < i (2.43)
=00 x/logx m
o(m)=~tm
Combining with [2.2D), we have
im FW Lk 2) (2.44)
z—oo  x/logw
exists and is equal to
1
P — (2.45)
m
o(m)=tm

Now suppose > 2 is an integer such that there is Agerfect number. A similar calculation can be done to
positive increasing functiok with k(y) < 3'/* with the bounds in{2.32)[(2.83) arld (2135) being replaced
by 2z3/4+0(1) g1/4+0() /10g 2 andz'/* log log = respectively.

Then by the above argument, we ha¥®/ (¢; k;z) < (z™{3/4<+2/3}+0(1)  The conclusions under Con-
jecture 2.Y can be proven similarly.
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For the rational case, its proof is very similar to that ofititegral case, except one has to revise the definitions
of regular and sporadic solutions of a suitable congruem¢erms ofo(n). Leta > b > 1 are integers and
ged(a,b) = 1. Suppose we would like to count

#W<%;ye,x> = #{ngx: a(n)—%n <n5}. (2.46)
We are led to a slightly more general congruence
bo(n) = k (modn), (2.47)
for integersk satisfying|k| < bz?/3. If b | k, then we say: is aregular solutionto the congruenc& (Z17) if
n = pm, wherep is a prime not dividingn , m | b o(m), and o(m) = 7 (2.48)

It is easy to check that regular solutions are indeed saluwifo2.47). We say solutions that are not regular
sporadic If b { k, then we declare that the congruerice (R.47) has no reguiaioso(or all of its solutions
are sporadic). The following result is a direct adaptatibithe corresponding results found in [AnPoPo],
[PoSh], [Pol] or[[Po2]. We shall not repeat the argument.here

Theorem 2.10.Letz > b and letk be an integer withk| < b2%/3. Then the number of sporadic solutions
to congruencdZ.417)is at most?z2/3+°(1) asz — oo, whereo(1) is uniform ink.

This completes the proof. d

Proof of Corollary(1.4.1t follows from a theorem of Anderson (s€e [Pol] P. 270) tf@atN [1,00)) \ X is
dense in1, co). Observe thaD., takes the valu@ on (Q N [1,00)) \ ¥ but it takes positive values on by
TheorenIB. S®. is discontinuous of. It is a well-known theorem that is again dense ifi, c0) (see

P. 275). This completes the proof. O
From the table and the graph below, we can see that the raeéigence ofim, . %, where
k(y) = y° ande is close tol, is quite slow (in fact} ., _o,, L~ 0.2045). We calculate% for

variousk(y) atz = 1,000, 000, = 10, 000, 000, andxz = 20, 000, 000.

k(y) | = = 1,000,000 | z = 10,000,000 | 2 = 20, 000, 000
309 3.661860 3.305180 3.196040
308 1.141480 0.945623 0.908751
07 0.494278 0.435395 0.426470
306 0.311567 0.274586 0.267904
300 0.276559 0.259482 0.255962
704 0.264968 0.252956 0.250063
y03 0.225980 0.247837 0.247299
y02 0.151238 0.195911 0.197430

TaBLE 1. 222 for yarious values of andk(y).
x/logx

Our method gives no conclusion for the cadeg Q or k is a positive increasing unbounded function
satisfyingy® = o(k(y)) for anye € (0,1). The situations remain unchanged even if we assume Corgectu
[22. Therefore, we list these as open problems for furthessitigations.

Problem 2.11. What is the order of magnitude ¢fWW (¢; k; ;) for sublineark such thaty® = o(k(y)) for
anye € (0,1)?

Problem 2.12. Supposeék is a sublinear positive increasing function. What is theeordf magnitude of
#W (¢; k; x) for irrational ¢? We conject that it is bounded abovedyfor somes > 0.
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15

14F

‘ ‘50100‘ - 1‘0(1)00‘ - 1‘5(1)06 - éOE)O(; - 2‘5(1)0(‘) - éOE)OOX
FIGURE 2. This plot shows the quantity
#W (2; k; )
x/logx
with k(y) = y°8 for z up t030, 000.
Problem 2.13. What is the set of all points of continuity of our new disttibn functionD; ?

For example: we considefV (2;y/log y;x)/(x/log x). The plot fromz = 2 to x = 10,000 is given in
Figure[3.

1.25
1.20 |-
115
1.10 |-
1.05 -

1.00

n 1 n n n 1 n n n 1 n n n 1 n n n 1 X
2000 4000 6000 8000 10000

FIGURE 3. This plot shows the quantit¢ W (2; k; ) /(x/ log x) with k(y) = y/logy for
x = 21010, 000.

3. k-NEAR-PERFECT NUMBERS

3.1. Near-Perfectness withk being non-constant. The range of our positive increasing functibrunder
consideration is
k(y) < exp <C’loi>, (3.1)
log log y
where(C' is any constant greater th&sy 2. In fact, the divisor functions(n), has the following well-known
property for its extremal ordelr [HaWr]:

log 7(n)

lim sup = log?2. (3.2)

n—oo logn/loglogn
Next we introduce the notion of smooth numbers as follows.
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Definition 3.1 (Smooth Number) Lety > 2. Then a natural numbet is said to bey-smooth if all of its
prime factors is at mosj. Letz > y > 2. Denote by®(x, y) the set of ally-smooth numbers up to. We
also denote the largest prime factoroby P*(n). Hence,

#®0(x,y) = #{n<z:PT(n) <y} (3.3)
We have the following well-known trivial estimate.

Lemma 3.2. Let
log

u = . (3.4)
log y
Uniformly forz > y > 2, we have
#O(x,y) < wexp(—u/2). (3.5)
Denote by 2(n) the number of prime factors ef counting multiplicitiesand let
Qr;z) == {n<z:Qn)=r}. (3.6)

The size ofQ(k; x) can be estimated by the following results due to Landau, yHardl Ramanujan (see
[HaWr], [HaRa] or Chapter 111.3 of [Te]). These results atsald forw(n), the number oflistinct primes of
n.

Lemma 3.3(Landau) Fix an integerr > 1. Asz — oo, we have

#Q(r;x) ~ ! L(log log )" L. (3.7)

(r—1)!logz

Lemma 3.4(Hardy-Ramanujan)Uniformly forz > 1 and integers: > 1, we have
z (loglogx + O(1))k1

log (k—1)! )

Parallel to within-perfect numbers, we study the phasesitimn behaviour ok-near-perfect numbers. We
need the notion of ‘normal order’ of arithmetic functions.

#Q(rz) < (3.8)

Definition 3.5 (Normal order) Let f and g be positive arithmetic functions. We sayas normal ordely if
for anye > 0, we have

lim l#{ngmz ‘m—l‘ 26} = 0. (3.9)

Y a(n)
We have the following classical theorem known as Hardy-Rarjs Theorem [HaRa].
Lemma 3.6. log 7(n) has normal ordetog 2 log log n. w(n) and2(n) have normal ordetog log n.
TheoreniLb follows from the definition éfnear-perfect numbers and the normal ordebgfr(n).

Proof of Theoreri 1]5Suppose the asymptotic density &f((log )'°82+¢) exists for some > 0 and is
equal toc. Let k be any positive increasing function ¢h oco) such thatk(y) > (logy)°8%*+< for large
y > 1. Clearly N ((log y)!°¢2%¢) ¢ N (k) and we have

¢ < liminf lN(k‘;:ﬁ). (3.10)
00 T

On the other hand,
IN (ki) = 2 N((logy)+) + T#((N(k) \ N({log y)**>") 1 [1,2])

IN

éN((log y)EH) + é#{” <w:7(n) > (logn) #*¥e). (3.11)

By Lemmd 3.6,
1
limsup —#{n <z :7(n) > (logn)°&2*t} = 0. (3.12)

T—00
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Thus we have

1
limsup =N (k;z) < ¢, (3.13)

z—oo L

which proves Theorefn1.5. O

If logk(y) < eloglogy for somee € (0,log 2), then from the definition of normal order we ha¥gn <
xz:7(n) < 2k(n)} = o(x). This is the non-trivial estimate we need for our adaptatibfPoSh]. In fact,
one can have a better estimate thafn < x : 7(n) < 2k(n)} = o(x), such as having an explicit upper
bound. This is done by Rankin’s method, jointly with a lemno@ do Hall, Halberstam and Richert [HaRi].

Lemma 3.7. Fory € (0, 1),
log 7(n

log 7(n) Y
> ylrm < logxz (3.14)

n<x

Proof. See Chapter 111.3 of [Te]. This is a fairly general theorem faultiplicative functions and now we
specialize to our case. O

Lemma 3.8. Uniformly fora € (0, 1),
#{n <z :log7(n) < alog2loglogz} < z(logz) B (3.15)
whereB(a) = aloga —a + 1.

Proof. First observe that foy < 1, we have

logy logy logy logy

3 1 4 1 3 1 1 1 3 1 1

Z Z = —a...< (= 1+ -+ —4...) = (2 S . (3.16
<2> p+<2> P2 _<2> p< AR > <2> =155 (3.16)

By Rankin’s method, we have

ylog 7(n) B T(n)logy

n<x

IN

— \/\:] \/\:j M

1+ 2

(

(HW( 65 () )
(5 0(5)
(
(Z
ol

2logy 3logy
e )

S
IA

Il
@

ology
xp | Y _log <1+ +O<

p<x p

(5 0()

21°8Y Joglog z + O(1) + O<l>>

X

#))

Il
e
ol

X

210g y

< (log (3.17)

We also have
log 7(n)
log 7(n) Y glogy 1
g T log:p E < z(log z) , (3.18)

n<x
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which yields
#{n <z :log7(n) < alog2loglogz} < Z legT(”)_o‘logzloglog””

n<x

< xy—a log 2 log 1ogx(10g x)Qlogy_l
= (log )~ log2logy+2V—1, (3.19)

Let fo(y) = —alog2logy + 2'°8¥ — 1. It is easy to see that,(y) has a minimum point aj = o'/ %82,
Plugging this into[(3.19), the result follows. O

Corollary 3.9. Uniformly for a positive increasing functiofwith

k(y) < (logy)* (3.20)
for large y, wheree € (0, log 2), we have

log k
#{n<z:7(n)<2kn)} <K lozzn k() (1H10822)/ 1082 oy <<1 + Oig(;))(loggw — logy 2k(m))>
(3.21)

Moreover, this estimate is non-trivial, i.e., the rightrtaside of(3.21)is o(z) asz — oo. It is also easy to
see that the right-hand side ¢8.21)is greater thanz/(log x)?.

Proof. Observe that
log 2k(x)
_ 1).
log 2log, @ €©.1)
Now by Lemmd 3.8, we have
#{n<z:7(n)<2kn)} < #{n<z:7(n)<2k)}
< z(log z)~B((og 2k(x))/(log 2log, x))
x log 2k(x) (elog2)logy x
< log o < log 2 ©8 log 2k(x)

log k(z)

< log 2

Fo(z)(1H10822)/1082 o, <<1 + > (logs x — log, 2/<;(ac))>

O

log =

Proof of Theoreri T16We first prove part (a) of Theorem1.6. Suppese 0 is given andk is a natural
number. Forn € N (k), define

Am) = {neN:n=mm',m €Q,(m,m') =1}, (3.22)
where @ is the set of all positive square-free numbers withe ). The number of proper divisors of
n € A(m)ist(m)-2° — 1, whereQ(m') = s. Supposen = d; +--- +d;, wherel <d; <---<d; <n
are proper divisors ofn andj + k > 7(m) — 1. Thenn = dym/ + --- + d;m’ is a sum ofj of its proper
divisors. Then the number of redundant divisorsnois 7(m) - 2° — 1 — j < 7(m)(2° — 1) + k&, i.e,,
ne N(t(m)(2° — 1)+ k).

We can see thaB € % (k) contains at most one square-free number diich,) N A(msy) = 0 for any
mi,mo € B Wwith my # ma. Letr = max{r(m) : m € B}.

For exp((r + k)?/¢) <m/,m € Bands < (1 + 71og3) loglogm’, we have
k
log <T(’I’)’L) + §> < log(r+k) < %log log m/ (3.23)

and
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1 k
1 — | < (14 —=)logl ! 3.24
8+10g2 og<7-(m)—|—28> < < +1g >0g0gm (3.24)
Therefore,
25 7(m)+k < (logm/)°82+¢ < (log mm/)lo8 %+, (3.25)
Denote byu(-) the Mdbius function. From the classical estimate (See [HaWr
#QN[La]) = |un) :—+O<f> (3.26)
n<x
and the Hardy—Ramanujan Theorem ), we have
h_}m #{n <z:Q(n)<(1+e¢)loglogn,ne @} = % (3.27)
T—00 s
By using inclusion-exclusion principle and the above obstons, forz > max B, we have
#N((log )8+ z)
> 3 ' < L) = Lo € Qurm) 2+ 1 < (log man 52}
m
meB
> %#{exp((r + k)Y <m’ < % S (m,m/) = 1,m' € Q,(m) < (1+ r)loglogm }
= Z #Im! < z. (m,m")=1,m" € Q,Q(m) < (1+ L)loglogm/ + Oy (#B)
= m 2log 2 ™
6 ¢
S C LR D DE- Loy e (329
meB
asx — oo, whereg(-) is the Euler’s totient function.
In other words,
N((1 log 2+e€.
T—00 T 2 m?2
meB
foranye > 0,k € NandB € ¢'(k).
Recall that)M is defined by
6 cb
M = — 5 Sup sup
s keN Be% (k Z
We have for any > 0
log 2+e.
lim inf #N((log 3;) ) S g (3.30)
and from [Kab],
M < 1-D(2) € (0.24761,0.24765). (3.31)
Now we takek = 1 and from the sequence A181595 [of [OEIS]
N(1) = {6,12,18,20,24, 28,40, 88,104, 196,224,234, ...} (3.32)

We pick our admissible subsétof N (1) inductively, starting with6 € B. In this way from the list ofV(1)

above, we have the following admissible set

17
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B = {6,12,18,24,224} (3.33)

and we have 1081
—  ~0.0715251. 3.34
= 705672 0-071525 ( )

This lower bound for the constait is clearly far from the best. It would be interesting to pa@$urther on
its computational aspect.

Now we prove part (b) of Theorem 1.6. It is an adaptation ofafgriment in[[PoSh]. Lej = z!/4loglogz,
Consider the following three sets form a partition/6fk; z).

Ni(k;z) == {n € N(k;x): nisy-smooth
Ny(k;x) := {n € N(k;z): PT(n) > yandP"(n)?|n}
Ns(k;z) := {n € N(k;z): PT(n) >yandP"(n) || n}. (3.35)

By Lemmd3.2, we have

#Ni(k;x) < #P(x,y) = xexp(—2loglogz) = (logaj)z' (3.36)

We have the following trivial estimate:

#Ny(k;z) < ZZ% < g = gl Vloeloes — g oxp(—loga/loglogz) <
P>y

X
(log2)?”

(3.37)

Forn € N3(k;z), we can write
n =pm, where p = Pt (n) > max{y, P*(m)}. (3.38)

Further partitionNs (k; x) into Ny (k; 2) and Ny (k; ), where Ny (k; ) consists ofn € N3 (k;z) such that
7(m) < k and Ny (k; ) := N3(k; x) \ Ny(k; x).

Forn € N3(k;x), we count the number of possihleandm in (3.38). Clearly, the number of possibleis
at mostz /y. Sincen is k-near-perfect, there exists a set of proper dividofsof n with #D,, < k(n) such
that

o(n) = 2n+ > d. (3.39)
deDy,
Consider
DY = {deD,:ptd},
D@ = {d/p:de D,,p|d}.
Then
(1+pa(m) = olpm) = 2pm+ > d+p > d. (3.40)
dep{V dep®

Reducing both sides madyields

p ‘ <a(m) - > d>- (3.41)

deD{V

Ford e Dﬁf), we haved | m and

(J(m) -y d) is a sum of divisors ofn. (3.42)

deD{M
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Forn € Ny (k; ),
o(m) — Z d > 0. (3.43)

Therefore,

< mloglogm
< gt/ 1elos T 160((1 — 1/log log z) log x)
< (xloglog x) exp(— log x/ log log x). (3.44)

Thus for each possible value éb(m) — ZdeDm d) , there are< log x prime factors.

We may also assume(m) < (logx)3. Indeed by the well-known estimale,, ., 7(n) < zlogz and
27(m) = 7(n), -

#{n<z:7(m)> (logz)’} < (3.45)

T
(log z)*”
Under this assumption, the number of possible vaIues(fﬂ(nn) — EdeDﬁP d) is < (14 7(m))* <
(1 + (log z)*)*®) and hence the number of possiblés < (log z)(1 + (log z)?)¥(®),

Supposé:(y) < (logy) for somee € (0, log 2).

" 1
#Ny (k;z) < E(logac)(l + (log z)*)F®) < zlogrexp ( — 8L exp(k(z)log(1 + (log z)*))
Y log log x
log x k(x)
= xl - k(z)logl
xlog x exp < loglogw> exp (3 (x)loglog x + O<(logw)3>>
1
< zlogrexp | — 08T + 3(log z)"°8 2 log log
log log x
log =
1 - . 3.46
< ogwexp( 210g10g3:> < (log x)? ( )
By Corollary[3.9, we have
#N(k;z) < #N((logy) ;)
x e(1+log, 2)/log2 € 10g2 L - €
< gz (log x) exp | {1+ log 2 (logs © — logy 2(log x)©)
<~ (log ) Hom 2/ 082 oy [ 1og (1 4 19822
log x log 2
€ e 3.47
< (log z)"(€) ( )
where ( )
o €(1+1logy2 —loge
r(e) =1 Tog 2 € (0,1). (3.48)
This completes the proof of Theorém]1.6. O

We end this section with the remark that we can improve thex#dB.21) (hence that oft N (k; x)) if
k(y) < exp < 1°§2 logs y) by establishing the following.

19
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Lemma 3.10. Uniformly for positive increasing functiok with

k(y) < exp <e log, y> (3.49)
logz y
for large y, wheree € (0, log 2), we have
Sin <z r(n) < 26(n)} < —— exp (—— log k(z)logsz + O 2FE) (3.50)
- - log = P log 2 & &3 log, ) '

This estimate is non-trivial and it is trivial that the rightand side of(3.50)is larger thanz /(log x)?.

Proof. Since2+(™) < 7(n) andk(y) < (logy)¢, we have

#{n <z:7(n) <2k(n)} S#{nﬁx:w(n)§1+w}

log 2
< Z #{n<z:wh)=r}
T§1+lolg()1;(21)
z (logoz+ O(1)) !
< Zlo:k(w) log (r—1)!
r<l+ lgog;2
€T log k(z)
log 2
< logw(logz x4+ O(1)) 1los
1 log k
S exp log k(z)logsx + O L(x) , (3.51)
log x log 2 logy x
and this is a non-trivial estimate if
1
k(z) < exp <e 082 “””) (3.52)
logs x
for somee € (0,log 2). O
Now supposé:(y) < exp ( 1052 log, y> Then
log k() 9
log, 2k 1+ —=—- log k 1 . 3.53
oz 24(0) (14 ZEE) < 2 (g o)? < log o (359
We have
1 log k() 1+ log, 2 log k()
log k(x)1 —=logk 1 1 — log, 2
oy o) oy + O SERE ) < 208 2 0y (a) 1 (14 EXD ) gy tog, 20(0),

(3.54)
hence improving the bound (3121).

3.2. Near-Perfectness withk being constant: improving previous results. Throughout this sectior¥; is
a fixed natural number. From the remark at the end of the lagbse we have

x log k ]

(log log x) Si (3.55)

N .
#N(kx) <

Now we know that the exponent tig log = is between[%J — 3 and| 2] inclusively. In order to
have a precise determination of the exponent, we have terdfancounting done in [PoSh]. In the proof of
Theoreni 1B, observe thM:;(k:; x) contributes the most t& (k; ), but the restriction om, i.e.,7(m) < k,

merely provides a very crude upper bound. There should be arithmetic information om:. Moreover,
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we remark that the assumptior{m) > k is more than needed to do the counting. Hence, we partition
N3 (k; ) differently from [PoSh] as follows:

Nél)(k:; x) = {n € N3(k;x) : all of the positive divisors ofn are redundant divisors af},
N (k) 1= Na(ksw) \ N§P (ks ). (3.56)
We have the following key lemma which allows us to coynV (k; ) precisely.

Lemma 3.11. Suppose is of the form(3.38) Thenn € Nél)(kz;m) if and only if7(m) < k andm is an
(k — 7(m))-near-perfect number. In particular, if € N?El)(k; x), thenm is a %—near—perfect number.

Proof of Lemm&3.11Suppose: € N?El)(k:; x). There exists a set of proper divisdps, of n with #D,, < k
such that

o(n) = 2n+ > d. (3.57)
deDy,
Partition D,, into two subsets according to whethee D,, is divisible byp or not. More precisely, define

DY .= {deD,:ptd},

D@ .= {d/p:deD,, p|d}. (3.58)
Then
(I+p)o(m) = o(pm) = 2pm + Z d+p Z d. (3.59)
deDfY deD?)

By the definition ofN?El)(k; x) and the fact thap 1 m, DY is the set of all positive divisors of.. Hence

o(m)= > d (3.60)
deDt)
We have
o(m) = 2m+ > d (3.61)
deD?

Since#DY = 7(m) and#D + #D? = #D,, < k, we have#D{? < k — 7(m). Note thatD'?
consists of proper divisors ofi. This provesm is an(k — 7(m))-near-perfect number. The converse is
trivial.

By observing#Dﬁf) < min{k — 7(m),7(m) — 1}, if n € N?El)(k:; x), thenm is % -near-perfect. This
completes the proof of Lemna3]11. O

Here we explain the role of Lemrha3]11 in our modification. \&edfinitely many possible values fo(m).

For each possible value ofm), we can determine all possible formsrofin terms of prime factorizations.
Then by the criterion that: has to be arfk — 7(m))-near-perfect number, we have a finite collection of
polynomial Diophantine equations in primes (See the prddfesnmal3.I5). This gives all of the possible
values ofm. Note that in Lemm&3.11, there is no restriction on prim& herefore for each suctn, there

corresponds tex,,, x/log x natural numbers € Nél)(k:; x). For smallerk > 4, there are only finitely many
suchm; this explains why# N (k; z) has ordetz/ log .

We prove the following lemmata that can reduce the amounaloligations.

Lemma 3.12. Prime powers cannot ble-near-perfect for any natural numbér

Proof. Supposen = ¢’ is ak-near-perfect number for sonke Then from

o(m) = 2m+ Y _ d, (3.62)
d€Dpy,
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whereD,, is a set of proper divisors ef with #D,,, < k, we have

=>4 (3.63)
a€A
whereA is a subset of0, ..., ¢ — 1}; however, this contradicts the uniquenesg-afry representation. This
completes the proof. O

Corollary 3.13. m cannot bek-near-perfect for any integers > 0 if 7(m) is prime. Hence ifn is a
k-near-perfect number for sonke> 0, thent(m) > 4.

The following is a result of [ReCh], which is a complete clisation of 1-near-perfect numbers with two
distinct prime factors. It is not strictly necessary for aaethod, but it reduces the amount of calculations
considerably.

Lemma 3.14. A 1-near-perfect number which is not perfect and has two disfnime factors is of the form

(1) 2071 (28 — 2% — 1), where2! — 2% — 1 is prime,

(2) 22p—1(2r — 1), wherep is a prime such thak? — 1 is also a prime.
(3) 2P~1(2P — 1)2, wherep is a prime such tha2” — 1 is also a prime.
(4) 40.

Lemma 3.15. If m is a k-near-perfect number for somie > 0 and 7(m) = 4 or 7(m) = 6, thenm €
{6, 12, 18,20, 28}.

Proof. Supposen is ak-near-perfect number for sonke> 0. If 7(m) = 4, then by Lemma312y is of
the formgqr, whereq, r are distinct primes and we have one of the following cases:

1+q)(1+7r)=2qr

(
(1+q¢)(1+7r)=29r+1
(1+q)(1+7r)=29r+q
1+q¢)(1+7r)=2gr+1+¢q
1+q)(1+r)=2gr+q+r
1+q)A+7)=2qr+1+q+r. (3.64)

From these equations, we hawe = 6. The case forr(m) = 6 is similar but with more equations to be
considered. For(m) = 6, m is of the form¢?r, wheregq, r are distinct primes. In fact, for anyy > 3,
there is ndk-near-perfect number with positive divisors. Moreover, all of thz-near-perfect numbers with
6 positive divisors are indeed 1-near-perfect.

O

Proof of Theorerfi 1] 7Let y = z!/1°%2% as before. From the proof of Theorém]1.6, we have the follgwin

estimates:
xr

(log2)?”

Now considemn € N?El)(k‘; x). Thenn = pm, wherep is a prime> max{y, P (m)} andm € N(k—7(m)).
The following is a case-by-case analysis.

#Ny (k; 2), #No(k;x), #N (ks ) < (3.65)

Fork = 4,5, by Corollan{3IB7(m) = 4 andm € N(1). By Lemmd3.1b, we haver = 6.
By the Prime Number Theorem, we have

1/10g10g:v1 1

(1) 4. _ 1/loglogx 1 x Zz T 0glogr
#N, ' (4 = — S 9] 0

3 (o) =m(@/6) —n(z ) 6 log x <(10g a:)2> ( log = >

1 =z T
= _ — . 3.66
6log:n+0<(logx)2> (3.66)
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Therefore,

N (i) = N1 (450) + #No(di2) + 4N (i) + #N (2) = G+ 0 (ﬁ) . (367)

The same result holds fg¢ N (5; z).

Fork = 6, we haver(m) € {4,6}.

o If 7(m) = 4, thenm € N(2). We haven = 6.

e If 7(m) = 6, thenm € N(0). We havemn = 28.
Therefore, we have
17 =«
84log

#N(6;x) ~
(3.68)

Fork = 7, we haver(m) € {4,6}. Fork =8, 7(m) € {4,6, 8}.

o If 7(m) = 4, thenm € N(3). We haven = 6.

e If 7(m) = 6, thenm € N(1). We havem € {12, 18,20, 28}.

o If k =8andr(m) = 8, thenm € N(0). m has at mos8 prime factors. It is an elementary fact
thatm cannot be an odd perfect number. By Euclid-Euler Theorens of the form2r—1(2° — 1)
for some primep such tha? — 1 is also a prime. Thef = 7(m) = 2p, which is a contradiction.
Hence, there is no such.

Therefore, we have
493 =x
1260 log z”

#N(7;x),#N(8;x) ~
(3.69)

Fork =9, 7(m) € {4,6,8,9}. Againif 7(m) =4 or 6, m € {6,12,18,20,28}.
o If 7(m) = 8, thenm € N(1). By the discussion in the cage= 8, m cannot be perfect. By Lemma
[3.12, we haven is of the formg>r or grs, whereg, r, s are distinct primes. For the first case we have
m € {24, 40,56, 88,104} by using Lemm&3.14. For the second case, we consider tloavfolj set
of equations
1+ +r)(1+s)=2qrs+1,
(L+q)(L+7)(1+s) =2qrs +q,
(14+q¢)(+7)(1+s)=2qrs+qr, (3.70)
in which it is easy to check all of them have no solution.
o If 7(m) =9, thenm € N(0). By similar discussion in the case bf= 8, there is no suckn.
Therefore, we have
179017 =z
360360 log

#N(9;2) ~

(3.71)
O

Remark 3.16. It was established ifPoSh]that #N (k; x) < zexp(—(cx + 0o(1))v/log x log log x), where

Ccy = \/6/6 ~ 0.4082 andc3 = \/5/4 ~ 0.3535. By our modification, we recover this result with improved
constants and replacementdfl) by O(logs; z/ log, ).

We first introduce the following standard, more preciseneate for#®(z, y) which can be found in Chapter

9 of [DeLu].
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Letu = log 2/ log y. Then uniformly forlog )% < y < x, we have
#®(z,y) = xexp(—ulogu+ O(uloglogu)). (3.72)

Since#N (2;z) < #N(3; ), it suffices to consider the cage= 3 only. By CorollaryBIBNél)(B; x)is
an empty set. We remark that the choice o different from before and it is important for the qualitytbe
upper bound. Hence,

#N(3;2) = #N1(3;2) + #No(3;2) + #N3 (3; )
< zexp(—ulogu+ O(uloglogu)) + g + g(log )10

< zexp(—ulogu+ O(uloglog u)) + g(log x)10. (3.73)
We should choosg such that
exp(—ulogu + O(uloglogu)) = %, (3.74)
or
ulogu + O(uloglogu) = logy — 10log log x. (3.75)

This suggests us to chodsg y = v/log x log log x, which is clearly admissible. From this we can see that

1 1 1
u= 8%  and ulogu = = OET (loglog z — logloglog x) =< log y. (3.76)
log log x 2 \/ loglog x

1 log log 1
#N(3;2) <<xexp<— §¢m<1+0<w>>>

log log x

+ x exp(—+/log x log log x + 10log log )
1 loglog1
< azexp<—5\/logmloglogx<1+0<w>>>. (3.77)

log log x

Therefore,

This upper bound is in fact the best we can do by using thetjgartdescribed before in terms of smooth
numbers. We need a more refine counting to handle the dase® and k = 3. However, for the cases
k > 4, this is the right partition that leads us to the sharp resulVe are going to discuss in the following.
Remark 3.17. With the assumption that the st € N (2) : 7(m) = 8} is finite, we have

x

#N(l&l’) ~ C10 (378)

logx’
for some constant; satisfying
78806633
10 = 756396240
With the assumptions that the s¢is € N(3) : 7(m) = 8} and{m € N(2) : 7(m) = 9} are finite, we
have

(3.79)

#N(1L;2) ~ e, (3.80)
log x
for some constant;; satisfying
53072311991 (3.81)

= 704316292080
The exact values far;g andcy; can be found as above, but the computations become tedious.
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The amount of calculations increases significantly: @gows in the above method. Moreover, it is not easy
to solve those Diophantine equations in primes systemigtitageneral. It is of interest to ask for better
ways to handle the general cases. The key idea is to apply bEM and our partition repeatedly.

First it is essential to estimate the size of following setjfo> 1 andx > y > 2:
Pi(x,y) == {n<x:in=p - -pjmj,P+(mj) <y<pj<---<pi} (3.82)
Obtaining a lower bound faP;(z) is easy. It is simply an observation of the fact that
n<z:in=p---pmjm; <y<p;<---<p} CPi(z,y) (3.83)

and the following lemma. The idea is that in the 8¢t =), the numbers that asgjuare-freecontribute the
most. Then the rest follows from Landau’s Theorem.

Lemma 3.18.
1 T
#{n<zin=pr-pspr > >psf o~ 5= 1lloga (loglog z)*~" (3.84)
Proof of Lemm& 3.18First observe that
{n<z:QMn)=s}= U {n<z:n=p*---pi.p1>-->p} (3.85)
ar+--+ar=s
ay,...,ar>1
r>1

Consider one of the sefs < x : n = p{* ---p%,p; > --- > p,} forming the partition above with; > 2
forsomel < j <r,ai,...,a, > 1landa; +---+ a, = s.

By partial summation and Landau’s Theorem, we have

3 (i)”“j:/;d#fxs—aj;t) #Us—azx) | 1 (7 #As—azt)

m t1/a; xl/a; aj Jo tl+1/a;

m<x
Q(m)=s—ayj

1
1/% 10

r 1
(log log )*~ %1 +/ ——— (loglogt)s~%~1 dt. (3.86)
o tYailogt

We claim that

v 1 g 1-L (loglog z)*~!
—— (loglogt)*"% ! dt = = . 3.87
/2 tl/a logt(Og R 0<w ' log z (3.87)
First note that . .
_1 5= _1 5—
d ey Qoglog )™ () LY g 1)) e (oslosm) ™ (3.88)
dx log x a; log x
Then by this and the Fundamental Theorem of Calculus,
%f; W loglogt)s_“l’—l dt W(loglogw)s aj—l
1_7 og logx - og log x
Lot loglonsy ! (1= &) o™ s
1
= = 0(1)
<1 — —> (14 0(1))(loglog x)
(3.89)

as r — oo. From L'Hopital's Rule, the claim follows. Hence

1/a; 1 s—1
3 <£> :0<; %Q%EEEL_> (3.90)
m log x

m<x
Q(m)=s—a;
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and

#{n<z:n=p - - -pr

1/a;
P> > <Yy Zl<< > <x>

< < m
m<z < m<z
Q(m)=s—a; pJ -

Q(m)=s—aj

1 1/a;
_ 1/a;
w2 (5)

m<x

Q(m)=s—a;

s

= 0< (log log x)s_1>. (3.91)
log
From the fact that

#Us;x) =#{n<zin=pi-pop > >pt Y

#{n<x:n=pi"--pirp>-
ai+-+ar=s
al,...,ar>1
Jje{l,...,r}:a;>2
(3.92)
and Landau’s Theorem, we have
1 T s—1 __ . _ T s—1
= 1)!(1—1—0(1))10 w(loglog:n) =#{n<z:n=p - -psp1>---> ps}—|—0<logx(loglog3:) >
(3.93)
Hence
1
#{n<z:n=pr- - ps,p1>->pst ~ ﬁlog (loglog x)® -1 (3.94)
This completes the proof of Lemrha3118. O
Therefore, we have
> > 1
m; <y anij
nj=p1-pPj
for somep1 >---p; >y
x/m _rmy 7
log log —
> Z , log(/m;) < o808 j>
Jj—1 1
> — <log log E) —
g Yy my<y
xlogy 2\ !
> log log — . (3.95)
log Y

For the upper bound 6f®;(z, y), we use the smooth number bouhd]3.5) and the following atanapper
bound sieve estimate (sée [FoHa]).

Lemma 3.19. Suppose is a finite subset of natural numbé?,is a subset of primes and> 0. Let

=11~ (3.96)
peEP
p<z

Denote byS(A, P, z) the set

{neA:(n,P(2) =1} (3.97)
and by A, the set

{a€e A:d|a}. (3.98)



ON WITHIN-PERFECTNESS AND NEAR-PERFECTNESS 27

Suppose is a multiplicative function satisfying

0<g(p)<1for pe P and g(p)=0 for pg P (3.99)
and there exists some constafis> 0 andx > 0 such that
1 ® B
H (1—g(p)~ ' < <10gw> exp <1 > (3.100)
y<p<w 0gyY 0gyY

for2 <y < w.

Let X > 0. For d which is a product of distinct primes from, define

= #Aq— Xg(d). (3.101)
Suppose for some> 0, we have
> ral < 10 x) (3.102)
d\P(2) &
d<x?
Then for2 < z < X, we have
#S(A7P7 Z) <k,0,C,B XV(Z)7 (3103)
where
V(z) = [0 —9(p)). (3.104)
p<z
peEP

Lemma 3.20. Suppose: > y > 2 andy < z°(). For everyj > 1, we have

1 .
H;(z,y) < xl ngy(log log )/ 1. (3.105)

Proof. With the notation as in Lemnia 3]19. Ldtbe the set of all natural numbers upatoP be the set of
primes in(y, z'/UtD], 2 .= 20D X .= z andg(d) := 1/d.
S(A, P, z) consists of all natural numbers upitavhose prime factors ar€ y or > zJi+1. (Note that there

are at mosj prime factors> xa+1 .) By Merten’s estimates, we can see that all of the assumspbbLemma
[3.19 are satisfied and hence we have

1
4S(A P2 < 218y, (3.106)
log =
Therefore,
| o 1
#QU)(z) == #{n<z:n=p--pym;, P (m;) <y< 2T < pi < <p} < xlo(;gmy.
(3.107)

Forl <i < j — 1, denote byQ"(z) the set

QW(z) = {(n<x:n=p--pymj, PT(m;) <y <p; < < pip1 ij% <pi<---<pi}
(3.108)

and byQ(® (z) the set
QO(x) == {n<w:n=pi-pm; Pr(mj) <y <pj < <p <ai). (3.109)

Forl < i < j — 1, we use the same kind of estimate$fA, P, z) with the same choices of parameters

above, except this time we choose

X = 2 (3.110)
Pit1 - Pj
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and A be the set of all natural numbers upXq for some fixed choices of primes. i, ... p;.

#Q(i) (x) _ Z Z .
Y<p; <"'<pi+1§xj% Pt (m;)<y

1
p1>-->pi>xitl
p1e-pim; <x/(piy1--pj)

T logy
< O EE—

Y<pj<--<pip1<eTTT

1
1
zlogy 1\’ zlogy .
< — < log 1 I
~ logx < Zl p) log x (log log )
p<zitl

#Q" (2) = > Yoo

A Pr(my)<y
<pj<-<p1<zitl S
ysbs m;j<z/(p1-p;)

exp < _log(z/p1 - 'Pj)>

L plp‘y

Z T exp [ - 1 loga:)
L PL D) 2(j +1) logy
y<p;<-<pr1<zitl

<o p< 1 logx>< 1>j
xp| — —— -
- 2(j +1) logy P

p<axitl

, 1 1
< z(loglog x)’ exp < - m%)

IN

As a result,

J
#0(r,9) = 3 #00 () < = log log r .

ogxr
1=0 &

This completes the proof of Lemrha 31 20.

(3.111)

(3.112)

(3.113)

O

We are now ready to give the proof of Theorgm 1.8. We note thsiinmaterial to choosg = !/ 0glog=

in the proof of Theorerh 117 (for the case> 4). It is simply a usual, convenient choice as[in [PoSh]. But at
least we must havg > (log z)“, a > 3k + 2 (refer to the estimation O#Néz)(k; x) in TheorenLl7). In
Theoren LB with the consideration of Lemma8.20, it is th&t be choose, of the form(log z:)*. We also

note that forj > 1, #®;(x,y) decays much slower thgfad(z, y).

Proof of Theoreri 118By Lemmal 3.1l and the proof of Theoréml1.7, the major cortiohuto #N (k; x)
comes from numbers of the form = pym; with p; > 1 := (log )?**+1° being a primep; > P*(m1)
andm; € N(%). Then we use our new partition (N(%; =) and repeat the similar estimations done in

Theoreni LJ.
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In general forj > 1, suppose we repeat this processjfeimes, we would like to show that
#{n <z:in=pi---pjmj,pr > >pj> max{yl,P+(mj)},

my (A0 oy (B2 D) e (A 20

<y, (loglog ). (3.114)

X
log
Firstly by Lemmd3.20, we have

X F- (@ -1)
#in<w:in=p---pimjpL>--->p; >y > P (my),m; € Ny —

log y1
log x

< #Cb(j)(x,yl) < ac (loglogz)’~t <, (loglog ). (3.115)

x
log x

Secondly, observe that

1 1 1
Z Ej< Z —— Z —<< Z —log —log%

m; < Pg+1>y1 pJ"‘ pi+1>y1 It r<# Pj+1>Y1 pJ‘H ylpj-i-l Y 1
Y1 ;n]+1r< YiPi41
Pt (my)?||m; vi
Pt(m;)>y1
(3.116)
and
T 1
> 1< Yy 1<y Z 1< = . (3.117)
Yyirp1r---pPj
2 x > <—F
Va<m; < e PJ pj+1r§p1‘_‘p Pj+1>Y1r - P]Pﬁq
P+ (m;)2|m, Pi1>Y1
P*(mj)>y1

By using [3.115),[(3.117) and Lemina 3.18, we have

E— (29 —1
#{néx:nzpr"pjmjapl>“‘>pj>P+(mj)>y1’mjeN2<#>}

< #{n <z:in=pi---pimg,pr > >pj > P+(mj) > yl,P+(mj)2]mj}

<Y Yooy ¥ o

m;<y/x P1>>Pj>Y1 P1>>Pi>Y1 \JSr<m; <
p+(51]) [lm; P1- pj<—] p1-p; <VT o T=py- PJ
P (my)>u1 L (mg)%Im;
! PT(mj)>y
Jj—=1 J
r/m; 1
< Z 7/ J loglogi +£ Z -
log(z/m;) m; Y1 p
m]‘<\/‘5 p<Vz
P*(m;)?||m;
Pt (mj)>y

T . 1 T .

log 1 i-1 — + “(logl J

< 1Og%( og log x) Zi m; + yl( og log x)
Pt (m;)?||m;
P+(Mj)>y1

T 11 T T )
< logaz(log log x)’ Elog y{+2 " (log log z)’ < W(log log ). (3.118)
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Denote byM (k) the set of all natural numberswith the properties that € N (k), n can be written of the
form n = pm with p > P*(m) and there exists a s&,, consists of proper divisors af such that

o(m)— Y d>0, (3.119)
deDV

whereD\" is defined to be the sétl € D, : ptd} as before.
Denote byM (k; z) the set of all elements af/ (k) up tox. The estimation of the size dff (k; ) is very
similar to that in Theorern 1.7. However note that here we take (log z)3++19,

log log
= = 3.120
“ logy;  (3k +10)loglogx ( )
and hence
1 log
P — = —_—. 3.121
#®(z,41) L wexp < 2 (3k + 10) log logx> Sk (log z)? ( )
#in e M(k;z): PT(n) >y} <p mind —— Z(logz)+1t « 2 (3.122)
’ (log z)?" (log z)?
Therefore,
#M(k;z) = #{n € M(k;z) : PT(n) <y} +#{n € M(k;z) : PT(n) >y} <x (lo;x)2 (3.123)
and by partial summation, we have
> % < 0. (3.124)

neM (k)

We have

E— (20 —1
#{néw:n:pl'“l)jmjapl>”’>pﬂ'>P+(mj)>y1’mj€N§2)<#>}

n k— (29 —1)
<#in<z:in=pi---pimj,p1>--->p;j>P(my)>y,mj e M| ——=

< 2 2. 1 2, 1

p1>>pi>yY1 m; < mjg\/i p1>->pi>Y1

.
FIRC ‘ >
p1-pi < J k,(gJ,l)) Pl“‘ijij

mem(amn)  mer
_x T " j—1
P1Dj m;
— 7 log log —
<k ) (log 5-7-)? " 2 log - ( oslos mj>
P1>>Pi>Y1 P1pj ij\/E‘ m;
pl,.'pjgﬁ ijM(ki(gjil))
T 1 T . 1
< Z + (loglog )7~ * Z —
2 ] .
(log)? | &5 ., P1-pj logz s ™
s e =B
xz 1 J X . € .
L - loglog z)/ ™! < ——(loglog z)~!. 3.125
(log x)? ( Z > + logx( og log z) logx( oglog ) ( )

<zl
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By Lemmd3.1ll, we have
k— (27 —1
{n Sxin=prepimypr > > pp > Pr(my) > yi,m; € N§1)<#>}

= {n <Tin=picccpiPj1Mys1,p1 > 0 > pj > pit1 > max{yr, PT(mji1)},

_(9i+1 _
mj1 € N(%) } (3.126)

and the process repeats. Pick the smallest intgger jo (k) such that

k— (270 —1)
— <4 (3.127)
ie.,
log(k+1) logh
— . 3.128
Jo > log 2 log 2 ( )
By using partial summation and the upper bodnd (3.77¥0¢(3; ), we have
1
Y — <o (3.129)
m

Therefore, we have

n(k—(2° -1
#{ngl':n:pl"'pjomjo’pl >0 > Dy >P+(mj0)>mj €N3( )<%>}

= #{néx:n:pl'”pjomjmpl > > Pho > P+(mj0)amjo EN(3)}

S P D D
mjog\/f p1>--~>pj8 P1>>Dj mJ0<p1 o
mjoeN(3>”1"'pj0Sm_m PP SVE ens)
Jo-t P rp
JO 1"Pjg
< Z <loglog N) + Z 7(10 =y
mJ0<\/_ mJo P1>>Dj, P1+Pjg
mj, EN(3) P1Pjo VT
T » 1 x 1
< (loglog z)70~* Z —+ Z E—
log o mj,  (logx) e D1 Pio
m;, EN(3) P1Pjo <V
< 2 (loglog z)o~1. (3.130)
log
Taking stock, we have
x .
#N (k) <p 1ng(loglogm)7°. (3.131)

We have not used Lemnia 3]11 fully as we aim at obtaining anawggl upper bounébr all £ > 4 conve-
niently and unconditionally while in the following we onhahdlea large portionof integersk > 4 and the
treatment is more delicate. At the last step of the abovegsowe only conclude that;, € N(3) and use

the factzmeN(3 < oo. Indeed it is possible to obtain more informationsan by using another inductive
process as foIIows
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By the same kind of estimates we have done in the proof of Emeldr8, forj > 2, we have
#{n <zin=pi-pji_imj1,p1 > - > pjo1 > max{yy, PT(mj_1)},
. . ) .
mj_1 € Ni(k — (2771 = 1)7(m;_1)) U Nay(k — (277 = 1)7(my_1)) U NS (k — (2971 — 1)T(mj—1))}

X
<k

(loglog x)’ 1 (3.132)
log x

and
1 -
#{n <zin=pyccopi_1mj_1,p1 >0 >pio1 > PT(mj_1) > y1,mjo1 € Né )(k‘ — (2 - 1)T(mj_1))}
= #{n <X in=Dpi-cpi—aPimg,p1 > - > pio1 > P> maX{yhPJr(mj)},

m; € N(k— (27 — 1)T(mj))} (3.133)

and the process continues. However it is different from thumson of Theorenn 118, now we are allowed us
to solve outfinitely manypossiblem; such that(2’ — 1)7(m;) < k andm; € N(k — (27 — 1)7(m;)) for
suitably chosen. In this case, by Lemnia3.118, we have

AN (k;z) <) —

(loglog )7 (3.134)

log x
Moreover by Lemma 3.11, we have

{’I’L <z:n= m;p1---pPj,P1 > > Pj > P+(mj),mj S N(k‘ — (2j — 1)T(Mj))} - N(k7:L') (3.135)

Therefore,
N (k; 1
lim inf — ﬁ (1 i) — > 3 —. (3.136)
v gz (08 log ) myEN (k=@ —1)r(my))
By Lemmd3.IP, we have(m;) > 4. Also,
k
Therefore we have
< log(k+4) (3.138)
log 2
(1) We considetl is of the form25+2 + ¢ for ¢ > —4. For
~ log(¢+6)
we have
log(k + 4
log(k+4) 5 _ 541 (3.140)
log 2

and hence we chooge= s. For each? > —4, we have not covered every single integer 1. (In
fact it is even worse tha{y(¢) — oo asl¢ — o0.)
For¢ > —4, define the following set:

TV = {28” L0 s> 1BEFO) 1}. (3.141)
log 2

Part of the integers omitted by a singlél) can be covered by the oth@f,l), but the totality ong(l)
(¢ > —4) still doesnot cover every single natural numbker We need more coverings of this type.
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From [3.139), we have

s+2
4 < r(my) < 227_+1€ < 6. (3.142)
Again by Lemma 3127 (m;) = 4 andmg € N(¢ + 4). By Lemmd3.1b, we havei; = 6. Then
we have

AN (k;z) <i lomw(log log )" (3.143)
and
lim inf #N(k; 2) > !
200 oo (loglog)*~ 6(s —1)!
(3.144)
if k=22 44,0 > —4ands > 1500 .
It is easy to see that the sdfél)’s are pairwise disjoint fof > —4 and
UrV=Ju 24,62~ 7. (3.145)
1>—4 r>1
Fork of the form25+2 — ¢ with £ > 8 ands > 10i§g2 )1, we choosg = s — 1. Then
25%2 ¢ (-8

By Lemmd3.IR7(ms 1) =4 or 6. If 7(ms_1) = 4, thenm,_; = 6. Now suppose (m_1) = 6.
By Lemmd 3.5, it suffices to consider,_; € N(1) and hencen,_; € N(min{1,2% — ¢ + 6}).

We considess in the range

log(¢ —
log(£ — 5) (3.147)
log 2
so that
min{1,2° — /+ 6} = 1. (3.148)
In this casems_1 € {6, 12,18,20,28}. Hence, we have
AN (k;z) <p —— (loglog 2)* 2. (3.149)
log =
Moreover,
. #N (k; x) 493
1 f > )
T00 ez (loglog )52 = 1260(s — 2)!
(3.150)
The sets
1 _
T = {23+2 —lis> M} (3.151)
log 2
are pairwise disjoint fof > 8 and
Uz = JB-2 —54-2 9. (3.152)

£>8 r>2

On the other hand, #° — ¢ + 6 = 0 and7(ms_1) = 6, thenm,_; € N(0) andms_; = 28. Hence
fork =3-2° — 6, we have

#N (k) <5
log x

(loglog z)%2 (3.153)
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and
#N(k; x) < 17

v=oo i (loglogz)s=2 — 84(s —2)!"

(3.154)

(3) Fork of the form25+? — 8 ands > 2 (i.e., / = 8), we have4 < 7(ms_1) < 8andm,_; €
N(25%2 —8 — (257! —1)7(ms_1)). This is settled as in the cage= 8 of TheoreniLl7. Therefore,

#N(k;z) <y (log log x)* 2 (3.155)

x
log x
and

lim inf #N (k; z) — 2 493 .
z—oc i—(loglog z)® 1260(s — 2)!

(3.156)

(4) Fork of the form25+2 — 7 ands > 3 (i.e.,/ = 7), we have4 < 7(ms_1) < 8andm, 1 €
N(25%2 —7— (257! —1)7(ms_1)). This is settled as in the cage= 9 of TheoreniLI7. Therefore,

#N(k;z) < — (loglogz)* 2. (3.157)
log =
and
. #N (k; ) 179017
lim inf > .
whbe 2 (loglogz)* 2 ~ 360360(s — 2)!
(3.158)
Similar to above define
T®) = {3.2°—6:5>2},
TW = {2572 _8:5> 2},
TO) = {2572 _ 7.5 > 3},
T®) = {2572 _6:5 > 3},
T = {2572 — 5.5 > 4}. (3.159)

We haverV, T/, 7G), ... T all pairwise disjoint and

UrPuJr?u |J 19 =[4,00)z\ <{9, 10,11,27} U | J T(i)>. (3.160)

>4 0>8 3<i<5 6<i<7
This completes the proof of Theorém11.8. O
Remark 3.21. For & of the form25+2 — 6 (s > 3) and25t2 — 5 (s > 4), we have

X
N(k:
# (ka l‘) <k loga:

(loglog )72, (3.161)

o #N (k; ) 179017 1
lim inf — > 7
v=o0 o= (loglog x)® 360360 (s — 2)!

(3.162)
provided that{m € N(3) : 7(m) = 8} is a finite set.
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Remark 3.22. Heuristically, one expects that natural numbers of the farm p; - - - p;_i1p;m; with p; >

<o > pjo1 > p; > PT(m;) andm; € N(k — (27 — 1)7(m;)) (*) (with the choice ofj made in the
proof of Theorerh 118) contributes the mos#d/ (k; ) (k > 4). This would lead to asymptotic formulae of
#N(k;x).

However we fail to do so. The sizes of the gets; (z,y) (j > 2) are much larger than that cb(x,y) and

it is already the best that we choog®f the form(log x)*. Even so, the size of upper bound4® ;1 (x,y)

is the same as that given by (*). Therefore, we fail to locasectly the major contributions gf# N (k; z). A
possible solution for this is to repeat our process by one fiess. At the same time the computations would
become more tedious.

Remark 3.23. Our method of studying near-perfectness can be carried wvekact-perfectness for some
special cases. We state our results here without proof.

Theorem 3.24. Denote byE (k) the set of allk-exactly-perfect numbers. L&t(k;z) = E(k) N [1,z]. Then
asx — oo,
xT

log =
where
1 1 17 5! 12673
i _r _ 7 s , 3.164
C4 6’ Ce 28’ cr 90’ 8 36’ o 120120 ( )

Moreover, we have

1 log log 1
#E(5x) < xexp(— ix/logxloglogx<1+0<w>>>, (3.165)

log log x
LE(3-2°—5:1), #E(3-2° — 6;1), #E22 —7,2) =, 10: —(loglog )", (3.166)
s+2 . € s—1
HE2°T —4x) =g (loglog z)*~*. (3.167)
log

We suggest to investigate the distribution of exact-perfambers further.

Note thatE(k;) and E(k2) are not necessarily disjoint. For exampl&2, 18 € E(1)N E(2). Hence, we also
suggest investigating the size®f, 1, (x) := E(k1) N E(k2) N [1,z]. Table[2 compares values & (),
E1(x), and By (x) for z up to10°.

z | Br2(2) | Bi(2) | Eo(z) | Ero(z)/Er(z) | Era(z)/Eo(z)
102 5 7 14 0.714 0.357
103 6 15 48 0.400 0.125
10% 8 21 143 0.381 0.056
10° 9 33 301 0.272 0.030
100 11 45 571 0.244 0.019

TABLE 2. Comparison of values df; »(z), F1(x), and Ey(x) for z up to106.
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3.3. Concluding Remark.

Proof of Theorerh I19For k € M, k = 2q for some primey such thak? — 1 is also a prime. Let € (0, 1)
andm = 29-1(2¢ — 1). Sincem is a perfect number is the sum of its proper divisors. The number of
proper divisors ofn is 7(m) — 1 = 2¢g — 1. Hencepm is a sum oRq — 1 of its proper divisors. The number
of proper divisors opm is 7(pm) — 1 = 4¢ — 1. So,pm is a sum of all of its proper divisors with exactly
(49 — 1) — (2¢ — 1) = 2q exceptions, i.epm € E(k). Clearlyo(pm) — 2pm < (pm)< if p > (2m!=<)V/¢
andp { m. This proves

liming ZE R )\ Ee(k; 2))
T—00 1’/ logx

Now suppose € (0,1/3). By the same argument as in Theorleni 1.3, we have
#(E(k;x) \ Ec(k;z)) < #{n<w:neEk),n=pm ptm o(m')=2m'} +O(z*> W),
(3.169)

> (3.168)

1
—

Forn € E(k) with n = pm/, pt m’ ando(m’) = 2m/, we have
pm’ = > dit+p Y d, (3.170)
di1€Dq do€Do
whereD; is a subset of positive divisors of’, D, is a subset of proper divisors of’ with #£D + #Dy =
T(pm') —1—k=27(m') — 1 — k.

Suppose thab; # (). Then

1< > dy <o(m)=2m’. (3.171)
di1€Dq
Reducing[(3.170) modulp, we have
p| > di (3.172)
die€Dy

The number of possible values fpris O(log 2m’) = O(log z). Hence, the number of possible values for
suchn is O(z°(") log z) by Hornfeck-Wirsing Theorem, which is negligible.

Now suppose thab;, = (). Then#Dy = 27(m/) — 1 — k and
m = > dy (3.173)
d2€D2

Sinceo(m’) = 2m/, we have# Dy = 7(m') — 1. Thereforeg(m') — 1 =27(m') — 1 — k, i.e.,7(m') = k.
Nielsen [N]] has recently shown that an odd perfect numberatdeast 10 prime factors and hence it has at
least 1024 distinct positive divisors. Hence, assume 1024 or there is no odd perfect number. We have
m' = 2‘1"1(2‘1' — 1) for some prime;’ such thak? — 1 is also prime, by using Euclid-Euler Theorem. So
k =7(m') =2¢' € M. Hence ifk ¢ M, then we have a contradiction and

H#(E(k;2) \ Ec(k;2)) = 0D loga) + O(22/3Teto)) = O(g2/3+eto())y, (3.174)

If £ € M, thenk = 2q for some prime; such that? — 1 is also a prime. Thep’ = ¢ and som’ = m.
Hence,

#(E(k;z) \ Bc(k;x)) < #{n <z :n=pm, ptm}+O0@Vlogz) + O(x**+0)  (3.175)
By the Prime Number Theorem, we have

imsup 2B\ Bio)) 1

(3.176)

=]
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As a result,

T—00 .Z'/ IOg x m
It was shown in[[PoSh], by using a form of prime number theooé@rmota, Mauduit and Rivat, that for all

largek, the number of-exactly-perfect numbers up tois > x/log x.

Therefore,
#(E(k;x) \ Ec(k;x)) log x
#E(k;x) <k 21/3—c—o(1) (3.178)
for largek ¢ M, e € (0,1/3) and with the assumption that there is no odd perfect numbehis case,
. ATIN
% #B(k7) (3.179)

Fork=8,2"2 - 4(2<s<8),3-2-5(2<5<8),3-25-6 (3<s5<8),25M2_-7(2<s<8),
by the above argument and Theorlem B.24, we have uncondigidhat (3.179) holds.
Fork = 4,6, we have unconditionally that

 #E(kx)

O
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