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ON WITHIN-PERFECTNESS AND NEAR-PERFECTNESS

PETER COHEN, KATHERINE CORDWELL, ALYSSA EPSTEIN, CHUNG HANG KWAN, ADAM LOTT,
AND STEVEN J. MILLER

ABSTRACT. The analytic aspect of within-perfectness and near-perfectness was considered by Erdös, Pomer-
ance, Harman, Wolke, Pollack and Shevelev. We generalize these concepts by introducing a threshold function
k, which is positive and increasing on[1,∞). Let ℓ ≥ 1. A natural numbern is an(ℓ; k)-within-perfect number
if |σ(n) − ℓn| < k(n). A natural numbern is a k-near-perfect number ifn can be written as a sum of all
but at mostk(n) of its divisors. We study the asymptotic densities and bounds for our new notions ask varies.
We denote the number ofk-near-perfect numbers up tox by #N(k;x). Fork-near-perfectness in whichk is a
constant, we improve the previous result of Pollack and Shevelev considerably by establishing fork ≥ 4,

#N(k; x) ≪k
x

log x
(log log x)j0(k),

wherej0(k) is the smallest integer such that

j0(k) >
log(k + 1)

log 2
− log 5

log 2
,

and unconditionally for a large class of positive integersk ≥ 4 we have

#N(k;x) ≍k
x

log x
(log log x)f(k),

where

f(k) =

⌊

log(k + 4)

log 2

⌋

− 3,

For4 ≤ k ≤ 9, we determine asymptotic formulae for#N(k;x).
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1. INTRODUCTION

Let σ(n) be the sum of all positive divisors ofn. A natural numbern is perfectif σ(n) = 2n, is ℓ-perfect
if σ(n) = ℓn and ismultiply perfectif n | σ(n). Perfect numbers have played a prominent role in classical
number theory for millennia. Euclid and Euler proved thatn is an even perfect number if and only ifn is of
the form2p−1(2p − 1), wherep and2p − 1 are both prime. A well-known conjecture claims that there are
infinitely many even, but no odd, perfect numbers. Despite the fact that these conjectures remain unproven,
there has been significant progress on studying the distribution of perfect numbers during the 20th century
[Vo, HoWi, Ka, Er]. The sharpest known result is due to Hornfeck and Wirsing, who established that the
number of multiply perfect numbers up tox is at mostxo(1) asx → ∞.

Pomerance [Po] studied a closely related notion. Letℓ ≥ 2 andk be integers. We call a natural numbern
(ℓ, k)-almost-perfectif σ(n) = ℓn + k. By estimating the count ofsporadicsolutions of the congruence
σ(n) ≡ k (modn), he proved that asx → ∞, the number of(ℓ, k)-almost-perfect numbers up tox is at
mostx/ log x.

We can further generalize the notion of(ℓ, k)-almost perfect number by replacing the constant integerk
above by a threshold functionk(y) and ℓ is a real number at least1. We call a natural numbern (ℓ; k)-
within-perfectif |σ(n) − ℓn| < k(n). This was first studied by Wolke [Wo] and Harman [Ha] in terms of
Diophantine approximation.1 They showed that for any realℓ ≥ 1 and for anyc ∈ (0.525, 1), there exists
infinitely many natural numbers that are(ℓ; yc)-within-perfect.

We describe the phase-transition behaviour of the densities of within-perfect numbers in terms of the distri-
bution function ofσ(n)/n, where Davenport [Da] proved that this distribution function exists. Our result is
as follows.

Theorem 1.1. LetD(·) denote the distribution function ofσ(n)/n. We may extend the definition ofD(·) to
R by definingD(u) = 0 for u < 1. LetW (ℓ; k) the set of all(ℓ; k)-within-perfect numbers.

(a) If k(n) = o(n), thenW (ℓ; k) has asymptotic density 0.
(b) If k(n) ∼ cn for somec > 0, thenW (ℓ; k) has asymptotic densityD(ℓ+ c)−D(ℓ− c).
(c) If k(n) ≍ n, thenW (ℓ; k) has positive lower density and upper density strictly less than1.
(d) If n = o(k(n)), thenW (ℓ; k) has asymptotic density 1.

By refining the techniques of Pomerance, we have the following results which describe the distribution of
within-perfect numbers in the sublinear regime more precisely.

Theorem 1.2. Let ℓ ≥ 2 be an integer andk be a positive constant. LetW (ℓ; k;x) = W (ℓ; k) ∩ [1, x].

(a) Suppose there areℓ-perfect numbers. Then there exists a constantc1 = c1(ℓ) such that ifk > c1,
then

c2 = c2(k, ℓ) :=
∑

m<k/ℓ
σ(m)=ℓm

1

m
> 0 (1.1)

and asx → ∞,

#W (ℓ; k;x) ∼ c2
x

log x
. (1.2)

For k ≤ c1 , asx → ∞,

#W (ℓ; k;x) ≤ 2kx1/2+o(1), (1.3)

whereo(1) does not depend onk andℓ.

1Analogous problems were also considered by Erdős, Schinzel [Sc], Harman [Ha], and Alkan-Ford-Zaharescu [AlFoZa1,
AlFoZa2].
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(b) Suppose there is noℓ-perfect number. Then for allk > 0, asx → ∞,

#W (ℓ; k;x) ≤ 2kx1/2+o(1), (1.4)

whereo(1) does not depend onk andℓ.

Theorem 1.3. Supposek(y) ≤ yǫ for large y andk is a positive increasing unbounded function. Consider
the following set

Σ :=

{

σ(m)

m
: m ≥ 1

}

⊂ Q. (1.5)

(a) If ℓ ∈ Σ, then we have

lim
x→∞

#W (ℓ; k;x)

x/ log x
=

∑

σ(m) = ℓm

1

m
(1.6)

unconditionally forǫ ∈ (0, 1/3) and if we assume Conjecture 2.7, then we have(1.6) for ǫ ∈ (0, 1).

(b) If ℓ ∈ (Q ∩ [1,∞)) \ Σ , ℓ = a/b, a > b ≥ 1, a, b are coprime integers andǫ ∈ (0, 1/3), then we
have the following upper bound

#W (ℓ; k;x) = O(max{a, b3}xmin{3/4, ǫ+2/3}+o(1)), (1.7)

asx → ∞. Assume Conjecture 2.7. Now forǫ ∈ (0, 1), we have asx → ∞
#W (ℓ; k;x) = O(max{a, b3}xǫ(log x)O(1)). (1.8)

From Theorem 1.3, we can see that a more natural, informativedistribution function for within-perfect num-
bers in the sublinear regime is the following

D
′
ǫ(r) := lim

x→∞
#W (r; yǫ;x)

x/ log x
(1.9)

for r ∈ [1,∞). In terms of this new distribution function, we have the following simple result.

Corollary 1.4. For ǫ ∈ (0, 1/3), D
′
ǫ is discontinuous on a dense subset of[1,∞).

Another line of generalization of perfect numbers was initiated by Sierpínski [Si] in which a natural num-
ber ispseudoperfectif it is a sum of some subset of its proper divisors. Pseudoperfect numbers are clearly
abundant (i.e.,σ(n) > 2n). The asymptotic density of abundant numbers is between 0.24761 and 0.24765
[De, Kob]. Therefore a substantial proportion of natural numbers are not pseudoperfect. Nonetheless, Erdös
and Benkoski [Erd, BeEr] proved that the asymptotic densityfor pseudoperfect numbers, as well as that of
abundant numbers that are not pseudoperfect (orweird numbersin [BeEr]), exist and are positive.

Pollack and Shevelev [PoSh] studied a subclass of pseudoperfect numbers. A natural number is said to be
k-near-perfectif it is a sum of all of its proper divisors withat mostk exceptions. Those exceptions are said
to beredundant divisors. It turns out restricting the number of exceptional divisors would lead to asymptotic
density 0. More precisely, they showed that the number of1-near-perfect numbers up tox is at mostx3/4+o(1)

2 and in general fork ≥ 1 the number ofk-near-perfect numbers up tox is at most x
log x(log log x)

Ok(1), where

Ok(1) can be taken to bek − 1 and is at least⌊ log(k+4)
log 2 ⌋ − 3.

By allowing k to increase withn – in other words, we let larger natural numbersn have more exceptional
divisors – we explore the possibility of a positive densityk(n)-near-perfect number set. If such a set exists,
we look for its critical order of magnitude and at the phase-transition behavior. We have the following
theorem.

2This is a result stated in [AnPoPo]. In the original paper of Pollack and Shevelev [PoSh], the upper bound was given by
x5/6+o(1).
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Theorem 1.5. Denote byN(k) the set of allk-near-perfect numbers. LetN(k;x) = N(k) ∩ [1, x]. If the
asymptotic density ofN(log y)log 2+ǫ) is c ∈ [0, 1] for someǫ > 0, then for any positive strictly increasing
functionk such thatk(y) ≥ (log y)log 2+ǫ for large y, the asymptotic density ofN(k) is alsoc.

Before stating our next theorem, we introduce the followingnotion. Letk be a natural number. We say a
finite subsetB of N(k) is k-admissibleif for anym1,m2 ∈ B with m1 6= m2, we have one of the following

(1) At least one of the natural numberslcm[m1,m2]/m1, lcm[m1,m2]/m2 is not square-free.
(2) If both of the natural numberslcm[m1,m2]/m1, lcm[m1,m2]/m2 are square-free, then

gcd(lcm[m1,m2]/m1,m1) andgcd(lcm[m1,m2]/m2,m2) are strictly greater than1.

We letC (k) be the set of allk-admissible subsets andM be the constant

M :=
6

π2
sup
k∈N

sup
B∈C (k)

∑

m∈B

φ(m)

m2
, (1.10)

whereφ(·) is the Euler’s totient function.

Theorem 1.6. Letk be a positive strictly increasing function.

(a) If k(y) > (log y)log 2+ǫ for someǫ ∈ (0, 1), thenN(k) has positive lower density of at leastM and

0.0715251 ≈ 4981

7056π2
≤ M ≤ 0.24765. (1.11)

(b) If k(y) < (log y)ǫ for someǫ ∈ (0, log 2). ThenN(k) has asymptotic density0. In fact, we have

#N(k;x) ≪ǫ
x

(log x)r(ǫ)
, (1.12)

where

r(ǫ) := 1− ǫ(1 + log2 2− log ǫ)

log 2
∈ (0, 1). (1.13)

For a more precise upper bound, see the discussion in Section3.1.

On the other hand, by modifying the method of [PoSh], we improve the their result by proving asymptotic
formulae of#N(k;x) for 4 ≤ k ≤ 9 and determining exact orders of#N(k;x) for a large portion of integers
k ≥ 4. We conject that we can replace ‘liminf’ by ‘lim’ and ‘≥’ by ‘=’ in (1.20) and (1.22) respectively.

Theorem 1.7. For 4 ≤ k ≤ 9, we have

#N(k;x) ∼ ck
x

log x
(1.14)

asx → ∞, where

c4 = c5 =
1

6
, c6 =

17

84
, c7 = c8 =

493

1260
, c9 =

179017

360360
. (1.15)

Theorem 1.8. For k ≥ 4, asx → ∞
#N(k;x) ≪k

x

log x
(log log x)j0(k), (1.16)

wherej0(k) is the smallest integer such that

j0(k) >
log(k + 1)

log 2
− log 5

log 2
. (1.17)

Letf be the following function defined for integersk ≥ 4.

f(k) =

⌊

log(k + 4)

log 2

⌋

− 3. (1.18)

For integerk ∈ [4,∞)Z \ ({10, 11} ∪ {2s+2 − i : s ≥ 3, i = 5, 6}), we have

#N(k;x) ≍k
x

log x
(log log x)f(k). (1.19)
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Moreover,

lim inf
x→∞

#N(k;x)
x

log x(log log x)
r−2

≥ ck
(r − 2)!

, (1.20)

wherer ≥ 2 and

ck =











17/84 if k = 3 · 2r − 6

493/1260 if k ∈ [3 · 2r − 5, 4 · 2r − 8]Z

179017/360360 if k = 4 · 2r − 7.

(1.21)

If k ∈ [4 · 2r − 4, 6 · 2r − 7]Z for somer ≥ 1, then

lim inf
x→∞

#N(k;x)
x

log x(log log x)
r−1

≥ 1

6(r − 1)!
. (1.22)

Our last theorem is motivated by the following question raised by Erdös and Benkoski in [BeEr]. They asked
if σ(n)/n can be arbitrarily large for weirdn. They suggested that the answer should be negative but this
remains to be an open problem. We ask for an analogue tok-exactly-perfectn, where a natural number is
said to bek-exactly-perfectif it is a sum of all of its proper divisors withexactlyk exceptions. We have the
following weaker result.

Theorem 1.9.Denote the set of allk-exactly-perfect numbers byE(k) and we writeE(k;x) := E(k)∩[1, x].
LetM be the set of all natural numbers of the form2q, whereq is a prime such that2q − 1 is also a prime.
LetEǫ(k;x) = {n ≤ x : n ∈ E(k) andσ(n) ≥ 2n + nǫ}, whereǫ ∈ (0, 1/3). Assume that there is no odd
perfect number. For largek andk 6∈ M , we have

lim
x→∞

#Eǫ(k;x)

#E(k;x)
= 1. (1.23)

Moreover, we have the following unconditional results. Equation (1.23)holds fork = 8 , 2s+2 − 4 (2 ≤ s ≤
8) , 3 · 2s − 5 (2 ≤ s ≤ 8) , 3 · 2s − 6 (3 ≤ s ≤ 8) , 2s+2 − 7 (2 ≤ s ≤ 8) and fork = 4, 6, we have

lim
x→∞

#Eǫ(k;x)

#E(k;x)
= 0. (1.24)

We use the following notations throughout this article.

• We writef(x) ≍ g(x) if there exist positive constantsc1, c2 such thatc1g(x) < f(x) < c2g(x) for
sufficiently largex.

• We writef(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1.
• We writef(x) = O(g(x)) or f(x) ≪ g(x) if there exists a positive constantC such thatf(x) <
Cg(x) for sufficiently largex.

• We writef(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0.
• In all cases, subscripts indicate dependence of implied constants on other parameters.
• Denote by[a, b]Z the collection of allintegersn such thata ≤ n ≤ b.
• Denote bylogk x thek-th iterate of logarithm. For example,log1 x = log x, log2 x = log log x.

2. (ℓ; k)-WITHIN -PERFECT NUMBERS

In this section, we prove our results on(ℓ; k)-within-perfect numbers, namely Theorems 1.1, 1.2 and 1.3.In
Theorem 1.1, we interpret the within-perfect condition in terms of the Davenport distribution functionD(·)
and then use its continuity. In Theorem 1.2 and 1.3, we apply the results concerning the solutions of the
congruenceσ(n) ≡ k (mod n).
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2.1. Phase-transition behavior of asymptotic densities ofW (ℓ; k). Distribution function is a crucial no-
tion in this section. We state its definition as follows.

Definition 2.1 (Distribution function). Let−∞ ≤ a < b ≤ ∞. A functionF : (a, b) → R is a distribution
function ifF is increasing, right continuous,F (a+) = 0, andF (b−) = 1. An arithmetic functionf : N → R
has a distribution function if there exists a distribution functionF such that

lim
x→∞

1

x
#{n ≤ x : f(n) ≤ u} = F (u)

at all points of continuity ofF .

It is a theorem of Davenport [Da] thatσ(n)/n has a continuous and strictly increasing distribution function
on [1,∞). Denote byD(·) the distribution function ofσ(n)/n and extend the definition ofD(·) to R by
definingD(u) = 0 for u < 1. The problem concerning the existence of a distribution function for an additive
arithmetic function is completely resolved by theErdős-Wintner Theorem[ErWi]. For details, see [Te].

Proof of Theorem 1.1.For part (a), label all of the(ℓ; k)-within-perfect numbers bynj in increasing order.
Then for anyj ∈ N,

∣

∣

∣

∣

σ(nj)

nj
− ℓ

∣

∣

∣

∣

<
k(nj)

nj
. (2.1)

Fix ǫ > 0. Since

lim
j→∞

k(nj)

nj
= 0, (2.2)

there existsL ∈ N such that for anyj ≥ L, we have
∣

∣

∣

∣

k(nj)

nj

∣

∣

∣

∣

< ǫ. (2.3)

Hence we have

1

x
#{n ≤ x : |σ(n)− ℓn| < k(n)} ≤ 1

x
#

{

j ≥ L : nj ≤ x,

∣

∣

∣

∣

σ(nj)

nj
− ℓ

∣

∣

∣

∣

<
k(nj)

nj

}

+
L

x

≤ 1

x
#

{

j ≥ L : nj ≤ x,

∣

∣

∣

∣

σ(nj)

nj
− ℓ

∣

∣

∣

∣

< ǫ

}

+
L

x

≤ 1

x
#

{

n ≤ x :

∣

∣

∣

∣

σ(n)

n
− ℓ

∣

∣

∣

∣

< ǫ

}

+
L

x
. (2.4)

Now,

lim sup
x→∞

1

x
#{n ≤ x : |σ(n)−ℓn| < k(n)} ≤ lim sup

x→∞

1

x
#

{

n ≤ x :

∣

∣

∣

∣

σ(n)

n
− ℓ

∣

∣

∣

∣

< ǫ

}

= D(ℓ+ǫ)−D(ℓ−ǫ).

(2.5)
By Davenport’s theorem,D(·) is continuous. Lettingǫ → 0, we have

lim sup
x→∞

1

x
#{n ≤ x : |σ(n)− ℓn| < k(n)} = 0. (2.6)

This completes the proof of part (a).

For part (b), fixǫ > 0. There existsN ∈ N such that for anyn ≥ N ,

c− ǫ <
k(n)

n
< c+ ǫ. (2.7)
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Forx ≥ N , observe that

1

x
#

{

n ≤ x :

∣

∣

∣

∣

σ(n)

n
− ℓ

∣

∣

∣

∣

< c− ǫ

}

− 1

x
#

{

n ≤ N :

∣

∣

∣

∣

σ(n)

n
− ℓ

∣

∣

∣

∣

< c− ǫ

}

≤ 1

x
#{n ≤ x : |σ(n)− ℓn| < k(n)} − 1

x
#{n ≤ N : |σ(n)− ℓn| < k(n)}

≤ 1

x
#

{

n ≤ x :

∣

∣

∣

∣

σ(n)

n
− ℓ

∣

∣

∣

∣

< c+ ǫ

}

− 1

x
#

{

n ≤ N :

∣

∣

∣

∣

σ(n)

n
− ℓ

∣

∣

∣

∣

< c+ ǫ

}

, (2.8)

which implies, by Davenport’s Theorem,

lim
x→∞

1

x
#{n ≤ x : |σ(n)− ℓn| < k(n)} = D(ℓ+ c)−D(ℓ− c). (2.9)

The proof of part (c) is essentially the same as that of part (b), so we omit the details here.
For part (d), for anyj ∈ N there existsnj ∈ N such that for anyn ≥ nj,

n

k(n)
<

1

j
. (2.10)

Forx ≥ nj, we have

1

x
#{n ≤ x : |σ(n)− ℓn| < jn} ≤ nj

x
+

1

x
#{nj ≤ n ≤ x : |σ(n)− ℓn| < jn}

≤ nj

x
+

1

x
#{n ≤ x : |σ(n)− ℓn| < k(n)} (2.11)

and

D(ℓ+ j) = lim inf
x→∞

1

x
#{n ≤ x : |σ(n)− ℓn| < jn} ≤ lim inf

x→∞
1

x
#{n ≤ x : |σ(n)− ℓn| < k(n)} ≤ 1.

(2.12)
Letting j → ∞ and by Davenport’s theorem, we have the conclusion for part (d). �

2.2. Explicit bounds for W (ℓ; k;x) for k being constant. In this section,ℓ ≥ 2 andk are integers. Denote
by S(ℓ, k) the set of all(ℓ, k)-almost-perfect numbers andS(ℓ, k;x) = S(ℓ, k) ∩ [1, x]. Following Anavi,
Pollack, Pomerance and Shevelev [AnPoPo, Po, PoPo, PoSh], we use the following definitions regarding the
solutions of a special type of congruence involving the arithmetic functionσ(n).

Definition 2.2. Letk be an integer. Consider the congruence in natural numbers

σ(n) ≡ k (mod n). (2.13)

A natural numbern is a regular solutionof (2.1) ifn is of the form

n = pm wherep is prime,p ∤ m, m | σ(m), andσ(m) = k. (2.14)

Other solutions of(2.13)are known assporadic solutions.

It was first observed in [Po] that the sporadic solutions occur much less frequently than the regular solutions.
The following are the known results on this theme.

Lemma 2.3(Pomerance [Po]). For each fixed integerk, the number of sporadic solutions up tox is at most
x exp(−(1/

√
2 + o(1))

√
log x log log x) asx → ∞.

Lemma 2.4(Pollack-Shevelev [PoSh]). Letx ≥ 3. Uniformly for integersk with |k| < x2/3, the number of
sporadic solutions up tox is at mostx2/3+o(1). 3

Lemma 2.5(Anavi-Pollack-Pomerance [AnPoPo]). Uniformly for integersk with |k| ≤ x1/4, the number of
sporadic solutions up tox is at mostx1/2+o(1) asx → ∞. 4

3 In fact,o(1) can be taken to beC/
√
log log x for some absolute constantC > 0Ṫhe explicit choice ofo(1) follows from the

estimate of Pollack:
∑

n≤x gcd(σ(n), n) ≤ x1+C/
√
log log x for x ≥ 3. See [PoSh].

4 The choice ofo(1) here can also be made explicit, see [AnPoPo].
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Lemma 2.6 (Pollack-Pomerance [PoPo]). Uniformly for integersk with 0 < |k| ≤ x1/4, the number of
solutions up tox of the congruence(2.13)for whichσ(n) is odd is at most|k|x1/4+o(1) asx → ∞ . 5

However, the above lemmas should be far from best possible according to Remark 3 of [AnPoPo]. In fact,
Anavi, Pollack and Pomerance conjected the following basedon a heuristic regarding the average number of
sporadic solutions.

Conjecture 2.7(Anavi-Pollack-Pomerance [AnPoPo]). The number of sporadic solutions to(2.13)less than
or equal tox is at most(log x)O(1) uniformly forx ≥ 3 and |k| ≤ x/2.

We first settle the distribution ofW (ℓ; k) for the casek being a constant by establishing the following lemma.
This lemma refines the original result due to Pomerance (see Corollary 3 of [Po]).

Lemma 2.8. For fixed integersk, ℓ with ℓ ≥ 2, asx → ∞, we have

(a) If k/ℓ is anℓ-perfect number, then

#S(ℓ, k;x) ∼ ℓ

k

x

log x
. (2.15)

(b) If k/ℓ is not anℓ-perfect number, then

#S(ℓ, k;x) ≤ x1/2+o(1). (2.16)

In the case ofℓ is even andk is odd, the upper bound can be replaced by|k|x1/4+o(1).

Proof of Lemma 2.8.If n ∈ S(ℓ, k), thenσ(n) ≡ k (mod n). Considern of the form (2.14). Then

(1 + p)k = σ(p)σ(m) = σ(n) = ℓpm+ k.

This impliesσ(m) = k = ℓm. So,m is anℓ-perfect number.

(a) If k/ℓ is ℓ-perfect, then obviously{n ∈ N : n = p(k/ℓ), p ∤ (k/ℓ)} is the set of all regular solutions
of σ(n) ≡ k (mod n) and it is a subset ofS(ℓ, k). Then by Lemma 2.5, for largex we have

#{n ≤ x : n = p(k/ℓ), p ∤ (k/ℓ)} ≤ #S(ℓ, k;x) ≤ #{n ≤ x : n = p(k/ℓ), p ∤ (k/ℓ)} + x1/2+o(1).
(2.17)

By the Prime Number Theorem, asx → ∞, we have

#{n ≤ x : n = p(k/ℓ), p ∤ (k/ℓ)} ∼ ℓ

k

x

log x
. (2.18)

The results for part (a) follow from equations (2.17) and (2.18).

(b) If k/ℓ is not anℓ-perfect number, then the congruence (2.13) has no regular solution. Then#S(ℓ, k;x) ≤
x1/2+o(1) follows directly from Lemma 2.5.

It is an elementary fact thatσ(n) is odd if and only ifn is a perfect square or two times a perfect
square. So it is trivial that ifℓ is even andk is odd,#S(ℓ, k;x) = O(x1/2), which surpasses the
upper boundx1/2+o(1). In this case we use Lemma 2.6.

�

By assuming Conjecture 2.7, Lemma 2.8 can be strengthened tosay that#S(ℓ, k;x) is at most(log x)O(1)

if k/ℓ is not ℓ-perfect. Conjecture 2.7 is best possible from the simple observation that powers of2 are in
S(2,−1). However,(log x)O(1) should not always be the correct order of magnitude of#S(ℓ, k;x) when
k/ℓ is not perfect. For example: it is widely conjectured that there are no quasiperfect numbers, and the
number of perfect numbers6 up tox is asymptotic to

eγ

log 2
log log x, (2.19)

5 We can takexo(1) to beexp(O(log x/ log log x)).
6A heuristic argument from Pomerance (which can be found in [Pol]) suggests that there are no odd perfect numbers.



ON WITHIN-PERFECTNESS AND NEAR-PERFECTNESS 9

whereγ is the Euler-Mascheroni constant.

Remark 2.9. The results of this lemma are illustrated in Figure 1.

FIGURE 1. Thex-axis isk and they-axis is the number of(2, k)-almost-perfect numbers
up to106. There are spikes atk = 12 andk = 56, illustrating the results of Lemma 2.8.

Proof of Theorem 1.2.Supposeℓ-perfect numbers exist. Letm0 = m0(ℓ) be the smallest one. Takec1 =
ℓm0. Hence for a constantk > c1,

c2 :=
∑

m<k/ℓ
σ(m)=ℓm

1

m
> 0. (2.20)

Then

#W (ℓ; k;x)

x/ log x
=

log x

x

∑

|r|<k

#S(ℓ, r;x) =
log x

x

(

∑

|r|<k
r/ℓ is ℓ-perfect

#S(ℓ, r;x) +
∑

|r|<k
r/ℓ is notℓ-perfect

#S(ℓ, r;x)

)

.

(2.21)
By Lemmas 2.5 and 2.8, there exists an absolute constantC > 0 such that forx ≥ max{k4, C},

∑

|r|<k
r/ℓ is notℓ-perfect

#S(ℓ, r;x) ≤ 2kx1/2+o(1). (2.22)

So
log x

x

∑

|r|<k
r/ℓ is notℓ-perfect

#S(ℓ, r;x) ≤ 2k log x

x1/2+o(1)
→ 0 as x → ∞. (2.23)

By Lemma 2.8, asx → ∞, we have

log x

x

∑

|r|<k
r/ℓ is ℓ-perfect

#S(ℓ, r;x) →
∑

|r|<k
r/ℓ is ℓ-perfect

ℓ

k
= c2. (2.24)

Therefore fork > c1, we have asx → ∞,

#W (ℓ; k;x) ∼ c2
x

log x
. (2.25)

The rest of the cases, i.e., (1.3), (1.4), are trivial. �
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2.3. Within-Perfectness for sublinear functionk.

Proof of Theorem 1.3.We first prove the lower bound. Fix any natural numberr. Sincek is increasing and
unbounded, there existsy0 = y0(k, r) such that fory ≥ y0, we havek(y) ≥ r. Then

#{y0 ≤ n ≤ x : |σ(n)− ℓn| < r} ≤ #{y0 ≤ n ≤ x : |σ(n)− ℓn| < k(n)}. (2.26)

From this we have
#W (ℓ; r;x) +O(y0) ≤ #W (ℓ; k;x) (2.27)

and by Theorem 1.2, we have

lim inf
x→∞

#W (ℓ; k;x)

x/ log x
≥ lim inf

x→∞
#W (ℓ; r;x)

x/ log x
=

∑

m<r/ℓ
σ(m)=ℓm

1

m
. (2.28)

Letting r → ∞, we find

lim inf
x→∞

#W (ℓ; k;x)

x/ log x
≥

∑

σ(m)=ℓm

1

m
. (2.29)

For the upper bound, assumek(y) ≤ yǫ for large y and ǫ ∈ (0, 1/3). Let W
′
(ℓ; k;x) = {n ≤ x :

|σ(n) − ℓn| < k(x)}. Clearly sincek is increasing,#W (ℓ; k;x) ≤ #W
′
(ℓ; k;x) ≤ #W

′
(ℓ; yǫ;x). We

rewrite the Diophantine inequality described inW
′
(ℓ; yǫ;x) as a collection of Diophantine equations over

certain range, i.e.,
σ(n)− ℓn = k, wherek ∈ Z, |k| < xǫ. (2.30)

In particular, we have a collection of congruences of the form (2.13):

σ(n) ≡ k (mod n), wherek ∈ Z, |k| < xǫ. (2.31)

By Lemma 2.4, the number ofn ∈ W
′
(ℓ; yǫ;x) not of the form (2.14) is

≤ 2xǫx2/3+o(1) = 2x2/3+ǫ+o(1), (2.32)

which is negligible. So we may assumen is of the form (2.14).
Next by the Prime Number Theorem and the Hornfeck-Wirsing Theorem, we have

#{n ≤ x : n is of the form (2.14) withp ≤ xǫ} ≪ xǫ

log xǫ
xo(1) ≪ǫ

xǫ+o(1)

log x
, (2.33)

which is again negligible. Hence, we may assumen is of the form (2.14) withp > xǫ.
Now suppose thatσ(m) = rm for somer ≥ ℓ+ 1 and p > xǫ. Then

σ(n)− ℓn = σ(p)σ(m)− ℓpm = (1 + p)(rm)− ℓpm = m(r + p(r − ℓ))

≥ p > xǫ. (2.34)

We haven does not belong toW
′
(ℓ; yǫ;x), which is a contradiction.

On the other hand, consider the case whereσ(m) = rm with 2 ≤ r ≤ ℓ − 1 andp > xǫ. Note that
r + p(r − ℓ) ≥ 0 implies p < r ≤ ℓ − 1. For x > (2ℓ)1/ǫ, we have a contradiction. Now suppose that
r + p(r − ℓ) < 0. Then|σ(n) − ℓn| < xǫ if and only if m[(ℓ − r)p − r] < xǫ. By Merten’s estimate, the
number of suchn is

≤
∑

2≤r≤ℓ−1

∑

xǫ<p≤x

xǫ

(ℓ− r)p− r
≤ (ℓ− 2)xǫ

∑

xǫ<p≤x

1

p− ℓ+ 1
≤ 2(ℓ− 2)xǫ

∑

xǫ<p≤x

1

p

≪ (ℓ− 2)xǫ log log x. (2.35)

Therefore, we may assumen is of the form (2.14) withp > xǫ andσ(m) = ℓm.
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By partial summation and Hornfeck-Wirsing Theorem, we havefor anyz ≥ 1,
∑

m≤z
σ(m) = ℓm

logm

m
=

∫ z

1

log t

t
dP (t) =

log z

z1−o(1)
+

∫ z

1

log t

t2−o(1)
dt ≪ 1, (2.36)

whereP (z) = #{m ≤ z : σ(m) = ℓm}. From these we can see that both of the series
∑

σ(m) = ℓm

logm

m
,

∑

σ(m) = ℓm

1

m
(2.37)

converge. We havex ≥ n = pm > xǫm and som < x1−ǫ.
Form ≤ x1−ǫ, since

0 <
logm

log x
≤ 1− ǫ < 1, (2.38)

we have
(

1− logm

log x

)−1

= 1 +Oǫ

(

logm

log x

)

. (2.39)

Let c be any constant greater than1. By the Prime Number Theorem, there existsx0 = x0(c) > 0 such that
for x ≥ x0, we have

π(x) < c
x

log x
. (2.40)

Then forx ≥ x
1/ǫ
0 , we have the number ofn of the form (2.14), withp > xǫ andσ(m) = ℓm, is bounded

above by

∑

m≤x1−ǫ

σ(m)=ℓm

π

(

x

m

)

< c
∑

m≤x1−ǫ

σ(m)=ℓm

x/m

log(x/m)
= c

x

log x

∑

m≤x1−ǫ

σ(m)=ℓm

1

m
+Oǫ

(

cx

(log x)2

∑

m≤x1−ǫ

σ(m)=ℓm

logm

m

)

< c
x

log x

∑

σ(m)=ℓm

1

m
+Oǫ

(

cx

(log x)2

)

. (2.41)

Therefore,

lim sup
x→∞

#W (ℓ; k;x)

x/ log x
≤ c

∑

σ(m)=ℓm

1

m
. (2.42)

Since the choice of constantc > 1 is arbitrary, we have

lim sup
x→∞

#W (ℓ; k;x)

x/ log x
≤

∑

σ(m)=ℓm

1

m
. (2.43)

Combining with (2.29), we have

lim
x→∞

#W (ℓ; k;x)

x/ log x
(2.44)

exists and is equal to
∑

σ(m)=ℓm

1

m
. (2.45)

Now supposeℓ ≥ 2 is an integer such that there is noℓ-perfect number. A similar calculation can be done to
positive increasing functionk with k(y) ≤ y1/4 with the bounds in (2.32), (2.33) and (2.35) being replaced
by 2x3/4+o(1), x1/4+o(1)/ log x andx1/4 log log x respectively.

Then by the above argument, we have#W (ℓ; k;x) ≪ ℓxmin{3/4,ǫ+2/3}+o(1). The conclusions under Con-
jecture 2.7 can be proven similarly.
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For the rational case, its proof is very similar to that of theintegral case, except one has to revise the definitions
of regular and sporadic solutions of a suitable congruence in terms ofσ(n). Let a > b ≥ 1 are integers and
gcd(a, b) = 1. Suppose we would like to count

#W

(

a

b
; yǫ, x

)

:= #

{

n ≤ x :

∣

∣

∣

∣

σ(n)− a

b
n

∣

∣

∣

∣

< nǫ

}

. (2.46)

We are led to a slightly more general congruence

b σ(n) ≡ k (mod n), (2.47)

for integersk satisfying|k| < bx2/3. If b | k, then we sayn is aregular solutionto the congruence (2.47) if

n = pm, wherep is a prime not dividingm , m | b σ(m), and σ(m) =
k

b
. (2.48)

It is easy to check that regular solutions are indeed solution of (2.47). We say solutions that are not regular
sporadic. If b ∤ k, then we declare that the congruence (2.47) has no regular solution (or all of its solutions
are sporadic). The following result is a direct adaptation of the corresponding results found in [AnPoPo],
[PoSh], [Po1] or [Po2]. We shall not repeat the argument here.

Theorem 2.10. Letx ≥ b and letk be an integer with|k| < bx2/3. Then the number of sporadic solutions
to congruence(2.47)is at mostb2x2/3+o(1) asx → ∞, whereo(1) is uniform ink.

This completes the proof. �

Proof of Corollary 1.4.It follows from a theorem of Anderson (see [Pol] P. 270) that(Q ∩ [1,∞)) \ Σ is
dense in[1,∞). Observe thatD

′
ǫ takes the value0 on (Q ∩ [1,∞)) \ Σ but it takes positive values onΣ by

Theorem 1.3. SoD
′
ǫ is discontinuous onΣ. It is a well-known theorem thatΣ is again dense in[1,∞) (see

[Pol] P. 275). This completes the proof. �

From the table and the graph below, we can see that the rate of convergence oflimx→∞
#W (2;k;x)
x/ log x , where

k(y) = yǫ andǫ is close to1, is quite slow (in fact,
∑

σ(m)=2m
1
m ≈ 0.2045). We calculate#W (2;k;x)

x/ log x for
variousk(y) atx = 1, 000, 000, x = 10, 000, 000, andx = 20, 000, 000.

k(y) x = 1, 000, 000 x = 10, 000, 000 x = 20, 000, 000
y0.9 3.661860 3.305180 3.196040
y0.8 1.141480 0.945623 0.908751
y0.7 0.494278 0.435395 0.426470
y0.6 0.311567 0.274586 0.267904
y0.5 0.276559 0.259482 0.255962
y0.4 0.264968 0.252956 0.250063
y0.3 0.225980 0.247837 0.247299
y0.2 0.151238 0.195911 0.197430

TABLE 1. #W (2;k;x)
x/ logx for various values ofx andk(y).

Our method gives no conclusion for the casesℓ 6∈ Q or k is a positive increasing unbounded function
satisfyingyǫ = o(k(y)) for anyǫ ∈ (0, 1). The situations remain unchanged even if we assume Conjecture
2.7. Therefore, we list these as open problems for further investigations.

Problem 2.11. What is the order of magnitude of#W (ℓ; k;x) for sublineark such thatyǫ = o(k(y)) for
anyǫ ∈ (0, 1)?

Problem 2.12. Supposek is a sublinear positive increasing function. What is the order of magnitude of
#W (ℓ; k;x) for irrational ℓ? We conject that it is bounded above byxδ for someδ > 0.
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FIGURE 2. This plot shows the quantity
#W (2; k;x)

x/ log x

with k(y) = y0.8 for x up to30, 000.

Problem 2.13. What is the set of all points of continuity of our new distribution functionD
′
ǫ ?

For example: we consider#W (2; y/ log y;x)/(x/ log x). The plot fromx = 2 to x = 10, 000 is given in
Figure 3.

FIGURE 3. This plot shows the quantity#W (2; k;x)/(x/ log x) with k(y) = y/ log y for
x = 2 to 10, 000.

3. k-NEAR-PERFECT NUMBERS

3.1. Near-Perfectness withk being non-constant. The range of our positive increasing functionk under
consideration is

k(y) < exp

(

C
log y

log log y

)

, (3.1)

whereC is any constant greater thanlog 2. In fact, the divisor function,τ(n), has the following well-known
property for its extremal order [HaWr]:

lim sup
n→∞

log τ(n)

log n/ log log n
= log 2. (3.2)

Next we introduce the notion of smooth numbers as follows.
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Definition 3.1 (Smooth Number). Let y ≥ 2. Then a natural numbern is said to bey-smooth if all of its
prime factors is at mosty. Letx ≥ y ≥ 2. Denote byΦ(x, y) the set of ally-smooth numbers up tox. We
also denote the largest prime factor ofn byP+(n). Hence,

#Φ(x, y) = #{n ≤ x : P+(n) ≤ y}. (3.3)

We have the following well-known trivial estimate.

Lemma 3.2. Let

u =
log x

log y
. (3.4)

Uniformly forx ≥ y ≥ 2, we have
#Φ(x, y) ≪ x exp(−u/2). (3.5)

Denote byΩ(n) the number of prime factors ofn counting multiplicitiesand let

Ω(r;x) := {n ≤ x : Ω(n) = r}. (3.6)

The size ofΩ(k;x) can be estimated by the following results due to Landau, Hardy and Ramanujan (see
[HaWr], [HaRa] or Chapter III.3 of [Te]). These results alsohold forω(n), the number ofdistinctprimes of
n.

Lemma 3.3(Landau). Fix an integerr ≥ 1. Asx → ∞, we have

#Ω(r;x) ∼ 1

(r − 1)!

x

log x
(log log x)r−1. (3.7)

Lemma 3.4(Hardy-Ramanujan). Uniformly forx ≥ 1 and integersr ≥ 1, we have

#Ω(r;x) ≪ x

log x

(log log x+O(1))k−1

(k − 1)!
. (3.8)

Parallel to within-perfect numbers, we study the phase-transition behaviour ofk-near-perfect numbers. We
need the notion of ‘normal order’ of arithmetic functions.

Definition 3.5 (Normal order). Letf andg be positive arithmetic functions. We sayf has normal orderg if
for anyǫ > 0, we have

lim
x→∞

1

x
#

{

n ≤ x :

∣

∣

∣

∣

f(n)

g(n)
− 1

∣

∣

∣

∣

≥ ǫ

}

= 0. (3.9)

We have the following classical theorem known as Hardy-Ramanujan Theorem [HaRa].

Lemma 3.6. log τ(n) has normal orderlog 2 log log n. ω(n) andΩ(n) have normal orderlog log n.

Theorem 1.5 follows from the definition ofk-near-perfect numbers and the normal order oflog τ(n).

Proof of Theorem 1.5.Suppose the asymptotic density ofN((log y)log 2+ǫ) exists for someǫ > 0 and is
equal toc. Let k be any positive increasing function on[1,∞) such thatk(y) > (log y)log 2+ǫ for large
y ≥ 1. ClearlyN((log y)log 2+ǫ) ⊂ N(k) and we have

c ≤ lim inf
x→∞

1

x
N(k;x). (3.10)

On the other hand,
1

x
N(k;x) =

1

x
N((log y)log 2+ǫ) +

1

x
#((N(k) \N((log y)log 2+ǫ) ∩ [1, x])

≤ 1

x
N((log y)log 2+ǫ) +

1

x
#{n ≤ x : τ(n) ≥ (log n)log 2+ǫ}. (3.11)

By Lemma 3.6,

lim sup
x→∞

1

x
#{n ≤ x : τ(n) ≥ (log n)log 2+ǫ} = 0. (3.12)
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Thus we have

lim sup
x→∞

1

x
N(k;x) ≤ c, (3.13)

which proves Theorem 1.5. �

If log k(y) ≤ ǫ log log y for someǫ ∈ (0, log 2), then from the definition of normal order we have#{n ≤
x : τ(n) ≤ 2k(n)} = o(x). This is the non-trivial estimate we need for our adaptationof [PoSh]. In fact,
one can have a better estimate than#{n ≤ x : τ(n) ≤ 2k(n)} = o(x), such as having an explicit upper
bound. This is done by Rankin’s method, jointly with a lemma due to Hall, Halberstam and Richert [HaRi].

Lemma 3.7. For y ∈ (0, 1),
∑

n≤x

ylog τ(n) ≪ x

log x

∑

n≤x

ylog τ(n)

n
. (3.14)

Proof. See Chapter III.3 of [Te]. This is a fairly general theorem for multiplicative functions and now we
specialize to our case. �

Lemma 3.8. Uniformly forα ∈ (0, 1),

#{n ≤ x : log τ(n) ≤ α log 2 log log x} ≪ x(log x)−B(α) (3.15)

whereB(α) = α log α− α+ 1.

Proof. First observe that fory < 1, we have
(

3

2

)log y 1

p
+

(

4

2

)log y 1

p2
+ · · · ≤

(

3

2

)log y 1

p

(

1 +
1

p
+

1

p2
+ · · ·

)

=

(

3

2

)log y 1

p− 1
≪ 1

p
. (3.16)

By Rankin’s method, we have

∑

n≤x

ylog τ(n)

n
=

∑

n≤x

τ(n)log y

n

≤
∏

p≤x

(

1 +
2log y

p
+

3log y

p2
+ · · ·

)

=
∏

p≤x

(

1 +
2log y

p

(

1 +

(

3

2

)log y 1

p
+

(

4

2

)log y 1

p2
+ · · ·

))

=
∏

p≤x

(

1 +
2log y

p
+O

(

1

p2

))

= exp

(

∑

p≤x

log

(

1 +
2log y

p
+O

(

1

p2

)))

= exp

(

∑

p≤x

(

2log y

p
+O

(

1

p2

)))

= exp

(

2log y log log x+O(1) +O

(

1

x

))

≪ (log x)2
log y

. (3.17)

We also have
∑

n≤x

ylog τ(n) ≪ x

log x

∑

n≤x

ylog τ(n)

n
≪ x(log x)2

log y−1, (3.18)
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which yields

#{n ≤ x : log τ(n) ≤ α log 2 log log x} ≤
∑

n≤x

ylog τ(n)−α log 2 log log x

≪ xy−α log 2 log log x(log x)2
log y−1

= (log x)−α log 2 log y+2log y−1. (3.19)

Let fα(y) = −α log 2 log y + 2log y − 1. It is easy to see thatfα(y) has a minimum point aty = α1/ log 2.
Plugging this into (3.19), the result follows. �

Corollary 3.9. Uniformly for a positive increasing functionk with

k(y) < (log y)ǫ (3.20)

for large y, whereǫ ∈ (0, log 2), we have

#{n ≤ x : τ(n) ≤ 2k(n)} ≪ x

log x
k(x)(1+log2 2)/ log 2 exp

((

1 +
log k(x)

log 2

)

(log3 x− log2 2k(x))

)

(3.21)
Moreover, this estimate is non-trivial, i.e., the right-hand side of(3.21)is o(x) asx → ∞. It is also easy to
see that the right-hand side of(3.21)is greater thanx/(log x)2.

Proof. Observe that
log 2k(x)

log 2 log2 x
∈ (0, 1).

Now by Lemma 3.8, we have

#{n ≤ x : τ(n) ≤ 2k(n)} ≤ #{n ≤ x : τ(n) ≤ 2k(x)}
≪ x(log x)−B((log 2k(x))/(log 2 log2 x))

≪ x

log x
exp

(

log 2k(x)

log 2
log

(e log 2) log2 x

log 2k(x)

)

≪ x

log x
k(x)(1+log2 2)/ log 2 exp

((

1 +
log k(x)

log 2

)

(log3 x− log2 2k(x))

)

�

Proof of Theorem 1.6.We first prove part (a) of Theorem 1.6. Supposeǫ > 0 is given andk is a natural
number. Form ∈ N(k), define

A(m) := {n ∈ N : n = mm′,m′ ∈ Q, (m,m′) = 1}, (3.22)

whereQ is the set of all positive square-free numbers with1 ∈ Q. The number of proper divisors of
n ∈ A(m) is τ(m) · 2s − 1, whereΩ(m′) = s. Supposem = d1 + · · · + dj , where1 ≤ d1 < · · · < dj < n
are proper divisors ofm andj + k ≥ τ(m) − 1. Thenn = d1m

′ + · · · + djm
′ is a sum ofj of its proper

divisors. Then the number of redundant divisors ofn is τ(m) · 2s − 1 − j ≤ τ(m)(2s − 1) + k, i.e.,
n ∈ N(τ(m)(2s − 1) + k).

We can see thatB ∈ C (k) contains at most one square-free number andA(m1) ∩ A(m2) = ∅ for any
m1,m2 ∈ B with m1 6= m2. Let r = max{τ(m) : m ∈ B}.

For exp((r + k)2/ǫ) ≤ m′, m ∈ B ands ≤ (1 + ǫ
2 log 2) log logm

′, we have

log

(

τ(m) +
k

2s

)

≤ log(r + k) ≤ ǫ

2
log logm′ (3.23)

and
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s+
1

log 2
log

(

τ(m) +
k

2s

)

≤
(

1 +
ǫ

log 2

)

log logm′. (3.24)

Therefore,
2s · τ(m) + k ≤ (logm′)log 2+ǫ ≤ (logmm′)log 2+ǫ. (3.25)

Denote byµ(·) the Möbius function. From the classical estimate (see [HaWr])

#(Q ∩ [1, x]) =
∑

n≤x

|µ(n)| = 6x

π2
+O(

√
x), (3.26)

and the Hardy-Ramanujan Theorem forΩ(·), we have

lim
x→∞

1

x
#{n ≤ x : Ω(n) < (1 + ǫ) log log n, n ∈ Q} =

6

π2
. (3.27)

By using inclusion-exclusion principle and the above observations, forx ≥ maxB, we have

#N((log y)log 2+ǫ;x)

≥
∑

m∈B
#

{

m′ ≤ x

m
: (m,m′) = 1,m′ ∈ Q, τ(m) · 2s + k ≤ (logmm′)log 2+ǫ

}

≥
∑

m∈B
#

{

exp((r + k)2/ǫ) ≤ m′ ≤ x

m
: (m,m′) = 1,m′ ∈ Q,Ω(m′) ≤ (1 +

ǫ

2 log 2
) log logm′

}

=
∑

m∈B
#

{

m′ ≤ x

m
: (m,m′) = 1,m′ ∈ Q,Ω(m′) ≤ (1 +

ǫ

2 log 2
) log logm′

}

+Or,k,ǫ(#B)

=

(

6

π2
(1 + o(1))

∑

m∈B

φ(m)

m2

)

x+ or,k,ǫ(x), (3.28)

asx → ∞, whereφ(·) is the Euler’s totient function.

In other words,

lim inf
x→∞

#N((log y)log 2+ǫ;x)

x
≥ 6

π2

∑

m∈B

φ(m)

m2
(3.29)

for anyǫ > 0, k ∈ N andB ∈ C (k).

Recall thatM is defined by

M :=
6

π2
sup
k∈N

sup
B∈C (k)

∑

m∈B

φ(m)

m2
.

We have for anyǫ > 0

lim inf
x→∞

#N((log y)log 2+ǫ;x)

x
≥ M, (3.30)

and from [Kob],
M ≤ 1−D(2) ∈ (0.24761, 0.24765). (3.31)

Now we takek = 1 and from the sequence A181595 of [OEIS]

N(1) = {6, 12, 18, 20, 24, 28, 40, 88, 104, 196, 224, 234, . . .} (3.32)

We pick our admissible subsetB of N(1) inductively, starting with6 ∈ B. In this way from the list ofN(1)
above, we have the following admissible set
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B = {6, 12, 18, 24, 224} (3.33)

and we have

M ≥ 4981

7056π2
≈ 0.0715251. (3.34)

This lower bound for the constantM is clearly far from the best. It would be interesting to pursue further on
its computational aspect.

Now we prove part (b) of Theorem 1.6. It is an adaptation of theargument in [PoSh]. Lety = x1/4 log log x.
Consider the following three sets form a partition ofN(k;x).

N1(k;x) := {n ∈ N(k;x) : n is y-smooth}
N2(k;x) := {n ∈ N(k;x) : P+(n) > y andP+(n)2|n}
N3(k;x) := {n ∈ N(k;x) : P+(n) > y andP+(n) || n}. (3.35)

By Lemma 3.2, we have

#N1(k;x) ≤ #Φ(x, y) = x exp(−2 log log x) =
x

(log x)2
. (3.36)

We have the following trivial estimate:

#N2(k;x) ≤
∑

p>y

x

p2
≪ x

y
= x1−1/ log log x = x exp(− log x/ log log x) ≪ x

(log x)2
. (3.37)

Forn ∈ N3(k;x), we can write

n = pm, where p = P+(n) > max{y, P+(m)}. (3.38)

Further partitionN3(k;x) into N
′
3(k;x) andN

′′
3 (k;x), whereN

′
3(k;x) consists ofn ∈ N3(k;x) such that

τ(m) ≤ k andN
′′
3 (k;x) := N3(k;x) \N ′

3(k;x).

Forn ∈ N3(k;x), we count the number of possiblep andm in (3.38). Clearly, the number of possiblem is
at mostx/y. Sincen is k-near-perfect, there exists a set of proper divisorsDn of n with #Dn ≤ k(n) such
that

σ(n) = 2n+
∑

d∈Dn

d. (3.39)

Consider

D(1)
n := {d ∈ Dn : p ∤ d},

D(2)
n := {d/p : d ∈ Dn, p | d}.

Then

(1 + p)σ(m) = σ(pm) = 2pm+
∑

d∈D(1)
n

d+ p
∑

d∈D(2)
n

d. (3.40)

Reducing both sides modp yields

p

∣

∣

∣

∣



σ(m)−
∑

d∈D(1)
n

d



 . (3.41)

Ford ∈ D
(1)
n , we haved | m and



σ(m)−
∑

d∈D(1)
n

d



 is a sum of divisors ofm. (3.42)
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Forn ∈ N
′′
3 (k;x),

σ(m)−
∑

d∈D(1)
n

d > 0. (3.43)

Therefore,


σ(m)−
∑

d∈D(1)
n

d



 ≤ σ(m)

≪ m log logm

≪ x1−1/ log log x log((1− 1/ log log x) log x)

≪ (x log log x) exp(− log x/ log log x). (3.44)

Thus for each possible value of
(

σ(m)−∑

d∈D(1)
n

d
)

, there are≪ log x prime factors.

We may also assumeτ(m) ≤ (log x)3. Indeed by the well-known estimate
∑

n≤x τ(n) ≪ x log x and
2τ(m) = τ(n),

#{n ≤ x : τ(m) > (log x)3} ≪ x

(log x)2
. (3.45)

Under this assumption, the number of possible values for
(

σ(m)−∑

d∈D(1)
n

d
)

is ≤ (1 + τ(m))k ≤
(1 + (log x)3)k(x) and hence the number of possiblep is≪ (log x)(1 + (log x)3)k(x).

Supposek(y) < (log y)ǫ for someǫ ∈ (0, log 2).

#N
′′
3 (k;x) ≪ x

y
(log x)(1 + (log x)3)k(x) ≪ x log x exp

(

− log x

log log x

)

exp(k(x) log(1 + (log x)3))

= x log x exp

(

− log x

log log x

)

exp

(

3k(x) log log x+O

(

k(x)

(log x)3

))

≪ x log x exp

(

− log x

log log x
+ 3(log x)log 2 log log x

)

≪ x log x exp

(

− log x

2 log log x

)

≪ x

(log x)2
. (3.46)

By Corollary 3.9, we have

#N(k;x) ≤ #N((log y)ǫ;x)

≪ x

log x
(log x)ǫ(1+log2 2)/ log 2 exp

((

1 +
ǫ log2 x

log 2

)

(log3 x− log2 2(log x)
ǫ)

)

≪ǫ
x

log x
(log x)ǫ(1+log2 2)/ log 2 exp

(

− log ǫ

(

1 +
ǫ log2 x

log 2

))

≪ǫ
x

(log x)r(ǫ)
, (3.47)

where

r(ǫ) := 1− ǫ(1 + log2 2− log ǫ)

log 2
∈ (0, 1). (3.48)

This completes the proof of Theorem 1.6. �

We end this section with the remark that we can improve the bound (3.21) (hence that of#N(k;x)) if

k(y) < exp

(

√

log 2
2 log3 y

)

by establishing the following.
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Lemma 3.10. Uniformly for positive increasing functionk with

k(y) < exp

(

ǫ
log2 y

log3 y

)

(3.49)

for large y, whereǫ ∈ (0, log 2), we have

#{n ≤ x : τ(n) ≤ 2k(n)} ≪ x

log x
exp

(

1

log 2
log k(x) log3 x+O

(

log k(x)

log2 x

))

. (3.50)

This estimate is non-trivial and it is trivial that the right-hand side of(3.50)is larger thanx/(log x)2.

Proof. Since2ω(n) ≤ τ(n) andk(y) < (log y)ǫ, we have

#{n ≤ x : τ(n) ≤ 2k(n)} ≤ #

{

n ≤ x : ω(n) ≤ 1 +
log k(n)

log 2

}

≤
∑

r≤1+ log k(x)
log 2

#{n ≤ x : ω(n) = r}

≪
∑

r≤1+
log k(x)
log 2

x

log x

(log2 x+O(1))r−1

(r − 1)!

≪ x

log x
(log2 x+O(1))

log k(x)
log 2

=
x

log x
exp

(

1

log 2
log k(x) log3 x+O

(

log k(x)

log2 x

))

, (3.51)

and this is a non-trivial estimate if

k(x) < exp

(

ǫ
log2 x

log3 x

)

(3.52)

for someǫ ∈ (0, log 2). �

Now supposek(y) < exp

(

√

log 2
2 log3 y

)

. Then

log2 2k(x)

(

1 +
log k(x)

log 2

)

<
2

log 2
(log k(x))2 < log3 x. (3.53)

We have

1

log 2
log k(x) log3 x+O

(

log k(x)

log2 x

)

<
1 + log2 2

log 2
log k(x) +

(

1 +
log k(x)

log 2

)

(log3 x− log2 2k(x)),

(3.54)

hence improving the bound (3.21).

3.2. Near-Perfectness withk being constant: improving previous results. Throughout this section,k is
a fixed natural number. From the remark at the end of the last section, we have

#N(k;x) ≪ x

log x
(log log x)⌊

log k
log 2

⌋. (3.55)

Now we know that the exponent oflog log x is between⌊ log(k+4)
log 2 ⌋ − 3 and⌊ log klog 2⌋ inclusively. In order to

have a precise determination of the exponent, we have to refine the counting done in [PoSh]. In the proof of
Theorem 1.6, observe thatN

′
3(k;x) contributes the most toN(k;x), but the restriction onm, i.e.,τ(m) ≤ k,

merely provides a very crude upper bound. There should be more arithmetic information onm. Moreover,
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we remark that the assumptionτ(m) > k is more than needed to do the counting. Hence, we partition
N3(k;x) differently from [PoSh] as follows:

N
(1)
3 (k;x) := {n ∈ N3(k;x) : all of the positive divisors ofm are redundant divisors ofn},

N
(2)
3 (k;x) := N3(k;x) \N (1)

3 (k;x). (3.56)

We have the following key lemma which allows us to count#N(k;x) precisely.

Lemma 3.11. Supposen is of the form(3.38). Thenn ∈ N
(1)
3 (k;x) if and only ifτ(m) ≤ k andm is an

(k − τ(m))-near-perfect number. In particular, ifn ∈ N
(1)
3 (k;x), thenm is a k−1

2 -near-perfect number.

Proof of Lemma 3.11.Supposen ∈ N
(1)
3 (k;x). There exists a set of proper divisorsDn of n with #Dn ≤ k

such that
σ(n) = 2n+

∑

d∈Dn

d. (3.57)

PartitionDn into two subsets according to whetherd ∈ Dn is divisible byp or not. More precisely, define

D(1)
n := {d ∈ Dn : p ∤ d},

D(2)
n := {d/p : d ∈ Dn, p | d}. (3.58)

Then
(1 + p)σ(m) = σ(pm) = 2pm+

∑

d∈D(1)
n

d+ p
∑

d∈D(2)
n

d. (3.59)

By the definition ofN (1)
3 (k;x) and the fact thatp ∤ m, D(1)

n is the set of all positive divisors ofm. Hence

σ(m) =
∑

d∈D(1)
n

d. (3.60)

We have
σ(m) = 2m+

∑

d∈D(2)
n

d. (3.61)

Since#D
(1)
n = τ(m) and#D

(1)
n + #D

(2)
n = #Dn ≤ k, we have#D

(2)
n ≤ k − τ(m). Note thatD(2)

n

consists of proper divisors ofm. This provesm is an (k − τ(m))-near-perfect number. The converse is
trivial.
By observing#D

(2)
n ≤ min{k − τ(m), τ(m) − 1}, if n ∈ N

(1)
3 (k;x), thenm is k−1

2 -near-perfect. This
completes the proof of Lemma 3.11. �

Here we explain the role of Lemma 3.11 in our modification. We have finitely many possible values forτ(m).
For each possible value ofτ(m), we can determine all possible forms ofm in terms of prime factorizations.
Then by the criterion thatm has to be an(k − τ(m))-near-perfect number, we have a finite collection of
polynomial Diophantine equations in primes (See the proof of Lemma 3.15). This gives all of the possible
values ofm. Note that in Lemma 3.11, there is no restriction on primep. Therefore for each suchm, there
corresponds to≍m x/ log x natural numbersn ∈ N

(1)
3 (k;x). For smallerk ≥ 4, there are only finitely many

suchm; this explains why#N(k;x) has orderx/ log x.

We prove the following lemmata that can reduce the amount of calculations.

Lemma 3.12. Prime powers cannot bek-near-perfect for any natural numberk.

Proof. Supposem = qℓ is ak-near-perfect number for somek. Then from

σ(m) = 2m+
∑

d∈Dm

d, (3.62)
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whereDm is a set of proper divisors ofm with #Dm ≤ k, we have

qℓ =
∑

a∈A
qa, (3.63)

whereA is a subset of{0, . . . , ℓ− 1}; however, this contradicts the uniqueness ofq-ary representation. This
completes the proof. �

Corollary 3.13. m cannot bek-near-perfect for any integersk ≥ 0 if τ(m) is prime. Hence ifm is a
k-near-perfect number for somek ≥ 0, thenτ(m) ≥ 4.

The following is a result of [ReCh], which is a complete classification of 1-near-perfect numbers with two
distinct prime factors. It is not strictly necessary for ourmethod, but it reduces the amount of calculations
considerably.

Lemma 3.14. A 1-near-perfect number which is not perfect and has two distinct prime factors is of the form

(1) 2t−1(2t − 2k − 1), where2t − 2k − 1 is prime,
(2) 22p−1(2p − 1), wherep is a prime such that2p − 1 is also a prime.
(3) 2p−1(2p − 1)2, wherep is a prime such that2p − 1 is also a prime.
(4) 40.

Lemma 3.15. If m is a k-near-perfect number for somek ≥ 0 and τ(m) = 4 or τ(m) = 6, thenm ∈
{6, 12, 18, 20, 28}.

Proof. Supposem is ak-near-perfect number for somek ≥ 0. If τ(m) = 4, then by Lemma 3.12,m is of
the formqr, whereq, r are distinct primes and we have one of the following cases:

(1 + q)(1 + r) = 2qr

(1 + q)(1 + r) = 2qr + 1

(1 + q)(1 + r) = 2qr + q

(1 + q)(1 + r) = 2qr + 1 + q

(1 + q)(1 + r) = 2qr + q + r

(1 + q)(1 + r) = 2qr + 1 + q + r. (3.64)

From these equations, we havem = 6. The case forτ(m) = 6 is similar but with more equations to be
considered. Forτ(m) = 6, m is of the formq2r, whereq, r are distinct primes. In fact, for anyk ≥ 3,
there is nok-near-perfect number with6 positive divisors. Moreover, all of the2-near-perfect numbers with
6 positive divisors are indeed 1-near-perfect.

�

Proof of Theorem 1.7.Let y = x1/ log2 x as before. From the proof of Theorem 1.6, we have the following
estimates:

#N1(k;x), #N2(k;x), #N
(2)
3 (k;x) ≪k

x

(log x)2
. (3.65)

Now considern ∈ N
(1)
3 (k;x). Thenn = pm, wherep is a prime> max{y, P+(m)} andm ∈ N(k−τ(m)).

The following is a case-by-case analysis.

Fork = 4, 5, by Corollary 3.13,τ(m) = 4 andm ∈ N(1). By Lemma 3.15, we havem = 6.
By the Prime Number Theorem, we have

#N
(1)
3 (4;x) = π(x/6) − π(x1/ log log x) =

1

6

x

log x
+O

(

x

(log x)2

)

+O

(

x1/ log log x log log x

log x

)

=
1

6

x

log x
+O

(

x

(log x)2

)

. (3.66)
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Therefore,

#N(4;x) = #N1(4;x) + #N2(4;x) + #N
(1)
3 (4;x) + #N

(2)
3 (4;x) =

1

6

x

log x
+O

(

x

(log x)2

)

. (3.67)

The same result holds for#N(5;x).

Fork = 6, we haveτ(m) ∈ {4, 6}.

• If τ(m) = 4, thenm ∈ N(2). We havem = 6.
• If τ(m) = 6, thenm ∈ N(0). We havem = 28.

Therefore, we have

#N(6;x) ∼ 17

84

x

log x
.

(3.68)

Fork = 7, we haveτ(m) ∈ {4, 6}. Fork = 8, τ(m) ∈ {4, 6, 8}.

• If τ(m) = 4, thenm ∈ N(3). We havem = 6.
• If τ(m) = 6, thenm ∈ N(1). We havem ∈ {12, 18, 20, 28}.
• If k = 8 andτ(m) = 8, thenm ∈ N(0). m has at most3 prime factors. It is an elementary fact

thatm cannot be an odd perfect number. By Euclid-Euler Theorem,m is of the form2p−1(2p − 1)
for some primep such that2p − 1 is also a prime. Then8 = τ(m) = 2p, which is a contradiction.
Hence, there is no suchm.

Therefore, we have

#N(7;x),#N(8;x) ∼ 493

1260

x

log x
.

(3.69)

Fork = 9, τ(m) ∈ {4, 6, 8, 9}. Again if τ(m) = 4 or 6, m ∈ {6, 12, 18, 20, 28}.

• If τ(m) = 8, thenm ∈ N(1). By the discussion in the casek = 8, m cannot be perfect. By Lemma
3.12, we havem is of the formq3r or qrs, whereq, r, s are distinct primes. For the first case we have
m ∈ {24, 40, 56, 88, 104} by using Lemma 3.14. For the second case, we consider the following set
of equations

(1 + q)(1 + r)(1 + s) = 2qrs+ 1,

(1 + q)(1 + r)(1 + s) = 2qrs+ q,

(1 + q)(1 + r)(1 + s) = 2qrs+ qr, (3.70)

in which it is easy to check all of them have no solution.
• If τ(m) = 9, thenm ∈ N(0). By similar discussion in the case ofk = 8, there is no suchm.

Therefore, we have

#N(9;x) ∼ 179017

360360

x

log x
.

(3.71)

�

Remark 3.16. It was established in[PoSh]that#N(k;x) ≪ x exp(−(ck + o(1))
√
log x log log x), where

c2 =
√
6/6 ≈ 0.4082 andc3 =

√
2/4 ≈ 0.3535. By our modification, we recover this result with improved

constants and replacement ofo(1) byO(log3 x/ log2 x).
We first introduce the following standard, more precise estimate for#Φ(x, y) which can be found in Chapter
9 of [DeLu].
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Letu = log x/ log y. Then uniformly for(log x)3 ≤ y ≤ x, we have

#Φ(x, y) = x exp (−u log u+O(u log log u)) . (3.72)

Since#N(2;x) ≤ #N(3;x), it suffices to consider the casek = 3 only. By Corollary 3.13,N (1)
3 (3;x) is

an empty set. We remark that the choice ofy is different from before and it is important for the quality of the
upper bound. Hence,

#N(3;x) = #N1(3;x) + #N2(3;x) + #N
(2)
3 (3;x)

≪ x exp(−u log u+O(u log log u)) +
x

y
+

x

y
(log x)10

≪ x exp(−u log u+O(u log log u)) +
x

y
(log x)10. (3.73)

We should choosey such that

exp(−u log u+O(u log log u)) =
(log x)10

y
, (3.74)

or

u log u+O(u log log u) = log y − 10 log log x. (3.75)

This suggests us to chooselog y =
√
log x log log x, which is clearly admissible. From this we can see that

u =

√

log x

log log x
and u log u =

1

2

√

log x

log log x
(log log x− log log log x) ≍ log y. (3.76)

Therefore,

#N(3;x) ≪ x exp

(

− 1

2

√

log x log log x

(

1 +O

(

log log log x

log log x

)))

+ x exp(−
√

log x log log x+ 10 log log x)

≪ x exp

(

− 1

2

√

log x log log x

(

1 +O

(

log log log x

log log x

)))

. (3.77)

This upper bound is in fact the best we can do by using the partition described before in terms of smooth
numbers. We need a more refine counting to handle the casesk = 2 and k = 3. However, for the cases
k ≥ 4, this is the right partition that leads us to the sharp results. We are going to discuss in the following.

Remark 3.17. With the assumption that the set{m ∈ N(2) : τ(m) = 8} is finite, we have

#N(10;x) ∼ c10
x

log x
, (3.78)

for some constantc10 satisfying

c10 ≥ 78806633

156396240
. (3.79)

With the assumptions that the sets{m ∈ N(3) : τ(m) = 8} and{m ∈ N(2) : τ(m) = 9} are finite, we
have

#N(11;x) ∼ c11
x

log x
, (3.80)

for some constantc11 satisfying

c11 ≥
53072311991

104316292080
. (3.81)

The exact values forc10 andc11 can be found as above, but the computations become tedious.
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The amount of calculations increases significantly ask grows in the above method. Moreover, it is not easy
to solve those Diophantine equations in primes systematically in general. It is of interest to ask for better
ways to handle the general cases. The key idea is to apply Lemma 3.11 and our partition repeatedly.

First it is essential to estimate the size of following set for j ≥ 1 andx ≥ y ≥ 2:

Φj(x, y) := {n ≤ x : n = p1 · · · pjmj , P
+(mj) ≤ y < pj < · · · < p1}. (3.82)

Obtaining a lower bound forPj(x) is easy. It is simply an observation of the fact that

{n ≤ x : n = p1 · · · pjmj,mj ≤ y < pj < · · · < p1} ⊂ Φj(x, y) (3.83)

and the following lemma. The idea is that in the setΩ(r;x), the numbers that aresquare-freecontribute the
most. Then the rest follows from Landau’s Theorem.

Lemma 3.18.

#{n ≤ x : n = p1 · · · ps, p1 > · · · > ps} ∼ 1

(s− 1)!

x

log x
(log log x)s−1. (3.84)

Proof of Lemma 3.18.First observe that

{n ≤ x : Ω(n) = s} =
⋃

a1+···+ar=s
a1,...,ar≥1

r≥1

{n ≤ x : n = pa11 · · · parr , p1 > · · · > pr}. (3.85)

Consider one of the sets{n ≤ x : n = pa11 · · · parr , p1 > · · · > pr} forming the partition above withaj ≥ 2
for some1 ≤ j ≤ r, a1, . . . , ar ≥ 1 anda1 + · · ·+ ar = s.

By partial summation and Landau’s Theorem, we have

∑

m≤x
Ω(m)=s−aj

(

1

m

)1/aj

=

∫ x

2

d #Ω(s− aj ; t)

t1/aj
=

#Ω(s− aj;x)

x1/aj
+

1

aj

∫ x

2

#Ω(s− aj ; t)

t1+1/aj
dt

≪ 1

x1/aj
x

log x
(log log x)s−aj−1 +

∫ x

2

1

t1/aj log t
(log log t)s−aj−1 dt. (3.86)

We claim that
∫ x

2

1

t1/aj log t
(log log t)s−aj−1 dt = o

(

x
1− 1

aj
(log log x)s−1

log x

)

. (3.87)

First note that
d

dx
x
1− 1

aj
(log log x)s−1

log x
=

(

1− 1

aj

)

(1 + o(1))x
− 1

aj
(log log x)s−1

log x
. (3.88)

Then by this and the Fundamental Theorem of Calculus,
d
dx

∫ x
2

1

t1/aj log t
(log log t)s−aj−1 dt

d
dxx

1− 1
aj

(log log x)s−1

log x

=

1

x1/aj log x
(log log x)s−aj−1

(

1− 1
aj

)

(1 + o(1))x
− 1

aj
(log log x)s−1

log x

=
1

(

1− 1
aj

)

(1 + o(1))(log log x)aj
= o(1)

(3.89)

as x → ∞. From L’Hôpital’s Rule, the claim follows. Hence

∑

m≤x
Ω(m)=s−aj

(

1

m

)1/aj

= o

(

x
1− 1

aj
(log log x)s−1

log x

)

(3.90)
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and

#{n ≤ x : n = pa11 · · · parr , p1 > · · · > pr} ≤
∑

m≤x
Ω(m)=s−aj

∑

p
aj
j ≤ x

m

1 ≪
∑

m≤x
Ω(m)=s−aj

(

x

m

)1/aj

= x1/aj
∑

m≤x
Ω(m)=s−aj

(

1

m

)1/aj

= o

(

x

log x
(log log x)s−1

)

. (3.91)

From the fact that

#Ω(s;x) = #{n ≤ x : n = p1 · · · ps, p1 > · · · > ps}+
∑

a1+···+ar=s
a1,...,ar≥1

∃j∈{1,...,r}:aj≥2

#{n ≤ x : n = pa11 · · · parr , p1 > · · · > pr}

(3.92)
and Landau’s Theorem, we have

1

(s− 1)!
(1+o(1))

x

log x
(log log x)s−1 = #{n ≤ x : n = p1 · · · ps, p1 > · · · > ps}+o

(

x

log x
(log log x)s−1

)

.

(3.93)
Hence,

#{n ≤ x : n = p1 · · · ps, p1 > · · · > ps} ∼ 1

(s− 1)!

x

log x
(log log x)s−1. (3.94)

This completes the proof of Lemma 3.18. �

Therefore, we have

#Φj(x, y) ≥
∑

mj≤y

∑

nj≤ x
mj

nj=p1···pj
for somep1>···pj>y

1

≫
∑

mj≤y

x/mj

log(x/mj)

(

log log
x

mj

)j−1

≥ x

log x

(

log log
x

y

)j−1
∑

mj≤y

1

mj

≫ x log y

log x

(

log log
x

y

)j−1

. (3.95)

For the upper bound of#Φj(x, y), we use the smooth number bound (3.5) and the following standard upper
bound sieve estimate (see [FoHa]).

Lemma 3.19. SupposeA is a finite subset of natural number,P is a subset of primes andz > 0. Let

P (z) =
∏

p∈P
p≤z

p. (3.96)

Denote byS(A,P, z) the set
{n ∈ A : (n, P (z)) = 1} (3.97)

and byAd the set
{a ∈ A : d | a}. (3.98)
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Supposeg is a multiplicative function satisfying

0 ≤ g(p) < 1 for p ∈ P and g(p) = 0 for p 6∈ P (3.99)

and there exists some constantsB > 0 andκ ≥ 0 such that
∏

y≤p≤w

(1− g(p))−1 ≤
(

logw

log y

)κ

exp

(

B

log y

)

(3.100)

for 2 ≤ y < w.

LetX > 0. For d which is a product of distinct primes fromP , define

rd := #Ad −Xg(d). (3.101)

Suppose for someθ > 0, we have
∑

d|P (z)
d≤Xθ

|rd| ≤ C
x

(log x)κ
. (3.102)

Then for2 ≤ z ≤ X, we have
#S(A,P, z) ≪κ,θ,C,B XV (z), (3.103)

where
V (z) :=

∏

p≤z
p∈P

(1− g(p)). (3.104)

Lemma 3.20. Supposex ≥ y ≥ 2 andy ≤ xo(1). For everyj ≥ 1, we have

#Φj(x, y) ≪
x log y

log x
(log log x)j−1. (3.105)

Proof. With the notation as in Lemma 3.19. LetA be the set of all natural numbers up tox, P be the set of
primes in(y, x1/(j+1)], z := x1/(j+1), X := x andg(d) := 1/d.

S(A,P, z) consists of all natural numbers up tox whose prime factors are≤ y or > x
1

j+1 . (Note that there

are at mostj prime factors> x
1

j+1 .) By Merten’s estimates, we can see that all of the assumptions of Lemma
3.19 are satisfied and hence we have

#S(A,P, z) ≪ x log y

log x
. (3.106)

Therefore,

#Q(j)(x) := #{n ≤ x : n = p1 · · · pjmj, P
+(mj) ≤ y < x

1
j+1 < pj < · · · < p1} ≪ x log y

log x
.

(3.107)

For1 ≤ i ≤ j − 1, denote byQ(i)(x) the set

Q(i)(x) := {n ≤ x : n = p1 · · · pjmj, P
+(mj) ≤ y < pj < · · · < pi+1 ≤ x

1
j+1 < pi < · · · < p1}

(3.108)

and byQ(0)(x) the set

Q(0)(x) := {n ≤ x : n = p1 · · · pjmj , P
+(mj) ≤ y < pj < · · · < p1 ≤ x

1
j+1}. (3.109)

For 1 ≤ i ≤ j − 1, we use the same kind of estimate ofS(A,P, z) with the same choices of parameters
above, except this time we choose

X :=
x

pi+1 · · · pj
(3.110)
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andA be the set of all natural numbers up toX, for some fixed choices of primespi+1, . . . pj .

#Q(i)(x) =
∑

y<pj<···<pi+1≤x
1

j+1

∑

P+(mj )≤y

p1>···>pi>x
1

j+1

p1···pimj≤x/(pi+1···pj)

1

≪
∑

y<pj<···<pi+1≤x
1

j+1

x

pi+1 · · · pj
log y

log x

≤ x log y

log x

(

∑

p≤x
1

j+1

1

p

)j−i

≪ x log y

log x
(log log x)j−i. (3.111)

#Q(0)(x) =
∑

y<pj<···<p1≤x
1

j+1

∑

P+(mj )≤y
mj≤x/(p1···pj)

1

≪
∑

y<pj<···<p1≤x
1

j+1

x

p1 · · · pj
exp

(

− log(x/p1 · · · pj)
2 log y

)

≤
∑

y<pj<···<p1≤x
1

j+1

x

p1 · · · pj
exp

(

− 1

2(j + 1)

log x

log y

)

≤ x exp

(

− 1

2(j + 1)

log x

log y

)(

∑

p≤x
1

j+1

1

p

)j

≪ x(log log x)j exp

(

− 1

2(j + 1)

log x

log y

)

(3.112)

As a result,

#Φj(x, y) =

j
∑

i=0

#Q(i)(x) ≪ x log y

log x
(log log x)j−1. (3.113)

This completes the proof of Lemma 3.20. �

We are now ready to give the proof of Theorem 1.8. We note that it is immaterial to choosey = x1/ log log x

in the proof of Theorem 1.7 (for the casek ≥ 4). It is simply a usual, convenient choice as in [PoSh]. But at
least we must havey ≥ (log x)α, α > 3k + 2 (refer to the estimation of#N

(2)
3 (k;x) in Theorem 1.7). In

Theorem 1.8 with the consideration of Lemma 3.20, it is the best to choosey of the form(log x)α. We also
note that forj ≥ 1, #Φj(x, y) decays much slower than#Φ(x, y).

Proof of Theorem 1.8.By Lemma 3.11 and the proof of Theorem 1.7, the major contribution to #N(k;x)
comes from numbers of the formn = p1m1 with p1 > y1 := (log x)3k+10 being a prime,p1 > P+(m1)
andm1 ∈ N(k−1

2 ). Then we use our new partition onN(k−1
2 ; xy ) and repeat the similar estimations done in

Theorem 1.7.
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In general forj ≥ 1, suppose we repeat this process forj times, we would like to show that

#

{

n ≤ x : n = p1 · · · pjmj, p1 > · · · > pj > max{y1, P+(mj)},

mj ∈ N1

(

k − (2j − 1)

2j

)

∪N2

(

k − (2j − 1)

2j

)

∪N
(2)
3

(

k − (2j − 1)

2j

)}

≪k
x

log x
(log log x)j . (3.114)

Firstly by Lemma 3.20, we have

#

{

n ≤ x : n = p1 · · · pjmj , p1 > · · · > pj > y1 ≥ P+(mj),mj ∈ N1

(

k − (2j − 1)

2j

)}

≤ #Φ(j)(x, y1) ≪
x log y1
log x

(log log x)j−1 ≪k
x

log x
(log log x)j . (3.115)

Secondly, observe that

∑

mj<
x

y
j
1

P+(mj)2||mj

P+(mj )>y1

1

mj
≤

∑

pj+1>y1
p2j+1r<

x

y
j
1

1

p2j+1r
=

∑

pj+1>y1

1

p2j+1

∑

r< x

y
j
1
p2
j+1

1

r
≪

∑

pj+1>y1

1

p2j+1

log
x

yj1p
2
j+1

≪ 1

y1
log

x

yj+2
1

(3.116)
and

∑

√
x<mj≤ x

p1···pj
P+(mj )2|mj

P+(mj)>y1

1 ≤
∑

p2j+1r≤ x
p1···pj

pj+1>y1

1 ≤
∑

pj+1>y1

∑

r≤ x

p1···pjp2j+1

1 ≤ x

y1

1

p1 · · · pj
. (3.117)

By using (3.116), (3.117) and Lemma 3.18, we have

#

{

n ≤ x : n = p1 · · · pjmj, p1 > · · · > pj > P+(mj) > y1,mj ∈ N2

(

k − (2j − 1)

2j

)}

≤ #

{

n ≤ x : n = p1 · · · pjmj, p1 > · · · > pj > P+(mj) > y1, P
+(mj)

2|mj

}

≤
∑

mj≤
√
x

P+(mj)
2||mj

P+(mj)>y1

∑

p1>···>pj>y1
p1···pj≤ x

mj

1 +
∑

p1>···>pj>y1
p1···pj≤

√
x

∑

√
x<mj≤ x

p1···pj
P+(mj)2|mj

P+(mj )>y1

1

≪
∑

mj<
√
x

P+(mj )2||mj

P+(mj )>y1

x/mj

log(x/mj)

(

log log
x

mj

)j−1

+
x

y1

(

∑

p≤√
x

1

p

)j

≪ x

log x
(log log x)j−1

∑

mj<
x

y
j
1

P+(mj )2||mj

P+(mj )>y1

1

mj
+

x

y1
(log log x)j

≪ x

log x
(log log x)j−1 1

y1
log

x

yj+2
1

+
x

y1
(log log x)j ≪ x

(log x)3k+10
(log log x)j . (3.118)
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Denote byM(k) the set of all natural numbersn with the properties thatn ∈ N(k), n can be written of the
form n = pm with p > P+(m) and there exists a setDn consists of proper divisors ofn such that

σ(m)−
∑

d∈D(1)
n

d > 0, (3.119)

whereD(1)
n is defined to be the set{d ∈ Dn : p ∤ d} as before.

Denote byM(k;x) the set of all elements ofM(k) up tox. The estimation of the size ofM(k;x) is very
similar to that in Theorem 1.7. However note that here we takey1 = (log x)3k+10,

u =
log x

log y1
=

log x

(3k + 10) log log x
(3.120)

and hence

#Φ(x, y1) ≪ x exp

(

− 1

2

log x

(3k + 10) log log x

)

≪k
x

(log x)2
. (3.121)

#{n ∈ M(k;x) : P+(n) > y1} ≪k min

{

x

(log x)2
,
x

y1
(log x)3k+1

}

≪ x

(log x)2
. (3.122)

Therefore,

#M(k;x) = #{n ∈ M(k;x) : P+(n) ≤ y1}+#{n ∈ M(k;x) : P+(n) > y1} ≪k
x

(log x)2
(3.123)

and by partial summation, we have
∑

n∈M(k)

1

n
< ∞. (3.124)

We have

#

{

n ≤ x : n = p1 · · · pjmj , p1 > · · · > pj > P+(mj) > y1,mj ∈ N
(2)
3

(

k − (2j − 1)

2j

)}

≤#

{

n ≤ x : n = p1 · · · pjmj, p1 > · · · > pj > P+(mj) > y1,mj ∈ M

(

k − (2j − 1)

2j

)}

≤
∑

p1>···>pj>y1
p1···pj≤

√
x

∑

mj≤ x
p1···pj

mj∈M(k−(2j−1)

2j
)

1 +
∑

mj≤
√
x

mj∈M(
k−(2j−1)

2j
)

∑

p1>···>pj>y1
p1···pj≤ x

mj

1

≪k

∑

p1>···>pj>y1
p1···pj≤

√
x

x
p1···pj

(log x
p1···pj )

2
+

∑

mj≤
√
x

mj∈M(
k−(2j−1)

2j
)

x
mj

log x
mj

(

log log
x

mj

)j−1

≪ x

(log x)2

∑

p1>···>pj>y1
p1···pj≤

√
x

1

p1 · · · pj
+

x

log x
(log log x)j−1

∑

mj≤
√
x

mj∈M(
k−(2j−1)

2j
)

1

mj

≪ x

(log x)2

(

∑

p≤√
x

1

p

)j

+
x

log x
(log log x)j−1 ≪ x

log x
(log log x)j−1. (3.125)
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By Lemma 3.11, we have
{

n ≤ x : n = p1 · · · pjmj, p1 > · · · > pj > P+(mj) > y1,mj ∈ N
(1)
3

(

k − (2j − 1)

2j

)}

=

{

n ≤ x : n = p1 · · · pjpj+1mj+1, p1 > · · · > pj > pj+1 > max{y1, P+(mj+1)},

mj+1 ∈ N

(

k − (2j+1 − 1)

2j+1

)}

(3.126)

and the process repeats. Pick the smallest integerj0 = j0(k) such that

k − (2j0 − 1)

2j0
< 4. (3.127)

i.e.,

j0 >
log(k + 1)

log 2
− log 5

log 2
. (3.128)

By using partial summation and the upper bound (3.77) for#N(3;x), we have

∑

m∈N(3)

1

m
< ∞. (3.129)

Therefore, we have

#

{

n ≤ x : n = p1 · · · pj0mj0 , p1 > · · · > pj0 > P+(mj0),mj ∈ N
(1)
3

(

k − (2j0 − 1)

2j0

)}

≤ #

{

n ≤ x : n = p1 · · · pj0mj0 , p1 > · · · > pj0 > P+(mj0),mj0 ∈ N(3)

}

≤
∑

mj0
≤√

x
mj0

∈N(3)

∑

p1>···>pj0
p1···pj0≤

x
mj0

1 +
∑

p1>···>pj0
p1···pj0≤

√
x

∑

mj0
≤ x

p1···pj0
mj0

∈N(3)

1

≪
∑

mj0
≤√

x
mj0

∈N(3)

x
mj0

log x
mj0

(

log log
x

mj0

)j0−1

+
∑

p1>···>pj0
p1···pj0≤

√
x

x
p1···pj0

(log x
p1···pj0

)2

≪ x

log x
(log log x)j0−1

∑

mj0
≤√

x

mj0
∈N(3)

1

mj0

+
x

(log x)2

∑

p1>···>pj0
p1···pj0≤

√
x

1

p1 · · · pj0

≪ x

log x
(log log x)j0−1. (3.130)

Taking stock, we have

#N(k;x) ≪k
x

log x
(log log x)j0 . (3.131)

We have not used Lemma 3.11 fully as we aim at obtaining an improved upper boundfor all k ≥ 4 conve-
niently and unconditionally while in the following we only handlea large portionof integersk ≥ 4 and the
treatment is more delicate. At the last step of the above process we only conclude thatmj0 ∈ N(3) and use
the fact

∑

m∈N(3)
1
m < ∞. Indeed it is possible to obtain more information onmj by using another inductive

process as follows.
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By the same kind of estimates we have done in the proof of Theorem 1.8, forj ≥ 2, we have

#

{

n ≤ x : n = p1 · · · pj−1mj−1, p1 > · · · > pj−1 > max{y1, P+(mj−1)},

mj−1 ∈ N1(k − (2j−1 − 1)τ(mj−1)) ∪N2(k − (2j−1 − 1)τ(mj−1)) ∪N
(2)
3 (k − (2j−1 − 1)τ(mj−1))

}

≪k
x

log x
(log log x)j−1 (3.132)

and

#

{

n ≤ x : n = p1 · · · pj−1mj−1, p1 > · · · > pj−1 > P+(mj−1) > y1,mj−1 ∈ N
(1)
3 (k − (2j−1 − 1)τ(mj−1))

}

= #

{

n ≤ x : n = p1 · · · pj−1pjmj, p1 > · · · > pj−1 > pj > max{y1, P+(mj)},

mj ∈ N(k − (2j − 1)τ(mj))

}

(3.133)

and the process continues. However it is different from the situation of Theorem 1.8, now we are allowed us
to solve outfinitely manypossiblemj such that(2j − 1)τ(mj) ≤ k andmj ∈ N(k − (2j − 1)τ(mj)) for
suitably chosenj. In this case, by Lemma 3.18, we have

#N(k;x) ≪k
x

log x
(log log x)j−1. (3.134)

Moreover by Lemma 3.11, we have

{n ≤ x : n = mjp1 · · · pj, p1 > · · · > pj > P+(mj),mj ∈ N(k − (2j − 1)τ(mj))} ⊂ N(k;x). (3.135)

Therefore,

lim inf
x→∞

#N(k;x)
x

log x(log log x)
j−1

≥
∑

mj∈N(k−(2j−1)τ(mj ))

1

mj
. (3.136)

By Lemma 3.12, we haveτ(mj) ≥ 4. Also,

τ(mj) ≤ k

2j − 1
. (3.137)

Therefore we have

j ≤ log(k + 4)

log 2
− 2. (3.138)

(1) We considerk is of the form2s+2 + ℓ for ℓ ≥ −4. For

s > s0(ℓ) :=
log(ℓ+ 6)

log 2
− 1, (3.139)

we have

s <
log(k + 4)

log 2
− 2 < s+ 1 (3.140)

and hence we choosej = s. For eachℓ ≥ −4, we have not covered every single integers ≥ 1. (In
fact it is even worse thats0(ℓ) → ∞ asℓ → ∞.)
For ℓ ≥ −4, define the following set:

T
(1)
ℓ :=

{

2s+2 + ℓ : s >
log(ℓ+ 6)

log 2
− 1

}

. (3.141)

Part of the integers omitted by a singleT (1)
ℓ can be covered by the otherT (1)

ℓ′
, but the totality ofT (1)

ℓ

(ℓ ≥ −4) still doesnot cover every single natural numberk. We need more coverings of this type.
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From (3.139), we have

4 ≤ τ(ms) ≤ 2s+2 + ℓ

2s − 1
< 6. (3.142)

Again by Lemma 3.12,τ(ms) = 4 andms ∈ N(ℓ + 4). By Lemma 3.15, we havems = 6. Then
we have

#N(k;x) ≪k
x

log x
(log log x)s−1 (3.143)

and

lim inf
x→∞

#N(k;x)
x

log x(log log x)
s−1

≥ 1

6(s − 1)!

(3.144)

if k = 2s+2 + ℓ, ℓ ≥ −4 ands > log(ℓ+6)
log 2 − 1.

It is easy to see that the setsT (1)
ℓ ’s are pairwise disjoint forℓ ≥ −4 and

⋃

ℓ≥−4

T
(1)
ℓ =

⋃

r≥1

[4 · 2r − 4, 6 · 2r − 7]Z. (3.145)

(2) Fork of the form2s+2 − ℓ with ℓ > 8 ands ≥ log(ℓ−4)
log 2 − 1, we choosej = s− 1. Then

4 ≤ τ(ms−1) ≤ 2s+2 − ℓ

2s−1 − 1
= 8− ℓ− 8

2s−1 − 1
< 8. (3.146)

By Lemma 3.12,τ(ms−1) = 4 or 6. If τ(ms−1) = 4, thenms−1 = 6. Now supposeτ(ms−1) = 6.
By Lemma 3.15, it suffices to considerms−1 ∈ N(1) and hencems−1 ∈ N(min{1, 2s − ℓ+ 6}).

We considers in the range

s ≥ log(ℓ− 5)

log 2
(3.147)

so that
min{1, 2s − ℓ+ 6} = 1. (3.148)

In this case,ms−1 ∈ {6, 12, 18, 20, 28}. Hence, we have

#N(k;x) ≪k
x

log x
(log log x)s−2. (3.149)

Moreover,

lim inf
x→∞

#N(k;x)
x

logx(log log x)
s−2

≥ 493

1260(s − 2)!
.

(3.150)

The sets

T
(2)
ℓ :=

{

2s+2 − ℓ : s ≥ log(ℓ− 5)

log 2

}

(3.151)

are pairwise disjoint forℓ > 8 and
⋃

ℓ>8

T
(2)
ℓ =

⋃

r≥2

[3 · 2r − 5, 4 · 2r − 9]Z. (3.152)

On the other hand, if2s − ℓ+ 6 = 0 andτ(ms−1) = 6, thenms−1 ∈ N(0) andms−1 = 28. Hence
for k = 3 · 2s − 6, we have

#N(k;x) ≪k
x

log x
(log log x)s−2 (3.153)



34 PETER COHEN, KATHERINE CORDWELL, ALYSSA EPSTEIN, CHUNG HANG KWAN, ADAM LOTT, AND STEVEN J. MILLER

and

lim inf
x→∞

#N(k;x)
x

log x(log log x)
s−2

≥ 17

84(s − 2)!
.

(3.154)

(3) For k of the form 2s+2 − 8 and s ≥ 2 (i.e., ℓ = 8), we have4 ≤ τ(ms−1) ≤ 8 andms−1 ∈
N(2s+2 − 8− (2s−1 − 1)τ(ms−1)). This is settled as in the casek = 8 of Theorem 1.7. Therefore,

#N(k;x) ≪k
x

log x
(log log x)s−2 (3.155)

and

lim inf
x→∞

#N(k;x)
x

logx(log log x)
s−2

≥ 493

1260(s − 2)!
.

(3.156)

(4) For k of the form 2s+2 − 7 and s ≥ 3 (i.e., ℓ = 7), we have4 ≤ τ(ms−1) ≤ 8 andms−1 ∈
N(2s+2 − 7− (2s−1 − 1)τ(ms−1)). This is settled as in the casek = 9 of Theorem 1.7. Therefore,

#N(k;x) ≪k
x

log x
(log log x)s−2. (3.157)

and

lim inf
x→∞

#N(k;x)
x

log x(log log x)
s−2

≥ 179017

360360(s − 2)!
.

(3.158)

Similar to above define

T (3) := {3 · 2s − 6 : s ≥ 2},
T (4) := {2s+2 − 8 : s ≥ 2},
T (5) := {2s+2 − 7 : s ≥ 3},
T (6) := {2s+2 − 6 : s ≥ 3},
T (7) := {2s+2 − 5 : s ≥ 4}. (3.159)

We haveT (1)
ℓ , T (2)

ℓ , T (3), . . . , T (7) all pairwise disjoint and

⋃

ℓ≥−4

T
(1)
ℓ ∪

⋃

ℓ>8

T
(2)
ℓ ∪

⋃

3≤i≤5

T (i) = [4,∞)Z \
(

{9, 10, 11, 27} ∪
⋃

6≤i≤7

T (i)

)

. (3.160)

This completes the proof of Theorem 1.8. �

Remark 3.21. For k of the form2s+2 − 6 (s ≥ 3) and2s+2 − 5 (s ≥ 4), we have

#N(k;x) ≪k
x

log x
(log log x)s−2, (3.161)

lim inf
x→∞

#N(k;x)
x

log x(log log x)
s−2

≥ 179017

360360

1

(s− 2)!
,

(3.162)

provided that{m ∈ N(3) : τ(m) = 8} is a finite set.
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Remark 3.22. Heuristically, one expects that natural numbers of the formn = p1 · · · pj−1pjmj with p1 >
· · · > pj−1 > pj > P+(mj) and mj ∈ N(k − (2j − 1)τ(mj)) (*) (with the choice ofj made in the
proof of Theorem 1.8) contributes the most to#N(k;x) (k ≥ 4). This would lead to asymptotic formulae of
#N(k;x).
However we fail to do so. The sizes of the setsΦj−1(x, y) (j ≥ 2) are much larger than that ofΦ(x, y) and
it is already the best that we choosey of the form(log x)α. Even so, the size of upper bound of#Φj−1(x, y)
is the same as that given by (*). Therefore, we fail to locate exactly the major contributions of#N(k;x). A
possible solution for this is to repeat our process by one time less. At the same time the computations would
become more tedious.

Remark 3.23. Our method of studying near-perfectness can be carried overto exact-perfectness for some
special cases. We state our results here without proof.

Theorem 3.24.Denote byE(k) the set of allk-exactly-perfect numbers. LetE(k;x) = E(k) ∩ [1, x]. Then
asx → ∞,

#E(k;x) ∼ ck
x

log x
, (3.163)

where

c4 =
1

6
, c6 =

1

28
, c7 =

17

90
, c8 =

5

36
, c9 =

12673

120120
. (3.164)

Moreover, we have

#E(5;x) ≪ x exp

(

− 1

2

√

log x log log x

(

1 +O

(

log log log x

log log x

)))

, (3.165)

#E(3 · 2s − 5 ;x), #E(3 · 2s − 6 ;x), #E(2s+2 − 7 ;x) ≍s
x

log x
(log log x)s−2, (3.166)

#E(2s+2 − 4 ;x) ≍s
x

log x
(log log x)s−1. (3.167)

We suggest to investigate the distribution of exact-perfect numbers further.
Note thatE(k1) andE(k2) are not necessarily disjoint. For example:12, 18 ∈ E(1)∩E(2). Hence, we also
suggest investigating the size ofEk1,k2(x) := E(k1) ∩ E(k2) ∩ [1, x]. Table 2 compares values ofE1,2(x),
E1(x), andE2(x) for x up to106.

x E1,2(x) E1(x) E2(x) E1,2(x)/E1(x) E1,2(x)/E2(x)

102 5 7 14 0.714 0.357

103 6 15 48 0.400 0.125

104 8 21 143 0.381 0.056

105 9 33 301 0.272 0.030

106 11 45 571 0.244 0.019

TABLE 2. Comparison of values ofE1,2(x), E1(x), andE2(x) for x up to106.
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3.3. Concluding Remark.

Proof of Theorem 1.9.Fork ∈ M , k = 2q for some primeq such that2q − 1 is also a prime. Letǫ ∈ (0, 1)
andm = 2q−1(2q − 1). Sincem is a perfect number,m is the sum of its proper divisors. The number of
proper divisors ofm is τ(m)− 1 = 2q− 1. Hence,pm is a sum of2q− 1 of its proper divisors. The number
of proper divisors ofpm is τ(pm) − 1 = 4q − 1. So,pm is a sum of all of its proper divisors with exactly
(4q − 1) − (2q − 1) = 2q exceptions, i.e.,pm ∈ E(k). Clearlyσ(pm)− 2pm < (pm)ǫ if p > (2m1−ǫ)1/ǫ

andp ∤ m. This proves

lim inf
x→∞

#(E(k;x) \ Eǫ(k;x))

x/ log x
≥ 1

m
. (3.168)

Now supposeǫ ∈ (0, 1/3). By the same argument as in Theorem 1.3, we have

#(E(k;x) \ Eǫ(k;x)) ≤ #{n ≤ x : n ∈ E(k), n = pm′, p ∤ m′, σ(m′) = 2m′}+O(x2/3+ǫ+o(1)).

(3.169)

Forn ∈ E(k) with n = pm′, p ∤ m′ andσ(m′) = 2m′, we have

pm′ =
∑

d1∈D1

d1 + p
∑

d2∈D2

d2, (3.170)

whereD1 is a subset of positive divisors ofm′, D2 is a subset of proper divisors ofm′ with #D1 +#D2 =
τ(pm′)− 1− k = 2τ(m′)− 1− k.

Suppose thatD1 6= ∅. Then

1 ≤
∑

d1∈D1

d1 ≤ σ(m′) = 2m′. (3.171)

Reducing (3.170) modulop, we have

p

∣

∣

∣

∣

∑

d1∈D1

d1. (3.172)

The number of possible values forp is O(log 2m′) = O(log x). Hence, the number of possible values for
suchn isO(xo(1) log x) by Hornfeck-Wirsing Theorem, which is negligible.

Now suppose thatD1 = ∅. Then#D2 = 2τ(m′)− 1− k and

m′ =
∑

d2∈D2

d2. (3.173)

Sinceσ(m′) = 2m′, we have#D2 = τ(m′)− 1. Therefore,τ(m′)− 1 = 2τ(m′)− 1− k, i.e.,τ(m′) = k.
Nielsen [Ni] has recently shown that an odd perfect number has at least 10 prime factors and hence it has at
least 1024 distinct positive divisors. Hence, assumek < 1024 or there is no odd perfect number. We have
m′ = 2q

′−1(2q
′ − 1) for some primeq′ such that2q

′ − 1 is also prime, by using Euclid-Euler Theorem. So
k = τ(m′) = 2q′ ∈ M . Hence ifk 6∈ M , then we have a contradiction and

#(E(k;x) \ Eǫ(k;x)) = O(xo(1) log x) +O(x2/3+ǫ+o(1)) = O(x2/3+ǫ+o(1)). (3.174)

If k ∈ M , thenk = 2q for some primeq such that2q − 1 is also a prime. Thenq′ = q and som′ = m.
Hence,

#(E(k;x) \ Eǫ(k;x)) ≤ #{n ≤ x : n = pm, p ∤ m}+O(xo(1) log x) +O(x2/3+ǫ+o(1)). (3.175)

By the Prime Number Theorem, we have

lim sup
x→∞

#(E(k;x) \ Eǫ(k;x))

x/ log x
≤ 1

m
. (3.176)
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As a result,

lim
x→∞

#(E(k;x) \ Eǫ(k;x))

x/ log x
=

1

m
. (3.177)

It was shown in [PoSh], by using a form of prime number theoremof Drmota, Mauduit and Rivat, that for all
largek, the number ofk-exactly-perfect numbers up tox is≫k x/ log x.

Therefore,
#(E(k;x) \ Eǫ(k;x))

#E(k;x)
≪k

log x

x1/3−ǫ−o(1)
(3.178)

for largek 6∈ M , ǫ ∈ (0, 1/3) and with the assumption that there is no odd perfect number. In this case,

lim
x→∞

#Eǫ(k;x)

#E(k;x)
= 1. (3.179)

Fork = 8 , 2s+2 − 4 (2 ≤ s ≤ 8) , 3 · 2s − 5 (2 ≤ s ≤ 8) , 3 · 2s − 6 (3 ≤ s ≤ 8) , 2s+2 − 7 (2 ≤ s ≤ 8),
by the above argument and Theorem 3.24, we have unconditionally that (3.179) holds.
Fork = 4, 6, we have unconditionally that

lim
x→∞

#Eǫ(k;x)

#E(k;x)
= 0. (3.180)

�
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