
HOOK FORMULAS FOR SKEW SHAPES II. COMBINATORIAL PROOFS

AND ENUMERATIVE APPLICATIONS

ALEJANDRO H. MORALES?, IGOR PAK?, AND GRETA PANOVA†

Abstract. The Naruse hook-length formula is a recent general formula for the number of stan-
dard Young tableaux of skew shapes, given as a positive sum over excited diagrams of products of

hook-lengths. In [MPP1] we gave two different q-analogues of Naruse’s formula: for the skew Schur
functions, and for counting reverse plane partitions of skew shapes. In this paper we give an elemen-

tary proof of Naruse’s formula based on the case of border strips. For special border strips, we obtain

curious new formulas for the Euler and q-Euler numbers in terms of certain Dyck path summations.

1. Introduction

In Enumerative Combinatorics, when it comes to fundamental results, one proof is rarely enough,
and one is often on the prowl for a better, more elegant or more direct proof. In fact, there is a wide
belief in multitude of “proofs from the Book”, rather than a singular best approach. The reasons
are both cultural and mathematical: different proofs elucidate different aspects of the underlying
combinatorial objects and lead to different extensions and generalizations.

The story of this series of papers is on our effort to understand and generalize the Naruse hook-
length formula (NHLF) for the number of standard Yound tableaux of a skew shape in terms of
excited diagrams. In our previous paper [MPP1], we gave two q-analogues of the NHLF, the first with
an algebraic proof and the second with a bijective proof. We also gave a (difficult) “mixed” proof
of the first q-analogue, which combined the bijection with an algebraic argument. Naturally, these
provided new proofs of the NHLF, but none which one would call “elementary”.

This paper is the second in the series. Here we consider a special case of border strips which turn
out to be extremely fruitful both as a technical tool and as an important object of study. We give
two elementary proofs of the NHLF in this case, both inductive: one using weighted paths argument
and another using determinant calculation. We then deduce the general case of NHLF for all skew
diagrams by using the Lascoux–Pragacz identity for Schur functions. Since the latter has its own
elementary proof [HaG] (see also [CYY]), we obtain an elementary proof of the HLF.

But surprises do not stop here. For the special cases of the zigzag strips, our approach gives a
number of curious new formulas for the Euler and and two types of q-Euler numbers, the second of
which seems to be new. Because the excited diagrams correspond to Dyck paths in this case, the
resulting summations have Catalan number terms. We also give type B analogues, which have similar
feel but with

(
2n
n

)
terms. Despite their strong “classical feel” all these formulas are new and quite

mysterious.

1.1. Hook formulas for straight and skew shapes. Let us recall the main result from the first
paper [MPP1] in this series. We assume here the reader is familiar with the basic definitions, which
are postponed until the next two sections.
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The standard Young tableaux (SYT) of straight and skew shapes are central objects in enumerative
and algebraic combinatorics. The number fλ = |SYT(λ)| of standard Young tableaux of shape λ has
the celebrated hook-length formula (HLF):

Theorem 1.1 (HLF; Frame–Robinson–Thrall [FRT]). Let λ be a partition of n. We have:

(HLF) fλ =
n!∏

u∈[λ] h(u)
,

where h(u) = λi − i+ λ′j − j + 1 is the hook-length of the square u = (i, j).

Most recently, Naruse generalized (HLF) as follows. For a skew shape λ/µ, an excited diagrams is
a subset of the Young diagram [λ] of size |µ|, obtained from the Young diagram [µ] by a sequence of
excited moves:

.

Such move (i, j)→ (i+ 1, j + 1) is allowed only if cells (i, j + 1), (i+ 1, j) and (i+ 1, j + 1) in [λ] are
unoccupied (see the precise definition and an example in §3.1). We use E(λ/µ) to denote the set of
excited diagrams of λ/µ.

Theorem 1.2 (NHLF; Naruse [Naru]). Let λ, µ be partitions, such that µ ⊂ λ. We have:

(NHLF) fλ/µ = |λ/µ|!
∑

D∈E(λ/µ)

∏
u∈[λ]\D

1

h(u)
.

When µ = ∅, there is a unique excited diagram D = ∅, and we obtain the usual HLF.

NHLF has two natural q-analogues which were proved in the previous paper in the series.

Theorem 1.3 ([MPP1]). We have:

(first q-NHLF) sλ/µ(1, q, q2, . . .) =
∑

S∈E(λ/µ)

∏
(i,j)∈[λ]\S

qλ
′
j−i

1− qh(i,j)
.

Theorem 1.4 ([MPP1]). We have:

(second q-NHLF)
∑

π∈RPP(λ/µ)

q|π| =
∑

S∈P(λ/µ)

∏
u∈S

qh(u)

1− qh(u)
,

where P(λ/µ) is the set of pleasant diagrams (see Definition 4.1 ).

The second theorem employs a new family of combinatorial objects called pleasant diagrams. These
diagrams can be defined as subsets of complements of excited diagrams (see [MPP1, §6 ]), and are
technically useful. This allows us to write the RHS of (second q-NHLF) completely in terms of excited
diagrams.

1.2. Combinatorial proofs. Our approach of the combinatorial proof of the NHLF in Section 5-7 is
as follows. We start by proving the case of border strips (connected skew shapes with no 2×2 square).
In this case the NHLF is more elegant,

fλ/µ

|λ/µ|! =
∑
γ

∏
(i,j)∈γ

1

h(i, j)
,

where the sum is over lattice paths γ from (λ′1, 1) to (1, λ1) that stay inside [λ]. We give two self
contained inductive proofs of this case. The first proof in Section 6 is based on showing a multivariate
identity of paths. The second proof in Section 7 uses determinants to show that a multivariate identity
of paths equals a ratio of factorial Schur functions.
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We then use a corollary of the Lascoux–Pragacz identity for skew Schur functions: if (θ1, . . . , θk) is
a decomposition of the shape λ/µ into outer border strips θi (see Section 7.5) then

fλ/µ

|λ/µ|! = det

[
fθi#θj

|θi#θj |!

]k
i,j=1

,

where θi#θj is a certain substrip of the outer border strip of λ.
Combining the case for border strips and this determinantal identity we get

fλ/µ

|λ/µ|! = det

 ∑
γ:(aj ,bj)→(ci,di),

γ⊆λ

∏
(r,s)∈γ

1

h(r, s)


k

i,j=1

,

where (aj , bj) and (ci, di) are the endpoints of the border strip θi#θj . Lastly, using the Lindström–
Gessel–Viennot lemma this determinant is written as a weighted sum over non-intersecting lattice
paths in λ. By an explicit characterization of excited diagrams in Section 3, the supports of such
paths are exactly the complements of excited diagrams. The NHLF then follows.

A similar approach is used in Section 5 to give a combinatorial proof of the first q-NHLF for all
skew shapes given in [MPP1]. The Hillman–Grassl inspired bijection in [MPP1] remains the only
combinatorial proof of the second q-NHLF.

Remark 1.5. We should mention that our inductive proof is involutive, but basic enough to allow
“bijectification”, i.e. an involution principle proof of the NHLF. We refer to [K1, Rem, Zei] for the
involution principle proofs of the (usual) HLF.

1.3. Enumerative applications. In sections 8 and 9, we give enumerative formulas which follow
from NHLF. They involve q-analogues of Catalan, Euler and Schröder numbers. We highlight several
of these formulas.

Let Alt(n) = {σ(1) < σ(2) > σ(3) < σ(4) > . . .} ⊂ Sn be the set of alternating permutations. The
number En = |Alt(n)| is the n-th Euler number (see [S3] and [OEIS, A000111]), with the g.f.

(1.1) 1 +

∞∑
n=1

En
xn

n!
= tan(x) + sec(x) .

Let δn = (n−1, n−2, . . . , 2, 1) denotes the staircase shape and observe that E2n+1 = fδn+2/δn . Thus,
the NHLF relates Euler numbers with excited diagrams of δn+2/δn. It turns out that these excited
diagrams are in correspondence with the set Dyck(n) of Dyck paths of length 2n (see Corollary 8.1).
More precisely,

|E(δn+2/δn)| = |Dyck(n)| = Cn =
1

n+ 1

(
2n

n

)
,

where Cn is the n-th Catalan number, and Dyck(n) is the set of lattice paths from (0, 0) to (2n, 0)
with steps (1, 1) and (1,−1) that stay on or above the x-axis (see e.g. [S5]). Now the NHLF implies
the following identity.

Corollary 1.6. We have:

(EC)
∑

p∈Dyck(n)

∏
(a,b)∈p

1

2b+ 1
=

E2n+1

(2n+ 1)!
,

where (a, b) ∈ p denotes a point (a, b) of the Dyck path p.

Consider the following two q-analogues of En :

En(q) :=
∑

σ∈Alt(n)

qmaj(σ−1) and E∗n(q) :=
∑

σ∈Alt(n)

qmaj(σ−1κ) ,

http://oeis.org/A000111
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where maj(σ) is the major index of permutation σ in Sn and κ is the permutation κ = (13254 . . .).
See examples 8.6 and 9.5 for the initial values.

Now, for the skew shape δn+2/δn, Theorem 1.3 gives the following q-analogue of Corollary 1.6.

Corollary 1.7. We have:∑
p∈Dyck(n)

∏
(a,b)∈p

qb

1− q2b+1
=

E2n+1(q)

(1− q)(1− q2) · · · (1− q2n+1)
.

Similarly, Theorem 1.4 in this case gives a different q-analogue.

Corollary 1.8. We have:∑
p∈Dyck(n)

qH(p)
∏

(a,b)∈p

1

1− q2b+1
=

E∗2n+1(q)

(1− q)(1− q2) · · · (1− q2n+1)
,

where

H(p) =
∑

(c,d)∈HP(p)

(2d+ 1) ,

and HP(p) denotes the set of peaks (c, d) in p with height d > 1.

All three corollaries are derived in sections 8 and 9.

Section 8 considers the special case when λ/µ is a thick strip shape δn+2k/δn, which give the
connection with Euler and Catalan numbers. In Section 9, we consider the pleasant diagrams of the
thick strip shapes, establishing connection with Schröder numbers. We also state conjectures on certain
determinantal formulas. We conclude with final remarks and open problems in Section 10.

2. Notation and Background

2.1. Young diagrams. Let λ = (λ1, . . . , λr), µ = (µ1, . . . , µs) denote integer partitions of length
`(λ) = r and `(µ) = s. The size of the partition is denoted by |λ| and λ′ denotes the conjugate partition
of λ. We use [λ] to denote the Young diagram of the partition λ. The hook length hij = λi−i+λ′j−j+1
of a square u = (i, j) ∈ [λ] is the number of squares directly to the right and directly below u in [λ].
The Durfee square �λ is the largest square inside [λ]; it is always of the form {(i, j), 1 ≤ i, j ≤ k}.

A skew shape is denoted by λ/µ. A skew shape can have multiple edge connected components. For
an integer k, 1 − `(λ) ≤ k ≤ λ1 − 1, let dk be the diagonal {(i, j) ∈ λ/µ | i − j = k}, where µk = 0
if k > `(µ). For an integer t, 1 ≤ t ≤ `(λ) − 1 let dt(µ) denote the diagonal dµt−t where µt = 0 if
`(µ) < t ≤ `(λ).

Given the skew shape λ/µ, let Pλ/µ be the poset of cells (i, j) of [λ/µ] partially ordered by compo-
nent. This poset is naturally labelled, unless otherwise stated.

2.2. Young tableaux. A reverse plane partition of skew shape λ/µ is an array π = (πij) of non-
negative integers of shape λ/µ that is weakly increasing in rows and columns. We denote the set of
such plane partitions by RPP(λ/µ). A semistandard Young tableau of shape λ/µ is a RPP of shape
λ/µ that is strictly increasing in columns. We denote the set of such tableaux by SSYT(λ/µ). A
standard Young tableau (SYT) of shape λ/µ is an array T of shape λ/µ with the numbers 1, . . . , n,
where n = |λ/µ|, each i appearing once, strictly increasing in rows and columns. For example, there
are five SYT of shape (32/1):

1 2
3 4

1 3
2 4

1 4
2 3

2 3
1 4

2 4
1 3

The size of a RPP or tableau T is the sum of its entries. A descent of a SYT T is an index i such that
i+ 1 appears in a row below i. The major index tmaj(T ) is the sum

∑
i over all the descents of T .



HOOK FORMULAS FOR SKEW SHAPES II 5

2.3. Skew Schur functions. Let sλ/µ(x) denote the skew Schur function of shape λ/µ in variables
x = (x0, x1, x2, . . .). In particular,

sλ/µ(x) =
∑

T∈SSYT(λ/µ)

xT , sλ/µ(1, q, q2, . . .) =
∑

T∈SSYT(λ/µ)

q|T | ,

where xT = x
#0s in (T )
0 x

#1s in (T )
1 . . . Recall, the skew shape λ/µ can have multiple edgewise connected

components θ1, . . . , θm. Since then sλ/µ = sθ1 · · · sθk we assume without loss of generality that λ/µ is
edgewise connected.

2.4. Determinantal identities for sλ/µ. The Jacobi-Trudi identity (see e.g. [S4, §7.16]) states that

(2.1) sλ/µ(x) = det
[
hλi−µj−i+j(x)

]n
i,j=1

,

where hk(x) =
∑
i1≤i2≤···≤ik xi1xi2 · · ·xik is the k-th complete symmetric function.

There are other determinantal identities of (skew) Schur functions like the Giambelli formula (e.g.
see [S4, Ex. 7.39]) and the Lascoux–Pragacz identity [LasP]. Hamel and Goulden [HaG] found a vast
common generalization to these three identities by giving an exponential number of determinantal
identities for sλ/µ depending on outer decompositions of the shape λ/µ. We focus on the Lascoux–
Pragacz identity that we describe next through the Hamel–Goulden theory (e.g. see [CYY]).

A border strip is a connected skew shape without any 2× 2 squares. The starting point and ending
point of a strip are its southeast and northeast endpoints. Given λ, the outer border strip is the strip
containing all the boxes sharing a vertex with the boundary of λ., i.e. λ/(λ2 − 1, λ3 − 1, . . .). A
Lascoux–Pragacz decomposition of λ/µ is a decomposition of the skew shape into k maximal outer
border strips (θ1, . . . , θk), where θ1 is the outer border strip of λ, θ2 is the outer border strip of the
remaining diagram λ \ θ1, and so on until we start intersecting µ. In this case, we continue the
decomposition with each remaining connected component. The strips are ordered � by the contents
of their northeast endpoints. See Figure 2.4, left, for an example.

We call the border strip θ1 the cutting strip of the decomposition and denote it by τ [CYY]. For
integers p and q, let φ[p, q] be the substrip of τ consisting of the cells with contents between p and q.
By convention, θ[p, p] = (1), φ[p+ 1, p] = ∅ and φ[p, q] with p > q+ 1 is undefined. The strip θi#θj is
the substrip φ[p(θj), q(θi)] of τ , where p(θi) and q(θi) are the contents of the starting point and ending
point of θi.

Theorem 2.1 (Lascoux–Pragacz [LasP], Hamel–Goulden [HaG]). If (θ1, . . . , θk) is a Lascoux–Pragacz
decomposition of λ/µ, then

(2.2) sλ/µ = det
[
sθi#θj

]k
i,j=1

.

where s∅ = 1 and sφ[p,q] = 0 if φ[p, q] is undefined.

Example 2.2. Figure 2.4, right, shows the Lascoux–Pragacz decomposition for the shape λ/µ =
(5441/21) into two strips (θ1, θ2). Then τ = θ1 = (5441/33) and

θ1#θ1 = θ1, θ1#θ2 = φ[0, 4] = (322/11), θ2#θ1 = φ[−3, 2] = (441/3), θ2#θ2 = θ2.

Then by the Lascoux–Pragacz identity s(5441/21) can be written as the following 2× 2 determinant

sλ/µ = det

[
sθ1#θ1 sθ1#θ2

sθ2#θ1 sθ2#θ2

]
= det

[
s5441/33 s322/11

s441/3 s22/1

]
.

2.5. Factorial Schur functions. The factorial Schur function (e.g. see [MS]) is defined as

s(d)
µ (x | a) :=

det
[
(xi − a1) · · · (xi − aµj+d−j)

]d
i,j=1∏

1≤i<j≤d
(xi − xj)

,

where x = x1, . . . , xd and a = a1, a2, . . . is a sequence of parameters.
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θ1θ2θ3θ4

θ5

Figure 1. Left: Example of a Lascoux–Pragacz outer decomposition. Right: the
Lascoux–Pragacz decomposition of the shape λ/µ = (5441/21) and the border strips
of the determinantal identity for sλ/µ

2.6. Permutations. We write permutations of {1, 2, . . . , n} in one-line notation: w = (w1w2 . . . wn)
where wi is the image of i. A descent of w is an index i such that wi > wi+1. The major index maj(w)
is the sum

∑
i of all the descents i of w.

2.7. Dyck paths. A Dyck path p of length 2n is a lattice paths from (0, 0) to (2n, 0) with steps (1, 1)
and (1,−1) that stay on or above the x-axis. We use Dyck(n) to denote the set of Dyck paths of
length 2n. For a Dyck path p, a peak is a point (c, d) such that (c − 1, d − 1) and (c + 1, d − 1) ∈ p.
Peak (c, d) is called a high-peak if d > 1.

3. Excited diagrams

3.1. Definition. Let λ/µ be a skew partition and D be a subset of the Young diagram of λ. A cell
u = (i, j) ∈ D is called active if (i + 1, j), (i, j + 1) and (i + 1, j + 1) are all in [λ] \D. Let u be an
active cell of D, define αu(D) to be the set obtained by replacing (i, j) in D by (i+ 1, j + 1). We call
this replacement an excited move. An excited diagram of λ/µ is a subdiagram of λ obtained from the
Young diagram of µ after a sequence of excited moves on active cells. Let E(λ/µ) be the set of excited
diagrams of λ/µ and e(λ/µ) its cardinality. For example, Figure 2 shows the eight excited diagrams
of (5441/21) (for the moment ignore the paths in the complement).

Figure 2. The eight excited diagrams (in blue) of shape λ/µ = (5441/21) and the
corresponding non-intersecting paths (in red) in their complement. The high peaks
of the paths described in Section 4.1 are in gray.

3.2. Flagged tableaux. Excited diagrams of λ/µ are equivalent to certain flagged tableaux of shape µ
(see [MPP1, §3] and [Kre1, §6]). Thus, the number of excited diagrams is given by a determinant, a
polynomial in the parts of λ and µ as follows. Consider the diagonal that passes through cell (i, µi),

i.e. the last cell of row i in µ. Let this diagonal intersect the boundary of λ at a row denoted by f
(λ/µ)
i .
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Proposition 3.1 ([MPP1]). In notation above, we have:

e(λ/µ) = det

[(
f
(λ/µ)
i + µi − i+ j − 1

f
(λ/µ)
i − 1

)]`(µ)

i,j=1

.

Example 3.2. For the same shape as in Example 2.2 and Figure 2, the number of excited diagrams
equals the number of flagged tableaux of shape (2, 1) with entries in the first and second row ≤ 2.
Thus

e(λ/µ) = det

[(
4
2

) (
5
2

)(
2
2

) (
3
2

)] = det

[
6 10
1 3

]
= 8.

3.3. Border strip decomposition formula for e(λ/µ). This first determinantal identity for e(λ/µ)
is similar to the Jacobi–Trudi identity for sµ. In this section we prove a new determinantal identity
for e(λ/µ) very similar to the Lascoux–Pragacz identity for sλ/µ.

Theorem 3.3. If (θ1, . . . , θk) is the Lascoux–Pragacz decomposition of λ/µ into k maximal outer
border strips then

e(λ/µ) = det
[
e(θi#θj)

]k
i,j=1

,

where e(∅) = 1 and e(φ[p, q]) = 0 if φ[p, q] is undefined.

Example 3.4. For the same shape λ/µ as in Example 2.2 and Figure 2 we have

e(λ/µ) = det

[
e(5441/33) e(322/11)
e(441/3) e(22/1)

]
= det

[
10 3
4 2

]
= 8.

In order to prove Theorem 3.3 we show a relation between excited diagrams and certain tuples of
non-intersecting paths.

For the connected skew shape λ/µ there is a unique tuple of border-strips (i.e. non-intersecting
paths) γ∗1 , . . . , γ

∗
k in λ with support [λ/µ], where each border strip γ∗i begins at the southern box

(a′i, b
′
i) of a column and ends at the eastern box (c′i, d

′
i) of a row [Kre1, Lemma 5.3]. We call this

tuple the Kreiman decomposition of λ/mu. Let NI(λ/µ) be the set of k-tuples Γ := (γ1, . . . , γk)
of non-intersecting paths contained in [λ] with γi : (ai, bi) → (ci, di). The supports of the paths in
NI(λ/µ) are exactly the complements of excited diagrams in E(λ/µ) [Kre1, §5.5]. See Figure 2, for
an example.

Proposition 3.5 (Kreiman [Kre1]). The k-tuples of paths in NI(λ/µ) are uniquely determined by
their support in [λ] and moreover these supports are exactly the complements of excited diagrams
of λ/µ.

Proof. The fact that paths are uniquely determined by their support in [λ] follows by [Kre1, Lemma
5.2]. By abuse of notation we identify the k-tuples of paths in NI(λ/µ) with their supports. Note
that the supports of all k-tuples of paths in NI(λ/µ) have size |λ/µ|.

We now show that the support of k-tuples in NI(λ/µ) correspond to complements of excited
diagrams.

First, we show that if D ∈ E(λ/µ) then [λ] \D ∈ NI(λ/µ) by induction on the number of excited
moves. Given [µ] ∈ E(λ/µ), its complement [λ/µ] corresponds to Kreiman decomposition (γ∗1 , . . . , γ

∗
k) ∈

NI(λ/µ) as mentioned above. Then excited moves on the diagrams correspond to ladder moves on
the non-intersecting paths:

.

The latter do not introduce intersections and preserve the endpoints of the paths. Thus for each
D ∈ E(λ/µ), its complement [λ] \D corresponds to a k-tuple (γ1, . . . , γk) of paths in NI(λ/µ).
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θ1θ2θ3θ4

θ5

γ∗
1

γ∗
2

γ∗
3

γ∗
4

γ∗
5

Figure 3. Example of the correspondence of the border strips of the Lascoux–
Pragacz outer decomposition (θ1, . . . , θ5) and Kreiman outer decomposition
(γ∗1 , . . . , γ

∗
5 ) of λ/µ. The contents of the endpoints and the lengths of θi and γ∗i

are the same.

Conversely, consider the support S of a k-tuple of paths in NI(λ/µ). The set S has the following
property: the subset Sk := S ∩�λk has no descending chain bigger than the length of the kth diagonal
of λ/µ. Such sets S are called pleasant diagram of λ/µ [MPP1, §6] (see Section 4). Since |S| = |λ/µ|,
by [MPP1, Thm. 6.5] the set S is the complement of an excited diagram in E(λ/µ), as desired. �

Corollary 3.6. e(λ/µ) = |NI(λ/µ)|.
Next, we show a correspondence between the Kreiman decomposition and the Lascoux–Pragacz

decomposition of λ/µ.

Lemma 3.7. There is a correspondence between the border strips of the Lascoux–Pragacz and the
Kreiman decomposition of λ/µ that preserves the lengths and contents of the starting and ending
points of the paths/border strips:

p(θi) = bi − ai, q(θi) = di − ci.
Proof. Let (θ1, . . . , θk) and (γ∗1 , . . . , γ

∗
t ) be the Lascoux–Pragacz and the Kreiman decomposition of

the shape λ/µ. We prove the result by induction on k. Note that θ1 and γ∗1 have the same endpoints
(λ′1, 1) and (1, λ1). Thus the strips have the same length and their endpoints have the same respective
contents.

Next, note that the skew shapes λ/µ with θ1 removed and λ/µ with γ∗1 removed are the same. The
Lascoux–Pragacz of this new shape is (θ2, . . . , θk) with the contents of the endpoints unchanged. Sim-
ilarly, the Kreiman decomposition of this new shape is (γ∗2 , . . . , γ

∗
t ) with the contents of the endpoints

unchanged. By induction k − 1 = t− 1 and the strip θi and γ∗i for i = 2, . . . , k have the same length
and their endpoints have the same content. This completes the proof. �

Lastly, we need a Lindström–Gessel–Viennot type Lemma to count (weighted) non-intersecting
paths in [λ]. To state the Lemma we need some notation. Its proof follows the usual sign-reversing
involution on paths that intersect (e.g. see [S4, §2.7]). Let (a1, b1), . . . , (ak, bk) and (c1, d1), . . . , (ck, dk)
be cells in [λ] and let

h((aj , bj)→ (ci, di),y) :=
∑
γ

∏
(r,s)∈γ

yr,s,

where the sum is over paths γ : (aj , bj)→ (ci, di) in [λ] with steps (1, 0) and (0, 1), and the product is
over cells (r, s) of γ. Let also

Nλ((ai, bi)→ (ci, di); y) :=
∑

(γ1,...,γk)

k∏
i=1

∏
(r,s)∈γi

yr,s,

where the sum is over k-tuples (γ1, . . . , γk) of non-intersecting paths γi : (ai, bi)→ (ci, di) in [λ].

Lemma 3.8 (Lindström–Gessel–Viennot).

Nλ((ai, bi)→ (ci, di),y) = det
[
h((aj , bj)→ (ci, di),y)

]k
i,j=1

.
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Figure 4. For the shape λ/µ = (5441/21): on the left the Lascoux–Pragacz decom-
position of λ/µ and the border strips of the determinantal identity for sλ/µ; on the
right the Kreiman decomposition of λ/µ and the corresponding endpoints of the paths
in the determinantal identity (3.1) to calculate e(λ/µ).

Proof of Theorem 3.3. Combining Corollary 3.6 and Lemma 3.8 with weights yr,s = 1 it follows that
e(λ/µ) can be calculated by a determinant.

(3.1) e(λ/µ) = det
[
#{ paths γ | γ ⊆ λ, γ : (aj , bj)→ (ci, di) }

]k
i,j=1

.

Now, by Corollary 3.6, the number of paths in each matrix entry in the RHS of (3.1) is also the
number of excited diagrams of a border strip θ. Since in Kreiman’s decomposition, the endpoints
(aj , bj) and (ci, di) are in the bottom boundary of λ, then θ is a substrip of the outer border strip θ1

of λ/µ going from (aj , bj) to (ci, di),

#{ paths γ | γ ⊆ λ, γ : (aj , bj)→ (ci, di) } = e(θ).

Next, we claim that the substrip θ of θ1 described above is precisely the substrip θi#θj of τ = θ1

from the Lascoux–Pragacz identity (2.2). This follows from Lemma 3.7 since the starting point (aj , bj)
of γ∗j has the same content as the starting point of θj and the end point (ci, di) of γ∗i has the same
content as the end point of θi, i.e. p(θj) = bj−aj and q(θi) = di− ci. Thus θ = φ[p(θj), q(θi)] = θi#θj
and so the previous equation becomes

(3.2) #{ paths γ | γ ⊆ λ, γ : (aj , bj)→ (ci, di) } = e(θi#θj).

Finally, the result follows by combining (3.1) and (3.2). �

4. Pleasant diagrams

4.1. Definition and characterization.

Definition 4.1 (Pleasant diagrams [MPP1]). A diagram S ⊂ [λ] is a pleasant diagram of λ/µ if for
all integers k with 1 − `(λ) ≤ k ≤ λ1 − 1, the subarray Sk := S ∩ �λk has no descending chain bigger
than the length sk of the diagonal dk of λ/µ, i.e. for every k we have dc1(Sk) ≤ sk. We denote the set
of pleasant diagrams of λ/µ by P(λ/µ) and its size by p(λ/µ).

Pleasant diagrams can be characterized in terms of complements excited diagrams.

Theorem 4.2 ([MPP1]). A diagram S ⊂ [λ] is a pleasant diagram in P(λ/µ) if and only if S ⊆ [λ]\D
for some excited diagram D ∈ E(λ/µ).

Recall that by Proposition 3.5 for an excited diagram D, its complement corresponds to a tuple
of non-intersecting paths in NI(λ/µ) and that such paths are characterized by their support of size
|λ/µ|. Next, we give a formula for p(λ/µ) from [MPP1]. In order to state it we need to define a peak
statistic for the non-intersecting paths associated to the complement of an excited diagram D.

To each tuple Γ of non-intersecting paths we associate recursively, via ladder/excited moves, a
subset of its support called excited peaks and denoted by Λ(Γ). For [λ/µ] ∈ NI(λ/µ) the set of excited
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peaks is Λ([λ/µ]) = ∅. If Γ is a tuple in NI(λ/µ) with an active cell u = (i, j) ∈ [λ] \ Γ then the
excited peaks of αu(Γ) are

Λ(αu(Γ)) :=
(

Λ(Γ)− {(i, j + 1), (i+ 1, j)}
)
∪ {u}.

That is, the excited peaks of αu(Γ) are obtained from those of Γ by adding the new peak (i, j) and
removing (i, j + 1) and (i+ 1, j) if any of the two are peaks in Λ(Γ):

.

Finally, let expk(Γ) := |Λ(Γ)| be the number of excited peaks of Γ. Given a set S, let 2S denote the
subsets of S.

Theorem 4.3 ([MPP1]). For a skew shape λ/µ we have

P(λ/µ) =
⋃

Γ∈NI(λ/µ)

(
Λ(Γ)× 2Γ\Λ(Γ)

)
.

Thus
p(λ/µ) =

∑
Γ∈NI(λ/µ)

2|λ/µ|−expk(Γ).

Example 4.4. For the shape λ/µ = (5441/21), Figure 2 has its eight non-intersecting paths in
NI(λ/µ), each with its excited peaks marked by . Thus

p(5441/21) = 211 + 2 · 210 + 2 · 29 + 28 + 210 + 29 = 6912.

4.2. Border strip decomposition formula for pleasant diagrams. By Theorem 4.3, the number
of pleasant diagrams are given by a weighted sum over non-intersecting paths in NI(λ/µ). Since
the number of such paths |NI(λ/µ)| = e(λ/µ) is given by a Lascoux–Pragacz type determinant
(Theorem 3.3), one could ask if there also a similar determinantal identity for p(λ/µ). The following
example gives negative evidence. Later, we will see that Conjecture 9.3 suggests that in some cases
there might be such a formula.

Example 4.5. For λ/µ = (5441/21) we showed that p(5441/21) = 6912, but p(5441/33)p(22/1) −
p(322/11)p(441/3) = 4352 and the ratio of these two numbers is 27/17.

Remark 4.6. One difficulty in applying the Lindström–Gessel–Viennot Lemma (Lemma 3.8) in order
to write P(λ/µ) as a determinant of P(θi#θj) is that the non-intersecting paths corresponding to a
pleasant diagram have excited-peaks that depend on the structure of the path and not just on its
support. In the proof of the Lemma, the sign-reversing involution of switching the paths that intersect
will not respect these local excited peaks.

5. Combinatorial proofs of the NHLF and first q-NHLF

The goal of this section is to give a combinatorial proof of the NHLF. The proof is split into two
parts: first, we reduce the claim from all skew shapes to the border strips. We then give two elementary
proofs of the NHLF in the border strip case, in the two sections that follow.

5.1. NHLF for border strips. In this case the NHLF is more elegant and can be stated as follows.

Lemma 5.1 (NHLF for border strips). For a border strip θ = λ/µ with endpoints (a, b) and (c, d) we
have

(5.1)
fθ

|θ|! =
∑

γ:(a,b)→(c,d),
γ⊆λ

∏
(i,j)∈γ

1

h(i, j)
,

where h(i, j) = λi − i+ λ′j − j + 1.
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Since the endpoints (a, b) and (c, d) are on the boundary of λ without loss of generality we assume
that (a, b) = (λ′1, 1) and (c, d) = (1, λ1). The proof is based on an identity of the following multivariate
function. For a border strip λ/µ let

Fλ/µ(x | y) = Fλ/µ(x1, x2, . . . , xd | y1, y2 . . . , yn−d) :=
∑

γ:(λ′1,1)→(1,λ1),
γ⊆λ

∏
(i,j)∈γ

1

xi − yj
.

Note if we evaluate Fλ/µ(x | y) at xi = λi + d− i+ 1 and yj = d+ j − λ′j we obtain the RHS of (5.1),

(5.2) Fλ/µ(x | y)
∣∣
xi=λi+d−i+1,
yj=d+j−λ′j

=
∑

γ:(λ′1,1)→(1,λ1),
γ⊆λ

∏
(i,j)∈γ

1

h(i, j)
.

5.2. From border trips to all skew shapes. We need the analogue of Theorem 2.1 for fλ/µ.

Lemma 5.2 (Lascoux–Pragacz). If (θ1, . . . , θk) is a Lascoux–Pragacz decomposition of λ/µ, then

(5.3)
fλ/µ

|λ/µ|! = det

[
fθi#θj

|θi#θj |!

]k
i,j=1

.

where f∅ = 1 and fφ[p,q] = 0 if φ[p, q] is undefined.

Proof. The result follows by doing the principal specialization in (2.2), using the theory of P -partitions
[S4, Thm. 3.15.7] and letting q → 1. �

Proof of Theorem 1.2. Combining Theorem 5.1 and Lemma 5.2 we have

(5.4) fλ/µ = |λ/µ|! · det

 ∑
γ:(aj ,bj)→(ci,di),

γ⊆λ

∏
(r,s)∈γ

1

h(r, s)


k

i,j=1

.

Note that the weight 1/h(r, s) of each step in the path only depends on the coordinate (r, s) and
the fixed partition λ. By the weighted Lindström–Gessel–Viennot lemma (Lemma 3.8), with yr,s =
1/h(r, s), we rewrite the RHS of (5.4) as a weighted sum over k-tuples non-intersecting paths Γ in
NI(λ/µ). That is,

(5.5) fλ/µ = |λ/µ|! ·
∑

(γ1,...,γk)∈NI(λ/µ)

∏
(r,s)∈(γ1,...,γk)

1

h(r, s)
,

Finally, by Proposition 3.5 the supports of these non-intersecting paths are precisely the complements
of excited diagrams of λ/µ. This finished the proof of NHLF. �

5.3. Proof of the first q-NHLF. In this case too the SSYT q-analogue of NHLF is elegant and can
be stated as follows.

Lemma 5.3. For a border strip θ = λ/µ with end points (a, b) and (c, d) we have

(5.6) sθ(1, q, q
2, . . . , ) =

∑
γ:(aj ,bj)→(ci,di),

γ⊆λ

∏
(i,j)∈γ

qλ
′
j−i

1− qh(i,j)
.

The proof is postponed to Section 7.4.

Lemma 5.4 (Lascoux–Pragacz).

(5.7) sλ/µ(1, q, q2, . . .) = det
[
sθi#θj (1, q, q

2, . . .)
]k
i,j=1

,

where s∅ = 1 and sφ[p,q] = 0 if θ[p, q] is undefined.

Proof. The result follows by doing a principal specialization in (2.2). �
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Proof of Theorem 1.3. Combining Lemma 5.4 and Lemma 5.3 we have

(5.8) sλ/µ(1, q, q2, . . .) = det

 ∑
γ:(aj ,bj)→(ci,di),

γ⊆λ

∏
(r,s)∈γ

qλ
′
s−r

1− qh(r,s)


k

i,j=1

.

Note that the weight of each step (r, s) in the path is qλ
′
s−r/(1 − qh(r,s)) which only depends on

the coordinate (r, s) and the fixed partition λ. By the weighted Lindström–Gessel–Viennot lemma

(Lemma 3.8), with yr,s = qλ
′
s−r/(1 − qh(r,s)), we rewrite the RHS of (5.8) as a weighted sum of

k-tuples non-intersecting paths in [λ]. That is,

(5.9) sλ/µ(1, q, q2, . . .) =
∑

(γ1,...,γk)∈NI(λ/µ)

∏
(r,s)∈(γ1,...,γk)

qλ
′
s−r

1− qh(r,s)
,

Finally, by Proposition 3.5 the supports of these non-intersecting paths are precisely the complements
of excited diagrams of λ/µ. Thus we obtain the (first q-NHLF). �

6. First proof of NHLF for border strips

In this section we give a proof of the NHLF for border strips based on a multivariate identity of the
weighted sum of paths Fθ(x | y). We show that this weighted sum satisfies a recurrence from SYT.

6.1. Multivarite lemma. For any connected skew shape λ/µ, the entry 1 in a standard Young
tableau T of shape λ/µ will be in an inner corner of λ/µ. The remaining entries 2, 3, . . . , n form a
standard Young tableau T ′ of shape λ/ν where µ → ν. Conversely, given a standard Young tableau
T ′ of shape λ/ν where µ → ν, by filling the new cell with 0 we obtain a standard Young tableau of
shape λ/µ. Thus

(6.1) fλ/µ =
∑
µ→ν

fλ/ν .

We show combinatorially that for border strips λ/µ the multivariate rational function Fλ/µ(x | y)
satisfies this type of relation.

Lemma 6.1 (Pieri–Chevalley formula for border strips).

(6.2) Fλ/µ(x | y) =
1

(x1 − y1)

∑
µ→ν

Fλ/ν(x | y).

Remark 6.2. A very similar multivariate relation holds for general skew shapes (the only difference is
a different linear factor on the RHS of (6.2)), a fact proved by Ikeda and Naruse [IN] algebraically and
combinatorially by Konvalinka [Kon]. Our proof for border strips is different than these two proofs.
See Section 10.2 for more details.

6.2. Proof of multivarite lemma. The rest of the section is devoted to the proof of Lemma 6.1.
We start with some notation that will help us in the proof.

For cells A,B ∈ [λ] such that B is NW of A, let

F (A→ B) :=
∑

γ:A→B,γ⊆[λ]

∏
(i,j)∈γ

1

xi − yj
,

so that Fλ/µ(x | y) = F ((λ′1, 1)→ (1, λ1)). For a given path γ let

H(γ) :=
∏

(i,j)∈γ

1

(xi − yj)
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be its multivariate weight. Let F (A∗, B) and F (A,B∗) denote similar rational functions where we
omit the term xi − yj corresponding to A and B respectively. By abuse of notation F (A→ C∗ → B)

denotes the product F (A → C∗)F (C∗ → B). Let C and C denote the boxes in the Young diagram
[λ] that are right above and right below C, respectively. Let Rk(λ) denote the kth row of the Young
diagram of λ.

We will show by induction on the total length of the path between A and B that

(6.3) F (A→ B) =
1

x1 − y1

∑
C

F (A→ C∗ → B),

where the sum is over inner corners C of λ/µ. This relation implies the desired result.
For the base case λ = (2, 2) and µ = (1), the shape (2, 2)/(1) has inner corners (1, 2) and (2, 1). We

have

F ((2, 1)→ (1, 2)) =
1

(x2 − y1)(x2 − y2)(x1 − y2)
+

1

(x2 − y1)(x1 − y1)(x1 − y2)

=
x1 − y1 + x2 − y2

(x1 − y1)(x2 − y1)(x1 − y2)(x2 − y2)

=
1

x1 − y1

(
1

(x2 − y1)(x2 − y2)
+

1

(x2 − y2)(x1 − y2)

)
,

which equals [F ((1, 2)→ (2, 1)∗) + F ((1, 2)∗ → (2, 1))] /(x1 − y1), thus proving the relation.
The next sublemma will be useful in the inductive step later.

Lemma 6.3. For cells A = (d, r) and B = (1, s) in [λ] with r ≤ s, we have

(x1 − xd)F (A→ B) =
∑
C

F (A→ C∗ → B),

where the sum is over inner corners C of λ/µ.

Proof. We can write xk − xk−1 = (xk − yj)− (xk−1− yj) for any j. Let γ be a path from A to B, and
suppose that it crosses from row k to row k − 1 in column j for some j. Then both points (k, j) ∈ γ
and (k − 1, j) ∈ γ

(6.4) (xk − xk−1)H(γ) = (xk − yj)H(γ)− (xk−1 − yj)H(γ) = H(γ \ (k, j))−H(γ \ (k − 1, j)).

Since every path from A to B crosses from row k to row k− 1 at some cell, denoted by C = (k, j), by
(6.4) we have the following:

(xk − xk−1)F (A→ B) =
∑

C∈Rk(λ)

(
F (A→ C∗)F (C → B)− F (A→ C)F (C

∗ → B)
)

=
∑

C∈Rk(λ)

F (A→ C∗ → C → B)−
∑

C1∈Rk−1(λ)

F (A→ C1 → C∗1 → B) = ∗©

where in the last line we denote C1 = C – a box in row k − 1, and we note that the existence of the
boxes below and above is implicit in the specified path functions F .

Let us now rewrite the RHS. in the last equation in a different way. Note that the paths A →
C∗ → C → B can be thought as paths from A to B without their outer corner on row k, and, likewise,
the paths A → C1 → C∗1 → B are paths A → B without the inner corner on row k − 1. However,
they can both be thought as composed of two paths, A → A1 and B1 → B, where A1 is the last
box on row k (or row k + 1 if C was the only cell on row k), B1 is the first box on row k − 1 (or
the box above C, in row k − 2) and A1’s top right vertex is the same as B1’s bottom left (i.e. the
boxes have that common vertex), or as in the second case B1 is one box above A1. In the case of
A → C∗ → C → B = A → A1, B1 → B, we must have that A1 is not the last box in the row (for C
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to exist), and for A→ C1 → C∗1 → B = A→ A1, B1 → B there are no restrictions. Thus

(xk − xk−1)F (A→ B) = ∗©
=

∑
A1 6=(k,λk),B1

F (A→ A1)F (B1 → B) −
∑
A1,B1

F (A→ A1)F (B1 → B)

=
∑

j:
A1=(k+1,j),
B1=(k−1,j)

F (A→ A1)F (B1 → B)−,
∑

j:
A1=(k,j),
B1=(k−2,j)

(
F (A→ A1)F (B1 → B)− F (A→ D∗k → B)

)
,

where all terms cancel except for the cases where A1, C,B1 are in the same column, and when C is an
outer corner of λ on row k, denoted by Dk (if such corner exists).

Finally, since xd − x1 =
∑
k(xk − xk−1), we have

(xd − x1)F (A→ B) =
∑
k

(xk − xk−1)F (A→ B)

=
∑

k,j:
A1=(k+1,j),
B1=(k−1,j)

F (A→ A1)F (B1 → B) −
∑

k,j:
A1=(k,j),
B1=(k−2,j)

(
F (A→ A1)F (B1 → B)− F (A→ D∗k → B)

)

= −
∑
k

F (A→ D∗k → B),

since all other terms cancel across the various values for k, and we obtain the desired identity. �

We continue with the proof of Lemma 6.1. In a path γ : A→ B the first step from A is either right
to cell Ar or up to cell Au. Note that in the first case A is then an inner corner of λ/µ. Thus

F (A→ B) =
1

xd − y1
(F (Ar → B) + F (Au → B)) .

By induction the term F (Au → B) becomes

(6.5) F (A→ B) =
1

xd − y1

(
F (Ar → B) +

1

x1 − y1

∑
C

F (Au → C∗ → B)

)
.

On the other hand, since a step to Ar indicates that A is an inner corner then the RHS of (6.3)
equals

1

x1 − y1

∑
C

F (A→ C∗ → B) =
1

x1 − y1

[
F (Ar → B) +

1

xd − y1

∑
C

F (A∗ → C∗ → B)

]
.

Again, depending on the first step of the paths we split F (A∗ → C∗ → B) into F (Ar → C∗ → B) and
F (Au → C∗ → B) so the above equation becomes

(6.6)
1

x1 − y1

∑
C

F (A→ C∗ → B)

=
1

x1 − y1

[
F (Ar → B) +

1

xd − y1

∑
C

(
F (Ar → C∗ → B) + F (Au → C∗ → B)

)]
.

Finally, by (6.5) and (6.6) if we subtract the LHS and RHS of (6.3) the terms with Au → C∗ → B
cancel. Collecting the terms with Ar → B we obtain

(6.7) F (A→ B) − 1

x1 − y1

∑
C

F (A→ C∗ → B)

=
x1 − xd

(x1 − y1)(xd − y1)
F (Ar → B) − 1

(x1 − y1)(xd − y1)

∑
C

F (Ar → C∗ → B1) .
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Lastly, the RHS above is zero since by Lemma 6.3 we have

(x1 − xd)F (Ar → B) =
∑
C

F (Ar → C∗ → B).

Thus the desired relation (6.3) follows.

6.3. Proof of NHLF for border strips. In this section we use Lemma 6.1 to prove Theorem 5.1.
Let Hλ/µ denote the RHS of (5.2). We prove by induction on n = |λ/µ| that fλ/µ = n! ·Hλ/µ.
We start with (6.2) and evaluate xi = λi + d− i+ 1 and yj = d+ j − λ′j , by (5.2) we obtain

n ·Hλ/µ =
∑
µ→ν

Hλ/ν .

Multiplying both sides by (n− 1)! and using induction we obtain

n! ·Hλ/µ =
∑
µ→ν

fλ/ν .

By (6.1) the result follows.

7. Second proof of NHLF for border strips

In this section we give another proof of the NHLF for border strips based on another multivariate
identity involving factorial Schur functions. The proof consists of two steps. First we show that a ratio
of an evaluation of factorial Schur functions equals the weighted sum of paths Fθ(x | y). Second we
show how the ratio of factorial Schur functions properly specialized equals fλ/µ and sλ/µ(1, q, q2, . . .).

7.1. Multivarite lemma. We show combinatorially that the function Fλ/µ(x | y) is an evaluation of

a factorial Schur function. Let zλ be the word of length n of x’s and y’s by reading the horizontal and
vertical steps of λ from (d, 1) to (1, n− d): i.e. zλλi+d−i+1 = xi and zλλ′j+n−d−j+1 = yj :

x1
x2

xd

y1y2 yn−d

λ

.

Lemma 7.1 ([IN]). For a border strip λ/µ ⊆ d× (n− d) we have

(7.1)
s

(d)
µ (x | zλ)

s
(d)
λ (x | zλ)

= Fλ/µ(x | y).

Before we begin the proof we make a few definitions to simplify notation and a few observations to
be used throughout. For any partition ν ⊆ d× (n− d) and a set of variables x and z define

D(ν) := det[(xi − z1) . . . (xi − zνj+d−j)]di,j=1,

so that

(7.2) Gλ/µ(x | y) :=
s

(d)
µ (x | zλ)

s
(d)
λ (x | zλ)

=
D(µ)

D(λ)
.

Notice also that zλj+1+d−j = xj and so (xi− z1) . . . (xi− zλj+d−j) = 0 if j < i. So the matrix in D(λ)
is upper-triangular and

(7.3) D(λ) =

d∏
i=1

(xi − z1) · · · (xi − zλi+d−i).
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7.2. Proof of multivariate lemma. To prove Lemma 7.1 we verify that both sides of (7.1) satisfy
the following trivial path identity. The first step of a path γ : (λ′1, 1)→ (1, λ1) is either (0, 1) (up) or
(1, 0) (right) provided λd > 1. So

(7.4) (xd − y1)Fλ/µ(x | y) = Fλ−λd/µ−µd−1
(x1, . . . , xd−1 | y) + Fλ−1/µ−1(x | y2, . . . , yn−d),

where the second term on the RHS vanishes if λd = 1.

Example 7.2. For the border strip λ/µ = (5533/422), we have

(x4 − y1)F(5533/422)(x1, . . . , x4 | y1, . . . , y5) =

F(553/42)(x1, x2, x3 | y1, . . . , y5) + F (4422/311)(x1, . . . , x4 | y2, . . . , y5),
y1y2y3y4y5

x1

x2

x3

x4

x1

x2

x3

x4

y2y3y4y5

x1

x2

x3

y1y2y3y4y5

Next we show that the following ratio of factorial Schur functions, satisfies the same relation,

Gλ/µ(x | y) :=
s

(d)
µ (x | zλ)

s
(d)
λ (x | zλ)

.

Lemma 7.3. We have:

(xd − y1)Gλ/µ(x | y) = Gλ−λd/µ−µd−1
(x1, . . . , xd−1 | y) + Gλ−1/µ−1(x | y2, . . . , yn−d) ,

where the second term on the RHS vanishes if λd = 1.

Proof of Lemma 7.1. We proceed by induction. For the base case λ = (1) and µ = ∅, we directly
check that

F(1)/∅(x | y) = G(1)/∅(x | y) =
1

xd − y1
.

Then by (7.4) and Lemma 7.3 we have Fλ/µ(x | y) and Gλ/µ(x | y) satisfy the same recurrence.
Therefore, we have Fλ/µ(x | y) = Gλ/µ(x | y) as desired. �

In the rest of the section we prove Lemma 7.3.

Proof of Lemma 7.3. We denote the shape λ− λd/µ− µd−1 by λ/µ. Removing the first column of λ
yields

zλ−1 = y2, . . . = zλ2 , . . . ,

removing the last of λ yields zλ̄ = y1, y2, . . . , x̂d, . . . = z1, . . . , zλd , zλd+2, . . ., i.e. zλ with the entry xd
omitted.

Assume λd 6= 0 and µd = 0, the other case is trivially reduced. If λ/µ is a border strip µj = λj+1−1
for j = 1, . . . , d − 1. Hence in the ratio of determinants in (7.2) we have that the first d − 1 columns

of the determinant from s
(d)
µ (· | ·) are the last d − 1 columns from the determinant for s

(d)
λ (· | ·), and

the dth column from s
(d)
µ (· | ·) is all ones, since µd + d − d = 0. Thus in (7.2), upon shifting the dth

column to the first column in the determinant D(µ) in the numerator, we obtain

(7.5) Gλ/µ(x | y) =
(−1)d−1

D(λ)
det

[{
1, j = 1

(xi − z1) . . . (xi − zλj+d−j), j > 1

]d
i,j=1

.

Next we have two cases depending on whether λd = 1 or λd > 1.

Case λd = 1: For λ we have zλ1 = y1 and zλ2 = xd. The (d, d) entry of the upper triangular matrix of
the determinant in D(λ) is xd − y1, so by doing a cofactor expansion on this row we get

D(λ) = (xd − y1) det
[
(xi − xd)(xi − y1)(xi − z3) · · · (xi − zλj+d−j)

]d−1

i,j=1
.
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By factoring xi − z2 = xi − xd from each row above we get

D(λ) = (xd − y1) det
[
(xi − y1)(xi − z3) · · · (xi − zλj+d−j)

]d−1

i,j=1

d−1∏
i=1

(xi − xd) .

Since zλ1 = y1 and zλj = zλj+1 for j = 2, . . . , d− 1, then by relabelling we get

(7.6) D(λ) = (xd − y1)D(λ)

d−1∏
i=1

(xi − xd) .

For µ we have µd = µd−1 = 0 so the matrix in D(µ) has a dth column of ones

D(µ) = det


. . . (x1 − z1) · · · (x1 − zµj+d−j) · · · (x1 − y1) 1
. . . (x2 − z1) · · · (x2 − zµj+d−j) · · · (x2 − y1) 1
...

...
0 · · · 0 (xd − y1) 1


Then, by adding (xd − y1) to each entry in the (d− 1)th column, the determinant remains unchanged
but the last row becomes 0 . . . 01,

D(µ) = det




1, j = d

xi − xd, j = d− 1

(xi − z1) . . . (xi − zµj+d−j), j < d− 1


d

i,j=1

Next, we do a cofactor expansion on the last row and then we factor xi − z2 = xi − xd from each row,

D(µ) = det

[{
xi − xd, j = d− 1

(xi − z1)(xi − z2) . . . (xi − zµj+d−j), j < d− 1

]d−1

i,j=1

= det

[{
1, j = d− 1

(xi − z1) ̂(xi − xd) . . . (xi − zµj+d−j), j < d− 1

]d−1

i,j=1

d−1∏
i=1

(xi − xd).

Again, since zλ̄1 = y1 and zλ̄j = zλj+1 for j = 2, . . . , d− 1, we have by relabeling

(7.7) D(µ) = D(µ̄)

d−1∏
i=1

(xi − xd).

We now combine (7.6) and (7.7) in (xd − y1)Gλ/µ(· | ·),

(xd − y1)Gλ/µ(x | y) = (xd − y1)
D(µ̄)

∏d−1
i=1 (xi − xd)

(xd − y1)D(λ̄)
∏d−1
i=1 (xi − xd)

= Gλ̄/µ̄(x1, . . . , xd−1 | y),

confirming the desired identity in this case as well since the term for λ− 1/µ− 1 is vacuously zero.

Case λd > 1: Using z1 = y1 we have

Gλ−1/µ−1(x | y2, . . . , yn−d) =
(−1)d−1

D(λ− 1)
det

[{
1, j = 1

(xi − z2) . . . (xi − zλj+d−j), j > 1

]d
i,j=1

=
(−1)d−1

D(λ)
det

[{
1, j = 1

(xi − z2) . . . (xi − zλj+d−j), j > 1

]d
i,j=1

·
d∏
i=1

(xi − y1)

=
(−1)d−1

D(λ)
det

[{
(xi − y1), j = 1

(xi − z1) . . . (xi − zλj+d−j), j > 1

]d
i,j=1
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Similarly, we have:

(7.8) Gλ/µ(x1, . . . , xd−1 | y)

=
(−1)d−2

D(λ)
det

[{
(xi − xd), j = 1

(xi − z1) . . . (xi − zλj−1+d−j−1), 2 ≤ j ≤ d− 1

]d−1

i,j=1

·
λd∏
j=1

(xd − yj)

Next, we add the two determinants in (7.5) and (7.8) using the multilinearity property on the first
column to obtain

(xd − y1)Gλ/µ(x | y)−Gλ−1/µ−1(x | y2, . . . , yn−d) =
(−1)d−1

D(λ)
×det

[{
(xd − y1), j = 1

(xi − z1) . . . (xi − zλj+d−j), j > 1

]d
i,j=1

− det

[{
(xi − y1), j = 1

(xi − z1) . . . (xi − zλj+d−j), j > 1

]d
i,j=1


=

(−1)d−1

D(λ)
det

[{
xd − xi, j = 1

(xi − z1) . . . (xi − zλj+d−j), j > 1

]d
i,j=1

=: (∗)

Consider the row i = d in the last determinant. The entries there are all 0, except when j = d:
when j = 1 we have xd − xi = 0 for i = d, when j ∈ [2, d− 1] we have λj + d− j ≥ λd + 1, and since

zλd+1 = xd we have
∏λj+d−j
r=1 (xd− zr) = 0. Using the cofactor expansion we compute the determinant

in the last equation as the principal minor of the matrix times the (d, d) entry:

(∗) =
(−1)d−1

D(λ)
det

[{
xd − xi, j = 1

(xi − z1) . . . (xi − zλj+d−j), j > 1

]d−1

i,j=1

(xd − z1) · · · (xd − zλd).

We now compare this with equation (7.8), realizing that z1, . . . , zλd = y1, . . . , yλd , so the last
expression coincides with Gλ̄/µ̄(x | y) as desired. Notice also that if j < i, we have λj + d − j ≥
λi + d− i+ 1, and since xi = zλi+d−i+1, the terms above are 0 when j < i and j 6= 1. �

7.3. Proof of NHLF for border strips.

Lemma 7.4. Let µ ⊂ λ be two partitions with d parts. Then

s
(d)
µ (x | zλ)

s
(d)
λ (x | zλ)

∣∣∣∣∣xi=λi+d−i+1,
yi=d+j−λ′j

=
fλ/µ

|λ/µ|! .

This statement also appears in [Naru] (see [MPP1, §8.4]) with a different proof.

Proof. Let xi = λi + d− i+ 1 and yj = d+ j − λ′j , then notice that xi and yj are exactly the numbers
on the horizontal/vertical steps at row i/column j of the lattice path determined by λ when writing
the numbers 1, 2, . . . along the path from the bottom left to the top right end. Thus zλ = 1, 2, 3 . . .,
and so

(xi − z1) · · · (xi − zµj+d−j) = (λi + d− i) · · · (λi + d− i+ 1− (µj + d− j)) =
(λi + d− i)!

(λi − i− µj + j)!

whenever λi− i ≥ µj−j and 0 otherwise. When µ = λ and i = j, we have (xi−z1) · · · (xi−zλi+d−i) =
(λi + d− i)! and by (7.3) we have

D(λ)

∣∣∣∣xi=λi+d−i+1,
yj=d+j−λ′j

=

d∏
i=1

(λi + d− i)!
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Then, by definition and (7.2), we have

Gλ/µ(x | y)

∣∣∣∣∣xi=λi+d−i+1,
yj=d+j−λ′j

=
D(µ)

D(λ)

∣∣∣∣∣xi=λi+d−i+1,
yj=d+j−λ′j

=
det
[
(λi + d− i)!/(λi − i− µj + j)!

]d
i,j=1∏d

i=1(λi + d− i)!

= det

[
1

(λi − i− µj + j)!

]d
i,j=1

Multiplying the last determinant by |λ/µ|!, we recognize the exponential specialization of the Jacobi-
Trudi identity for the ordinary sλ/µ giving fλ/µ (a formula due to Aitken, see e.g. [S4, Cor. 7.16.3]).
Hence we get the desired formula. �

Second proof of Theorem 5.1. We start with the relation from Lemma 7.1 and evaluate xi = λi+d−i+1
and yj = d+ j − λ′j . In the RHS by (5.2) we immediately obtain the RHS of (5.1).

Next, we do the same evaluation on the ratio of factorial Schur functions applying Lemma 7.4 that
gives the ratio of factorial Schurs as fλ/µ/|λ/µ|!. �

7.4. SSYT q-analogue for border strips. To wrap up the section we show how the tools developed
to prove Theorem 5.1 also yield the SSYT q-analogue for border strips.

Corollary 7.5 ((first q-NHLF) for border strips). For a border strip θ = λ/µ with end points (a, b)
and (c, d) we have

(7.9) sθ(1, q, q
2, . . . , ) =

∑
γ:(aj ,bj)→(ci,di),

γ⊆λ

∏
(i,j)∈γ

qλ
′
j−i

1− qh(i,j)
.

Proof. We start with (7.1) from Lemma 7.1 and evaluate both sides at xi = qλi+d−i+1 and yj =

qd+j−λ′j . The path series Fλ/µ(x | y) gives the RHS of (7.9)

Fλ/µ(x | y)
∣∣
xi=q

λi+d−i+1,

yj=q
d+j−λ′j

=
∑

γ:(aj ,bj)→(ci,di),
γ⊆λ

∏
(i,j)∈γ

qλ
′
j−i

1− qh(i,j)
.

Next, by [MPP1, §4] the evaluation of the ratio of the factorial Schur functions gives the principal
specialization of the Schur function, the LHS of (7.9)

s
(d)
µ (x | zλ)

s
(d)
λ (x | zλ)

∣∣∣∣∣xi=qλi+d−i+1,

yj=q
d+j−λ′j

= sθ(1, q, q
2, . . . ).

�

7.5. Lascoux–Pragacz identity for factorial Schur functions. Lemma 7.1 holds for connected
skew shape λ/µ in terms of non-intersecting paths Γ = (γ1, . . . , γk) in NI(λ/µ) (i.e. complements of
excited diagrams).

Fλ/µ(x | y) :=
∑

Γ∈NI(λ/µ)

∏
(r,s)∈Γ

1

xr − ys
=

∑
D∈E(λ/µ)

∏
(r,s)∈[λ]\D

1

xr − ys
.

Ikeda and Naruse [IN] showed algebraically the following identity that we call the multivariate NHLF.

Theorem 7.6 ([IN]). For a connected skew shape λ/µ ⊆ d× (n− d) we have

(7.10)
s

(d)
µ (x | zλ)

s
(d)
λ (x | zλ)

= Fλ/µ(x | y).
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In Lemma 7.1 we proved combinatorially this result for border strips. We can use the approach
from the previous subsections in reverse to obtain a Lascoux–Pragacz type identity for evaluations of
factorial Schur functions.

Corollary 7.7. If (θ1, . . . , θk) is a Lascoux–Pragacz decpomposition of λ/µ ⊂ d× (n− d), then

(7.11) s(d)
µ (x | zλ) · s(d)

λ (x | zλ)
k−1

= det
[
s

(d)
λ\ θi#θj (x | z

λ)
]k
i,j=1

where λ \ θi#θj denotes the partition obtained by removing from λ the outer substrip θi#θj.

Proof. By the weighted Lindström-Gessel-Viennot lemma (Lemma 3.8) with yr,s = 1/(xr − ys), we
rewrite the RHS of (7.10) as a determinant.

s
(d)
µ (x | zλ)

s
(d)
λ (x | zλ)

= det

 ∑
γ:(aj ,bj)→(ci,di),

γ⊆λ

∏
(r,s)∈γ

1

xr − ys


k

i,j=1

= det
[
Fθi#θj (x | y)

]k
i,j=1

.

Finally, by Lemma 7.1 each entry of the matrix can be written as the quotient of s
(d)
λ\ θi#θj (x | zλ) and

s
(d)
λ (x | zλ). By factoring the denominators out of the matrix we obtain the result. �

Calculations suggest that an analogue of (7.11) holds for general factorial Schur functions s
(d)
µ (x | y)

and not just for the evaluation y = zλ.

Conjecture 7.8. If (θ1, . . . , θk) is a Lascoux–Pragacz decpomposition of λ/µ ⊂ d× (n− d), then

(7.12) s(d)
µ (x | y) · s(d)

λ (x | y)
k−1

= det
[
s

(d)
λ\ θi#θj (x | y)

]k
i,j=1

where λ \ θi#θj denotes the partition obtained by removing from λ the outer substrip θi#θj.

Since factorial Schur functions reduce to Schur functions when y = 0, this conjecture implies an
identity of Schur functions.

Proposition 7.9. Conjecture 7.8 implies the Schur function identity

sµ(x) · sλ(x)
k−1

= det
[
sλ\ θi#θj (x)

]k
i,j=1

,

where (θ1, . . . , θk) is a Lascoux–Pragacz decpomposition of λ/µ.

Example 7.10. From the example in the right of Figure 2.4 we obtain the identity

s(2,1)s(5,42,1) = s(32)s(5,3,2,1) − s(32,2,1)s(5,3).

Remark 7.11. Note that instead of reversing the approach in Section 5, having a combinatorial proof
of the identity in Corollary 7.7 would show that the multivariate NHLF (Theorem 7.6) for skew shapes
is equivalent to the multivariate NHLF for border srips (Lemma 7.1).

8. Excited diagrams and SSYT of border strips and thick strips

In the next two sections we focus on the case of the thick strip δn+2k/δn where δn denotes the staircase
shape (n− 1, n− 2, . . . , 2, 1). We study the excited diagrams E(δn+2k/δn) using the results from Sec-
tion 3.3 and the number of SYT of this shape combining the NHLF, its SSYT q-analogue (Theorem 1.3)
and the Lascoux–Pragacz identity.
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8.1. Excited diagrams and Catalan numbers. We start enumerating the excited diagrams of the
shape δn+2k/δn.

Corollary 8.1. We have: e(δn+2/δn) = Cn, e(δn+4/δn) = CnCn+2 − C2
n+1,

(8.1) e(δn+2k/δn) = det[Cn−2+i+j ]
k
i,j=1 =

∏
1≤i<j≤n

2k + i+ j − 1

i+ j − 1
.

Proof. We start with the case k = 1 for the zigzag border strip δn+2/δn. By Proposition 3.5 the
complement of excited diagrams of δn+2/δn are paths γ : (n+1, 1)→ (1, n+1), γ ⊆ δn+2. By rotating
these paths 45◦ clockwise one obtain the Dyck paths in Dyck(n) as illustrated in Figure 5. Thus
e(δn+2/δn) = Cn.

For general k, the shape δn+2k/δn has a Lascoux–Pragacz decomposition into k maximal border
strips (θ1, . . . , θk) where θi is the zigzag strip from (n + 2k − 2i − 1, 1) to (1, n + 2k − 2i − 1) (see
Figure 6: Left). Then by Theorem 3.3 we have

e(δn+2k/δn) = det
[
e(θi#θj)

]k
i,j=1

.

The cutting strip τ of the decomposition of δn+2k/δn is the zigzag θ1. The strips θi#θj in the
determinant, being substrips of θ1, are themselves zigzags. The strip θi#θj in θ1 consists of the cells
with content from 2 + 2j − n− 2k to n+ 2k − 2i− 2. So the strip is a zigzag δm+2/δm of size 2m+ 1
where m = n+ 2k+ i+ j+ 2. Since we already know shapes δm+2/δm have Cm excited diagrams then
the above determinant becomes

e(δn+2k/δn) = det
[
Cn+2k−i−j−2

]k
i,j=1

= det
[
Cn+i+j−2

]k
i,j=1

,

where the last equality is obtained by relabelling the matrix. This proves the first equality.
To prove the second equality we use the characterization of excited diagrams as flagged tableaux.

By [MPP1, Prop. 3.6], excited diagrams in E(δn+2k/δn) are in bijection with flagged tableaux of shape
δn with flag (k + 1, k + 2, . . . , k + n − 1). By subtracting i to all entries in row i, these tableaux are
equivalent to reverse plane partitions of shape δn with entries ≤ k which are counted by the given
product formula due to Proctor (unpublished research announcement 1984; see [FK]). �

Remark 8.2. Note that by [MPP1, Prop. 3.6], excited diagrams in E(δn+2k+1/δn) are in correspon-
dence with flagged tableaux of shape δn with flag (k + 1, k + 2, . . . , k + n − 1), thus |E(δn+2k/δn)| =
|E(δn+2k+1/δn)|. In what follows the formulas for the even case δn+2k are simpler than those of the
odd case so we omit the latter.

1 1
2

1 1
3

1 2
2

1 2
3

2 2
3

Figure 5. Correspondence between excited diagrams in δ5/δ3, Dyck paths in Dyck(3)
and flagged tableaux of shape δ3 with flag (2, 3).

From the first determinantal formula for e(λ/µ) (Proposition 3.1) we easily obtain the following
curious determinantal identity (see also §10.4).

Corollary 8.3. We have:

det

[(
n− i+ j

i

)]n−1

i,j=1

= Cn .
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Proof. By Corollary 8.1, we have |E(δn+2/δn)| = Cn. We apply Proposition 3.1 to the shape δn+2/δn,
where the vector fδn+2/δn = (2, 3, . . . , n), see §3.2. This expresses |E(δn+2/δn)| as the given determi-
nant, and the identity follows. �

Next we give a description of the excited diagrams of the shape δn+2k/δn. Let FanDyck(k, n) be
the set of tuples (p1, . . . , pk) of k noncrossing Dyck paths from (0, 0) to (2n, 0) (see Figure 6: Right).
We call such tuples k-fans of Dyck paths. It is known [SV] that fans of Dyck pahts are counted by the
determinant of Catalan numbers and the product formula in (8.1).

Corollary 8.4. We have e(δn+2k/δn) = |FanDyck(k, n)| and the complements of the excited diagrams
correspond to k-fans of paths in FanDyck(k, n).

Proof. By Proposition 3.5 the complements of excited diagrams in E(δn+2k/δn) correspond to k-tuples
of nonintersecting paths in NI(δn+2k/δn) (paths obtained via ladder moves from the original paths
(γ∗1 , . . . , γ

∗
k) of the Kreiman outer decomposition of δn+2k/δn).

The path γ∗i consists of zigzag path p∗i of 2n+1 cells bookended by a vertical and horizontal segment
of k − i cells each (see Figure 6:Middle). Because the excited/ladder moves preserve the contents of
the cells of δn, the path γi in (γ1, . . . , γk) ∈ NI(δn+2k/δn) will consist of a Dyck path pi bookended
by the same vertical and horizontal segments as in γ∗i . Thus the map (γ1, . . . , γk) 7→ (p1, . . . , pk)
denoted by ϕ is a correspondence between NI(δn+2k/δn) and FanDyck(k, n). See Figure 6, right, for
an example. �

Remark 8.5. Fans of Dyck paths in FanDyck(k, n) are equinumerous with k-triangulations of an
(n+ 2k)-gon [Jon] (see also [S5, A12] and [SS] for a bijection for general k).

θ1θ2θ3
γ∗
1

γ∗
2

γ∗
3 7→

ϕ

Figure 6. Left, Middle: the Lascoux–Pragacz and the Kreiman outer decompositions
of the shape δ3+6/δ3. Right: the hook-lengths of an excited diagram of δ3+6/δ3
corresponding to the 3-fan of Dyck paths on the right. Each gray area has cells with
product of hook-lengths (3!! · 7!!).

8.2. Determinantal identity of Schur functions of thick strips. Observe that SYT of shape
δn+2/δn are in bijection with alternating permutations of size 2n+ 1. These permutations are counted
by the odd Euler number E2n+1. Thus,

fδn+2/δn = E2n+1 .

Let En(q) be as in the introduction, the q-analogue of Euler numbers.1

Example 8.6. We have: E1(q) = E2(q) = 1, E3(q) = q2 + q, E4(q) = q4 + q3 + 2q2 + q, and
E5(q) = q8 + 2q7 + 3q6 + 4q5 + 3q4 + 2q3 + q2 .

1In the survey [S3, §2], our En(q) is denoted by E?
n(q).
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By the theory of (P, ω)-partitions, we have:

(8.2) E2n+1(q) = sδn+2/δn(1, q, q2, . . .) ·
2n+1∏
i=1

(1− qi) .

Next we apply the Lascoux–Pragacz identity to the shape δn+2k/δn.

Corollary 8.7 (Lascoux–Pragacz for δn+2k/δn). We have:

sδn+2k/δn(x) = det
[
sδn+i+j/δn−2+i+j

(x)
]k
i,j=1

.

Proof. By Theorem 2.1 for the shape δn+2k/δn we have

sδn+2k/δn(x) = det
[
sθi#θj (x)

]k
i,j=1

,

where (θ1, . . . , θk) is the decomposition of the shape δn+2k/δn into k maximal border strips. As in the
proof of Corollary 8.1, the strip θi#θj has shape δm+2/δm for m = n + 2k − i − j + 2. Thus, after
relabelling the matrix, the above equation becomes the desired expression. �

Corollary 8.8. We have:

sδn+2k/δn(1, q, q2, . . .) = det
[
Ẽ2(n+i+j)−3(q)

]k
i,j=1

,

where

Ẽn(q) :=
En(q)

(1− q)(1− q2) · · · (1− qn)
.

Proof. The result follows from Corollary 8.7 and equation (8.2). �

Taking the limit q → 1 in Corollary 8.8 we get corresponding identities for fδn+2k/δn .

Corollary 8.9. We have:

fδn+2k/δn

|δn+2k/δn|!
= det

[
Ê2(n+i+j)−3

]k
i,j=1

, where Ên :=
En
n!

.

Remark 8.10. Baryshnikov and Romik [BR] gave similar determinantal formulas for the number of
standard Young tableaux of skew shape (n+m− 1, n+m− 2, . . . ,m)/(n− 1, n− 2, . . . , 1), extending
the method of Elkies (see e.g. [AR, Ch. 14]).

In a different direction, one can use Corollary 8.9 when n = 1, 2 to obtain the following determinant
formulas for Euler numbers in terms of for fδ2k+1 and fδ2k , which of course can be computed by a HLF
(cf. [OEIS, A005118]).

Corollary 8.11. We have:

det
[
Ê2(i+j)−1

]k
i,j=1

=
fδ2k+1(
2k+1

2

)
!
, det

[
Ê2(i+j)+1

]k
i,j=1

=
fδ2k((

2k
2

)
− 1
)
!
.

8.3. SYT and Euler numbers. We use the NHLF to obtain an expression for fδn+2/δn = E2n+1 in
terms of Dyck paths.

Proof of Corollary 1.6. By the NHLF, we have

(8.3) fδn+2/δn = |δn+2/δn|!
∑

D∈E(δn+2/δn)

∏
u∈D

1

h(u)
,

where D = [δn+2/δn] \D. Now |δn+2/δn| = (2n + 1)! and by Corollary 8.1 (complements of) excited
diagrams D of δn+2/δn correspond to Dyck paths γ in Dyck(n). In this correspondence, if u ∈ D
corresponds to point (a, b) in γ then h(u) = 2b+ 1 (see Figure 5). Translating from excited diagrams
to Dyck paths, (8.3) becomes the desired Equation (EC). �

https://oeis.org/A005118
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Equation (EC) can be generalized to thick strips δn+2k/δn.

Corollary 8.12. We have:

(8.4)
∑

(p1,...,pk)∈Dyck(n)k

noncrossing

k∏
r=1

∏
(a,b)∈pr

1

2b+ 4r − 3
=

[
k−1∏
r=1

(4r − 1)!!

]2

det
[
Ê2(n+i+j)−3

]k
i,j=1

,

where Ên = En/n! and (a, b) ∈ p denotes a point of the Dyck path p.

Proof. For the RHS we use Corollary 8.9 to express fδn+2k/δn in terms of Euler numbers. For the LHS,
we first use the NHLF to write fδn+2k/δn as a sum over excited diagrams E(δn+2k/δn) :

fδn+2k/δn = |δn+2k/δn|!
∑

D∈E(δn+2k/δn)

∏
u∈D

1

h(u)
,

where D = [δn+2k/δn] \D. By Corollary 8.4, excited diagrams of δn+2k/δn correspond to k-tuples of
noncrossing Dyck paths in FanDyck(k, n) via the map ϕ. Finally, one can check (see Figure 6 right)
that if ϕ : D 7→ (p1, . . . , pk) then∏

u∈D
h(u) =

[ k−1∏
r=1

(4r − 1)!!

]2 ∏
(a,b)∈pr

(2b+ 4r − 3) ,

which gives the desired RHS. �

8.4. Probabilistic variant of (EC). Here we present a new identity (8.6) which a close relative of
the curious identity (EC) we proved above.

Let BT (n) be the set of plane full binary trees τ with 2n+ 1 vertices, i.e. plane binary trees where
every vertex is a leaf or has two descendants. These trees are counted by |BT (n)| = Cn (see e.g. [S5,
§2]). Given a vertex v in a tree τ ∈ BT (n), h(v) denotes the number of descendants of v (including
itself). An increasing labelling of τ is a labelling ω(·) of the vertices of τ with {1, 2, . . . , 2n+ 1} such
that if u is a descendant of v then ω(v) ≤ ω(u). By abuse of notation, let fτ is the number of increasing
labelings of τ . By the HLF for trees (see e.g. [Sag3]), we have:

(8.5) fτ =
(2n+ 1)!∏
v∈τ h(v)

.

Proposition 8.13. We have:

(8.6)
∑

τ∈BT (n)

∏
v∈τ

1

h(v)
=

E2n+1

(2n+ 1)!
.

Proof. The RHS of (8.6) gives the probability E2n+1/(2n + 1)! that a permutation w ∈ S2n+1 is
alternating. We use the representation of a permutation w as an increasing binary tree T (w) with
2n+ 1 vertices (see e.g. [S4, §1.5]). It is well-known that w is an down-up permutation (equinumerous
with up-down/alternating permutations) if and only if T (w) is an increasing full binary tree [S4, Prop.
1.5.3]. See Figure 7 for an example. We conclude that the probability p that an increasing binary tree
is a full binary tree is given by p = E2n+1/(2n+ 1)!.

On the other hand, we have:

p =
∑

τ∈BT (n)

fτ

(2n+ 1)!
,

where fτ/(2n+ 1)! is the probability that a labelling of a full binary tree τ is increasing. By (8.5), the
result follows. �
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w = (6273514)

1
2

6 3

7 5

4
T (w)

Figure 7. The full binary tree corresponding to the alternating permutation w = (6273514).
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8

type B type D type B type D

Figure 8. Left: examples of the type B and type D hook of a cell (i, j) of λ of
lengths 9 (cell (3, 3) is counted twice) and 7 respectively. Right: the type B and D
hook-lengths of the cells of the shifted shape (5, 3, 1).

Remark 8.14. Note the similarities between (8.6) and (EC). They have the same RHS, both are
sums over the same number Cn of Catalan objects of products of n terms, and both are variations on
the (usual) (HLF) for other posets. As the next example shows, these equations are quite different.

Example 8.15. For n = 2 there are C2 = 2 full binary trees with 5 vertices and E5 = 16. By
Equation (8.6)

1

3 · 5 +
1

3 · 5 =
16

5!
.

On the other hand, for the two Dyck paths in Dyck(2), Equation (EC) gives

1

3 · 3 +
1

3 · 3 · 5 =
16

5!
.

8.5. Formula (EC) for other types. In this section λ and µ are partitions with distinct parts. We
consider shifted diagrams of shape λ and skew shape λ/µ and standard tableaux of shifted shape
λ/µ. Along with Theorem 1.2, Naruse also announced two formulas for the number gλ/µ of standard
tableaux of skew shifted shape λ/µ, in terms of type B and type D excited diagrams. These excited
diagrams are obtained from the diagram of µ by applying the following excited moves:

type B: and ; type D: and

.

We denote the set of type B (type D) excited diagrams of shifted skew shape λ/µ by EB(λ/µ)
(ED(λ/µ)). As in Section 3.2 or [MPP1, §3], type B excited diagrams of λ/µ are equivalent to
certain flagged tableaux of shifted shape µ and to certain non-intersecting paths (see Figure 9).

Given a shifted shape λ, the type B hook of a cell (i, i) in the diagonal is the cells in row i of λ. The
hook of a cell (i, j) for i ≤ j is the cells in row i right of (i, j), the cells in column j below (i, j), and if
(j, j) is one these cells below then the hook also includes the cells in the jth row of λ (overall counting
(j, j) twice). The type D hook is the usual shifted hook (e.g., see [Sag2, Ex. 3.21]) The hook-length
of (i, j) is the size of the hook of (i, j) and is denoted by hB(i, j) (hD(i, j)); see Figure 8.

The NHLF then extends verbatim.



26 ALEJANDRO MORALES, IGOR PAK, GRETA PANOVA

Theorem 8.16 (Naruse [Naru]). Let λ, µ be partitions with distinct parts, such that µ ⊂ λ. We have

gλ/µ = |λ/µ|!
∑

S∈EB(λ/µ)

∏
(i,j)∈[λ]\S

1

hB(i, j)
,(8.7)

= |λ/µ|!
∑

S∈ED(λ/µ)

∏
(i,j)∈[λ]\S

1

hD(i, j)
,(8.8)

where hB(i, j) and hD(i, j) are the shifted hook-lengths of type B and type D, respectively.

Example 8.17 (shifted thick zigzag strip). The shifted analogue of the staircase is the trapezoid
∇n = (2n− 1, 2n− 3, . . . , 1). The analogue of the thick strip is the shifted skew shape ∇n+k/∇n. The
number of type B excited diagrams of this shape has a product formula analogous to (8.1).

Proposition 8.18.

(8.9) |EB(∇n+k/∇n)| =
k∏
h=1

n∏
i=1

n∏
j=1

h+ i+ j − 1

h+ i+ j − 2
.

Proof. As in the standard shape case, the type B excited diagrams correspond to shifted flagged
tableaux of trapezoid shape ∇n with entries in row i ≤ i+ k. By subtracting i to all entries in row i
of such tableaux they are equivalent to plane partitions of trapezoid shape ∇n with entries ≤ k. By
a result of Proctor [Pro], recently proved bijectively in [HPPW], these are equinumerous with plane
partitions in a n × n × k box (see also [HW]). Thus, by MacMahon’s boxed plane partition formula
the result follows. �

In the case k = 1 we obtain |EB(∇n+1/∇n)| =
(

2n
n

)
(see Figure 9). When k = n, |EB(∇2n/∇n)|

counts the number of plane partitions that fit inside the n× n× n box (see e.g. [OEIS, A08793]).

The shape ∇n+1/∇n is a zigzag and so g∇n+1/∇n = E2n+1 (see Figure 9). Thus, as a corollary

of (8.7), we obtain a type B variant of the Euler-Catalan identity (EC). Let DyckB(n) be the set of
lattice paths p starting at (0, 0) with steps (1, 1) and (1,−1) of length 2n that stay on or above the

x-axis. Note that |DyckB(n)| =
(

2n
n

)
, sometimes called the type B Catalan number [OEIS, A000984].

Corollary 8.19.

(EC-B)
∑

p∈DyckB(n)

∏
(a,b)∈p

1

wt(a, b)
=

E2n+1

(2n+ 1)!
, where wt(a, b) =


2b+ 1 if a ≤ n,
2b+ 2 if n < a < 2n,

b+ 1 if a = 2n.

Example 8.20. Figure 9 shows the
(

4
2

)
excited diagrams of shape ∇3/∇2. By taking their comple-

ments and reflecting vertically, we obtain the paths in DyckB(2). Either using wt(a, b) on the paths
or the hook-lengths for the shape ∇3/∇2 (see Figure 8 right), (EC-B) gives

1

4 · 3 · 13
+

1

6 · 4 · 3 · 12
+

1

4 · 32 · 12
+

1

6 · 4 · 32 · 1 +
1

8 · 6 · 32 · 1 +
1

8 · 6 · 5 · 3 · 1 =
16

5!
.

Remark 8.21. The complements of type D excited diagrams of the shape ∇n+1/∇n are just the
Dyck paths in Dyck(n), thus |ED(∇n+1/∇n)| = Cn. In addition, one can see that (8.8) for ∇n+1/∇n
is just (EC). It would be of interest to find a formula for |ED(∇n+k/∇n)| similar to (8.9).

http://oeis.org/A008793
https://oeis.org/A000984
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Figure 9. Correspondence between type B excited diagrams in ∇3/∇2, paths in

DyckB(2) and flagged tableaux of shape ∇2 with flag (2, 3).

8.6. q-analogue of Euler numbers via SSYT. We use our first q-analogue of NHLF (Theorem 1.3)
to obtain identities for sδn+2k/δn(1, q, q2, . . .) in terms of Dyck paths.

Proof of Corollary 1.7. By Theorem 1.3 for the skew shape δn+2/δn and (8.2) we have

(8.10)
E2n+1(q)

(1− q)(1− q2) · · · (1− q2n+1)
=

∑
D∈E(δn+2/δn)

∏
(i,j)∈[δn+2]\D

qλ
′
j−i

1− qh(i,j)
.

Let D in E(δn+2/δn) corresponds to the Dyck path p and cell (i, j) in D corresponds to point (a, b) in
p then h(i, j) = 2b+ 1 and λ′j − i = b. Using this correspondence, the LHS of (8.10) becomes the LHS
of the desired expression. �

Corollary 8.22.

∑
(p1,...,pk)∈Dyck(n)k

noncrossing

k∏
r=1

∏
(a,b)∈pr

qb+2r−2

1− q2b+4r−3
=

(
k−1∏
r=1

[4r − 1]!!

)2

det
[
Ẽ2(n+i+j)−3(q)

]k
i,j=1

where Ẽn(q) := En(q)/(1− q)(1− q2) · · · (1− qn) and [2m− 1]!! := (1− q)(1− q3) · · · (1− q2m−1).

Proof. For the LHS, use Corollary 8.8 to express sδn+2k/δn(1, q, q2, . . .) in terms of q-Euler polynomials

Ẽm(q). For the RHS, first use Theorem 1.3 for the skew shape δn+2k/δn and then follow the same
argument as that of Corollary 8.12. �

Remark 8.23. Combinatorial proofs of Corollary 1.6 and Corollary 1.7 are obtained from the proof in
Section 5 of (NHLF). Similarly, combinatorial proofs of Corollary 8.12 and Corollary 8.22 are obtained
from the proof in Section 5 of (NHLF) and the first q-NHLF for all shapes, or from Konvalinka’s
bijective proof of (NHLF) in [Kon] and the first q-NHLF for border strips.2

9. Pleasant diagrams and RPP of border strips and thick strips

In this section we study pleasant diagrams in P(δn+2/δn) and our second q-analogue of NHLF (The-
orem 1.4) for RPP of shape δn+2/δn. Recall that p(λ/µ) denotes the number of pleasant diagrams of
shape λ/µ.

9.1. Pleasant diagrams and Schröder numbers. Let sn be the n-th Schröder number [OEIS,
A001003] which counts lattice paths from (0, 0) to (2n, 0) with steps (1, 1), (1,−1), and (2, 0) that
never go below the x-axis and no steps (2, 0) on the x-axis.

Theorem 9.1. We have: p(δn+2/δn) = 2n+2sn , for all n ≥ 1.

https://oeis.org/A001003
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27 26 26 25 26

Figure 10. Each Dyck path p of size n with m excited peaks (denoted in gray) yields
22n−m+2 pleasant diagrams. For n = 3, we have C5 = 5 and s3 = 11. Thus, there are
|E(δ3+2/δ3)| = C3 = 5 excited diagrams and p(δ3+2/δ3) = 25s3 = 352 pleasant
diagrams.

The proof is based on the following corollary which is in turn a direct application of Theorem 4.3.
A high peak of a Dyck path p is a peak of height strictly greater than one. We denote by HP(p) the
set of high peaks of p, and by NP(p) the points of the path that are not high peaks. We use 2S denote
the set of subsets of S.

Corollary 9.2. The pleasant diagrams in P(δn+2/δn) are in bijection with⋃
p∈Dyck(n)

(
HP(p)× 2NP(p)

)
.

Proof. By Corollary 8.4 for the zigzag strip δn+2/δn we have NI(δn+2/δn) is the set of Dyck paths
Dyck(n). Then by Theorem 4.3, we have:

P(δn+2/δn) =
⋃

p∈Dyck(n)

(
Λ(p)× 2p\Λ(p)

)
.

Lastly, note that the excited peaks of a Dyck path are exactly the high peaks so Λ(p) = HP(p) and
p \ Λ(p) = NP(p). �

Proof of Theorem 9.1. It is known (see [Deu]), that the number of Dyck paths of size n with k−1 high
peaks equals the Narayana number N(n, k) = 1

n

(
n
k

)(
n
k−1

)
. On the other hand, Schröder numbers sn

can be written as

(9.1) sn =

n∑
k=1

N(n, k)2k−1

(see e.g. [Sul]). By Lemma 9.2, we have:

(9.2) p(δn+2/δn) =
∑

p∈Dyck(n)

2|NP(p)| .

Suppose Dyck path γ has k − 1 peaks, 1 ≤ k ≤ n. Then |NP(γ)| = 2n + 1 − (k − 1). Therefore,
equation (9.2) becomes

p(δn+2/δn) = 2n+2
n∑
k=1

N(n, k)2n−k = 2n+2
n∑
k=1

N(n, n− k + 1)2n−k = 2n+2sn ,

where we use the symmetry N(n, k) = N(n, n− k + 1) and (9.1). �

In the same way as |E(δn+2k/δn)| is given by a determinant of Catalan numbers, preliminary com-
putations suggest that p(δn+2k/δn) is given by a determinant of Schröder numbers.

Conjecture 9.3. We have: p(δn+4/δn) = 22n+5(snsn+2 − s2
n+1). More generally, for all k ≥ 1, we

have:
p(δn+2k/δn) = 2(k2) det

[
sn−2+i+j

]k
i,j=1

, where sn = 2n+2sn .

2Jang Soo Kim has a direct proof of Corollary 1.7 using continued fractions and orthogonal polynomials (private

communication).
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Here we use sn = p(δn+2/δn) in place of sn in the determinant to make the formula more elegant.
In fact, the power of 2 can be factored out.

Remark 9.4. This conjecture is somewhat unexpected since different from excited diagrams, the num-
ber of pleasant diagrams does not appear to have a Lascoux–Pragacz-type identity (see Section 4.2).

9.2. q-analogue of Euler numbers via RPP. We use our second q-analogue of the NHLF (Theo-
rem 1.4) and Lemma 9.2 to obtain identities for the generating function of RPP of shape δn+2/δn in
terms of Dyck paths. Recall the definition of E∗n(q) from the introduction:

E∗n(q) =
∑

σ∈Alt(n)

qmaj(σ−1κ) ,

where κ = (13254 . . .). Note that maj(σκ) is the sum of the descents of σ ∈ Sn not involving both
2i+ 1 and 2i.

Example 9.5. To complement Example 8.6, we have: E∗1 (q) = E∗2 (q) = 1, E∗3 (q) = q + 1,
E∗4 (q) = q4 + q3 + q2 + q + 1, and E∗5 (q) = q7 + 2q6 + 2q5 + 3q4 + 3q3 + 2q2 + 2q + 1.

Proof of Corollary 1.8. By the theory of P -partitions, the generating series of RPP of shape δn+2/δn
equals ∑

π∈RPP(δn+2/δn)

q|π| =

∑
u∈L(Pδn+2/δn

) q
maj(u)

(1− q)(1− q2) · · · (1− q2n+1)
,

where the sum in the numerator is over linear extensions L(Pδn+2/δn) of the zigzag poset Pδn+2/δn

with a natural labelling. These linear extensions are in bijection with alternating permutations of size
2n+ 1 and

E∗2n+1(q) =
∑

σ∈Alt2n+1

qmaj(σ−1κ) =
∑

u∈L(Pδn+2/δn
)

qmaj(u) .

Thus

(9.3)
∑

π∈RPP(δn+2/δn)

q|π| =
E∗2n+1(q)

(1− q)(1− q2) · · · (1− q2n+1)
.

By Theorem 4.3 (see also [MPP1, S6.4]) for the skew shape δn+2/δn and (9.3), we have:

(9.4)
∑

D∈E(δn+2/δn)

qa
′(D)

∏
u∈[λ]\D

1

1− qh(u)
=

E∗2n+1(q)

(1− q)(1− q2) · · · (1− q2n+1)
,

where a′(D) =
∑
u∈Λ(D) h(u). By the proof of Lemma 9.2, if D ∈ E(δn+2/δn) corresponds to the Dyck

path p then excited peaks u ∈ Λ(D) correspond to high peaks (c, d) ∈ HP(p) and h(u) = 2d + 1.
Using this correspondence, the LHS of (9.4) becomes the LHS of the desired expression. �

Finally, preliminary computations suggest the following analogue of Corollary 8.8.

Conjecture 9.6. We have: ∑
π∈RPP(δn+2k/δn)

q|π| = q−N det
[
Ẽ∗2(n+i+j)−3(q)

]k
i,j=1

,

where N = k(k − 1)(6n+ 8k − 1)/6 and Ẽ∗k(q) = E∗k(q)/(1− q) · · · (1− qk) .
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10. Final remarks

10.1. Other known formulas for fλ/µ are the Jacobi–Trudi identity, the Littlewood–Richardson rule,
and the Okounkov–Olshanski formula [OO]. We discuss these and other less known formulas for fλ/µ

coming from equivariant Schubert structure constants in [MPP1, §9].
The Jacobi-Trudi identity is one of the first nontrivial formulas to count fλ/µ. In this paper we have

unveiled a strong relation between the Lascoux–Pragacz identity for Schur functions and the NHLF
for fλ/µ. As mentioned in Section 7.5, Hamel and Goulden [HaG] unified these two identities into
an exponential family of determinantal identities of Schur functions. Chen–Yan–Yang [CYY] gave a
method to transform among these identities. It would be of interest if other formulas for fλ/µ, like
the ones mentioned above, are related to special cases of Hamel–Goulden identities.

10.2. In [Kon], Konvalinka gives a new proof of the NHLF. Specifically, he presents a bumping
algorithm on bicolored flagged tableaux of shape µ to prove the Pieri–Chevalley formula for general
skew shapes (see [IN, §8.4] and [MPP2]). For the border strips this approach is different from our
proof of Lemma 6.1. In fact, our proof uses the underlying single path in the excited diagrams of a
border strip to perform cancelations. While Konvanlinka’s proof is substraction-free, it involves an
insertion on the inner partition µ that could be arbitrary even for a border strip.

It is worth noting that both proofs of Lemma 5.1 are quite technical. Initially, this came as a surprise
to us, and our effort to understand the underlying multivariate algebraic identities led to [MPP2]. Let
us also mention that in [IN], the authors use the Pieri–Chevalley formula for Kostant polynomials to
prove the analogue of Lemma 6.1 for all skew shapes.

10.3. There is a very large literature on alternating permutations, Euler numbers, Dyck paths, Cata-
lan and Schröder numbers, which are some of the classical combinatorial objects and sequences. We
refer to [S3] for the survey on the first two, to [S5] for a thorough treatment of the last three, and
to [GJ, OEIS, S4] for various generalizations, background and further references.

Finally, the first q-analogue En(q) of Euler numbers we consider is standard in the literature and
satisfies a number of natural properties, including a q-version of equation (1.1) (see e.g. [GJ, §4.2]).
However, the second q-analogue E∗n(q) appears to be new. It would be interesting to see how it fits with
the existing literature of multivariate Euler polynomials and statistics on alternating permutations.

10.4. The curious Catalan determinant in Corollary 8.3 appeared in the first arXiv version of [MPP1].
However, the proof here is more self contained as a direct application of Theorem 3.3. This Catalan
determinant is both similar and related3 to another Catalan determinant in [AL, proof of Lemma 1.1].
In fact, both determinants are special cases of more general counting results, and both can be proved
by the Lindström–Gessel–Viennot lemma.

10.5. The connection between alternating permutations and symmetric functions of border strips goes
back to Foulkes [Fou], and has been repeatedly generalized and explored ever since (see [S3]). It is
perhaps surprising that Corollary 1.6 is so simple, since the other two positive formulas in Section 10.1
become quite involved. For the LR-coefficients, let partition ν ` 2n+ 1 be such that ν1, `(ν) ≤ n+ 1.

It is easy to see that in this case the corresponding LR-coefficient is nonzero: c
δn+2

δn ν
> 0, suggesting

that summation over all such ν would can be hard to compute.

10.6. The proof in [MPP1] of the skew RPP q-analogue of Naruse (Theorem 1.4) is already bijective
using the Hillman–Grassl correspondence. It would be interesting to see if for RPP the case for border
strips implies the case for all connected skew shapes. Note that we do not know of a Lascoux–Pragacz
analogue of (5.7) for skew RPP. Such an identity might not exists since the number of pleasant diagrams
(the supports of arrays obtained from Hillman–Grassl applied to skew RPP) does not appear to have a
Lascoux–Pragacz type identity as discussed in Section 4.2. On the other hand, Conjecture 9.3 suggests
that there might be such a formula in some cases.

3The connection was found by T. Amdeberhan (personal communication).
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