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RECONSTRUCTING PARTITIONS FROM THEIR
MULTISETS OF k-MINORS

PAKAWUT JIRADILOK

Abstract. For non-negative integers n and k with n ≥ k, a k-minor of a
partition λ = [λ1, λ2, . . . ] of n is a partition µ = [µ1, µ2, . . . ] of n− k such

that µi ≤ λi for all i. The multiset M̂k(λ) of k-minors of λ is defined as
the multiset of k-minors µ with multiplicity of µ equal to the number of
standard Young tableaux of skew shape λ/µ. We show that there exists a
function G(n) such that the partitions of n can be reconstructed from their
multisets of k-minors if and only if k ≤ G(n). Furthermore, we prove that
limn→∞ G(n)/n = 1 with n−G(n) = O(n/ logn). As a direct consequence
of this result, the irreducible representations of the symmetric group Sn

can be reconstructed from their restrictions to Sn−k if and only if k ≤ G(n)
for the same function G(n). For a minor µ of the partition λ, we study
the excitation factor Eµ(λ), which appears as a crucial part in Naruse’s
Skew-Shape Hook Length Formula. We observe that certain excitation
factors of λ can be expressed as a Q[k]-linear combination of the elementary
symmetric polynomials of the hook lengths in the first row of λ where k = λ1

is the number of cells in the first row of λ.
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1. Introduction

Given non-negative integers n and k with n ≥ k, a k-minor of a partition
λ = [λ1, λ2, . . . ] of n is a partition µ = [µ1, µ2, . . . ] of n− k such that µi ≤ λi

for all i. For each partition λ of n, the multiset M̂k(λ) of k-minors of λ is
1
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2 PAKAWUT JIRADILOK

defined as the multiset of k-minors µ of λ with multiplicity of µ equal to the
number N(λ/µ) of standard Young tableaux of skew shape λ/µ. This paper
considers the question of whether all the partitions of n can be reconstructed
from their multisets of k-minors for each given (n, k). When the reconstruction
is possible, we shall say that multiset-reconstructibility (MRC) holds for the
pair (n, k). We prove that there exists a function G(n) such that MRC holds
for (n, k) if and only if k ≤ G(n). In Theorem 5.1, we show that

lim
n→∞

G(n)

n
= 1

with n−G(n) = O(n/ logn).
This partition multiset-reconstruction problem is a natural variant to the

partition reconstruction problem. Instead of the multiset M̂k(λ), if we ignore
the multiplicities, we obtain the set of k-minors Mk(λ) of λ. The partition
reconstruction problem asks for which (n, k) the partitions of n can be recon-
structed from their sets of k-minors. For such a pair (n, k), we say that recon-
structibility (RC) holds. This problem was studied by Pretzel and Siemons
[12], Vatter [18], and Monks [6]. In 2009, Monks gave an explicit solution to
this problem: RC holds for (n, k) if and only if k ≤ g(n) for an explicitly
described number-theoretic function g(n) with

√
n+ 2− 2 ≤ g(n) ≤

√
n+ 2 + 3 4

√
n+ 2.

Observe that Monks’ function g(n) satisfies the asymptotic property g(n) ∼√
n as n → ∞. For multiset-reconstructibility, our function G(n) is analogous

to Monks’ function g(n) in the sense that both are the threshold values of k for
which reconstructibility holds. Nevertheless, by adding the data of multiplic-
ities to Mk(λ), we find that the analogous function G(n) grows significantly
faster than g(n) does, as G(n) ∼ n.

The partition multiset-reconstruction problem arises naturally in the repre-
sentation theory of the symmetric group. Each partition λ of n corresponds
to the irreducible representation Vλ of the symmetric group Sn. (See for ex-

ample, [3, 5, 14, 16].) The data of the multiset M̂k(λ) is precisely the data
of decomposition of the representation Vλ when we restrict Sn to the Young
subgroup Sn−k × S1 × S1 × · · · × S1 ⊆ Sn. By restricting Sn to Sn−k, we
obtain a representation Vλ of Sn−k from the representation Vλ of Sn. This
new representation is, in general, not irreducible. Repeated applications of
the Littlewood-Richardson rule show that Vλ decomposes as a direct sum of
irreducible representations of n− k:

Vλ
∼=

⊕

µ⊢(n−k)

V ⊕N(λ/µ)
µ .

From this point of view, the partition multiset-reconstruction problem asks
whether the decomposition on the right hand side of the above equation is
sufficient for recovering the original irreducible representation Vλ, for each
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(n, k). Our result implies that the irreducible representations of Sn can be
reconstructed from their restrictions to Sn−k if and only if k ≤ G(n) for a
function G with limn→∞G(n)/n = 1.

A convenient tool we use in our work is Naruse’s Skew-Shaped Hook Length
Formula from a work of Naruse’s [8] in 2014. Whereas the renowned Hook
Length Formula expresses the number N(λ) of Standard Young Tableaux
(SYT) of straight shape λ via the product of hook lengths in λ, Naruse’s
formula expresses the number N(λ/µ) of Standard Young Tableaux (SYT) of
skew shape λ/µ via the sum of the products of hook lengths in what Naruse
calls the excited diagrams of µ in λ. We call this sum the excitation factor of
µ in λ and show in Theorem 4.2 that when µ = [m] is a partition of one part
of size m, the excitation factor Eµ(λ) can be expressed as a Q[k]-linear com-
bination of elementary symmetric polynomials σi(a1, . . . , ak), where a1, . . . , ak
are the hook lengths in the first row of λ. We also give an explicit formula for
the coefficients of σi in Eµ(λ). Interested readers can find more details about
Naruse’s Skew Shape Hook Length Formula in [7, 8].

The formula in Theorem 4.2 allows us to prove Theorem 4.1. The lat-
ter theorem serves as a technique for recovering a partition, which we call
the “SONAR” technique. Our main result, Theorem 5.1, is proved by using
SONAR to give a lower bound to G(n).

Section 6 is devoted to explicit calculations and upper bounds for the func-
tion G(n). In Propositions 6.3 and 6.5, we prove that n − G(n) = 2 if
and only if 2 ≤ n ≤ 11 or n = 13, and that n − G(n) = 3 if and only if
n ∈ {12, 14, 17, 18, 23}. We give some computational results for known values
of G(n).

In the final section, we suggest a few open questions and ideas related to
multiset-reconstructibility of partitions which give directions for further inves-
tigation.

2. Notations and Definitions

This section is devoted to providing the basic notations and definitions we
use throughout the paper. The set of all positive integers is denoted Z>0, while
the set of all non-negative integers is denoted Z≥0. In this paper, the notation
log denotes the natural logarithm function.

For each polynomial P (X) ∈ C[X ] (or a generating function P (X) ∈ C[[X ]])
and an integer i ∈ Z≥0, we use the notation [P (X)]Xi to denote the coefficient
of X i in P (X).

Definition 2.1. A partition λ of n ∈ Z≥0 is an array λ = [λ1, λ2, . . . ] of
non-negative integers with λ1 ≥ λ2 ≥ · · · such that

∑∞

i=1 λi = n. We call n
the size of λ and write |λ| = n. We also use the notation λ ⊢ n to mean that

λ is a partition of n.
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Figure 1. The partition [4, 1] is a 4-minor of the partition [4, 3, 2].

We usually truncate the zeroes in the partition notation, so that the notation
[λ1, λ2, . . . , λm] refers to the partition [λ1, λ2, . . . , λm, 0, 0, 0, . . . ].

It is useful to think of partitions as Young diagrams. A Young diagram

corresponding to the partition λ ⊢ n is a collection of n cells, arranged in the
left-justified manner, with exactly λi cells on the i-th row. The number of cells
in the j-th column is therefore #{i : λi ≥ j}.
Definition 2.2. Let λ be a partition of a non-negative integer n. The conju-
gate λt of λ is a partition of n whose number (λt)i of cells in the i-th row is

the number of cells in the i-th column of λ, for every positive integer i.
A partition λ is called self-conjugate if λ = λt.

Definition 2.3. Let n and k be non-negative integers with n ≥ k. Let λ =
[λ1, λ2, . . . ] be a partition of n. A k-minor µ of λ is a partition µ = [µ1, µ2, . . . ]
of the non-negative integer n−k such that µi ≤ λi for all i. We use the notation

µ ≤ λ to mean that µ is a minor of λ.

For example, the partition [4, 1] is a 4-minor of the partition [4, 3, 2]. We
can see this relationship in Figure 1.

For a given partition λ of a positive integer n, we write M̂k(λ) to denote
the multiset of k-minors of λ with multiplicity of each k-minor µ equal to the
number of standard Young tableaux of skew shape λ/µ.

For a partition λ, the number of standard Young tableaux of shape λ is
denoted by N(λ). For partitions µ and λ with µ ≤ λ, the number of standard
Young tableaux of skew shape λ/µ is denoted by N(λ/µ). By convention, if µ
is not a minor of λ, then N(λ/µ) = 0. Also, by convention, N([0]) = 1 where
[0] is the empty partition. For example, the 4-minor [4, 1] in the multiset

M̂4([4, 3, 2]) has multiplicity 5, because there are exactly five standard Young
tableaux of skew shape [4, 3, 2]/[4, 1] as shown in Figure 2.

This paper focuses on the partition multiset-reconstructibility (MRC) Prob-
lem, which we state below.

Multiset-Reconstructibility (MRC) Problem. For which pair (n, k)

of non-negative integers with n ≥ k does M̂k(µ) = M̂k(ν) imply µ = ν for all

partitions µ and ν of n?
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Figure 2. The five standard Young tableaux of skew shape [4, 3, 2]/[4, 1].

When multiset-reconstructibility (MRC) is possible for (n, k), we say that
MRC holds for (n, k).

Let µ and ν be partitions of a non-negative integer n. By definition, M̂k(µ) =

M̂k(ν) means N(µ/τ) = N(ν/τ) for all partitions τ of n− k.

Proposition 2.4. Let n ≥ k′ > k be non-negative integers. Let µ and ν be

partitions of n such that M̂k(µ) = M̂k(ν). Then, M̂k′(µ) = M̂k′(ν).

Proof. For each partition π of any positive integer, let Add(π) denote the set
of all partitions which have π as a 1-minor. Let σ be any partition of n−k−1.
We then have

N(µ/σ) =
∑

τ∈Add(σ)

N(µ/τ) =
∑

τ∈Add(σ)

N(ν/τ) = N(ν/σ).

Therefore, M̂k+1(µ) = M̂k+1(ν) and by iteration we have M̂k′(µ) = M̂k′(ν). �

The existence of the function G(n) is justified by the following corollary of
Proposition 2.4.

Corollary 2.5. There exists a function G(n) with the property that MRC holds

for (n, k) if and only if k ≤ G(n).

Proof. Let n, k, and k′ be non-negative integers with n ≥ k′ > k. Suppose
that MRC fails for (n, k). Then, there are two different partitions µ and ν of

n for which M̂k(µ) = M̂k(ν). Proposition 2.4 implies that MRC also fails for
(n, k′) for every n ≥ k′ > k.

MRC trivially holds when k = 0 for every non-negative integer n. Therefore,
we can define G(n) to be the maximum integer k ≤ n for which MRC holds for
(n, k). The argument above shows that MRC holds if and only if k ≤ G(n). �
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7→

Figure 3. A local excitation move.

3. Skew-Shape Hook Length Formula

The famous hook length formula, which was discovered by Frame, Robinson,
and Thrall [2] in 1954, states that, for every partition λ of a non-negative
integer n, the number of Standard Young Tableaux of shape λ is

N(λ) =
n!

Hλ

where Hλ is the product of the hook lengths in λ.
In 2014, Naruse [8] generalizes this formula to skew shapes. For partitions

µ and λ with µ ≤ λ, Naruse’s Skew-Shape Hook Length Formula expresses
N(λ/µ) via the sum of the products of hook lengths in the excited diagrams
of µ in λ. We will describe this formula in the following.

Let µ be a minor of λ. We use the matrix notation for labeling the cells,
so that the cell (i, j) in the Young diagram of λ refers to the cell in the i-th
row and the j-th column. Thus, the cells that appear in the Young diagram
of λ are labeled by (i, j) such that j ≤ λi. Considering the Young diagram of
µ inside the Young diagram of λ, we place a pebble in each of the cells inside
the Young diagram of µ. A local excitation move is defined as the operation
of moving a pebble in the cell (i, j) to (i+ 1, j + 1), if initially the three cells
(i, j+1), (i+1, j), and (i+1, j+1) are all unoccupied, and the cell (i+1, j+1)
is still inside λ. (See Figure 3.)

An excited diagram of µ in λ is defined to be the cells of the Young diagram
of λ that are occupied by the pebbles after a sequence of local excitation moves.
The collection of all excited diagrams of µ in λ is denoted Eµ(λ).

For each cell (i, j) inside the Young diagram of λ, let hi,j denote the hook
length of the cell (i, j) inside λ. We define the excitation factor of µ in λ,
denoted Eµ(λ), as

Eµ(λ) :=
∑

ε∈Eµ(λ)

∏

(i,j)∈ε

hi,j .

In other words, Eµ(λ) is the sum of the products of hook lengths of cells in
the excited diagrams of µ in λ. When µ = [k] is a partition of one part, we
also write Ek(λ) instead of E[k](λ) for convenience.

Example 3.1. Suppose that λ = [4, 3, 3] and µ = [2]. There are three excited
diagrams of µ in λ, labeled as ε1, ε2, and ε3 in Figure 4. The products of hook
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ε1 ε2 ε3

Figure 4. The three excited diagrams of [2] in [4, 3, 3]

lengths of cells in ε1, ε2, and ε3 are 6 × 5 = 30, 6 × 2 = 12, and 3 × 2 = 6,
respectively. Therefore,

E2([4, 3, 3]) = 30 + 12 + 6 = 48.

Remark 3.2. By convention, for every partition λ, we have E0(λ) = 1. This is
because E[0](λ) has exactly one element, which is the empty excited diagram
∅ inside λ. The product of hook lengths in ∅ is an empty product, which is
1, and therefore, E0(λ) = 1.

Having defined the excitation factors, we give Naruse’s Skew-Shape Hook
Length Formula as follows.

Theorem 3.3. (Skew-Shape Hook Length Formula; Naruse [8], 2014) Let m
and n be non-negative integers with m ≤ n. Let µ ⊢ m and λ ⊢ n be partitions

such that µ ≤ λ. Then, the number of Standard Young Tableaux of skew shape

λ/µ is given by

N(λ/µ) =
(n−m)!

n!
·N(λ) ·Eµ(λ).

For the case in which µ = [m] is a partition with one part, the next corollary
follows immediately from Naruse’s formula.

Corollary 3.4. Let m and n be non-negative integers with m ≤ n and let λ
be a partition of n. Then,

N(λ/[m]) =
(n−m)!

n!
·N(λ) ·

∑

i1≤···≤im

hi1,i1 · hi2,i2+1 · · · · · him,im+m−1

︸ ︷︷ ︸
=Em(λ)

where hi,j is the hook length of the cell (i, j) in λ, and the sum calculates over

all (i1, . . . , im) for which (it, it + t− 1) is in λ for all t = 1, 2, . . . , m. If m is

greater than λ1, then by convention, N(λ/[m]) = 0 and Em(λ) = 0.

We note that even in the case as simple as µ = [m], the above formula
for the excitation factor Em(λ) is complicated and depends heavily upon the
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Figure 5. SONAR technique

shape of λ. In the next section, we will explore the excitation factor Em(λ) in
more detail, and give an alternative expression for it.

4. The SONAR Technique

We first consider the following question. Suppose that the partition λ is
initially unknown. If the excitation factors Em(λ) are known for all non-
negative integers m, can we recover the partition λ? That is, can the sequence
{Em(λ)}∞m=0 recover λ?

We refer to this method of recovery of the partition λ as the “SONAR”
technique. Suppose we imagine the partition λ as an ocean whose exact shape
we would like to determine. We can remove m leftmost cells on the top row of
λ to obtain information of Em(λ) for all m ≥ 0. Imagine this as a boat on the
surface of the ocean λ that can take out as many cells on the surface from the
upper-left corner of λ as it wishes, but cannot go deeper than that. (See Figure
5.) Can the boat retrieve the whole topography of the ocean λ? The name
SONAR comes from the similarity of this technique to the actual SONAR
technique in oceanography, by which a boat on the surface can retrieve the
whole topography of the ocean without having to go deeper than the surface.

In this section, we prove that the SONAR technique always works. We state
this as the following theorem.

Theorem 4.1 (SONAR Technique). Let λ be a partition. Then, the sequence

{Em(λ)}∞m=0 uniquely determines λ.

Our proof of Theorem 4.1 uses the following theorem.



RECONSTRUCTING PARTITIONS FROM THEIR MULTISETS OF k-MINORS 9

Theorem 4.2. Let λ be a partition of a positive integer n. Suppose that the

hook lengths in the first row of λ are a1 > a2 > · · · > ak where k = λ1. Then,

for every non-negative integer m, we have

Em(λ) =
m∑

i=0

(
k − i

m− i

)
Sm−i(m− k − 1) · σi(a1, a2, . . . , ak),

where σi(a1, a2, . . . , ak) =
∑

1≤ι1<ι2<···<ιi≤k aι1aι2 · · ·aιi is the i-th elementary

symmetric polynomial in the variables a1, . . . , ak, with σ0 = 1 by convention,

and Sj is the j-th Stirling polynomial.

Theorem 4.2 expresses the excitation factor Em(λ) as an explicit Q[k]-linear
combination of σi(a1, a2, . . . , ak). The goal of this section is to prove Theorem
4.2, and then uses it to prove Theorem 4.1. The proof of Theorem 4.2 requires
algebraic identities of the Stirling polynomials Sj. We will spend the following
part establishing these identities which we will need later.

4.1. The Stirling Polynomials. The Stirling polynomials are well-studied
objects in Algebraic Combinatorics with many equivalent definitions. (See for
example, [1, 13, 15].) For our purpose, we will use the following definition,
which links the Stirling polynomials Sj to the coefficients of the polynomial
of the form (X + 1)(X + 2) · · · (X + ℓ) for a positive integer ℓ. For each non-
negative integer j ≥ 0, we define Sj(x) ∈ Q[x] to be the polynomial such that
for every positive integer ℓ, the equation(

ℓ

j

)
Sj(ℓ) = σj(ℓ, . . . , 1)

holds. Let cj(x) denote the polynomial
(
x
j

)
Sj(x) ∈ Q[x]. With this notation,

the formula in Theorem 4.2 can be written as

Em(λ) =

m∑

i=0

(−1)m−icm−i(m− k − 1) · σi(a1, a2, . . . , ak).

The first few Stirling polynomials can be calculated explicitly as follows:

• S0(x) = 1,
• S1(x) =

1
2
(x+ 1),

• S2(x) =
1
12
(x+ 1)(3x+ 2),

• S3(x) =
1
8
x(x+ 1)2, and

• S4(x) =
1

240
(x+ 1)(15x3 + 15x2 − 10x− 8).

In the proof of Theorem 4.2, we will work with the elementary symmetric
polynomials of lists of real numbers. In particular, we will be interested in how
the value of σk, for each k, changes when we transform the list in certain ways.
In the following lemma, we will see that when we add the positive integers
ℓ, ℓ − 1, . . . , 1 to a list of real numbers, the value of σk of the new list can
be described as a linear combination of the values of σj of the old list with
coefficients in the form of the Stirling polynomials.
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Lemma 4.3. Let k, ℓ, N ∈ Z≥0, and x1, . . . , xN ∈ R. Then,

σk(x1, x2, . . . , xN , ℓ, ℓ− 1, . . . , 1) =
k∑

j=0

(
ℓ

k − j

)
Sk−j(ℓ) · σj(x1, . . . , xN ).

Proof. The quantity σk(x1, . . . , xN , ℓ, . . . , 1) is the sum of the products of k
elements from x1, . . . , xN , ℓ, . . . , 1. We can write this sum as

σk(x1, . . . , xN , ℓ, . . . , 1) = A0 + A1 + · · ·+ Ak

where Aj is the sum of the products of k elements from x1, . . . , xN , ℓ, . . . , 1
with exactly j multiplicands from x1, . . . , xN and exactly k − j multiplicands
from ℓ, . . . , 1. Thus,

Aj = σj(x1, . . . , xN) · σk−j(ℓ, . . . , 1) =

(
ℓ

k − j

)
Sk−j(ℓ) · σj(x1, . . . , xN ).

Summing Aj for j = 0, 1, . . . , k yields the desired result. �

If we add a real number to every entry of a list, the value σk is changed as
follows.

Lemma 4.4. Let k,N ∈ Z≥0, and x1, . . . , xN , d ∈ R. Then,

σk(x1 + d, x2 + d, . . . , xN + d) =

k∑

j=0

(
N − j

k − j

)
· dk−j · σj(x1, . . . , xN ).

Proof. Recall that for P (X) ∈ C[X ], we use the notation [P (X)]Xi to denote
the coefficient of X i of P (X). We have

σk(x1 + d, . . . , xN + d) = [(X + (x1 + d)) · · · (X + (xN + d))]XN−k

= [((X + d) + x1) · · · ((X + d) + xN )]XN−k

=

[
N∑

j=0

(X + d)N−jσj(x1, . . . , xN )

]

XN−k

=
k∑

j=0

(
N − j

k − j

)
dk−jσj(x1, . . . , xN ).

Note that in the final equality, we changed the upper limit of the sum from N
to k. This is valid because, for j > k, there does not exist an XN−k-term in
(X + d)N−j. �

Next, we will prove a general lemma about polynomials.

Lemma 4.5. Let B1, B2, B3 be integers. Suppose that the bivariate polynomial

P (X, Y ) ∈ C[X, Y ] satisfies P (x, y) = 0 for all (x, y) ∈ Z×Z such that x ≤ B1,

y ≥ B2, and x+ y ≤ B3. Then, P is the zero polynomial in C[X, Y ].
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Proof. If P is not identically zero, write the polynomial P (X, Y ) as

P (X, Y ) = pk(Y ) ·Xk + pk−1(Y ) ·Xk−1 + · · ·+ p0(Y )

where pi(Y ) ∈ C[Y ] and k is the X-degree of P .
For each fixed y0 ∈ Z≥B2

, we have that P (x, y0) = 0 for all integers x ≤
min{B1, B3 − y0}. Therefore, P (X, y0) ∈ C[X ] has infinitely many zeros,
and so P (X, y0) must be identically zero in C[X ]. This shows that pk(y0) =
pk−1(y0) = · · · = p0(y0) = 0 for each y0 ∈ Z≥B2

. Now, by varying y0, each
pi also has infinitely many zeros, and therefore, pi is identically zero for each
i = 0, 1, . . . , k. Thus, P must be the zero polynomial. �

In the following, we present an important lemma about the Stirling polyno-
mials.

Lemma 4.6. Let M ∈ Z≥0 and q, r ∈ Z. Then,

M∑

i=0

(
q + r − i− 1

M − i

)(
q − 1

i

)
SM−i(M − q − r)Si(q − 1)

=

M∑

i=0

(−1)i
(
r − i− 1

M − i

)(
r − 1

i

)
SM−i(M − r)qi

Proof. For each fixed M ∈ Z≥0, we will prove the identity for (q, r) ∈ Z × Z
such that r ≤ 0, q ≥ 2, and r+ q ≤ M − 1. The result will be sufficient for us
to conclude that the identity is true for all (q, r) ∈ Z× Z by Lemma 4.5.

For these choices of (q, r), we have M −q−r ≥ 1, q−1 ≥ 1, and M −r > 0.
We note that the left-hand-side of the above equation is

M∑

i=0

(
q + r − i− 1

M − i

)(
q − 1

i

)
SM−i(M − q − r)Si(q − 1)

=
M∑

i=0

(−1)M−i

(
M − q − r

M − i

)
SM−i(M − q − r) ·

(
q − 1

i

)
Si(q − 1)

=

M∑

i=0

(−1)M−i · σM−i(1, 2, . . . ,M − q − r) · σi(1, . . . , q − 1)

=
M∑

i=0

σM−i(−(M − q − r),−(M − q − r) + 1, . . . ,−1) · σi(1, . . . , q − 1)

= σM(−(M − q − r),−(M − q − r) + 1, . . . ,−1, 0, 1, . . . , q − 1).

The last equality is due to the double-counting argument which computes
∑

−(M−q−r)≤α1<···<αM≤q−1

α1 · · · · · αM
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in two ways. The first way is to consider how many of the αj ’s are positive,
and add up the sums from the different cases, while the second way is directly
by the definition of σM .

Next, we apply Lemma 4.4 to the quantity above to obtain the following.

σM(−(M − q − r),−(M − q − r) + 1, . . . ,−1, 0, 1, . . . , q − 1)

= (−1)M · σM (1− q, 2− q, . . . , (M − r)− q)

(Lemma 4.4)
= (−1)M ·

M∑

i=0

(
M − r − i

M − i

)
(−q)M−i · σi(1, . . . ,M − r)

= (−1)M ·
M∑

i=0

(
i− r

i

)
(−q)iσM−i(1, . . . ,M − r)

=

M∑

i=0

(−1)i
(
r − i− 1

M − i

)(
r − 1

i

)
SM−i(M − r)qi.

The second-to-last equality above is obtained by reindexing i ↔ M − i in the
sum. The last equality is due to the fact that

(−1)i
(
i− r

i

)
=

(
r − 1

i

)
and (−1)M−i

(
M − r

M − i

)
=

(
r − i− 1

M − i

)

for 0 ≤ i ≤ M . These equations hold even when r is not positive. We have
finished the proof of the lemma. �

A special case of Lemma 4.6 gives a particularly nice result.

Corollary 4.7. Let m ∈ Z≥0 and k ∈ Z. Then,
m∑

i=0

(
m

i

)
Sm−i(m− k − 1)Si(k) = m!

Proof. By substituting M 7→ m, q 7→ k + 1, and r 7→ 0 in Lemma 4.6, we
obtain

m∑

i=0

(
k − i

m− i

)(
k

i

)
Sm−i(m− k − 1)Si(k) =

m∑

i=0

(−1)i
(−i− 1

m− i

)(−1

i

)
Sm−i(m)(k + 1)i.

Therefore,
(
k

m

)
·

m∑

i=0

(
m

i

)
Sm−i(m− k − 1)Si(k) =

m∑

i=0

(−1)m−iσm−i(m,m− 1, . . . , 1) · (k + 1)i.

Note that the right hand side is precisely the expansion of

((k + 1)− 1)((k + 1)− 2) · · · ((k + 1)−m) =

(
k

m

)
·m!.

Hence, (
k

m

)
·

m∑

i=0

(
m

i

)
Sm−i(m− k − 1)Si(k) =

(
k

m

)
·m!.



RECONSTRUCTING PARTITIONS FROM THEIR MULTISETS OF k-MINORS 13

. . . . . .

. . .
...

a1 a2 ap ℓ ℓ− 1 1

Figure 6. Diagram for the hook lengths of λ in the proof of
Theorem 4.2

The equation above is true for every integer k. Therefore, for a fixed m, the
equation is an equality of polynomials in k, and so we may cancel

(
k
m

)
from

both sides to obtain
m∑

i=0

(
m

i

)
Sm−i(m− k − 1)Si(k) = m!

as desired. �

4.2. Recovering Partitions. After having established a few algebraic identi-
ties, we will prove that the SONAR technique can always recover the partition.
In the following, we will prove Theorem 4.2, which we restate here.

Theorem 4.2. Let λ be a partition of a positive integer n. Suppose that the

hook lengths in the first row of λ are a1 > a2 > · · · > ak where k = λ1. Then,

for every non-negative integer m, we have

Em(λ) =
m∑

i=0

(
k − i

m− i

)
Sm−i(m− k − 1) · σi(a1, a2, . . . , ak),

where σi(a1, a2, . . . , ak) =
∑

1≤ι1<ι2<···<ιi≤k aι1aι2 · · ·aιi is the i-th elementary

symmetric polynomial in the variables a1, . . . , ak, with σ0 = 1 by convention,

and Sj is the j-th Stirling polynomial.

Proof of Theorem 4.2. We proceed by strong induction on k, which is the num-
ber of cells in the first row of λ. For the base step when k = 1, the partition
λ is a column partition

λ = [ 1, 1, . . . , 1︸ ︷︷ ︸
a1 copies of 1’s

].
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In this case, for m = 0, E0(λ) = 1 =
(
1
0

)
S0(−2)σ0(a1). For m = 1, we have

E1(λ) = a1 and the right-hand-side sum is
(
1

1

)
S1(−1)σ0(a1) +

(
0

0

)
S0(−1)σ1(a1) = a1.

For m ≥ 2, which is greater than k, we expect Em(λ) to be zero. We will
show that the formula works in this case as well. Since k = 1, the term
σi(a1, . . . , ak) = σi(a1) vanishes for all i ≥ 2. Thus, the right hand side equals

(
1

m

)
Sm(m− 2)σ0(a1) +

(
0

m− 1

)
Sm−1(m− 2)σ1(a1),

which is zero as we expected. Therefore, the claim is true for the base step.
For the inductive step, suppose that λ1 = p + ℓ and λ2 = p where p and ℓ

are non-negative integers. (See Figure 6.) In this case, k = p + ℓ. First, we
consider the case in which p = 0, which is when λ is a partition of one part,
λ = [ℓ] = [k]. In this case, for each integer m ≥ 0, we obtain

Em(λ) = k(k − 1) · · · (k −m+ 1) =

(
k

m

)
·m!.

The right-hand-side expression is
m∑

i=0

(
k − i

m− i

)
Sm−i(m− k − 1)σi(k, k − 1, . . . , 1) =

(
k

m

)
·

m∑

i=0

(
m

i

)
Sm−i(m− k − 1)Si(k)

which is precisely
(
k
m

)
·m! by Corollary 4.7.

From now on, suppose p ≥ 1. Let λ̃ denote the partition obtained by

removing the first (leftmost) column from λ and let λ̂ denote the partition

obtained by removing the first (uppermost) row from λ̃. We note that the

hook lengths of the first row of λ̃ are a2, a3, . . . , ap, ℓ, ℓ − 1, . . . , 1. The hook

lengths of the first row of λ̂ are a2− (ℓ+1), a3− (ℓ+1), . . . , ap− (ℓ+1). (The
latter list is empty when p = 1.)

By Corollary 3.4, the quantity Em(λ) is the sum of the products of m hook
lengths of the form

hi1,i1 · hi2,i2+1 · · · · · him,im+(m−1)

where each hi,j is the hook length in λ of the (i, j)-cell. We can split the
summands of this sum into two groups: the first with hi1,i1 = h1,1 = a1,
and the second with hi1,i1 6= h1,1. In the first case, the rest of the product
hi2,i2+1 · · · · ·him,im+(m−1) is actually the product of hook lengths in an excited

diagram of [m−1] inside λ̃. In the second case, the product itself is the product

of hook lengths in an excited diagram of [m] inside λ̂. This gives the following
recursion:

Em(λ) = a1 ·Em−1(λ̃) + Em(λ̂).
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Note that the numbers of cells in the first rows of λ̃ and λ̂ are k − 1 and
k − ℓ − 1, respectively, which are both less than k. Thus, we may use the

induction hypothesis for Em−1(λ̃) and Em(λ̂).
Hence,

Em(λ) = a1 ·
m−1∑

i=0

(
p+ ℓ− 1− i

m− 1− i

)
Sm−1−i(m− 1− (p+ ℓ− 1)− 1)σi(a2, . . . , ap, ℓ, . . . , 1)

+

m∑

i=0

(
p− 1− i

m− i

)
Sm−i(m− (p− 1)− 1)σi(a2 − (ℓ+ 1), . . . , ap − (ℓ + 1))

=

m−1∑

i=0

(
p+ ℓ− 1− i

m− 1− i

)
Sm−1−i(m− p− ℓ− 1)

· (σi+1(a1, . . . , ap, ℓ, . . . , 1)− σi+1(a2, . . . , ap, ℓ, . . . , 1))

+

m∑

i=0

(
p− 1− i

m− i

)
Sm−i(m− p)σi(a2 − (ℓ+ 1), . . . , ap − (ℓ + 1))

=

m∑

i=0

(
p+ ℓ− i

m− i

)
Sm−i(m− p− ℓ− 1) · (σi(a1, . . . , ap, ℓ, . . . , 1)− σi(a2, . . . , ap, ℓ, . . . , 1))

+
m∑

i=0

(
p− 1− i

m− i

)
Sm−i(m− p) · σi(a2 − (ℓ+ 1), . . . , ap − (ℓ + 1)).

The last equality is obtained simply by an index shift of i. We now have

Em(λ) =

[
m∑

i=0

(
p+ ℓ− i

m− i

)
Sm−i(m− (p+ ℓ)− 1) · σi(a1, . . . , ap, ℓ, . . . , 1)

]

−
[

m∑

i=0

(
p+ ℓ− i

m− i

)
Sm−i(m− p− ℓ− 1) · σi(a2, . . . , ap, ℓ, . . . , 1)

]

+

[
m∑

i=0

(
p− 1− i

m− i

)
Sm−i(m− p) · σi(a2 − (ℓ+ 1), . . . , ap − (ℓ+ 1))

]
.

Note that the first term on the right hand side is precisely what we want to
equal to Em(λ). Therefore, it suffices to prove the equality

[
m∑

i=0

(
p + ℓ− i

m− i

)
Sm−i(m− p− ℓ− 1) · σi(a2, . . . , ap, ℓ, . . . , 1)

]
(△)

=

[
m∑

i=0

(
p− 1− i

m− i

)
Sm−i(m− p) · σi(a2 − (ℓ+ 1), . . . , ap − (ℓ+ 1))

]
.

Fortunately, we have done the difficult algebraic work in Section 4.1. To
show the equality (△), we only need to apply lemmas we proved earlier to
transform the left hand side LHS(△) to the right hand side RHS(△). To start
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with, Lemma 4.3 gives LHS(△) =

m∑

j=0

[
σj(a2, . . . , ap) ·

(
m∑

i=j

(
p+ ℓ− i

m− i

)(
ℓ

i− j

)
Sm−i(m− p− ℓ− 1)Si−j(ℓ)

)]
.

Lemma 4.4 gives RHS(△) =

m∑

j=0


σj(a2, . . . , ap) ·




m∑

i=j

(−1)i−j

(
p− 1− i

m− i

)(
p− 1− j

i− j

)
Sm−i(m− p) · (ℓ + 1)i−j




 .

It suffices to show that, for each 0 ≤ j ≤ m,
m∑

i=j

(
p+ ℓ− i

m− i

)(
ℓ

i− j

)
Sm−i(m− p− ℓ− 1)Si−j(ℓ)

=
m∑

i=j

(−1)i−j

(
p− 1− i

m− i

)(
p− 1− j

i− j

)
Sm−i(m− p) · (ℓ+ 1)i−j .

By shifting indices (i 7→ i+ j), the equation above is equivalent to

m−j∑

i=0

(
p+ ℓ− i− j

m− i− j

)(
ℓ

i

)
Sm−i−j(m− p− ℓ− 1)Si(ℓ)

=

m−j∑

i=0

(−1)i
(
p− 1− i− j

m− i− j

)(
p− 1− j

i

)
Sm−i−j(m− p)(ℓ+ 1)i.

We can see that the last equation is true by substituting M 7→ m − j ≥ 0,
q 7→ ℓ + 1, and r 7→ p− j in Lemma 4.6. We have finished the induction and
hence completed the proof of the theorem. �

Remark 4.8. Aaron Pixton [11] observed that the formula in Theorem 4.2 can
be rewritten as

Em(λ) =

[
(1 + a1X) · · · (1 + akX)

(1 +X)(1 + 2X) · · · (1 + (k −m)X)

]

Xm

.

Also,

E[
1, 1, . . . , 1︸ ︷︷ ︸

m

](λ) =
[
(1−X)(1− 2X) · · · (1− (k +m− 2)X)

(1− a1X) · · · (1− akX)

]

Xm

.

Next, we show that the SONAR technique always works. This is Theorem
4.1, which we reproduce here.

Theorem 4.1 (SONAR Technique). Let λ be a partition. Then, the sequence

{Em(λ)}∞m=0 uniquely determines λ.

Proof of Theorem 4.1. Given the sequence {Em(λ)}∞m=0, we can recover k =
λ1, the number of cells in the first row easily by searching for the first zero
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excitation factor Em(λ). Indeed, Em(λ) is positive if and only if m ≤ k. Be-
cause the i-th entry of the sequence is Ei−1(λ), if the first zero in the sequence
appears in the i-th entry where i ≥ 3, then k = i− 2. If the first zero appears
in the second entry (that is, E1(λ) = 0), then λ is the empty partition. By
convention, the first entry E0(λ) = 1 is never zero.

Now that we have recovered k, we continue to recover the hook lengths
a1 > · · · > ak of the first row of λ. The formula in Theorem 4.2 can be
rewritten as

Em(λ) =
m∑

i=0

γ(m, i) · σi(a1, . . . , ak)

where γ(m, i) =
(
k−i
m−i

)
Sm−i(m−k−1). For convenience, we will use σi to refer

to σi(a1, . . . , ak). Consider the (k+1)× (k+1)-matrix Ak+1 := [αi,j]1≤i,j≤k+1,
where

αi,j =

{
γ(i− 1, j − 1) if i ≥ j

0 otherwise.

The formula above shows that

Ak+1 ·




σ0

σ1
...
σk


 =




E0(λ)
E1(λ)

...
Ek(λ)


 .

Note that all the entries in the matrix Ak+1 are known, as they depend only
on k. Furthermore, it is lower triangular with all the diagonal entries being
1. Therefore, Ak+1 is invertible. As we know {Em(λ)}∞m=0, we can recover
σ0, . . . , σk from the equation




σ0

σ1
...
σk


 = A−1

k+1 ·




E0(λ)
E1(λ)

...
Ek(λ)


 .

Consequently, we recover the polynomial

A(X) := (X − a1)(X − a2) · · · (X − ak) =
k∑

i=0

(−1)iσi ·Xk−i.

Since a1, a2, . . . , ak are strictly decreasing, the roots of A(X) are pairwise dis-
tinct positive integers. Therefore, solving A(X) = 0 recovers all the hook
lengths in the first row of λ, which in turn recover the whole partition. �

To demonstrate the SONAR technique in action, consider the following
example.

Example 4.9. Suppose that λ is a partition which satisfies

{Em(λ)}∞m=0 = (1, 8, 28, 40, 0, 0, . . . ).
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We will recover λ from the sequence above using SONAR.
First, because there are four positive terms in the sequence, we have k = 3.

We calculate the matrix A4 as follows.

A4 =




γ(0, 0) 0 0 0
γ(1, 0) γ(1, 1) 0 0
γ(2, 0) γ(2, 1) γ(2, 2) 0
γ(3, 0) γ(3, 1) γ(3, 2) γ(3, 3)


 =




1 0 0 0
−3 1 0 0
1 −1 1 0
0 0 0 1


 .

Therefore,

A−1
4 =




1 0 0 0
3 1 0 0
2 1 1 0
0 0 0 1


 .

We can then recover σi for i = 0, 1, 2, 3:



σ0

σ1

σ2

σ3


 =




1 0 0 0
3 1 0 0
2 1 1 0
0 0 0 1


 ·




1
8
28
40


 =




1
11
38
40


 .

Thus, A(X) = X3−11X2+38X−40 = (X−5)(X−4)(X −2). We conclude
that a1 = 5, a2 = 4, and a3 = 2. Therefore, λ = [3, 3, 2].

Now that we have developed the SONAR technique, in the next section we
will use it to explore the asymptotic behavior of the function G(n) as n → ∞.

5. Asymptotic Behavior of G(n)

In this section, we will show that n − G(n) = O(n/ logn) as n → ∞. Our
main tool in the proof is the SONAR technique we developed in Section 4.

Theorem 5.1. We have

lim
n→∞

G(n)

n
= 1

and n−G(n) = O(n/ logn) as n → ∞.

Before proving Theorem 5.1, we show the following lemma.

Lemma 5.2. Let λ be a partition of a positive integer n ≥ 2. Then, there

exists a partition µ = [a, a, . . . , a︸ ︷︷ ︸
b

] of a positive integer ab such that µ 
 λ but

µ̃ ≤ λ, where µ̃ is the unique 1-minor of µ, and such that

|µ| = ab <
2n

logn
.
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Proof. Let m := ⌊2n/ logn⌋. If we show that there exists a partition τ of size
at most m such that τ 
 λ, then we can find a cell X inside τ that is not in λ
such that all the cells to its left and all the cells above it are in λ. Then, we
may choose µ to be the rectangle partition that has X as its corner square. We
observe that µ is not in λ, but its 1-minor µ̃ is, and |µ| ≤ |τ | ≤ m < 2n/ logn.
Hence, it suffices to prove the existence of a partition τ 
 λ with |τ | ≤ m.

Suppose, for sake of contradiction, that all partitions τ of size at most m
are minors of λ. Then, in particular, the partition

[ ⌊m
d

⌋
, . . . ,

⌊m
d

⌋

︸ ︷︷ ︸
d

]

is a minor of λ for d = 1, 2, . . . , m. This shows that the i-th row of λ has at
least ⌊m/i⌋ cells for all i. Therefore,

n ≥ m+
⌊m
2

⌋
+
⌊m
3

⌋
+ · · ·+

⌊m
m

⌋

= m ·
(
1 +

1

2
+ · · ·+ 1

m

)
−
{m
2

}
−
{m
3

}
− · · · −

{m
m

}

≥ m ·
(
1 +

1

2
+ · · ·+ 1

m

)
− 1

2
− 2

3
− · · · − m− 1

m

= (m+ 1) ·
(
1 +

1

2
+ · · ·+ 1

m

)
−m

> (m+ 1)(log(m) + γ)−m

= (m+ 1)(log(m+ 1)− (1− γ)) + 1− (m+ 1) log

(
1 +

1

m

)
,(⋄)

where γ ≈ 0.5772 (cf. [10]) is the Euler-Mascheroni constant.
Because m = ⌊2n/ log n⌋, we have the bound

(m+ 1)(log(m+ 1)− (1− γ)) >
2n

log n
·
(
log n− log log n+ log 2− (1− γ)︸ ︷︷ ︸

>0

)

> 2n− 2n log log n

log n
.

Note that it is straightforward to check the numerical bound:

log log n

logn
<

1

e
< 0.4

for all integers n ≥ 2. Therefore, we have

(m+ 1)(log(m+ 1)− (1− γ)) > 1.2n

for n ≥ 2. It is also straightforward to check that (m + 1) log
(
1 + 1

m

)
< 1.4

for all integers m ≥ 1. Combining these inequalities with (⋄), we have the
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b

a

Figure 7. A schematic diagram for the proof of Theorem 5.1

inequality n > 1.2n − 0.4, which contradicts our original assumption that
n ≥ 2.

Therefore, there must always be a partition µ of size at most m that is not
a minor of λ. This finishes our proof. �

Remark 5.3. In Lemma 5.2, the constant 2 in 2n
logn

can be further sharpened.
For the purpose of this paper, however, the constant is not crucial to the
asymptotic result in Theorem 5.1 that n − G(n) = O(n/ logn). Interested
readers may calculate the optimal constant C > 0 for which we can replace
the bound of the size of µ in Lemma 5.2 with |µ| ≤ C·n

logn
.

Now, we will prove Theorem 5.1.

Proof of Theorem 5.1. We will show that

G(n) > n− 2n

logn

for every integer n ≥ 2, by proving that multiset-reconstructibility holds for
the pair (n, n− ⌊2n/ logn⌋). In other words, suppose λ is an initially unknown
partition of a known positive integer n ≥ 2. We will show that if we know
N(λ/µ) for all partitions µ with |µ| ≤ ⌊2n/ logn⌋, then we can recover λ.
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Our strategy is as follows. By Lemma 5.2, there exists a rectangle partition
ρ = [a, a, . . . , a] of size at most ⌊2n/ log n⌋ with the property that ρ is not a
minor of λ, but its unique 1-minor ρ̃ is. We find such a partition explicitly
by considering all the rectangle partitions ρ of size at most ⌊2n/ logn⌋ and
calculate N(λ/ρ), for which we have the information. Then, we list all the
rectangle partitions ρ for which N(λ/ρ) is zero. A minimal partition ρ (with
respect to ≤) from the list will be the desired rectangle partition.

Next, let ξ denote the rectangle partition whose width and height are both
1 less than the respective side lengths of ρ. In Figure 7, ρ is shown as the
rectangle partition bounded by the dashed segments, and ξ is shown as the
rectangle of white cells. The partition ξ splits the cells of λ into three parts:
(1) the cells that are inside ξ, (2) the cells that are to the right of ξ, and
(3) the cells that are below ξ. The cells to the right of ξ form their own
partition, which we denote λR. Analogously, the cells below ξ also form their
own partition, which we denote λB. Since ξ is determined, in order to recover
λ it suffices to recover λR and λB. To do so, we use SONAR. By taking µ to be
a certain minor of ρ̃, we will be able to obtain the sequences {Em(λ

B)}∞m=0 and
{Em((λ

R)t)}∞m=0, where (λR)t denotes the conjugate of λR. Instead of doing
single SONAR on λ, we will do double SONAR on the two partitions λB and
(λR)t simultaneously. See Figure 7 for a schematic diagram for this method.
As a result, we will recover λ.

As we described above, let ρ = [a, a, . . . , a] be a rectangle partition of b ≥ 1
parts with the property that ρ̃ = [a, . . . , a︸ ︷︷ ︸

b−1

, a− 1] ≤ λ but ρ 
 λ and that the

size of ρ is ab ≤ ⌊2n/ logn⌋. Following the description above, we let ξ be the
rectangle partition [a− 1, a− 1, . . . , a− 1] of b− 1 parts. For convenience, we
will use the notation ρu,v to denote the partition

ρu,v =
[
a, . . . , a︸ ︷︷ ︸

u

, a− 1, . . . , a− 1︸ ︷︷ ︸
b−u−1

, v
]

for non-negative integers u ≤ b− 1 and v ≤ a− 1. Note that

ξ = ρ0,0 ≤ ρu,v ≤ ρb−1,a−1 = ρ̃

and therefore, the values N(λ/ρu,v) are known for all u ≤ b− 1 and v ≤ a− 1.
Moreover, we know that N(λ/ρu,v) > 0 for such u and v.

Before doing double SONAR, let us consider a special case. If b = 1, the
partition ρ̃ is actually the first row of λ itself. This means that λ1 = a− 1 ≤
⌊2n/ logn⌋ − 1. Therefore, not only can we recover λ1, but we can recover
N(λ/[m]) for all non-negative integers m. Consequently, we can recover the
whole sequence {Em(λ)}∞m=0:

Em(λ) =

{
N(λ/[m])

N(λ)
· n!
(n−m)!

for m ≤ a− 1

0 for m ≥ a.
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In this case, of course, we do not need double SONAR, doing SONAR on
λ itself can recover the whole partition. Similarly, if a = 1, we have that
(λt)1 = b − 1 ≤ ⌊2n/ logn⌋ − 1. Doing SONAR on λt can recover the whole
λt. Therefore, we will assume from now on that a, b ≥ 2. In particular, λR

and λB are non-empty.
Let |λR| = nR and |λB| = nB. We note that the integers nR and nB are

initially unknown. Nevertheless, we know by counting the number of cells that

nR + nB = n− (a− 1)(b− 1).

The skew shape λ/ρu,v consists of two separate skew shapes λR/[u]t and
λB/[v], of sizes nR − u and nB − v, respectively. Therefore,

N(λ/ρu,v) =

(
nR + nB − u− v

nR − u

)
·N(λR/[u]t)N(λB/[v])

=

(
n− (a− 1)(b− 1)− u− v

nR − u

)
·N((λR)t/[u])N(λB/[v]).

The left hand side N(λ/ρu,v) of the above equation is a known quantity. To use
SONAR on (λR)t and λB, we want to determine N((λR)t/[u]) and N(λB/[v])
for all non-negative integers u and v. However, the binomial coefficient in the
equation remains unknown at this point, because of the unknown nR. The
next step is to recover nR and nB, so that the binomial coefficient becomes
known.

Because b ≥ 2, we can plug in u = 1 in the formula above. Also, because
(λR)t is non-empty, N((λR)t/[1]) = N((λR)t/[0]) = N((λR)t). Therefore,

N(λ/ρ1,0) =

(
n− (a− 1)(b− 1)− 1

nR − 1

)
·N((λR)t)N(λB).

This gives
N(λ/ρ0,0)

N(λ/ρ1,0)
=

n− (a− 1)(b− 1)

nR

and therefore

nR = (n− (a− 1)(b− 1)) · N(λ/ρ1,0)

N(λ/ρ0,0)
.

Since all the quantities in the right hand side of the equation above are known,
we have recovered nR, as well as nB. As a result, we have also recovered

N((λR)t/[u]) ·N((λB)/[v])

for all non-negative integers u ≤ b − 1 and v ≤ a − 1. In particular, setting
u = v = 0 implies that N((λR)t) · N(λB) has been recovered. Therefore, the
excitation factor

Eu((λ
R)t) =

nR!

(nR − u)!
·
(
N((λR)t/[u]) ·N(λB/[0])

)

(N((λR)t) ·N(λB))

is also recovered for 0 ≤ u ≤ b − 1. For u ≥ b, we already know that
Eu((λ

R)t) = 0. Hence, we have recovered the whole sequence {Em((λ
R)t)}∞m=0.
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Similarly, the sequence {Em(λ
B)}∞m=0 is also recovered. Using SONAR with

(λR)t and λB, we can recover the shapes of both λR and λB, and therefore,
the partition λ can be reconstructed.

We have proved that for every integer n ≥ 2,

n− 2n

log n
< G(n) ≤ n.

Therefore, we conclude that limn→∞
G(n)
n

= 1 with n−G(n) = O(n/ logn) as
n → ∞ as desired. �

In the next section, we will look at the difference n−G(n) in more detail.

6. The Difference n−G(n)

In Section 5, we established a sublinear upper bound for n− G(n). In this
section, we will provide a lower bound for n−G(n) and present computation
results for a certain number of known values of G(n). Computations of G(n)
become challenging as n grows, because of the rapid growth rate of p(n), the
number of partitions of n. By a famous result due to Hardy and Ramanujan [4],
and independently due to Uspensky [17], the function p(n) has the asymptotic
growth rate of

p(n) ∼ 1

4
√
3n

· eπ
√

2n/3.

Our experience shows that direct computations of G(n) when n > 100 is not
a feasible task, unless one has a machine with high computational power.

Proposition 6.1. We have G(0) = 0, G(1) = 1, and for all positive integers

n ≥ 2, G(n) ≤ n− 2.

Proof. Because there is a unique partition of n for n = 0, 1, we can always
recover the unique partition. In these trivial cases, G(0) = 0 and G(1) = 1.

Now assume n ≥ 2. Consider the partition λ = [n]. We have that M̂n−1(λ) =

{1 · [1]} = M̂n−1(λ
t), but λ 6= λt. Thus, multiset-reconstructibility (MRC) fails

for (n, n− 1), and hence G(n) ≤ n− 2. �

Given a partition λ of n, the following lemma gives a way to check whether

M̂n−2(λ) = M̂n−2(λ
t) using excitation factors.

Lemma 6.2. Let λ be a partition of n ≥ 2. Then, M̂n−2(λ) = M̂n−2(λ
t) if

and only if E2(λ) = E2(λ
t).

Proof. Observe that M̂n−2(λ) = M̂n−2(λ
t) if and only if N(λ/[2]) = N(λt/[2]).

By Naruse’s Skew-Shape Hook Length Formula (Theorem 3.3), N(λ/[2]) =
N(λt/[2]) if and only if

N(λ)

n(n− 1)
· E2(λ) =

N(λ)

n(n− 1)
· E2(λ

t)
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ρ

r + 2u

3r + u

u 5r + 2u

Figure 8. The partition λr,u,ρ in the proof of Proposition 6.3.
This picture shows the partition for the case when r = 1, u = 5,
and ρ = [4, 3, 3, 1]. (In this figure, we shrink the arm and the
leg of the largest hook where the dotted segments are shown.)

that is, if and only if E2(λ) = E2(λ
t). �

It turns out that n−G(n) = 2 for only finitely many values of n, as shown
in the following proposition.

Proposition 6.3. Let n be a non-negative integer. Then, G(n) = n−2 if and

only if 2 ≤ n ≤ 11 or n = 13.

Proof. To show that G(n) = n− 2 for 2 ≤ n ≤ 11 or n = 13, we note that the
size of partition n is small enough that calculations can be done by hand, or we
may use computer search. Namely, for each such n, we list all the partitions
λ ⊢ n and calculate the pair (N(λ/[2]), N(λ/[1, 1])), for every λ ⊢ n. Then,
we verify directly that no two pairs are identical. This calculation does not
take much time, as even for the largest case, in which n = 13, the number of
partitions is p(13) = 101 (cf. [9]).

To show that G(n) ≤ n − 3 for n = 12 or n ≥ 14, we explicitly construct

a pair of different partitions λ and µ for each n so that M̂n−2(λ) = M̂n−2(µ).
This task can be done by computer search for n = 12 or 14 ≤ n ≤ 50. For
n ≥ 51, we claim that there exists a partition λ ⊢ n which is not self-conjugate
(λ 6= λt) such that

(♥) M̂n−2(λ) = M̂n−2(λ
t).

For integers r ≥ 1 and u ≥ 0, consider the following partition

λr,u :=
[
5r + 3u+ 2, u+ 2, 2, . . . , 2︸ ︷︷ ︸

3r+u

, 1, . . . , 1︸ ︷︷ ︸
r+2u

]
.
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Note that because r ≥ 1, λr,u is not self-conjugate. We use the formula in
Corollary 3.4 to calculate the excitation factor E2(λ

r,u) directly:

E2(λ
r,u) = (9r + 6u+ 3)(8r + 4u+ 2) + (9r + 6u+ 3)u+ (3r + 2u+ 1)u

= 72r2 + 32u2 + 96ru+ 42r + 28u+ 6.

Similarly,

E2((λ
r,u)t) = (9r + 6u+ 3)(4r + 4u+ 2) + (9r + 6u+ 3)(3r + u)

+ (3r + 2u+ 1)(3r + u) = 72r2 + 32u2 + 96ru+ 42r + 28u+ 6.

This shows that E2(λ
r,u) = E2((λ

r,u)t), and therefore, by Lemma 6.2,

M̂n−2(λ
r,u) = M̂n−2((λ

r,u)t).

Note that λ is a partition of n = 4(3r + 2u+ 1) where r ≥ 1 and u ≥ 0. This
proves the claim in (♥) for all positive integers n such that n ≥ 24 and n ≡ 0
modulo 4.

It turns out that for n 6≡ 0 modulo 4, we can construct the desired partition
λ ⊢ n by modifying λr,s as follows. Let ρ be any self-conjugate partition such
that

ρ ≤
[
u, . . . , u︸ ︷︷ ︸

u

]
.

We define the partition λr,u,ρ (cf. Figure 8.) as

λr,u,ρ :=
[
5r + 3u+ 2, u+ 2, 2 + ρ1, 2 + ρ2, . . . , 2 + ρu, 2, . . . , 2︸ ︷︷ ︸

3r

, 1, . . . , 1︸ ︷︷ ︸
r+2u

]
.

A nice property of this construction is that adding ρ does not change the value
of the function E2(•) − E2(•t). To see that, we note as a result of Corollary
3.4 that, for any partition τ , we have

E2(τ)− E2(τ
t) =

rk τ∑

i=1

hii(τ) ·
(
τi − (τ t)i

)

where rk τ denotes the greatest integer m for which
[
m, . . . ,m︸ ︷︷ ︸

m

]
≤ τ and hij(τ)

denotes the hook length of the cell (i, j) in τ . Note that τi − (τ t)i is the arm
length minus the leg length of the hook at (i, i). Therefore, each summand
in the summation above only depends on the hook shape of the hook. In
particular, if the hook is self-conjugate, the corresponding summand is zero.
Hence, adding a self-conjugate partition ρ to the lower-right part of the Young
diagram of the partition λr,u as in Figure 8 does not change E2(•) − E2(•t).
Therefore,

E2(λ
r,u,ρ)−E2((λ

r,u,ρ)t) = 0

and the partition serves as the desired example for n = 4(3r + 2u + 1) + |ρ|.
Since ρ can be chosen to be any self-conjugate minor of [u, . . . , u], we can choose
|ρ| to be any non-negative integer not exceeding u2 except 2 and u2 − 2. In



26 PAKAWUT JIRADILOK

particular, if we consider u ≥ 3, we can choose |ρ| to be any integer from
{3, 4, 5, 6}, and therefore,

n = 4
(
10 + 3 (r − 1)︸ ︷︷ ︸

∈Z≥0

+2 (u− 3)︸ ︷︷ ︸
∈Z≥0

)
+ |ρ|

can be any integer n ≥ 51. This finishes the proof. �

Now that we have determined all n for which G(n) = n− 2, the characteri-
zation of all n for which G(n) = n − 3 is not difficult. We have the following
lemma.

Lemma 6.4. Let λ be a partition of an integer n ≥ 3. Then, M̂n−2(λ) =

M̂n−2(λ
t) if and only if M̂n−3(λ) = M̂n−3(λ

t).

Proof. (⇐) If M̂n−3(λ) = M̂n−3(λ
t), then M̂n−2(λ) = M̂n−2(λ

t) follows from
Proposition 2.4.

(⇒) Suppose M̂n−2(λ) = M̂n−2(λ
t). Then,

N(λ/[2]) = N(λt/[2]) = N(λ/[1, 1]).

Therefore,

N(λ/[3]) = N(λ/[2])−N(λ/[2, 1])

= N(λ/[1, 1])−N(λ/[2, 1]) = N(λ/[1, 1, 1]) = N(λt/[3]).

The equality N(λ/[1, 1, 1]) = N(λt/[1, 1, 1]) is obtained similarly. We also
have N(λ/[2, 1]) = N(λt/[2, 1]) because [2, 1] is self-conjugate. Therefore,

M̂n−3(λ) = M̂n−3(λ
t). �

Lemma 6.4 shows that the infinite family of examples of partitions λ such

that λ 6= λt and M̂n−2(λ) = M̂n−2(λ
t) in the proof of Proposition 6.3 also

gives M̂n−3(λ) = M̂n−3(λ
t) for all n ≥ 51. For n ≤ 50, we do computer search

and find that for n ∈ {12, 14, 17, 18, 23}, there are no pairs (λ, µ) of different

partitions λ, µ ⊢ n for which M̂n−3(λ) = M̂n−3(µ). Thus, we have the following
results.

Proposition 6.5. Let n be a non-negative integer. Then, G(n) = n−3 if and

only if n ∈ {12, 14, 17, 18, 23}.
Corollary 6.6. For every integer n ≥ 24, we have G(n) ≤ n− 4.

Remark 6.7. A computer search by Aaron Pixton [11] shows that there are

no pairs (λ, µ) of different partitions of n such that M̂n−4(λ) = M̂n−4(µ) for
all integers n ≤ 59. Therefore, G(n) = n − 4 for 24 ≤ n ≤ 59 and for
n ∈ {15, 16, 19, 20, 21, 22}. For n = 60, however, Pixton found that the pair

λ = [14, 11, 8, 6, 3, 3, 3, 2, 2, 2, 2, 2, 2]

and
µ = [13, 13, 7, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1]
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satisfies M̂n−4(λ) = M̂n−4(µ). Surprisingly, this pair also satisfies M̂n−5(λ) =

M̂n−5(µ). Pixton observed that for n ≤ 81, there are no two different partitions
with the same multiset of (n− 6)-minors. Therefore, G(60) = 60− 6 = 54.

Remark 6.8. The following table, due to Aaron Pixton [11], shows the values
of n−G(n) for 60 ≤ n ≤ 70.

n 60 61 62 63 64 65 66 67 68 69 70
n−G(n) 6 4 4 6 6 6 4 6 6 6 6

Pixton also found that G(n) = n− 6 for all 71 ≤ n ≤ 81.

7. Further Research Possibilities

In this final section, we suggest a few ideas and questions which provide
directions for further studies.

1. How large can n − G(n) be? Our main result, Theorem 5.1 shows
that n−G(n) = O(n/ logn). However, it is not clear to us whether n−G(n)
is bounded above by a constant. We conjecture that it has no finite upper
bound.

Conjecture 7.1. The difference n−G(n) satisfies

lim
n→∞

n−G(n) = +∞.

In Section 6, we show that n−G(n) ≥ 3 for n ≥ 14 and n−G(n) ≥ 4 for n ≥
24, by constructing an infinite family of pairs (λ, µ) of different partitions of

n such that M̂n−2(λ) = M̂n−2(µ) for all sufficiently large n. For every positive
integer k, if one can explicitly construct an infinite family of pairs (λ, µ) of

different partitions of n such that M̂n−k(λ) = M̂n−k(µ) for all sufficiently large
n, then Conjecture 7.1 will follow.

2. The set {n − G(n)|n ∈ Z≥0}. We have observed that n − G(n) can
be 0, 2, 3, 4, and 6. Proposition 6.1 shows that there are no integers n for
which n − G(n) = 1. Pixton [11] gives all the values of G(n) up to n = 81.
However, we do not know whether there exists n for which G(n) = n − 5. In
general, what are all the non-negative integers that do not belong to the set
{n−G(n)|n ∈ Z≥0}?

3. Why is Em(λ) a Q[k]-linear combination of σi (a1, . . . , ak)? Theorem
4.2 appears to us as a surprising phenomenon on which the SONAR technique
is based. Specifically, it is intriguing that Em(λ) is symmetric in a1, . . . , ak.
Although we have a proof for the theorem, we would still like to find a more
intuitive explanation for why this phenomenon occurs.



28 PAKAWUT JIRADILOK

Acknowledgments

This research was done at the University of Minnesota Duluth in the sum-
mer of 2016, with the financial support from the National Science Foundation
(grant number: NSF-1358659) and the National Security Agency (grant num-
ber: NSA H98230-16-1-0026).

I would like to thank Joe Gallian for hosting me at the university, introduc-
ing me to the partition multiset-reconstruction problem, and proofreading an
earlier version of this paper. I am particularly grateful to Maria Monks for
giving me suggestions and crucial insights on the problem and for commenting
on an earlier version of this paper.

The coefficients in the formula of Theorem 4.2 were once described using
polynomial recursion. Benjamin Gunby pointed out to me that they can be
described using the Stirling polynomials. This observation resulted in the
current version of the formula. I would like to thank him for sharing with me
this important insight. In addition, I would like to thank Levent Alpoge and
Mitchell M. Lee for their helpful ideas. I would like to express my gratitude to
Aaron Pixton for his interest in this research project, his helpful suggestions,
especially in Remark 4.8, and his powerful computational results, especially
those which lead to Remarks 6.7 and 6.8. I am appreciative of Eric Riedl for
giving me Algebraic Geometry insights related to the proof of Lemma 4.5.

Additionally, I would like to thank Chantra Wangcharoenwong for helping
me on designing objects in Figures 5 and 7. I am also thankful for my brother
Punyawut Jiradilok for his comments and suggestions on the aesthetic qualities
of figures in this paper.

My undergraduate studies at Harvard University are supported by King’s
Scholarship (Thailand).

References
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