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ON SOME CLASS OF SUMS

ANDREI K. SVININ

Abstract. We consider some class of the sums which naturally include the sums of
powers of integers. We suggest a number of conjectures concerning a representation of
these sums.

1. Introduction

It is common of knowledge that the sum of powers of integers

Sm(n) :=
n
∑

q=1

qm (1.1)

is a polynomial σm(n) in n of degree m + 1. This proposition can be showed by using

Pascal’s elementary proof (see, for example [1]). Polynomials σm(n) for any integer m ≥ 1

are defined in terms of the Bernoulli numbers:

σm(n) =
1

m+ 1

m
∑

q=0

(−1)q
(

m+ 1

q

)

Bqn
m−q+1.

The numbers Bk, in turn, are defined by a recursion

k
∑

q=0

(

k + 1

q

)

Bq = 0, B0 = 1.

They were discovered by Bernoulli in 1713 but as follows from [4], they were known by

Faulhaber before this time.

Faulhaber’s theorem says that for any oddm ≥ 3, sum (1.1) is expressed as a polynomial

of S1(n). It is common of knowledge that S1(n) = n(n + 1)/2. Let t := n(n + 1). Then

Faulhaber’s theorem asserts that for any k ≥ 1, S2k+1(n) can be expressed as a polynomial

in Q[t]. These polynomials are referred as Faulhaber’s ones. Jacobi showed in [10] that

S2k(n) is expressed as a polynomial in (2n+ 1)Q[t].

There exists a variety of different modifications and generalizations of Faulhaber’s theo-

rem in the literature. Faulhaber itself considered r-fold sums Sr
m(n) which are successively

defined by

Sr
m(n) =

n
∑

q=1

Sr−1
m (q), r ≥ 1

beginning from S0
m(n) := nm. He observed that Sr

m(n) can be expressed as a polynomial

in t := n(n+ r) if m− r is even [11].
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In this paper we consider some class of sums Sk,j(n) which include classical sums of

powers of integers (1.1) with odd m = 2k + 1. These sums will be introduced in section

2 and 3. Particular case, namely Sk,j(1), presents some class of binomial sums studied in

[15]. Our crucial idea comes from this work. We briefly formulate the results of this article

in section 4. In section 5, we formulate our main conjecture concerning a representation of

the sums Sk,j(n) in terms of some polynomials whose coefficients rationally depend on n. In

section 6, we discuss the relationship of this representation with a possible generalization of

Faulhaber’s theorem. In section 7, we show explicit form of some n-dependent coefficients

of these polynomials and suppose the relationship of these coefficients to the number of

q-points in simple symmetric (2k + 1)-Venn diagram.

2. The sums sk,j(n)

Let us define the numbers {Cj,r(n) : j ≥ 1, r = 0, . . . , j(n − 1)} in the following way.

Namely, let




n−1
∑

q=0

aq+1





j

=

j(n−1)
∑

q=0

Cj,q(n)a
q+j , (2.1)

where a is an arbitrary auxiliary nonzero positive number, taking into account that alam =

al+m. For example, in the case n = 1, we have only Cj,0(n) = 1. Clearly, in the case n = 2,

we get

(

a+ a2
)j

=

j
∑

q=0

(

j

q

)

aj+q,

that is, Cj,q(2) is a binomial coefficient. From





n−1
∑

q=0

aq+1





j

=





(j−1)(n−1)
∑

q=0

Cj−1,q(n)a
q+j−1









n−1
∑

q=0

aq+1





= Cj−1,0(n)a
j + (Cj−1,0(n) + Cj−1,1(n)) a

j+1 + · · ·+ (Cj−1,0(n) + · · ·

+Cj−1,n−1(n)) a
j+n−1

+
(

Cj−1,1(n) + · · · +Cj−1,n)(n)
)

aj+n + · · · + Cj−1,(j−1)(n−1)(n)a
jn

we deduce that

Cj,r(n) =

r
∑

q=r−n+1

Cj−1,q(n), (2.2)

assuming that Cj−1,q(n) = 0 for q < 0 and q > (j − 1)(n − 1). In the case n = 2, relation

(2.2) becomes well known property for binomial coefficients:

(

j

r

)

=

(

j − 1

r − 1

)

+

(

j − 1

r

)

.
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Clearly, the coefficient Cj,r(n) can be presented as a proper sum of multinomial coefficients.

Putting a = 1 into (2.1), we get the property

j(n−1)
∑

q=0

Cj,q(n) = nj

for these numbers which evidently generalize well-known property of binomial coefficients.

Also it is easy to get
j(n−1)
∑

q=0

qCj,q(n) =
j(n − 1)

2
nj.

With the coefficients Cj,q(n) we define the sum sk,j(n) as

sk,j(n) :=

j(n−1)
∑

q=0

Cj,q(n)xj+q,

where xr := r2k+1. Remark that sk,1(n) = S2k+1(n). For example, it is evident that

C2,q(n) =

{

q + 1, q = 0, . . . , n− 2,

2n− q − 1, q = n− 1, . . . , 2n − 2.

Then

sk,2(n) :=

2n−2
∑

q=0

C2,q(n)xq+2

=
n−2
∑

q=0

(q + 1)xq+2 +
2n−2
∑

q=n−1

(2n− q − 1)xq+2

Shifting q → q − 2, we get

sk,2(n) =

n
∑

q=1

(q − 1)xq +

2n
∑

q=n+1

(2n − q + 1)xq.

Since q − 1 = (2n − q + 1)− (2n − 2q + 2), then

sk,2(n) = −

n
∑

q=1

(2n− 2q + 2)xq +

2n
∑

q=1

(2n − q + 1)xq. (2.3)

3. The sums Sk,j(n) and S̃k,j(n)

Let

S̃k,j(n) :=
∑

{λ}∈Bj,jn

{

λ2k+1
1 + (λ2 − n)2k+1 + · · · + (λj − jn + n)2k+1

}

with Bj,jn := {λk : 1 ≤ λ1 ≤ · · · ≤ λj ≤ jn}. Let us define

Sk,j(n) =

j−1
∑

q=0

(

j(n + 1)

q

)

sk,j−q(n). (3.1)

It is obvious that

S̃k,1(n) = Sk,1(n) = sk,1(n) = S2k+1(n).
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Conjecture 3.1.

S̃k,j(n) = Sk,j(n). (3.2)

Using simple arguments we deduce that in the case j = 2

S̃k,2(n) =
∑

{λ}∈B2,2n

{

λ2k+1
1 + (λ2 − n)2k+1

}

=
2n
∑

q=1

(2n − q + 1)xq +
2n
∑

q=1

(2n− q + 1)xn−q+1. (3.3)

Notice that we have several xr’s with negative subscript r in (3.3). Clearly, we must put

xr = −x−r. Taking into account this rule, we rewrite the second sum in (3.3) as

n
∑

q=1

(n+ q)xq −

n
∑

q=1

(n− q)xq = 2

n
∑

q=1

qxq.

Adding to (3.3)

−

n
∑

q=1

(2n − 2q + 2)xq +

n
∑

q=1

(2n− 2q + 2)xq

and taking into account (2.3), we finally get

S̃k,2(n) = sk,2(n) + (2n + 2)

n
∑

q=1

xq

= sk,2(n) +

(

2(n + 1)

1

)

sk,1(n)

= Sk,2(n).

4. Special case of the sums (3.1)

In the case n = 1, the sum (3.1) becomes

Sk,j(1) =

j−1
∑

q=0

(

2j

q

)

(j − q)2k+1. (4.1)

This type of the sums was studied in [2], [14], [15]. More exactly, the authors of these

works considered binomial sums of the form

Sm(j) =

2j
∑

q=0

(

2j

q

)

|j − q|m.

It is evident that Sk,j(1) = S2k+1(j)/2.

Some bibliographical remarks are as follows. Bruckman in [2] asked to prove that

S3(j) = j2
(

2j
j

)

. Strazdins in [14] solved this problem and conjectured that S2k+1(j) =

P̃k(x)|x=j

(2j
j

)

with some monic polynomial P̃k(x) for any k ≥ 0. Tuenter showed in [15]
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that it is almost true. More exactly, he proved that there exists a sequence of polynomials

Pk(x) sush that

S2k+1(j) = Pk(x)|x=jj

(

2j

j

)

= Pk(x)|x=j

(2j)!

(j − 1)!j!
.

One can see that polynomial P̃k(x) is monic only for k = 0, 1. Next, we will describe these

polynomials. The following proposition [15] is verified by direct computations.

Proposition 4.1. The sums Sk,j(1) enjoy recurrence relation

Sk,j(1) = j2Sk−1,j(1)− 2j(2j − 1)Sk−1,j−1(1). (4.2)

Remark 4.2. It was in fact proved for the sums S2k+1(j) in [15].

In what follows we introduce the sequence of positive integer numbers:

g1 = 1, gj =
j

(j − 1)!

j−1
∏

q=1

(j + q), j ≥ 2.

It should be noted that the sequence {gj : j ≥ 1} satisfy the recurrent relation

gj+1 = 2
2j + 1

j
gj . (4.3)

The numbers gj are given in the following table:

j 1 2 3 4 5 6 7 8 9
gj 1 6 30 140 630 2772 12012 51480 218790

They constitute A002457 integer sequence in [13].

Let us write

Sk,j(1) = Pk,jgj

with some numbers Pk,j to be calculated. Taking into account (4.3), it can be easily seen

that (4.2) is valid if the relation

Pk+1,j = j2 (Pk,j − Pk,j−1) + jPk,j−1 (4.4)

does.

Now we need in polynomials studied in [15] which are defined by a recurrent relation

Pk+1(x) = x2 (Pk(x)− Pk(x− 1)) + xPk(x− 1) (4.5)

with initial condition P0(x) = 1. The first eight polynomials yielded by (4.5) are as follows.

P0(x) = 1 P1(x) = x, P2(x) = x(2x− 1),

P3(x) = x(6x2 − 8x+ 3),

P4(x) = x(24x3 − 60x2 + 54x− 17),

P5(x) = x(120x4 − 480x3 + 762x2 − 556x + 155),

P6(x) = x(720x5 − 4200x4 + 10248x3 − 12840x2 + 8146x − 2073).

P7(x) = x
(

5040x6 − 40320x5 + 139440x4 − 263040x3

+282078x2 − 161424x + 38227
)

.
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Introducing a recursion operator R := x2
(

1− Λ−1
)

+xΛ−1, where Λ is a shift operator

acting as Λ(f(x)) = f(x + 1), one can write Pk(x) = Rk(1). One could notice that the

polynomial Pk(x) has k! as a coefficient at xk. In addition, as was noticed in [15], the

constant terms of the polynomials Pk(x)/x constitute a sequence of the Genocchi numbers

with opposite sign, that is,

−G2 = 1, −G4 = −1, −G6 = 3, −G8 = −17, −G10 = 155, −G12 = −2073, . . .

Recall that the Genocchi numbers are defined with the help of generating function

2x

ex + 1
=

∑

q≥1

Gq

xq

q!

and are related to the Bernoulli numbers as G2k = 2
(

1− 22k
)

B2k.

Comparing (4.5) with (4.4) we conclude that Pk,j = Pk(x)|x=j .

Remark 4.3. As was noticed in [15], polynomials Pk(x) can be obtained as a special case

of Dumont-Foata polynomials of three variables [3].

5. General case

Let t := n(n+ 1). Our main conjecture is as follows.

Conjecture 5.1. There exists some polynomials Pk(t, x) in x of degree k whose coefficients

rationally depend on t such that

Sk,j(n) =
tk+1

2k+1
Pk(j)gj(n),

where

g1(n) = 1, gj(n) :=
j

(j − 1)!

j−1
∏

q=1

(jn + q).

The first eight polynomials Pk(t, x) are

P0(t, x) = 1, P1(t, x) = x, P2(t, x) = x

(

2x−
2(t+ 1)

3t

)

,

P3(t, x) = x

(

6x2 −
16(t+ 1)

3t
x+

4(t+ 1)2

3t2

)

,

P4(t, x) = x

(

24x3 −
40(t+ 1)

t
x2 +

24(t+ 1)2

t2
x−

24(t+ 1)3 + 8t2

5t3

)

,

P5(t, x) = x

(

120x4 −
320(t+ 1)

t
x3 +

1016(t + 1)2

3t2
x2

−
160(t+ 1)3 + 32t2

t3
x+

80
(

(t+ 1)4 + t2(t+ 1)
)

3t4

)

,
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P6(t, x) = x

(

720x5 −
2800(t + 1)

t
x4 +

13664(t + 1)2

3t2
x3

−
55936(t + 1)3 + 7632t2

15t3
x2 +

22112(t + 1)4 + 13664t2(t+ 1)

15t4
x

−
22112(t + 1)5 + 44224t2(t+ 1)2

105t5

)

,

P7(t, x) = x

(

5040x6 −
26880(t + 1)

t
x5 +

185920(t + 1)2

3t2
x4

−
76800(t + 1)3 + 7680t2

t3
x3

+
157088(t + 1)4 + 67968t2(t+ 1)

3t4
x2

−
17920(t + 1)5 + 22528t2(t+ 1)2

t5
x

+
6720(t+ 1)6 + 22400t2(t+ 1)3 + 1344t4

3t6

)

.

Unfortunately, in general case we do not know a recursion relation for these polynomials

except for the case t = 2. One can check that Pk(t, x)|t=2 = Pk(x), where Pk(x) are

Tuenter’s polynomials introduced above.

It could be noticed that coefficients of the polynomials Pk(t, x) have a special form.

Namely, let

Pk(t, x) = x
(

pk,0(t)x
k−1 − pk,1(t)x

k−2 + · · · + (−1)k−1pk,k−1(t)
)

. (5.1)

Based on actual calculations, it can be supposed the following.

Conjecture 5.2. The coefficients of t-dependent polynomial (5.1) are given by

pk,j(t) =
rk,j(t)

tj
,

where the polynomials rk,j(t) are of the form

rk,j(t) =

m
∑

q=0

αk,j,qt
2q(t+ 1)j−3q

with rational positive nonzero numbers αk,j,q. Here m ≥ 0, by definition, is the result of

division of the number j by 3 with some remainder l, that is, j = 3m+ l.

It should be noticed that the last conjecture is quite strong. With this conjecture the

number Nk of parameters which entirely define polynomial Pk(t, x) is presented in the

following table:

k 1 2 3 4 5 6 7 8 9
Nk 1 2 3 5 7 9 12 15 18

It is the A001840 integer sequence in [13]. We have in fact verified conjecture 5.2 up to

k = 11 and calculated all corresponding coefficients αk,j,q.
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It is evident that for all polynomials Pk(t, x) we have pk,0(t) = k!. Actual calculations

show that

αk,1,0 =
(k − 1)(k + 1)

9
k!, k ≥ 2,

αk,2,0 =
(k − 2)(k + 1)(5k2 + k − 3)

810
k!, k ≥ 3,

αk,3,0 =
(k − 3)(k + 1)(175k4 − 70k3 − 724k2 + 643k − 690)

765450
k!, k ≥ 4,

αk,3,1 =
(k − 3)(k + 1)(2k2 − 4k + 5)

1575
k!, k ≥ 4, . . .

Looking at these patterns it can be supposed that

αk,j,0 = (k − j)(k + 1)pj(k)k!, k ≥ j + 1

with some polynomial pj(k) of degree 2j − 2.

6. Faulhaber’s theorem

With the polynomials Pk(t, x) we are able, for example, to calculate

S0,j(n) =
t

2

j

(j − 1)!

j−1
∏

q=1

(jn + q), S1,j(n) =
t2

4

j2

(j − 1)!

j−1
∏

q=1

(jn + q),

S2,j(n) =
t2

12
{(3j − 1)t− 1}

j2

(j − 1)!

j−1
∏

q=1

(jn + q),

S3,j(n) =
t2

24

{

(9j2 − 8j + 2)t2 − (8j − 4)t+ 2
} j2

(j − 1)!

j−1
∏

q=1

(jn + q),

S4,j(n) =
t2

20

{

(15j3 − 25j2 + 15j − 3)t3 − (25j2 − 30j + 10)t2

+(15j − 9)t− 3}
j2

(j − 1)!

j−1
∏

q=1

(jn+ q),

S5,j(n) =
t2

24

{

(45j4 − 120j3 + 127j2 − 60j + 10)t4

−(120j3 − 254j2 + 192j − 50)t3 + (127j2 − 180j + 70)t2

−(60j − 40)t+ 10}
j2

(j − 1)!

j−1
∏

q=1

(jn + q),

S6,j(n) =
t2

840

{

(4725j5 − 18375j4 + 29890j3 − 24472j2 + 9674j − 1382)t5

−(18375j4 − 59780j3 + 76755j2 − 44674j + 9674)t4

+(29890j3 − 73416j2 + 64022j − 19348)t3 − (24472j2 + 38696j − 16584)t2

+(9674j − 6910)t − 1382}
j2

(j − 1)!

j−1
∏

q=1

(jn + q).
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S7,j(n) =
t2

48

{

(945j6 − 5040j5 + 11620j4 − 14400j3 + 9818j2 − 3360j + 420)t6

−(5040j5 − 23240j4 + 44640j3 − 43520j2 + 21024j − 3920)t5

+(11620j4 − 43200j3 + 63156j2 − 42048j + 10584)t4

−(14400j3 − 39272j2 + 37824j − 12600)t3

+(9818j2 − 16800j + 7700)t2

−(3360j − 2520)t + 420}
j2

(j − 1)!

j−1
∏

q=1

(jn+ q).

Looking at these patterns we could suggest the following.

Conjecture 6.1. Sk,j(n) is expressed as a polynomial in
∏j−1

q=1(jn+ q)Q[t].

For j = 1, conjecture 6.1 becomes well known Faulhaber’s theorem [6] which was, in

fact, proved by Jacobi in [10]. The first eight Faulhaber’s polynomials are as follows:

S0,1(n) =
t

2
, S1,1(n) =

t2

4
, S2,1(n) =

t2

12
(2t− 1), S3,1(n) =

t2

24

(

3t2 − 4t+ 2
)

,

S4,1(n) =
t2

20

(

2t3 − 5t2 + 6t− 3
)

, S5,1(n) =
t2

24

(

2t4 − 8t3 + 17t2 − 20t+ 10
)

,

S6,1(n) =
t2

840

(

60t5 − 350t4 + 1148t3 − 46584t2 + 2764t − 1382
)

,

S7,1(n) =
t2

48
t2(3t6 − 24t5 + 112t4 − 352t3 + 718t2 − 840t + 420)

In general, one usually write

Sk,1(n) =
1

2(k + 1)

k
∑

q=0

A(k+1)
q tk−q+1.

where A
(k)
0 = 1 and A

(k)
k−1 = 0. One knows quite a lot about the coefficients A

(k)
q . Jacobi

proved that the coefficients A
(k)
q enjoy the recurrence relation

(2k + 2)(2k + 1)A(k)
q = 2(k − q + 1)(2k − 2q + 1)A(k+1)

q + (k − q + 1)(k − q + 2)A
(k+1)
q−1

and tabulated some of them. It was shown by Knuth in [11] that these coefficients satisfy

quite simple implicit recurrence relation

r
∑

q=0

(

k − q

2r + 1− 2q

)

A(k)
q = 0, r > 0 (6.1)

which yields an infinite triangle system of equations from which one easily obtains

A
(k)
1 = −

(k − 2)k

6
, A

(k)
2 =

(k − 3)(k − 1)k(7k − 8)

360
,

A
(k)
3 = −

(k − 4)(k − 2)(k − 1)k(31k2 − 89k + 48)

15120
,

A
(k)
4 =

(k − 5)(k − 3)(k − 2)(k − 1)k(127k3 − 691k2 + 1038k − 384)

604800
, . . .
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Gessel and Viennot showed in [9] that a solution of system (6.1) can be presented as a

k × k determinant

A(k)
q =

1

(1− k) · · · (q − k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

k−q+1
3

) (

k−q+1
1

)

0 · · · 0
(

k−q+2
5

) (

k−q+2
3

) (

k−q+2
1

)

· · · 0

...
...

...
...

(

k−1
2k−1

) (

k−1
2k−3

) (

k−1
2k−5

)

· · ·
(

k−1
1

)

(

k
2k+1

) (

k−1
2k−1

) (

k−1
2k−3

)

· · ·
(

k
3

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(see also [5]). A bivariate generating function for the coefficients A
(k)
q was obtained in [8].

7. The conjectural relationship of the coefficients pk,k−1(t) to simple

symmetric Venn diagrams

Let us rewrite the coefficients pk,k−1(t) being expressed via n, that is,

pk,k−1(n) = pk,k−1(t)|t=n(n+1).

For example,

p1,0(n) = 1, p2,1(n) = −
2

3

n2 + n+ 1

n(n+ 1)
, p3,2(n) =

4

3

n4 + 2n3 + 3n2 + 2n+ 1

n2(n+ 1)2
,

p4,3(n) = −
24

5

n6 + 3n5 + 19
3 n

4 + 23
3 n

3 + 19
3 n

2 + 3n+ 1

n3(n+ 1)3
,

p5,4(n) =
80

3

n8 + 4n7 + 11n6 + 19n5 + 23n4 + 19n3 + 11n2 + 4n + 1

n4(n+ 1)4
,

p6,5(n) = −
22112

105

n10 + 5n9 + 17n8 + 38n7 + 61n6 + 71n5 + 61n4 + 38n3 + 17n2 + 5n+ 1

n5(n+ 1)5
, . . .

Looking at these patterns we see that

pk,k−1(n) = ck
vk(n)

nk−1(n+ 1)k−1
, (7.1)

where vk(n) is a monic polynomial of degree 2k − 2. All these polynomials are invariant

with respect to transformation

vk(n) 7→ n2k−2vk

(

1

n

)

. (7.2)

Also it worth to remark that the polynomial v4(n) unlike the others, has several fractional

coefficients.

Conjecture 7.1. Polynomials vk(n) are given by

vk(n) =

2k−1
∑

q=1

(2k
q

)

+ (−1)q+1

2k + 1
n2k−q−1, (7.3)

while the coefficients ck are expressed via Bernoulli numbers as

ck = (2k + 1)2kB2k. (7.4)



ON SOME CLASS OF SUMS 11

Let us notice that if (7.3) is valid then the invariance of corresponding polynomial with

respect to (7.4) is obvious in virtue of the invariance of binomial coefficients.

Let p = 2k + 1. It is known that if p is simple then

T (p, q) =

(

p−1
q

)

+ (−1)q+1

p
, p ≥ 5

is the number of q-points on the left side of a crosscut of simple symmetric p-Venn diagram

[12]. This integer sequence is known as A219539 sequence in [13]. It is evident that the

row sum

tp :=

p−2
∑

q=1

T (p, q) =
2p−1 − 1

p

can be calculated as vk(n)|n=1. The Fermat quotients (2p−1− 1)/p for simple p constitute

integer sequence A007663 in [13]. Taking into account (7.1) and (7.4), we get

pk,k−1(n)|n=1 = 2(22k − 1)B2k = −G2k.

8. Discussion

In the paper we have considered some class of sums Sk,j(n) and conjectured a repre-

sentation of these sums in terms of a sequence of the polynomials {Pk(t, x) : k ≥ 0}. This

assumption is resulted from computational experiments and supported by a large amount

of actual calculations. For n = 1, we get the well-known results from [15]. This also con-

firms our assumptions. The conjectural relationship of several coefficients of polynomials

Pk(t, x) being expressed via n to simple symmetric Venn diagrams is quite unexpected

and requires explanation.
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