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Abstract

We look at some properties of functions of binomial coefficients mod 2. In particular,
we derive a set of recurrence relations for sums of products of binomial coefficients mod
2 and show that they result in sequences that are the run length transforms of basic

sequences. In particular, we show that the sequence a(n) =
∑

n

k=0

(

n− k

2k

)(

n

k

)

mod 2 is the run length transform of the Fibonacci numbers and that the sequence

a(n) =
∑

n

k=0

(

n+ k

n− k

)(

n

k

)

mod 2 is the run length transform of the positive

integers.

1 Introduction

When is the binomial coefficient even or odd, i.e. what is

(

n

k

)

mod 2? It is well known

that when Pascal’s triangle of binomial coefficients is taken mod 2, the result has a fractal
structure in the limit and is a Sierpinski’s triangle (also known as Sierpinski’s gasket or
Sierpinski’s sieve) [1, 2].

Lucas’ theorem [3] provides a simple way to determine the binomial coefficients modulo
a prime. It states that for integers k, n and prime p, the following relationship holds:

(

n

k

)

≡
m
∏

i=0

(

ni

ki

)

mod p

where ni and ki are the digits of n and k in base p respectively.
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When p = 2, ni and ki are the bits in the binary expansion of n and k and

(

ni

ki

)

is 0

if and only if ni < ki. This implies that

(

n

k

)

is even if and only if ni < ki for some i.

The truth table of ni < ki is:

ni ki ni < ki
0 0 0
0 1 1
1 0 0
1 1 0

and it is logically equivalent to ki∧ (¬ni). If we think of ∧, ∨ and ¬ as bitwise operations
on the binary representation of numbers, then we have shown the following well-known fact
[1]:

Theorem 1.

(

n

k

)

≡ 0 mod 2 if and only if k ∧ (¬n) 6= 0.

Incidentally, for bits ni and ki, ni < ki is logically equivalent to ¬(ki ⇒ ni). Consider
(

n

k

)(

m

r

)

mod 2. Clearly this is equivalent to

((

n

k

)

mod 2

)((

m

r

)

mod 2

)

Thus

(

n

k

)(

m

r

)

≡ 0 mod 2 if and only if k ∧ (¬n) 6= 0 or r ∧ (¬m) 6= 0. This in

turns implies the following:

Theorem 2.

(

n

k

)(

m

r

)

≡ 0 mod 2 ⇔ (k ∧ (¬n)) ∨ (r ∧ (¬m)) 6= 0

Analogously we have the following result for

(

∏

a=T

a=1

(

na

ka

))

mod 2. Here na and ka

denote different integers indexed by a, not the bits of n and k.

Theorem 3.

a=T
∏

a=1

(

na

ka

)

≡ 0 mod 2 ⇔ (k1 ∧ (¬k1)) ∨ (k2 ∧ (¬k2)) ∨ · · · ∨ (kT ∧ (¬kT )) 6= 0 (1)

These equivalences will be useful in deriving properties of binomial coefficients mod 2.
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2 Run length transform

The run length transform on sequences of numbers is defined as follows [4]:

Definition 1. The run length transform of {Sn, n ≥ 0} is given by {Tn, n ≥ 0}, where Tn is

the product of Si’s, with i denoting the run of 1’s in the binary representation of n with the

convention that T0 = 1.

For instance, suppose n = 463, which is 111001111 in binary. It has a run of 3 1’s and
a run of 4 1’s, and thus Tn = S(3) · S(4). Some fixed points of the run length transform
include the sequences {1, 0, 0, . . . , } and {1, 1, 1 · · · , }. In [4], the following result is proved
about the run length transform:

Theorem 4. Let {Sn, n ≥ 0} be defined by the recurrence Sn+1 = c2Sn + c3Sn−1 with initial

conditions S0 = 1, S1 = c1, then the run length transform of {Sn} is given by {Tn, n ≥ 0}
satisfying T0 = 1 and T2n = Tn, T4n+1 = c1Tn, T4n+3 = c2T2n+1 + c3Tn.

Note that the sequence Sn may not uniquely define the values of c2 and c3 in Theorem
4. For instance, for the sequence Sn = {1, 2, 4, 8, · · · , }, c2 and c3 can be chosen to be any
integers such that 2c2 + c3 = 4.

3 Recurrence relations of product of binomial coeffi-

cients mod 2

Definition 2. Consider integers ai ≥ 0, i = 1, · · · , 4, a1 ∈ {0, 1}, a3 ∈ {0, 1}, 0 ≤ a1 + a2,

and 0 ≤ a3 + a4. Let F (n, k) =

(

a1n+ a2k

a3n+ a4k

)(

n

k

)

mod 2 and g(n, k) = ((a3n+ a4k) ∧

¬(a1n+ a2k)) ∨ (k ∧ ¬n)

By Theorem 2, F (n, k) = 1 if and only if g(n, k) = 0. We show that F satisfies various
recurrence relations.

Theorem 5. The following relations hold for the function F :

• F (n, k) = 0 if k > n,

• F (4n, 4k) = F (2n, 2k) = F (n, k),

• F (2n, 2k + 1) = F (4n+ 1, 4k + 2) = F (4n+ 1, 4k + 3) = F (4n+ 2, 4k + 1) = F (4n+
2, 4k + 3) = F (4n, 4k + 1) = F (4n, 4k + 2) = F (4n, 4k + 3) = 0,

• F (4n+ 1, 4k) = F (n, k) if a1 = 1 or a3 = 0 and F (4n+ 1, 4k) = 0 otherwise.

• F (4n+ 3, 4k) = F (n, k) if a1 = 1 or a3 = 0 and F (4n+ 3, 4k) = 0 otherwise.

• F (2n+ 1, 2k) = F (n, k) if a1 = 1 or a3 = 0 and F (2n+ 1, 2k) = 0 otherwise.
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Proof. Since

(

n

k

)

= 0 if k > n, F (n, k) = 0 if k > n.

g(2n, 2k) = (2(a3n+ a4k) ∧¬(2(a1n+ a2k))) ∨ (2k ∧ ¬2n) = 2g(n, k) since the lsb (least
significant bit) is 0, i.e. F (2n, 2k) = F (n, k).

Next F (n, k) = 0 if

(

n

k

)

≡ 0 mod 2, i.e. if (k ∧ ¬n) > 0. Then it is easy to see that

F (2n, 2k+1) = F (4n+1, 4k+2) = F (4n+1, 4k+3) = F (4n+2, 4k+1) = F (4n+2, 4k+3) = 0
and F (4n, 4k + i) = 0 for 1 ≤ i ≤ 3.

g(4n+1, 4k) = (4(a3n+a4k)+a3∧¬4(a1n+a2k)+a1)∨(4k∧¬4n+1). The least significant
2 bits is equal to a3 ∧ ¬a1 mod 4, so g(4n+ 1, 4k) = g(n, k) and F (4n+ 1, 4k) = F (n, k) if
a3 ∧ ¬a1 ≡ 0 mod 4 and F (4n+ 1, 4k) = 0 otherwise.

g(4n+ 3, 4k) = (4(a3n+ a4k) + 3a3 ∧¬(4(a1n+ a2k) + 3a1))∨ (4k ∧¬4n+ 3) = 4g(n, k)
if a1 = 1 or a3 = 0., i.e. F (4n + 3, 4k) = F (n, k) if a1 = 1 or a3 = 0 and F (4n+ 3, 4k) = 0
otherwise.

g(2n + 1, 2k) = (2(a3n + a4k) + a3 ∧ ¬(2(a1n + a2k) + a1)) ∨ (2k ∧ ¬2n + 1). thus
F (2n + 1, 2k) = 0 if a3 ∧ ¬a1 6≡ 0 mod 2. Otherwise, g(2n+ 1, 2k) = 2g(n, k) and F (2n +
1, 2k) = F (n, k).

4 Sums of products of binomial coefficients mod 2

In this section, we show that for various values of ai’s, the sequence a(n) =
∑

n

k=0
F (n, k)

corresponds to the run length transforms of well-known sequences. It is clear that a(n) ≤
∑

n

k=0

(

n

k

)

mod 2 with equality when a1 = a4 = 1, a2 = a3 = 0 or when a1 = a2 = a3 =

a4 = 1. The sequence g(n) =
∑

n

k=0

(

n

k

)

mod 2 is known as Gould’s sequence or Dress’s

sequence and is the run length transform of the positive powers of 2: {1, 2, 4, 8, 16, 32, · · ·}
(see OEIS [5] sequence A001316).

Lemma 1. The sequence a(n) satisfies the following properties:

• a(0) = 1,

• a(2n) = a(n),

• If a1 = 1 or a3 = 0, then a(4n + 1) = a(n) +
∑

n

k=0
F (4n + 1, 4k + 1), otherwise

a(4n+ 1) =
∑

n

k=0
F (4n+ 1, 4k + 1),

• If a1 = 1 or a3 = 0, then a(4n+3) = a(n) +
∑

3

m=1

∑

n

k=0
F (4n+3, 4k+m), otherwise

a(4n+ 3) =
∑

3

m=1

∑

n

k=0
F (4n+ 3, 4k +m)

• If a1 = 1 or a3 = 0, then a(2n + 1) = a(n) +
∑

n

k=0
F (2n + 1, 2k + 1), otherwise

a(2n+ 1) =
∑

n

k=0
F (2n+ 1, 2k + 1) .

4
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Proof. a(0) is trivially equal to 1.
a(2n) =

∑

2n

k=0
F (2n, k) =

∑

n

k=0
F (2n, 2k) +

∑

n−1

k=0
F (2n, 2k + 1) which is equal to a(n)

by Theorem 5.
Suppose a1 = 1 or a3 = 0. By Theorem 5, the following relations hold: a(4n + 1) =

∑

3

m=0

∑

n

k=0
F (4n+1, 4k+m)−F (4n+1, 4n+2)−F (4n+1, 4n+3) =

∑

3

m=0

∑

n

k=0
F (4n+

1, 4k+m) =
∑

n

k=0
F (n, k)+

∑

n

k=0
F (4n+1, 4k+1); a(4n+3) =

∑

3

m=0

∑

n

k=0
F (4n+3, 4k+

m) =
∑

n

k=0
F (n, k) +

∑

3

m=1

∑

n

k=0
F (4n + 3, 4k + m); a(2n + 1) =

∑

2n+1

k=0
F (2n + 1, k) =

∑

n

k=0
F (2n+1, 2k) +

∑

n

k=0
F (2n+1, 2k+1) =

∑

n

k=0
F (n, k) +

∑

n

k=0
F (2n+1, 2k+1).

In particular, if a1 = 1 or a3 = 0 then
∑

n

k=0
F (2n + 1, 2k + 1) = a(2n + 1) − a(n), an

equation which we will use often in the sequel.

4.1 Run length transform of the Fibonacci sequence

First, consider the case a1 = 1, a2 = −1, a3 = 0, a4 = 2.

Lemma 2. For a1 = 1, a2 = −1, a3 = 0, a4 = 2, the following relations hold for the function

F :

• F (4n+ 1, 4k + 1) = F (4n+ 3, 4k + 3) = 0,

• F (4n+ 3, 4k + 1) = F (n, k),

• F (4n+ 3, 4k + 2) = F (2n+ 1, 2k + 1).

Proof. g(4n+1, 4k+1) = (8k+2∧¬(4(n−k))∨(4k+1∧¬4n+1) 6= 0, i.e F (4n+1, 4k+1) = 0.
g(4n+3, 4k+1) = (8k+2∧¬(4(n−k)+2))∨(4k+1∧¬4n+3) = (4(2k∨n−k))∨4(k∧¬n) =

g(n, k).
Note that (4k+2∧¬4n+3) = (4k∧¬4n) = 2(2k∧¬2n) and (2k+1∧¬2n+1) = (2k∧¬2n).

Similarly (4k + 3 ∧ ¬4n + 3) = (4k ∧ ¬4n) = 2(2k + 1 ∧ ¬2n+ 1).
g(4n+3, 4k+2) = (8k+4∧¬(4(n−k)+1))∨(4k+2∧¬4n+3) = 2[4k+2∧¬2(n−k))∨(2k+

1∧¬2n+1)] where we have use the fact that (8k+4∧¬(4(n−k)+1)) = (8k+4∧¬(4(n−k))).
This implies that F (4n+ 3, 4k + 2) = F (2n+ 1, 2k + 1).

g(4n+3, 4k+3) = (8k+6∧¬(4(n−k))∨ (4k+3∧¬4n+3). Since 8k+6∧¬4(n−k) 6= 0
This implies that F (4n+ 3, 4k + 3) = 0.

Theorem 6. Let a(n) =
∑

n

k=0

(

n− k

2k

)(

n

k

)

mod 2. Then a(n) satisfies the equations

a(0) = 1, a(2n) = a(n), a(4n + 1) = a(n) and a(4n + 3) = a(2n + 1) + a(n). In particular,

a(n) is the run length transform of the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, · · · .

Proof. By Lemma 1,a(0) = 1 and a(2n) = a(n). Next, by Lemma 1 and Lemma 2, a(4n +
1) = a(n). Similarly a(4n+3) = a(n)+

∑

3

m=1

∑

n

k=0
F (4n+3, 4k+m) = a(n)+

∑

n

k=0
F (n, k)+

F (2n + 1, 2k + 1) = a(2n + 1) + a(n). By Theorem 4, a(n) is the run length transform of
the Fibonacci sequence 1,1,2,3,5,8,13,...
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Note that in this case a(n) corresponds to OEIS sequence A246028. Other values of ai can

also generate the same sequence. For instance, it can be shown that
∑

n

k=0

(

2k
n− k

)(

n

k

)

mod 2 ,
∑

n

k=0

(

n + 3k
2k

)(

n

k

)

mod 2, and
∑

n

k=0

(

n + 3k
n+ k

)(

n

k

)

mod 2 all corre-

spond to the run length transform of the Fibonacci sequence as well.

4.2 Run length transform of the truncated Fibonacci sequence

Next, consider the case a1 = a3 = 0, a2 = 3, a4 = 1.

Lemma 3. For a1 = a3 = 0, a2 = 3, a4 = 1, the following relations hold for the function F :

• F (4n+ 1, 4k + 1) = F (4n+ 3, 4k + 1) = F (n, k),

• F (4n+ 3, 4k + 2) = F (2n+ 1, 2k + 1),

• F (4n+ 3, 4k + 3) = 0.

Proof. g(4n+1, 4k+1) = (4k+1∧¬(12k+3)∨(4k+1∧¬4n+1) = (4k∧¬12k)∨(4k∧¬4n),
i.e F (4n+ 1, 4k + 1) = F (n, k).

g(4n+3, 4k+1) = (4k+1∧¬(12k+3)∨ (4k+1∧¬4n+3) = (4k ∧¬12k)∨ (4k ∧¬4n)
and F (4n+ 3, 4n+ 1) = F (n, k).

Note that (4k+2∧¬4n+3) = (4k∧¬4n) = 2(2k∧¬2n) and (2k+1∧¬2n+1) = (2k∧¬2n).
Similarly (4k + 3 ∧ ¬4n + 3) = (4k ∧ ¬4n) = 2(2k + 1 ∧ ¬2n+ 1).

g(4n+ 3, 4k + 2) = (4k + 2 ∧ ¬(12k + 6)) ∨ (4k + 2 ∧ ¬4n+ 3) = 2[(2k + 1 ∧ ¬6k + 3) ∨
(2k + 1 ∧ ¬2n + 1)]. This implies that F (4n+ 3, 4k + 2) = F (2n+ 1, 2k + 1).

g(4n+3, 4k+3) = (4k+3∧¬(12k+6)∨ (4k+3∧¬4n+3). Since 4k+3∧¬12k+6 6= 0
This implies that F (4n+ 3, 4k + 3) = 0

Theorem 7. Let a(n) =
∑

n

k=0

(

3k
k

)(

n

k

)

mod 2. Then a(n) satisfies the equations

a(0) = 1, a(2n) = a(n), a(4n+ 1) = 2a(n) and a(4n+ 3) = a(2n+ 1) + a(n). In particular,

a(n) is the run length transform of the truncated Fibonacci sequence 1, 2, 3, 5, 8, 13, · · · .

Proof. By Lemma 1, a(0) = 1 and a(2n) = a(n). Next, by Lemma 1 and Lemma 3,
a(4k + 1) = 2a(n). Similarly, a(4n + 3) = a(n) +

∑

3

m=1

∑

n

k=0
F (4n + 3, 4k +m) = a(n) +

∑

n

k=0
F (n, k) + F (2n+ 1, 2k+ 1) = a(2n+ 1) + a(n). By Theorem 4, a(n) is the run length

transform of the truncated Fibonacci sequence 1, 2, 3, 5, 8, 13, · · · .

Note that in this case a(n) corresponds to OEIS sequence A245564. This sequence is also

equal to
∑

n

k=0

(

3k2m

k2m

)(

n

k

)

mod 2 and
∑

n

k=0

(

3k2m

2k2m

)(

n

k

)

mod 2 for all integers

m ≥ 0.

6
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4.3 Run length transform of {1, 1, 2, 4, 8, 16, 32, · · ·}

Next, consider the case a1 = 1, a2 = a3 = 0, a4 = 2.

Lemma 4. For a1 = 1, a2 = a3 = 0, a4 = 2, the following relations hold for the function F :

• F (4n+ 1, 4k + 1) = 0

• F (4n+ 3, 4k + 1) = F (n, k),

• F (4n+ 3, 4k + 2) = F (4n+ 3, 4k + 3) = F (2n+ 1, 2k + 1).

Proof. g(4n+1, 4k+1) = (8k+2∧¬(4n+1)∨(4k+1∧¬4n+1) 6= 0, i.e F (4n+1, 4k+1) = 0.
g(4n+3, 4k+1) = (8k+2∧¬(4n+3)∨ (4k+1∧¬4n+3) = 4[(2k∧¬n)∨ (k∧¬n) where

we use the fact that (8k + 2 ∧ ¬(4n + 3)(8k ∧ ¬(4n) and thus F (4n+ 3, 4n+ 1) = F (n, k).
Note that (4k+2∧¬4n+3) = (4k∧¬4n) = 2(2k∧¬2n) and (2k+1∧¬2n+1) = (2k∧¬2n).

Similarly (4k + 3 ∧ ¬4n + 3) = (4k ∧ ¬4n) = 2(2k + 1 ∧ ¬2n+ 1).
g(4n+ 3, 4k + 2) = (8k + 4 ∧ ¬(4n + 3)) ∨ (4k + 2 ∧ ¬4n + 3) = 2[(4k + 2 ∧ ¬2n + 1) ∨

(2k+ 1∧¬2n+ 1)], where we use the fact that (8k+ 4∧¬(4n+ 3)) = (8k+ 4∧¬(4n+ 2)).
This implies that F (4n+ 3, 4k + 2) = F (2n+ 1, 2k + 1).

g(4n+ 3, 4k + 3) = (8k + 6∧ ¬(4n+ 3))∨ (4k + 3 ∧¬4n+ 3) = 2[(4k + 2 ∧¬(2n+ 1)) ∨
(2k + 1 ∧ ¬2n + 1).This implies that F (4n+ 3, 4k + 3) = F (2n+ 1, 2k + 1).

Theorem 8. Let a(n) =
∑

n

k=0

(

n

2k

)(

n

k

)

mod 2. Then a(n) satisfies the equations

a(0) = 1, a(2n) = a(n), a(4n+1) = a(n) and a(4n+3) = 2a(2n+1). In particular, a(n) =
{1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, · · ·} is the run length transform of the 1, 1, 2, 4, 8, 16, 32, · · · , i.e.
1 plus the positive powers of 2.

Proof. By Lemma 1, a(0) = 1 and a(2n) = a(n). Next, by Lemma 1 and Lemma 4,
a(4n + 1) = a(n). Similarly, a(4n + 3) = a(n) +

∑

3

m=1

∑

n

k=0
F (4n + 3, 4k +m) = 2a(n) +

2
∑

n

k=0
F (2n + 1, 2k + 1) = 2a(2n + 1). By Theorem 4, a(n) is the run length transform of

the sequence 1, 1, 2, 4, 8, 16, 32, · · · .

4.4 Run length transform of {1, 2, 2, 2, 2, 2, · · ·}

Next, consider the case a1 = 1, a2 = a4 = 2, a3 = 0.

Lemma 5. For a1 = 1, a2 = a4 = 2, a3 = 0, the following relations hold for the function F :

• F (4n+ 1, 4k + 1) = F (n, k)

• F (4n+ 3, 4k + 1) = F (4n+ 3, 4k + 3) = 0,

• F (4n+ 3, 4k + 2) = F (2n+ 1, 2k + 1),
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Proof. g(4n + 1, 4k + 1) = (8k + 2 ∧ ¬(4n + 8k + 3) ∨ (4k + 1 ∧ ¬4n + 1) = 4[(2k ∧ ¬(n +
2k) ∨ (k ∧ ¬n)], i.e F (4n+ 1, 4k + 1) = F (n, k).

g(4n+3, 4k+1) = (8k+2∧¬(4n+8k+5)∨(4k+1∧¬4n+3) 6= 0, i.e. F (4n+3, 4k+1) = 0.
Note that (4k+2∧¬4n+3) = (4k∧¬4n) = 2(2k∧¬2n) and (2k+1∧¬2n+1) = (2k∧¬2n).

Similarly (4k + 3 ∧ ¬4n + 3) = (4k ∧ ¬4n) = 2(2k + 1 ∧ ¬2n+ 1).
g(4n+3, 4k+2) = (8k+4∧¬(4n+8k+7))∨ (4k+2∧¬4n+3) = 2[(4k+2∧¬2n+4k+

3)∨ (2k+1∧¬2n+1)] where we use (8k+4∧¬(4n+8k+7)) = (8k+4∧¬(4n+8k+6)).
This implies that F (4n+ 3, 4k + 2) = F (2n+ 1, 2k + 1).

g(4n+3, 4k+3) = (8k+6∧¬(4n+8k+9))∨(4k+3∧¬4n+3) 6= 0, i.e. F (4n+3, 4k+3) = 0.

Theorem 9. Let a(n) =
∑

n

k=0

(

n+ 2k
2k

)(

n

k

)

mod 2. Then a(n) satisfies the equa-

tions a(0) = 1, a(2n) = a(n), a(4n + 1) = 2a(n) and a(4n + 3) = a(2n + 1). In particular,

a(n) = {1, 2, 2, 2, 2, 4, 2, 2, 2, 4, · · ·} is the run length transform of the 1, 2, 2, 2, 2, 2, 2, · · · .

Proof. By Lemma 1, a(0) = 1, a(2n) = a(n). Next, by Lemma 1 and Lemma 5, a(4n+1) =
a(n)+

∑

n

k=0
F (n, k) = 2a(n). Similarly, a(4n+3) = a(n)+

∑

3

m=1

∑

n

k=0
F (4n+3, 4k+m) =

a(n) +
∑

n

k=0
F (2n+1, 2k+1) = a(2n+1). By Theorem 4, a(n) is the run length transform

of the Fibonacci sequence 1, 2, 2, 2, 2, · · · .

This sequence is also generated by
∑

n

k=0

(

n + 2k
n

)(

n

k

)

mod 2.

4.5 Run length transform of the positive integers

OEIS sequence A106737 is defined as a(n) =
∑

n

k=0

(

n + k

n− k

)(

n

k

)

mod 2. It was noted

that the following recursive relationships appear to hold: a(2n) = a(n), a(4n + 1) = 2a(n)
and a(4n+ 3) = 2a(2n+ 1)− a(n). In this section we show that this is indeed the case.

Let a1, a2, a3 = 1 and a4 = −1, i.e. F (n, k) =

(

n+ k

n− k

)(

n

k

)

mod 2 and g(n, k) =

((n− k) ∧ ¬(n+ k)) ∨ (k ∧ ¬n).

Lemma 6. For a1, a2, a3 = 1 and a4 = −1, the following relations hold for the function F

and g:

• F (4n+ 1, 4k + 1) = F (n, k),

• F (4n+ 3, 4k + 1) = 0,

• F (4n+ 3, 4k + 2) = F (4n+ 3, 4k + 3) = F (2n+ 1, 2k + 1).

Proof. g(4n+ 1, 4k + 1) = (4(n− k) ∧ ¬(4(n + k) + 2)) ∨ (4k + 1 ∧ ¬4n + 1) = 4((n− k) ∧
¬(n + k)) ∨ 4(k ∧ ¬n), i.e. F (4n+ 1, 4k + 1) = F (n, k).
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g(4n + 3, 4k + 1) = (4(n − k) + 2 ∧ ¬(4(n + k + 1))) ∨ (4k + 1 ∧ ¬4n + 3) > 0 since
(4(n− k) + 2 ∧ ¬(4(n + k + 1))) > 0, i.e. F (4n+ 3, 4k + 1) = 0.

Note that (4k+2∧¬4n+3) = (4k∧¬4n) = 2(2k∧¬2n) and (2k+1∧¬2n+1) = (2k∧¬2n).
Similarly (4k + 3 ∧ ¬4n + 3) = (4k ∧ ¬4n) = 2(2k + 1 ∧ ¬2n+ 1).

g(4n + 3, 4k + 2) = (4(n − k) + 1 ∧ ¬(4(n + k + 1) + 1)) ∨ (4k + 2 ∧ ¬4n + 3) =
2[(2(n−k)∧¬2(n+k+1))∨(2k+1∧¬2n+1)] where we use (4(n−k)+1∧¬(4(n+k+1)+1)) =
(4(n− k) ∧ ¬(4(n + k + 1))). This implies that F (4n+ 3, 4k + 2) = F (2n+ 1, 2k + 1).

g(4n+3, 4k+3) = (4(n−k)∧¬(4(n+k+1)+2))∨(4k+3∧¬4n+3) = 2[(2(n−k)∧¬2(n+k+
1))∨(2k+1∧¬2n+1)] where we use (4(n−k)∧¬(4(n+k+1)+2)) = (4(n−k)∧¬(4(n+k+1))),
and thus F (4n+ 3, 4k + 3) = F (2n+ 1, 2k + 1).

Theorem 10. For OEIS sequence A106737, a(0) = 1, a(2n) = a(n), a(4n+1) = 2a(n) and
a(4n+3) = 2a(2n+1)− a(n). Furthermore, a(n) is the run length transform of the positive

integers.

Proof. As before, by Lemma 1, a(0) = 1 and a(2n) = a(n). Next by Lemma 1 and Lemma
6, a(4n + 1) = a(n) +

∑

n

k=0
F (n, k) = 2a(n). Similarly, a(4n + 3) = a(n) +

∑

n

k=0
F (2n +

1, 2k + 1) + F (2n + 1, 2k + 1) = 2a(2n + 1) − a(n). By Theorem 4, a(n) is the run length
transform of the positive integers 1, 2, 3, 4, · · ·

This sequence is also generated by each of the following expressions:
∑

n

k=0

(

n + k

2k

)(

n

k

)

mod 2,
∑

n

k=0

(

n+ 2k
k

)(

n

k

)

mod 2 and
∑

n

k=0

(

n + 2k
n+ k

)(

n

k

)

mod 2.

4.6 A fixed point of the run length transform

The all ones sequence {1, 1, 1, · · · } (OEIS sequence A000012) is a fixed point of the run
length transform. We next show that it is also expressible as sums of products of binomial
coefficients mod 2. To prove this, we consider the case a1 = a4 = 1, a2 = −1, a3 = 0.

Lemma 7. For a1 = a4 = 1, a2 = −1, a3 = 0, the following relations hold for the function

F :

• F (4n+ 1, 4k + 1) = F (4n+ 3, 4k + 1) = F (4n+ 3, 4k + 2) = F (4n+ 3, 4k + 3) = 0

Proof. g(4n+1, 4k+1) = (4k+1∧¬(4(n−k))∨(4k+1∧¬4n+1) 6= 0, i.e. F (4n+1, 4k+1) = 0.
g(4n+3, 4k+1) = (4k+1∧¬(4(n−k)+2)∨(4k+1∧¬4n+3) 6= 0, i.e. F (4n+3, 4k+1) = 0.
Note that (4k+2∧¬4n+3) = (4k∧¬4n) = 2(2k∧¬2n) and (2k+1∧¬2n+1) = (2k∧¬2n).

Similarly (4k + 3 ∧ ¬4n + 3) = (4k ∧ ¬4n) = 2(2k + 1 ∧ ¬2n+ 1).
g(4n+3, 4k+2) = (4k+2∧¬(4(n−k)+1))∨(4k+2∧¬4n+3) 6= 0, i.e. F (4n+3, 4k+2) = 0.

g(4n+3, 4k+3) = (4k+3∧¬(4(n−k))∨(4k+3∧¬4n+3) 6= 0, i.e. F (4n+3, 4k+3) = 0.

Theorem 11. For n, k ≥ 0,

(

n− k

k

)(

n

k

)

is odd if and only if k = 0.
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Proof. Define a(n) =
∑

n

k=0

(

n− k

k

)(

n

k

)

mod 2. By Lemma 1 and Lemma 7, a(0) =

1, a(n) = a(2n) and a(4n + 1) = a(n), a(4n + 3) = a(n). By Theorem 4, a(n) is the run
length transform of the sequence 1, 1, 1, 1, · · · , i.e. a(n) = 1 for all n ≥ 0. The conclusion

then follows since

(

n− k

k

)(

n

k

)

= 1 when k = 0.

Theorem 11 can also been shown by looking at the Sierpinski’s triangle generated by
Pascal’s triangle mod 2 and paraphrasing Theorem 11 as: if starting from the left edge
of the triangle moving k steps to the right reaches a point of the Sierpinski’s triangle, then
continuing moving diagonally k steps must necessary reach a void of the Sierpinski’s triangle.

5 Conclusions

The run length transform has been useful in analyzing the number of ON cells in a cellular
automata after n iterations [4]. We show here that the run length transform can also char-
acterize sums of products of binomial coefficients mod 2. Given the fact that several cellular
automata can generate the Sierpinski’s triangle [1] which are equivalent to Pascal’s triangle
mod 2, this is not surprising and suggests that there is a close relationship between cellular
automata and functions of binomial coefficients mod 2.
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