Sums of products of binomial coefficients mod 2 and run length transforms of sequences

Chai Wah Wu
IBM T. J. Watson Research Center
P. O. Box 218, Yorktown Heights, New York 10598, USA
e-mail: chaiwahwu@member.ams.org

October 19, 2016

Abstract

We look at some properties of functions of binomial coefficients mod 2. In particular, we derive a set of recurrence relations for sums of products of binomial coefficients mod 2 and show that they result in sequences that are the run length transforms of basic sequences. In particular, we show that the sequence $a(n)=\sum_{k=0}^{n}\binom{n-k}{2 k}\binom{n}{k}$ $\bmod 2$ is the run length transform of the Fibonacci numbers and that the sequence $a(n)=\sum_{k=0}^{n}\binom{n+k}{n-k}\binom{n}{k} \bmod 2$ is the run length transform of the positive integers.

1 Introduction

When is the binomial coefficient even or odd, i.e. what is $\binom{n}{k} \bmod 2$? It is well known that when Pascal's triangle of binomial coefficients is taken mod 2, the result has a fractal structure in the limit and is a Sierpinski's triangle (also known as Sierpinski's gasket or Sierpinski's sieve) [1, 2].

Lucas' theorem [3] provides a simple way to determine the binomial coefficients modulo a prime. It states that for integers k, n and prime p, the following relationship holds:

$$
\binom{n}{k} \equiv \prod_{i=0}^{m}\binom{n_{i}}{k_{i}} \quad \bmod p
$$

where n_{i} and k_{i} are the digits of n and k in base p respectively.

When $p=2, n_{i}$ and k_{i} are the bits in the binary expansion of n and k and $\binom{n_{i}}{k_{i}}$ is 0 if and only if $n_{i}<k_{i}$. This implies that $\binom{n}{k}$ is even if and only if $n_{i}<k_{i}$ for some i.

The truth table of $n_{i}<k_{i}$ is:

n_{i}	k_{i}	$n_{i}<k_{i}$
0	0	0
0	1	1
1	0	0
1	1	0

and it is logically equivalent to $k_{i} \wedge\left(\neg n_{i}\right)$. If we think of \wedge, \vee and \neg as bitwise operations on the binary representation of numbers, then we have shown the following well-known fact [1]:

Theorem 1. $\binom{n}{k} \equiv 0 \bmod 2$ if and only if $k \wedge(\neg n) \neq 0$.
Incidentally, for bits n_{i} and $k_{i}, n_{i}<k_{i}$ is logically equivalent to $\neg\left(k_{i} \Rightarrow n_{i}\right)$. Consider $\binom{n}{k}\binom{m}{r} \bmod 2$. Clearly this is equivalent to

$$
\left(\binom{n}{k} \bmod 2\right)\left(\binom{m}{r} \bmod 2\right)
$$

Thus $\binom{n}{k}\binom{m}{r} \equiv 0 \bmod 2$ if and only if $k \wedge(\neg n) \neq 0$ or $r \wedge(\neg m) \neq 0$. This in turns implies the following:

Theorem 2.

$$
\binom{n}{k}\binom{m}{r} \equiv 0 \quad \bmod 2 \Leftrightarrow(k \wedge(\neg n)) \vee(r \wedge(\neg m)) \neq 0
$$

Analogously we have the following result for $\left(\prod_{a=1}^{a=T}\binom{n_{a}}{k_{a}}\right) \bmod 2$. Here n_{a} and k_{a} denote different integers indexed by a, not the bits of n and k.

Theorem 3.

$$
\begin{equation*}
\prod_{a=1}^{a=T}\binom{n_{a}}{k_{a}} \equiv 0 \quad \bmod 2 \Leftrightarrow\left(k_{1} \wedge\left(\neg k_{1}\right)\right) \vee\left(k_{2} \wedge\left(\neg k_{2}\right)\right) \vee \cdots \vee\left(k_{T} \wedge\left(\neg k_{T}\right)\right) \neq 0 \tag{1}
\end{equation*}
$$

These equivalences will be useful in deriving properties of binomial coefficients mod 2 .

2 Run length transform

The run length transform on sequences of numbers is defined as follows [4]:
Definition 1. The run length transform of $\left\{S_{n}, n \geq 0\right\}$ is given by $\left\{T_{n}, n \geq 0\right\}$, where T_{n} is the product of S_{i} 's, with i denoting the run of 1 's in the binary representation of n with the convention that $T_{0}=1$.

For instance, suppose $n=463$, which is 111001111 in binary. It has a run of 31 's and a run of 41 's, and thus $T_{n}=S(3) \cdot S(4)$. Some fixed points of the run length transform include the sequences $\{1,0,0, \ldots$,$\} and \{1,1,1 \cdots$,$\} . In [4], the following result is proved$ about the run length transform:

Theorem 4. Let $\left\{S_{n}, n \geq 0\right\}$ be defined by the recurrence $S_{n+1}=c_{2} S_{n}+c_{3} S_{n-1}$ with initial conditions $S_{0}=1, S_{1}=c_{1}$, then the run length transform of $\left\{S_{n}\right\}$ is given by $\left\{T_{n}, n \geq 0\right\}$ satisfying $T_{0}=1$ and $T_{2 n}=T_{n}, T_{4 n+1}=c_{1} T_{n}, T_{4 n+3}=c_{2} T_{2 n+1}+c_{3} T_{n}$.

Note that the sequence S_{n} may not uniquely define the values of c_{2} and c_{3} in Theorem 4. For instance, for the sequence $S_{n}=\{1,2,4,8, \cdots\},, c_{2}$ and c_{3} can be chosen to be any integers such that $2 c_{2}+c_{3}=4$.

3 Recurrence relations of product of binomial coefficients mod 2

Definition 2. Consider integers $a_{i} \geq 0, i=1, \cdots, 4, a_{1} \in\{0,1\}, a_{3} \in\{0,1\}, 0 \leq a_{1}+a_{2}$, and $0 \leq a_{3}+a_{4}$. Let $F(n, k)=\binom{a_{1} n+a_{2} k}{a_{3} n+a_{4} k}\binom{n}{k} \bmod 2$ and $g(n, k)=\left(\left(a_{3} n+a_{4} k\right) \wedge\right.$ $\left.\neg\left(a_{1} n+a_{2} k\right)\right) \vee(k \wedge \neg n)$

By Theorem 2, $F(n, k)=1$ if and only if $g(n, k)=0$. We show that F satisfies various recurrence relations.

Theorem 5. The following relations hold for the function F :

- $F(n, k)=0$ if $k>n$,
- $F(4 n, 4 k)=F(2 n, 2 k)=F(n, k)$,
- $F(2 n, 2 k+1)=F(4 n+1,4 k+2)=F(4 n+1,4 k+3)=F(4 n+2,4 k+1)=F(4 n+$ $2,4 k+3)=F(4 n, 4 k+1)=F(4 n, 4 k+2)=F(4 n, 4 k+3)=0$,
- $F(4 n+1,4 k)=F(n, k)$ if $a_{1}=1$ or $a_{3}=0$ and $F(4 n+1,4 k)=0$ otherwise.
- $F(4 n+3,4 k)=F(n, k)$ if $a_{1}=1$ or $a_{3}=0$ and $F(4 n+3,4 k)=0$ otherwise.
- $F(2 n+1,2 k)=F(n, k)$ if $a_{1}=1$ or $a_{3}=0$ and $F(2 n+1,2 k)=0$ otherwise.

Proof. Since $\binom{n}{k}=0$ if $k>n, F(n, k)=0$ if $k>n$.
$g(2 n, 2 k)=\left(2\left(a_{3} n+a_{4} k\right) \wedge \neg\left(2\left(a_{1} n+a_{2} k\right)\right)\right) \vee(2 k \wedge \neg 2 n)=2 g(n, k)$ since the lsb (least significant bit) is 0 , i.e. $F(2 n, 2 k)=F(n, k)$.

Next $F(n, k)=0$ if $\binom{n}{k} \equiv 0 \bmod 2$, i.e. if $(k \wedge \neg n)>0$. Then it is easy to see that $F(2 n, 2 k+1)=F(4 n+1,4 k+2)=F(4 n+1,4 k+3)=F(4 n+2,4 k+1)=F(4 n+2,4 k+3)=0$ and $F(4 n, 4 k+i)=0$ for $1 \leq i \leq 3$.
$g(4 n+1,4 k)=\left(4\left(a_{3} n+a_{4} k\right)+a_{3} \wedge \neg 4\left(a_{1} n+a_{2} k\right)+a_{1}\right) \vee(4 k \wedge \neg 4 n+1)$. The least significant 2 bits is equal to $a_{3} \wedge \neg a_{1} \bmod 4$, so $g(4 n+1,4 k)=g(n, k)$ and $F(4 n+1,4 k)=F(n, k)$ if $a_{3} \wedge \neg a_{1} \equiv 0 \bmod 4$ and $F(4 n+1,4 k)=0$ otherwise.
$g(4 n+3,4 k)=\left(4\left(a_{3} n+a_{4} k\right)+3 a_{3} \wedge \neg\left(4\left(a_{1} n+a_{2} k\right)+3 a_{1}\right)\right) \vee(4 k \wedge \neg 4 n+3)=4 g(n, k)$ if $a_{1}=1$ or $a_{3}=0$., i.e. $F(4 n+3,4 k)=F(n, k)$ if $a_{1}=1$ or $a_{3}=0$ and $F(4 n+3,4 k)=0$ otherwise.
$g(2 n+1,2 k)=\left(2\left(a_{3} n+a_{4} k\right)+a_{3} \wedge \neg\left(2\left(a_{1} n+a_{2} k\right)+a_{1}\right)\right) \vee(2 k \wedge \neg 2 n+1)$. thus $F(2 n+1,2 k)=0$ if $a_{3} \wedge \neg a_{1} \not \equiv 0 \bmod 2$. Otherwise, $g(2 n+1,2 k)=2 g(n, k)$ and $F(2 n+$ $1,2 k)=F(n, k)$.

4 Sums of products of binomial coefficients $\bmod 2$

In this section, we show that for various values of a_{i} 's, the sequence $a(n)=\sum_{k=0}^{n} F(n, k)$ corresponds to the run length transforms of well-known sequences. It is clear that $a(n) \leq$ $\sum_{k=0}^{n}\binom{n}{k} \bmod 2$ with equality when $a_{1}=a_{4}=1, a_{2}=a_{3}=0$ or when $a_{1}=a_{2}=a_{3}=$ $a_{4}=1$. The sequence $g(n)=\sum_{k=0}^{n}\binom{n}{k} \bmod 2$ is known as Gould's sequence or Dress's sequence and is the run length transform of the positive powers of 2 : $\{1,2,4,8,16,32, \cdots\}$ (see OEIS [5] sequence A001316).

Lemma 1. The sequence $a(n)$ satisfies the following properties:

- $a(0)=1$,
- $a(2 n)=a(n)$,
- If $a_{1}=1$ or $a_{3}=0$, then $a(4 n+1)=a(n)+\sum_{k=0}^{n} F(4 n+1,4 k+1)$, otherwise $a(4 n+1)=\sum_{k=0}^{n} F(4 n+1,4 k+1)$,
- If $a_{1}=1$ or $a_{3}=0$, then $a(4 n+3)=a(n)+\sum_{m=1}^{3} \sum_{k=0}^{n} F(4 n+3,4 k+m)$, otherwise $a(4 n+3)=\sum_{m=1}^{3} \sum_{k=0}^{n} F(4 n+3,4 k+m)$
- If $a_{1}=1$ or $a_{3}=0$, then $a(2 n+1)=a(n)+\sum_{k=0}^{n} F(2 n+1,2 k+1)$, otherwise $a(2 n+1)=\sum_{k=0}^{n} F(2 n+1,2 k+1)$.

Proof. $a(0)$ is trivially equal to 1 .
$a(2 n)=\sum_{k=0}^{2 n} F(2 n, k)=\sum_{k=0}^{n} F(2 n, 2 k)+\sum_{k=0}^{n-1} F(2 n, 2 k+1)$ which is equal to $a(n)$ by Theorem 5 .

Suppose $a_{1}=1$ or $a_{3}=0$. By Theorem 55, the following relations hold: $a(4 n+1)=$ $\sum_{m=0}^{3} \sum_{k=0}^{n} F(4 n+1,4 k+m)-F(4 n+1,4 n+2)-F(4 n+1,4 n+3)=\sum_{m=0}^{3} \sum_{k=0}^{n} F(4 n+$ $1,4 k+m)=\sum_{k=0}^{n} F(n, k)+\sum_{k=0}^{n} F(4 n+1,4 k+1) ; a(4 n+3)=\sum_{m=0}^{3} \sum_{k=0}^{n}{ }_{k=0}^{n=0} F(4 n+3,4 k+$ $m)=\sum_{k=0}^{n} F(n, k)+\sum_{m=1}^{3} \sum_{k=0}^{n} F(4 n+3,4 k+m) ; a(2 n+1)=\sum_{k=0}^{2 n+1} F(2 n+1, k)=$ $\sum_{k=0}^{n} F(2 n+1,2 k)+\sum_{k=0}^{n} F(2 n+1,2 k+1)=\sum_{k=0}^{n} F(n, k)+\sum_{k=0}^{n} F(2 n+1,2 k+1)$.

In particular, if $a_{1}=1$ or $a_{3}=0$ then $\sum_{k=0}^{n} F(2 n+1,2 k+1)=a(2 n+1)-a(n)$, an equation which we will use often in the sequel.

4.1 Run length transform of the Fibonacci sequence

First, consider the case $a_{1}=1, a_{2}=-1, a_{3}=0, a_{4}=2$.
Lemma 2. For $a_{1}=1, a_{2}=-1, a_{3}=0, a_{4}=2$, the following relations hold for the function F :

- $F(4 n+1,4 k+1)=F(4 n+3,4 k+3)=0$,
- $F(4 n+3,4 k+1)=F(n, k)$,
- $F(4 n+3,4 k+2)=F(2 n+1,2 k+1)$.

Proof. $g(4 n+1,4 k+1)=(8 k+2 \wedge \neg(4(n-k)) \vee(4 k+1 \wedge \neg 4 n+1) \neq 0$, i.e $F(4 n+1,4 k+1)=0$.
$g(4 n+3,4 k+1)=(8 k+2 \wedge \neg(4(n-k)+2)) \vee(4 k+1 \wedge \neg 4 n+3)=(4(2 k \vee n-k)) \vee 4(k \wedge \neg n)=$ $g(n, k)$.

Note that $(4 k+2 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k \wedge \neg 2 n)$ and $(2 k+1 \wedge \neg 2 n+1)=(2 k \wedge \neg 2 n)$. Similarly $(4 k+3 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k+1 \wedge \neg 2 n+1)$.
$g(4 n+3,4 k+2)=(8 k+4 \wedge \neg(4(n-k)+1)) \vee(4 k+2 \wedge \neg 4 n+3)=2[4 k+2 \wedge \neg 2(n-k)) \vee(2 k+$ $1 \wedge \neg 2 n+1)]$ where we have use the fact that $(8 k+4 \wedge \neg(4(n-k)+1))=(8 k+4 \wedge \neg(4(n-k)))$. This implies that $F(4 n+3,4 k+2)=F(2 n+1,2 k+1)$.
$g(4 n+3,4 k+3)=(8 k+6 \wedge \neg(4(n-k)) \vee(4 k+3 \wedge \neg 4 n+3)$. Since $8 k+6 \wedge \neg 4(n-k) \neq 0$ This implies that $F(4 n+3,4 k+3)=0$.

Theorem 6. Let $a(n)=\sum_{k=0}^{n}\binom{n-k}{2 k}\binom{n}{k} \bmod 2$. Then $a(n)$ satisfies the equations $a(0)=1, a(2 n)=a(n), a(4 n+1)=a(n)$ and $a(4 n+3)=a(2 n+1)+a(n)$. In particular, $a(n)$ is the run length transform of the Fibonacci sequence $1,1,2,3,5,8,13, \cdots$.

Proof. By Lemma 1 $a(0)=1$ and $a(2 n)=a(n)$. Next, by Lemma 1 and Lemma 2, $a(4 n+$ $1)=a(n)$. Similarly $a(4 n+3)=a(n)+\sum_{m=1}^{3} \sum_{k=0}^{n} F(4 n+3,4 k+m)=a(n)+\sum_{k=0}^{n} F(n, k)+$ $F(2 n+1,2 k+1)=a(2 n+1)+a(n)$. By Theorem 4, $a(n)$ is the run length transform of the Fibonacci sequence $1,1,2,3,5,8,13, \ldots$

Note that in this case $a(n)$ corresponds to OEIS sequence A246028. Other values of a_{i} can also generate the same sequence. For instance, it can be shown that $\sum_{k=0}^{n}\binom{2 k}{n-k}\binom{n}{k}$ $\bmod 2, \sum_{k=0}^{n}\binom{n+3 k}{2 k}\binom{n}{k} \bmod 2$, and $\sum_{k=0}^{n}\binom{n+3 k}{n+k}\binom{n}{k} \bmod 2$ all correspond to the run length transform of the Fibonacci sequence as well.

4.2 Run length transform of the truncated Fibonacci sequence

Next, consider the case $a_{1}=a_{3}=0, a_{2}=3, a_{4}=1$.
Lemma 3. For $a_{1}=a_{3}=0, a_{2}=3, a_{4}=1$, the following relations hold for the function F :

- $F(4 n+1,4 k+1)=F(4 n+3,4 k+1)=F(n, k)$,
- $F(4 n+3,4 k+2)=F(2 n+1,2 k+1)$,
- $F(4 n+3,4 k+3)=0$.

Proof. $g(4 n+1,4 k+1)=(4 k+1 \wedge \neg(12 k+3) \vee(4 k+1 \wedge \neg 4 n+1)=(4 k \wedge \neg 12 k) \vee(4 k \wedge \neg 4 n)$, i.e $F(4 n+1,4 k+1)=F(n, k)$.
$g(4 n+3,4 k+1)=(4 k+1 \wedge \neg(12 k+3) \vee(4 k+1 \wedge \neg 4 n+3)=(4 k \wedge \neg 12 k) \vee(4 k \wedge \neg 4 n)$ and $F(4 n+3,4 n+1)=F(n, k)$.

Note that $(4 k+2 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k \wedge \neg 2 n)$ and $(2 k+1 \wedge \neg 2 n+1)=(2 k \wedge \neg 2 n)$. Similarly $(4 k+3 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k+1 \wedge \neg 2 n+1)$.
$g(4 n+3,4 k+2)=(4 k+2 \wedge \neg(12 k+6)) \vee(4 k+2 \wedge \neg 4 n+3)=2[(2 k+1 \wedge \neg 6 k+3) \vee$ $(2 k+1 \wedge \neg 2 n+1)]$. This implies that $F(4 n+3,4 k+2)=F(2 n+1,2 k+1)$.
$g(4 n+3,4 k+3)=(4 k+3 \wedge \neg(12 k+6) \vee(4 k+3 \wedge \neg 4 n+3)$. Since $4 k+3 \wedge \neg 12 k+6 \neq 0$ This implies that $F(4 n+3,4 k+3)=0$

Theorem 7. Let $a(n)=\sum_{k=0}^{n}\binom{3 k}{k}\binom{n}{k} \bmod 2$. Then $a(n)$ satisfies the equations $a(0)=1, a(2 n)=a(n), a(4 n+1)=2 a(n)$ and $a(4 n+3)=a(2 n+1)+a(n)$. In particular, $a(n)$ is the run length transform of the truncated Fibonacci sequence 1, 2, 3, 5, 8, 13, \cdots.

Proof. By Lemma 1, $a(0)=1$ and $a(2 n)=a(n)$. Next, by Lemma 1 and Lemma 3, $a(4 k+1)=2 a(n)$. Similarly, $a(4 n+3)=a(n)+\sum_{m=1}^{3} \sum_{k=0}^{n} F(4 n+3,4 k+m)=a(n)+$ $\sum_{k=0}^{n} F(n, k)+F(2 n+1,2 k+1)=a(2 n+1)+a(n)$. By Theorem 4, $a(n)$ is the run length transform of the truncated Fibonacci sequence $1,2,3,5,8,13, \cdots$.

Note that in this case $a(n)$ corresponds to OEIS sequence A245564. This sequence is also equal to $\sum_{k=0}^{n}\binom{3 k 2^{m}}{k 2^{m}}\binom{n}{k} \bmod 2$ and $\sum_{k=0}^{n}\binom{3 k 2^{m}}{2 k 2^{m}}\binom{n}{k} \bmod 2$ for all integers $m \geq 0$.

4.3 Run length transform of $\{1,1,2,4,8,16,32, \cdots\}$

Next, consider the case $a_{1}=1, a_{2}=a_{3}=0, a_{4}=2$.
Lemma 4. For $a_{1}=1, a_{2}=a_{3}=0, a_{4}=2$, the following relations hold for the function F :

- $F(4 n+1,4 k+1)=0$
- $F(4 n+3,4 k+1)=F(n, k)$,
- $F(4 n+3,4 k+2)=F(4 n+3,4 k+3)=F(2 n+1,2 k+1)$.

Proof. $g(4 n+1,4 k+1)=(8 k+2 \wedge \neg(4 n+1) \vee(4 k+1 \wedge \neg 4 n+1) \neq 0$, i.e $F(4 n+1,4 k+1)=0$.
$g(4 n+3,4 k+1)=(8 k+2 \wedge \neg(4 n+3) \vee(4 k+1 \wedge \neg 4 n+3)=4[(2 k \wedge \neg n) \vee(k \wedge \neg n)$ where we use the fact that $(8 k+2 \wedge \neg(4 n+3)(8 k \wedge \neg(4 n)$ and thus $F(4 n+3,4 n+1)=F(n, k)$.

Note that $(4 k+2 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k \wedge \neg 2 n)$ and $(2 k+1 \wedge \neg 2 n+1)=(2 k \wedge \neg 2 n)$. Similarly $(4 k+3 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k+1 \wedge \neg 2 n+1)$.
$g(4 n+3,4 k+2)=(8 k+4 \wedge \neg(4 n+3)) \vee(4 k+2 \wedge \neg 4 n+3)=2[(4 k+2 \wedge \neg 2 n+1) \vee$ $(2 k+1 \wedge \neg 2 n+1)]$, where we use the fact that $(8 k+4 \wedge \neg(4 n+3))=(8 k+4 \wedge \neg(4 n+2))$. This implies that $F(4 n+3,4 k+2)=F(2 n+1,2 k+1)$.
$g(4 n+3,4 k+3)=(8 k+6 \wedge \neg(4 n+3)) \vee(4 k+3 \wedge \neg 4 n+3)=2[(4 k+2 \wedge \neg(2 n+1)) \vee$ $(2 k+1 \wedge \neg 2 n+1)$.This implies that $F(4 n+3,4 k+3)=F(2 n+1,2 k+1)$.

Theorem 8. Let $a(n)=\sum_{k=0}^{n}\binom{n}{2 k}\binom{n}{k} \bmod 2$. Then $a(n)$ satisfies the equations $a(0)=1, a(2 n)=a(n), a(4 n+1)=a(n)$ and $a(4 n+3)=2 a(2 n+1)$. In particular, $a(n)=$ $\{1,1,1,2,1,1,2,4,1,1,1,2, \cdots\}$ is the run length transform of the $1,1,2,4,8,16,32, \cdots$, i.e. 1 plus the positive powers of 2 .

Proof. By Lemma 1, $a(0)=1$ and $a(2 n)=a(n)$. Next, by Lemma 1 and Lemma 4 , $a(4 n+1)=a(n)$. Similarly, $a(4 n+3)=a(n)+\sum_{m=1}^{3} \sum_{k=0}^{n} F(4 n+3,4 k+m)=2 a(n)+$ $2 \sum_{k=0}^{n} F(2 n+1,2 k+1)=2 a(2 n+1)$. By Theorem 4,$a(n)$ is the run length transform of the sequence $1,1,2,4,8,16,32, \cdots$.

4.4 Run length transform of $\{1,2,2,2,2,2, \cdots\}$

Next, consider the case $a_{1}=1, a_{2}=a_{4}=2, a_{3}=0$.
Lemma 5. For $a_{1}=1, a_{2}=a_{4}=2, a_{3}=0$, the following relations hold for the function F :

- $F(4 n+1,4 k+1)=F(n, k)$
- $F(4 n+3,4 k+1)=F(4 n+3,4 k+3)=0$,
- $F(4 n+3,4 k+2)=F(2 n+1,2 k+1)$,

Proof. $g(4 n+1,4 k+1)=(8 k+2 \wedge \neg(4 n+8 k+3) \vee(4 k+1 \wedge \neg 4 n+1)=4[(2 k \wedge \neg(n+$ $2 k) \vee(k \wedge \neg n)$], i.e $F(4 n+1,4 k+1)=F(n, k)$.
$g(4 n+3,4 k+1)=(8 k+2 \wedge \neg(4 n+8 k+5) \vee(4 k+1 \wedge \neg 4 n+3) \neq 0$, i.e. $F(4 n+3,4 k+1)=0$.
Note that $(4 k+2 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k \wedge \neg 2 n)$ and $(2 k+1 \wedge \neg 2 n+1)=(2 k \wedge \neg 2 n)$.
Similarly $(4 k+3 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k+1 \wedge \neg 2 n+1)$.
$g(4 n+3,4 k+2)=(8 k+4 \wedge \neg(4 n+8 k+7)) \vee(4 k+2 \wedge \neg 4 n+3)=2[(4 k+2 \wedge \neg 2 n+4 k+$ 3) $\vee(2 k+1 \wedge \neg 2 n+1)]$ where we use $(8 k+4 \wedge \neg(4 n+8 k+7))=(8 k+4 \wedge \neg(4 n+8 k+6))$. This implies that $F(4 n+3,4 k+2)=F(2 n+1,2 k+1)$.

$$
g(4 n+3,4 k+3)=(8 k+6 \wedge \neg(4 n+8 k+9)) \vee(4 k+3 \wedge \neg 4 n+3) \neq 0 \text {, i.e. } F(4 n+3,4 k+3)=0
$$

Theorem 9. Let $a(n)=\sum_{k=0}^{n}\binom{n+2 k}{2 k}\binom{n}{k} \bmod 2$. Then $a(n)$ satisfies the equations $a(0)=1, a(2 n)=a(n), a(4 n+1)=2 a(n)$ and $a(4 n+3)=a(2 n+1)$. In particular, $a(n)=\{1,2,2,2,2,4,2,2,2,4, \cdots\}$ is the run length transform of the $1,2,2,2,2,2,2, \cdots$.

Proof. By Lemma 1, $a(0)=1, a(2 n)=a(n)$. Next, by Lemma 1 and Lemma 5, $a(4 n+1)=$ $a(n)+\sum_{k=0}^{n} F(n, k)=2 a(n)$. Similarly, $a(4 n+3)=a(n)+\sum_{m=1}^{3} \sum_{k=0}^{n} F(4 n+3,4 k+m)=$ $a(n)+\sum_{k=0}^{n} F(2 n+1,2 k+1)=a(2 n+1)$. By Theorem 目 $a(n)$ is the run length transform of the Fibonacci sequence $1,2,2,2,2, \cdots$.

This sequence is also generated by $\sum_{k=0}^{n}\binom{n+2 k}{n}\binom{n}{k} \bmod 2$.

4.5 Run length transform of the positive integers

OEIS sequence A106737 is defined as $a(n)=\sum_{k=0}^{n}\binom{n+k}{n-k}\binom{n}{k} \bmod 2$. It was noted that the following recursive relationships appear to hold: $a(2 n)=a(n), a(4 n+1)=2 a(n)$ and $a(4 n+3)=2 a(2 n+1)-a(n)$. In this section we show that this is indeed the case.

Let $a_{1}, a_{2}, a_{3}=1$ and $a_{4}=-1$, i.e. $F(n, k)=\binom{n+k}{n-k}\binom{n}{k} \bmod 2$ and $g(n, k)=$ $((n-k) \wedge \neg(n+k)) \vee(k \wedge \neg n)$.

Lemma 6. For $a_{1}, a_{2}, a_{3}=1$ and $a_{4}=-1$, the following relations hold for the function F and g :

- $F(4 n+1,4 k+1)=F(n, k)$,
- $F(4 n+3,4 k+1)=0$,
- $F(4 n+3,4 k+2)=F(4 n+3,4 k+3)=F(2 n+1,2 k+1)$.

Proof. $g(4 n+1,4 k+1)=(4(n-k) \wedge \neg(4(n+k)+2)) \vee(4 k+1 \wedge \neg 4 n+1)=4((n-k) \wedge$ $\neg(n+k)) \vee 4(k \wedge \neg n)$, i.e. $F(4 n+1,4 k+1)=F(n, k)$.

$$
g(4 n+3,4 k+1)=(4(n-k)+2 \wedge \neg(4(n+k+1))) \vee(4 k+1 \wedge \neg 4 n+3)>0 \text { since }
$$ $(4(n-k)+2 \wedge \neg(4(n+k+1)))>0$, i.e. $F(4 n+3,4 k+1)=0$.

Note that $(4 k+2 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k \wedge \neg 2 n)$ and $(2 k+1 \wedge \neg 2 n+1)=(2 k \wedge \neg 2 n)$. Similarly $(4 k+3 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k+1 \wedge \neg 2 n+1)$.
$g(4 n+3,4 k+2)=(4(n-k)+1 \wedge \neg(4(n+k+1)+1)) \vee(4 k+2 \wedge \neg 4 n+3)=$ $2[(2(n-k) \wedge \neg 2(n+k+1)) \vee(2 k+1 \wedge \neg 2 n+1)]$ where we use $(4(n-k)+1 \wedge \neg(4(n+k+1)+1))=$ $(4(n-k) \wedge \neg(4(n+k+1)))$. This implies that $F(4 n+3,4 k+2)=F(2 n+1,2 k+1)$.
$g(4 n+3,4 k+3)=(4(n-k) \wedge \neg(4(n+k+1)+2)) \vee(4 k+3 \wedge \neg 4 n+3)=2[(2(n-k) \wedge \neg 2(n+k+$ 1) $) \vee(2 k+1 \wedge \neg 2 n+1)]$ where we use $(4(n-k) \wedge \neg(4(n+k+1)+2))=(4(n-k) \wedge \neg(4(n+k+1)))$, and thus $F(4 n+3,4 k+3)=F(2 n+1,2 k+1)$.

Theorem 10. For OEIS sequence A106737, $a(0)=1$, $a(2 n)=a(n), a(4 n+1)=2 a(n)$ and $a(4 n+3)=2 a(2 n+1)-a(n)$. Furthermore, $a(n)$ is the run length transform of the positive integers.

Proof. As before, by Lemma 1, $a(0)=1$ and $a(2 n)=a(n)$. Next by Lemma 1 and Lemma 6, $a(4 n+1)=a(n)+\sum_{k=0}^{n} F(n, k)=2 a(n)$. Similarly, $a(4 n+3)=a(n)+\sum_{k=0}^{n} F(2 n+$ $1,2 k+1)+F(2 n+1,2 k+1)=2 a(2 n+1)-a(n)$. By Theorem 4, $a(n)$ is the run length transform of the positive integers $1,2,3,4, \cdots$

This sequence is also generated by each of the following expressions: $\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{n}{k}$ $\bmod 2, \sum_{k=0}^{n}\binom{n+2 k}{k}\binom{n}{k} \bmod 2 \operatorname{and} \sum_{k=0}^{n}\binom{n+2 k}{n+k}\binom{n}{k} \bmod 2$.

4.6 A fixed point of the run length transform

The all ones sequence $\{1,1,1, \cdots\}$ (OEIS sequence A000012) is a fixed point of the run length transform. We next show that it is also expressible as sums of products of binomial coefficients mod 2 . To prove this, we consider the case $a_{1}=a_{4}=1, a_{2}=-1, a_{3}=0$.

Lemma 7. For $a_{1}=a_{4}=1, a_{2}=-1, a_{3}=0$, the following relations hold for the function F :

$$
\text { - } F(4 n+1,4 k+1)=F(4 n+3,4 k+1)=F(4 n+3,4 k+2)=F(4 n+3,4 k+3)=0
$$

Proof. $g(4 n+1,4 k+1)=(4 k+1 \wedge \neg(4(n-k)) \vee(4 k+1 \wedge \neg 4 n+1) \neq 0$, i.e. $F(4 n+1,4 k+1)=0$.
$g(4 n+3,4 k+1)=(4 k+1 \wedge \neg(4(n-k)+2) \vee(4 k+1 \wedge \neg 4 n+3) \neq 0$, i.e. $F(4 n+3,4 k+1)=0$.
Note that $(4 k+2 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k \wedge \neg 2 n)$ and $(2 k+1 \wedge \neg 2 n+1)=(2 k \wedge \neg 2 n)$.
Similarly $(4 k+3 \wedge \neg 4 n+3)=(4 k \wedge \neg 4 n)=2(2 k+1 \wedge \neg 2 n+1)$.
$g(4 n+3,4 k+2)=(4 k+2 \wedge \neg(4(n-k)+1)) \vee(4 k+2 \wedge \neg 4 n+3) \neq 0$, i.e. $F(4 n+3,4 k+2)=0$. $g(4 n+3,4 k+3)=(4 k+3 \wedge \neg(4(n-k)) \vee(4 k+3 \wedge \neg 4 n+3) \neq 0$, i.e. $F(4 n+3,4 k+3)=0$.

Theorem 11. For $n, k \geq 0$, $\binom{n-k}{k}\binom{n}{k}$ is odd if and only if $k=0$.

Proof. Define $a(n)=\sum_{k=0}^{n}\binom{n-k}{k}\binom{n}{k} \bmod 2$. By Lemma 1 and Lemma 7, $a(0)=$ $1, a(n)=a(2 n)$ and $a(4 n+1)=a(n), a(4 n+3)=a(n)$. By Theorem 4, $a(n)$ is the run length transform of the sequence $1,1,1,1, \cdots$, i.e. $a(n)=1$ for all $n \geq 0$. The conclusion then follows since $\binom{n-k}{k}\binom{n}{k}=1$ when $k=0$.

Theorem 11 can also been shown by looking at the Sierpinski's triangle generated by Pascal's triangle mod 2 and paraphrasing Theorem 11 as: if starting from the left edge of the triangle moving k steps to the right reaches a point of the Sierpinski's triangle, then continuing moving diagonally k steps must necessary reach a void of the Sierpinski's triangle.

5 Conclusions

The run length transform has been useful in analyzing the number of ON cells in a cellular automata after n iterations [4]. We show here that the run length transform can also characterize sums of products of binomial coefficients mod 2. Given the fact that several cellular automata can generate the Sierpinski's triangle [1 which are equivalent to Pascal's triangle $\bmod 2$, this is not surprising and suggests that there is a close relationship between cellular automata and functions of binomial coefficients mod 2 .

References

[1] E. W. Weisstein, "Sierpinski sieve." [Online]. Available: http://mathworld.wolfram.com/SierpinskiSieve.html
[2] L. Riddle, "Binary description of the sierpinski gasket." [Online]. Available: http://ecademy.agnesscott.edu/~lriddle/ifs/siertri/pascal.htm
[3] N. Fine, "Binomial coefficients modulo a prime," American Mathematical Monthly, vol. 54, no. 10, pp. 589-592, 1947.
[4] N. J. A. Sloane, "On the number of on cells in cellular automata," 2015, arXiv:1503.01168. [Online]. Available: http://arxiv.org/abs/1503.01168
[5] "The on-line encyclopedia of integer sequences," founded in 1964 by N. J. A. Sloane. [Online]. Available: https://oeis.org/

