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Generalized K-Shift Forbidden Substrings
in Permutations

Enrique Navarrete∗

In this note we continue the analysis started in [2] and generalize
propositions regarding permutations that avoid substrings
12, 23, . . . , (n− 1)n, (and others) to permutations that for k fixed, k < n,
avoid substrings j(j+k), 1 ≤ j ≤ n−k, (ie. k-shifts in general, as defined
in Section 2). We count the number of such permutations and relate them
to generalized derangement numbers.

Keywords: Generalized derangements, permutations, linear arrangements,
forbidden substrings, fixed points, k-shifts, bijections.

1. Introduction and Previous Results

In this section we summarize some results obtained in [2] and we recall the
following definitions2:

dn := the number of permutations on [n] that avoid substrings
12, 23, . . . , (n− 1)n.

Dn := the number of permutations on [n] that avoid substrings
12, 23, . . . , (n− 1)n, n1.

Dern := the nth derangement number, ie.

Dern = n!

n
∑

k=0

(−1)n

k!
. (1.1)

In [2] we discussed the existing result

dn =

n−1
∑

j=0

(−1)j
(

n− 1

j

)

(n− j)!. (1.2)

∗Grupo ANFI, Universidad de Antioquia.
2Note: In [2], the term “linear arrangement” was used instead of “permutation”,

and “pattern” instead of “substring”. Here we use the more conventional terminology.
Permutations are meant to be in one-line notation.
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We also proved (Equation 2.1)

Dn = n!

n−1
∑

k=0

(−1)k

k!
, (1.3)

which is equivalent to

Dn =

n−1
∑

j=0

(−1)j
(

n

j

)

(n− j)!. (1.4)

Finally in Proposition 2.4, we proved that Dn = Dern +(−1)n−1, n ≥ 1, which
we called the “alternating derangement sequence” since these numbers alternate
plus or minus one from the derangement sequence itself. This is sequence
A000240 in OEIS [3].

Now we extend the results to forbidden substrings that are not one space apart
but k spacings apart (what we call “k-shifts” in the following section).

2. Main Lemmas and Propositions

2.1 Results for {dn} and its k-shifts {dk

n
}

For the sake of compactness, we define {dn} as the set of permutations on [n]
that avoid substrings 12, 23, . . . , (n1)n, n1, with dn being the number of such
permutations.

We generalize to k-shifts {dkn}, k ≤ n, as the set of permutations on [n] that for
fixed k, avoid substrings j(j + k), 1 ≤ j ≤ n− k. We let dkn be the number of
such permutations (the reason for power notation will become apparent in the
next section).

The forbidden substrings in these permutations can be pictured as a diagonal
running k places to the right of the main diagonal of an n×n chessboard (hence
the term “k-shifts”). The permutations that avoid these substrings are not too
difficult to handle, and in fact we can count them for any k, as we show in the
following proposition.

Proposition 2.1. For k fixed, k ≤ n, if dkn denotes the number of permutations

that avoid substrings j(j + k), 1 ≤ j ≤ n− k, then

dkn =

n−k
∑

j=0

(−1)j
(

n− k

j

)

(n− j)!. (2.1)
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Proof. For any n and k fixed, there are a total of
(

n− k

j

)

(n− j)!

forbidden substrings of length j since the combinatorial term counts the number
of ways to get such substrings while the term (n− j)! counts the permutations
of the substrings and the remaining elements (note that substrings are not
necessarily disjoint but may overlap). Using inclusion-exclusion we get the
result. �

We note that the case k = 1 is just the result we had for dn in Equation 1.2.

Corollary 2.2. The following relation holds for dkn:

dk+1
n = dkn + dkn−1. (2.2)

Proof. By Equation 2.1 and elementary methods. �

Now we define d0n := Dern, which makes sense since in a chessboard of forbidden
positions, a derangement is represented by an X in the position (j, j) ie. a
0-shift.

Note that Equation 2.2 generalizes the relation in Lemma 2.3 in [2], and we
have the following equations starting at n = 1:

dn =d1n = Dern +Dern−1

d2n = dn + dn−1

d3n = d2n + d2n−1 · · ·

Using the inital condition condition d12 = Der2, Equation 2.2 defines a binomial-
type relation, which, upon iteration, gives us the triangle in Table 1 in the
Appendix3.

It is interesting to note from the triangle that we may get dkn starting only from
derangement numbers. For example, to get, d58 ie. the number of permutations
of length 8 with forbidden substrings {16, 27, 38}, we can start from the
upper-left corner of the table and by successive addition along the triangle we
can reach the cell d58 = 27, 240 (or we can obviously use Equation 2.1). Note in
particular that for k = n− 1, dkn = n!− k!.

2.2 Results for {Dn} and its k-shifts {Dk

n
}

Now we define {Dn} as the set of permutations on [n] that avoid substrings
12, 23, . . . , (n− 1)n, n1, with Dn being the number of such permutations.

3This triangle follows the same recurrence as the so-called Euler’s Difference Table, which
originally had no combinatorial interpretation. Euler’s Table also has n! terms at the beginning
of each column, which don’t apply in our context of k-shifts.
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We generalize to k-shifts {Dk
n} as the set of permutations on [n] that for fixed k,

k ≤ n, avoid substrings j(j+k), 1 ≤ j ≤ n−k, and for j > n−k, avoid substrings
(n − k + j)j, 1 ≤ j ≤ k. We let Dk

n be the number of such permutations.
These forbidden substrings are easily seen along an n×n chessboard, where for
j > n − k, the forbidden positions start again from the first column along a
diagonal (n− k) places below the main diagonal.

It turns out that the numbers Dk
n are more difficult to get. They depend on

whether n is prime, and more generally, on whether n and k are relatively prime.

Proposition 2.3. For permutations {Dk
n} with k relative prime to n, n ≥ 3, we

can form a forbidden substring of length j = n−1 for any k, k = 1, 2, . . . , n−1.

Proof. Start with forbidden substrings 12, 23, . . . , (n− 1)n in {Dn} and form
the permutation (12 . . . n) in cycle notation. Since any k-shift corresponds to
a k-power of the permutation, we see that the longest cycle will have length
n/(n, k) for any k, where (n, k) stands for the greatest common divisor. Hence
the longest cycle length will be achieved for (n, k) = 1, and in this case we
will have a cycle of length n, which represents a forbidden substring of length
j = n− 1. �

Note that the proof of the proposition justifies the power notation in Dk
n (and

in k-shifts in general).

Note also that the proposition is not true if k is not relative prime to n, for
example in the case n = 6 and k = 2. In this case, the forbidden substrings are
{13, 24, 35, 46, 51, 62}, and we cannot form a cycle of length n = 6 (and hence a
substring of length 5) using these substrings.

Corollary 2.4. For all permutations in {Dk
n} with k relative prime to n, n ≥ 3,

there exist forbidden substrings of any length j, j = 1, 2, . . . , n− 1.

Proof. By the previous proposition, for (n, k) = 1 we can get the longest
forbidden substring of length j = n− 1. Note that it can be considered either a
single substring of length n−1 or n−1 overlapping substrings of length 2. Hence
once this substring is obtained, we can split it to get any number of forbidden
substrings j, j = 1, . . . , n− 1. �

Proposition 2.5. The number of permutations in {Dk
n} with k relative prime

to n, n ≥ 3, k < n, is the same as the number of permutations in {Dn}.

Proof. By the previous corollary and proposition, since for k’s such that
(n, k) = 1, we can have any number j of forbidden substrings, j = 1, . . . , n− 1.
It is easy to count that there are exactly

(

n
j

)

ways to get j forbidden substrings

(either disjoint or overlapping), and (n − j)! permutations of these substrings
and the remaining elements. Then by inclusion-exclusion we get that

Dk
n =

n−1
∑

j=0

(−1)j
(

n

j

)

(n− j)!.
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But this is the same as Equation 1.4, which counts the number of permutations
in {Dn}. �

As an example of the previous proposition, consider again n = 8, k = 5. In this
case, forbidden substrings in {D5

8} are {16, 27, 38, 41, 52, 63, 74, 85}. It is easy
to count that there are

(

8

4

)

forbidden substrings of length j = 4 and (8 − 4)!
permutations of these substrings and the remaining elements. For example, a
substring of length 4 (alternatively, four substrings of length 2) is given by 1638
74 and we count (8 − 4)! = 4! permutations of the four blocks 1638 74 2 5.

Corollary 2.6. For all permutations in {Dk
p} with p prime, p ≥ 3, we can form

a substring of length j = p− 1 for any k-shift, k = 1, 2, . . . , p− 1.

Proof. (p, k) = 1, k = 1, 2, . . . , p− 1. �

Corollary 2.7. The number of permutations in {Dk
p} for any k-shift,

k = 1, 2, . . . , p− 1,is the same as the number of permutations in {Dp}, p prime,

p ≥ 3.

Proof. Same proof as in the previous corollary. �

The maximum cycle length achieved for a particular n and k is a very important
statistic. In fact, for any fixed n, k-shifts that have the same maximum cycle
length also have the same number of permutations, as can be seen in Table 2 in
the Appendix4.

3. Relationships with Generalized Derangements

3.1 For {dn}, we need k-permutations

For {dn}, we can refer to generalized derangements as discussed in [1]. In this
case, if D(n, k, r) denotes the number of k-permutations of n elements that have
r fixed points, then we have from [1] that

D(n, k, r) =

(

k

r

)

(n− k)!

k−r
∑

j=0

(−1)j
(

k − r

j

)

(n− r − j)!. (3.1)

From this we have our first proposition:

Proposition 3.1. If D(n, k, r) denotes the number of k-permutations of n
elements that have r fixed points, then dn can be written as:

dn = D(n, n− 1, 0). (3.2)

4No similar table appears in other references to our knowledge.
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Proof. If we let in k = n− 1 and r = 0 in Equation 3.1, we have that

D(n, n− 1, 0) =

n−1
∑

j=0

(−1)j
(

n− 1

j

)

(n− j)!, (3.3)

which is just Equation 1.2 for dn. �

Hence we may interpret from Equation 3.2 that dn counts the number of
derangements of an (n− 1)-permutation from an n-element set.

This seems intuitive since {dn} consists of the set of permutations that avoid
the n−1 substrings 12, 23, . . . , (n−1)n, while of course, for k = n, we have that
D(n, n, 0) is just the derangement numberDern, which counts the derangements
of an n-element set.

As we will see, to get a similar expression for Dn, we will not only need to
consider k-permutations, but also the number of fixed points. Before doing so
we have the following generalization.

3.2 Generalization to subsets of forbidden substrings

Note that by definition {dn} is the set of permutations of [n] that avoid
substrings 12, 23, . . . , (n−1)n. In this definition we consider the n−1 forbidden
substrings taken all at the time, but note that we can take subsets of them. If
in {dn} we define P k as a subset of k forbidden substrings, k ≤ n− 1, then we
have the following theorem.

Theorem 3.2. The number of permutations in {dn} that avoid subsets of k
forbidden substrings is given by dn−k

n .

Proof. We see from Equation 3.1 that if D(n, k, r) denotes the number of
k-permutations of n elements that have r fixed points, then letting r = 0 and
multiplying by (n− k)! ways to permute allowed substrings yields

k
∑

j=0

(−1)j
(

k

j

)

(n− j)!, (3.4)

which is just dn−k
n by Proposition 2.1. �

What Theorem 3.2 means is that permutations in {dn} taking subsets of
k forbidden substrings are k-derangements on n-element sets. Hence when
k = n − 1, we can see from Equation 3.4 that D(n, n − 1, 0) is just dn as
before, and when k = n, D(n, n, 0) is just Dern.

Corollary 3.3. For k fixed, the number of permutations in {dn} produced by

any subset of k forbidden substrings, P k, is invariant.
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Proof. From Theorem 3.2, the number of permutations in {dn} produced by
any of the

(

n−1

k

)

subsets P k is dn−k
n . �

Corollary 3.3 means that if we take k ≤ n−1 subsets of forbidden substrings, this
would mean permutations in {dn} avoiding subsets of P k ⊆ Pn−1,
Pn−1 := P = {12, 23, . . . , (n − 1)n}, and the number of such permutations
is invariant for k fixed. For example, for n = 4 and k = 2, we have the following
sets of forbidden substrings: P 2

1 = {12, 23}, P 2
2 = {23, 34}, P 2

3 = {12, 34}, and
the number of permutations of 4 elements that avoid these substrings is given by
d24 = 14 in all three cases. Similarly, for k = 1, the sets of forbidden substrings
are P 1

1 = {12}, P 1
2 = {23}, P 1

3 = {34}, and the number of permutations that
avoid these substrings is d34 = 18 in all three cases. Note that in the case k = 3
we have d14 = d4, and the case k = 4 is d04 = Der4.

3.3 For {Dn}, need fixed points

To analyze further the permutations in {Dn}, we have that by adding the
substring n1 to the set P = 12, 23, . . . , (n− 1)n of forbidden substrings, we
now have a total of n invalid substrings, but we cannot describe {Dn} just in
terms of k-permutations. We need to consider fixed points.

We have the following result:

Proposition 3.4. If D(n, k, r) denotes the number of k-permutations of n
elements that have r fixed points, then Dn can be written as:

Dn =
r

(

n+r−1

r−1

)D(n+ r − 1, n+ r − 1, r). (3.5)

Proof. Let h(n, r) denote a permutation on an n-element set that leaves r
elements fixed. Using Proposition 6.1 from [2] we have that h(n, 1) = Dn. Then,
since h(n, r) =

(

n
r

)

Der(n − r), using Lemma 3.1 in [2], ie. Dn = nDern−1, we

have that h(n, 2) =
(

n
2

)

Dn−1/(n− 1), and in general that

h(n, r) =

(

n
r−1

)

r
Dn−r+1. (3.6)

Substituting n by n+ r − 1 and rearranging we get the result. �

To check Equation 3.5 for the case r = 1, we see that in this case the equation
reduces to Dn = D(n, n, 1), so we recover the result from Proposition 6.1 in
[2]. This result shows that Dn not only counts the number of permutations
of [n] that avoid substrings 12, 23, . . . , (n − 1)n, n1, but also the number of
n-permutations of an n-element set with exactly 1 fixed point.
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APPENDIX

n Dern dn d2n d3n d4n d5n
1 0
2 1 1
3 2 3 4
4 9 11 14 18
5 44 53 64 78 96
6 265 309 362 426 504 600
7 1.854 2.119 2.428 2.790 3.216 3.720
8 14.833 16.687 18.806 21.234 24.024 27.240

Table 1: Some values of dkn

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
n = 2 0
n = 3 3 3
n = 4 8 8 8
n = 5 45 45 45 45
n = 6 264 270 240 270 264
n = 7 1.855 1.855 1.855 1.855 1.855 1.855
n = 8 14.832 14.816 14.832 13.824 14.832 14.816
n = 9 133.497 133.497 134.298 133.497 133.497 134.298

Table 2: Some values of Dk

n
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