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Abstract

We study extremal correlation functions of chiral primary operators in the large-N SU(N)
N = 2 superconformal QCD theory and present new results based on supersymmetric lo-
calization. We discuss extensively the basis-independent data that can be extracted from
these correlators using the leading order large-N matrix model free energy given by the four-
sphere partition function. Special emphasis is given to single-trace 2- and 3-point functions
as well as a new class of observables that are scalars on the conformal manifold. These new
observables are particular quadratic combinations of the structure constants of the chiral
ring. At weak ’t Hooft coupling we present perturbative results that, in principle, can be
extended to arbitrarily high order. We obtain closed-form expressions up to the first sub-
leading order. At strong coupling we provide analogous results based on an approximate
Wiener-Hopf method.
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Dedicated to the memory of Ioannis Bakas

1. Introduction

References [1, 2] computed the exact (extremal) correlation functions of N = 2 chiral
primary operators in the 4d N = 2 superconformal gauge theory with SU(2) gauge group
coupled to Nf = 4 massless hypermultiplets. These correlation functions are highly non-
trivial functions of the complexified coupling constant τ = θ

2π + i4π
g2 and include all-order

perturbative and instanton corrections. At the moment, they are the only known example
of nontrivial, exactly computed 3-point functions in a 4d QFT. The computation of [1, 2]
relied on the constraints imposed on the chiral ring correlators by the 4d tt∗ equations [3],
together with input from supersymmetric localization [4], and made use of the relation, pro-
posed in [5], between the sphere partition function ZS4 and the Zamolodchikov metric on the
conformal manifold. The relationship between extremal correlation functions in the N = 2
chiral ring and the sphere partition function was further clarified and extended in [6], which
paved the way towards concrete computations in general 4d N = 2 SCFTs with conformal
manifolds. More generally, it would be interesting to know if there are also other correlation
functions that can be computed in practice by employing similar techniques (see [7] for a
recent analogous computation of correlation functions in 3d N = 4 superconformal field
theories).

In this paper we consider the family of N = 2 superconformal field theories with gauge
group SU(N) and Nf = 2N hypermultiplets. We focus on the large-N ’t Hooft-Veneziano
limit and explain how correlators of chiral primary operators can be computed as a function
of the ’t Hooft coupling λ = g2N . One reason why these correlators are interesting is
that they encode information about a putative string theory dual for this family of large-N
theories1 (see [9] for an earlier discussion of such duality). Moreover, similar techniques
could be applied to closely related theories (e.g. N = 2 orbifolds of N = 4 super-Yang-Mills
theory (SYM) [10]) with known AdS/CFT duals, and lessons obtained in this paper could
be easily extended there as well. A recent discussion of conformal manifolds in the context
of the AdS/CFT correspondence from the supergravity point of view can be found in [11].
More generally, having a solid understanding of a large-N correlator as an exact function

1Since we consider a ’t Hooft-Veneziano limit where the ratio Nf/N = 2 is fixed and non-vanishing, this
duality would have the peculiar feature where mesonic hypermultiplet bilinears would lead to an O(N2)
number of gauge invariant operators with low conformal dimension. A related discussion of similar limits in
two-dimensional theories can be found in [8]. We thank S. Minwalla for comments related to this feature.

2



of λ in QFT, at leading and subleading orders in the 1/N -expansion, could be a useful
guide towards a concrete analysis of various formal aspects of the large-N expansion in a
full-fledged 4d gauge theory.
N = 2 chiral primary correlators in the ’t Hooft limit of the N = 2 SU(N) , Nf = 2N

theory were recently considered in [12, 13], where 2-point functions of single-trace chiral
primaries were computed perturbatively in λ at leading order in 1/N . In this paper we
substantially extend these results by computing more general correlation functions at large
N . Specifically, we focus on two main classes of observables.

The first are 3-point functions of chiral primary single-trace operators. 3-point functions
of chiral primary operators in N = 4 SYM theory have of course been widely studied in
the context of holography starting with [14, 15]. In the N = 2 theory, all the non-vanishing
3-point functions are extremal, and are especially sensitive to mixing with multi-trace oper-
ators [16]. We point out that there is a well-motivated and unambiguous definition of the
basis of chiral primary operators near the weak-coupling point based on parallel transport
that is formulated in terms of a natural connection on the space of operators in conformal
perturbation theory. This definition works particularly well in our class of theories in the
large-N limit, where the conformal manifold is essentially one-dimensional. A different basis
of chiral primary operators is defined implicitly through the relation with the S4 partition
function ZS4 [6]. We compute 3-point functions of the form 〈Trϕk1 Trϕk2 Trϕk1+k2〉 in the
first few orders in λ around the weak coupling point in both bases. We check that to leading
order our methods reproduce the results of [14] for the N = 4 SYM, as expected. Unlike
the N = 4 SYM theory, however, in N = 2 theories correlators of chiral primaries receive
quantum corrections that we can easily compute up to any desired order in λ.

In order to bypass the subtleties that arise from the mixing between single-trace and
multi-trace operators we also consider a new class of observables obtained by certain quadratic
combinations of the chiral ring structure constants. These quantities are geometric scalars on
the conformal manifold, they are manifestly independent of the choice of basis, and therefore
can be meaningfully computed and compared at arbitrary values of the coupling constant.
Furthermore, an infinite subset of them obey a very simple recursion relation, coming from
the tt∗ equations, that can be solved explicitly in terms of 2-point function data immediately
available at large N .

We show how both classes of observables can be computed at leading order in the large-N
limit from the planar free energy F0 of the theory on S4 deformed by higher chiral primary
sources. The latter is also the planar free energy of a corresponding matrix model, which
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arises from localization, and can be determined from the solution of the saddle-point integral
equation ∫ µ+

µ−
dx

[
1

x− y
−K(x− y)

]
ρ(y) = 8π2

λ
x−K(x) +

M∑
n=2

tnx
n (1.1)

where K(x) = 2x∑∞n=1

(
1
n
− n

n2+x2

)
. The sum on the r.h.s. originates from the higher chiral

primary source deformations of the theory. It is a polynomial whose degree is suitably
adjusted to the correlator we want to compute. The planar free energy F0 follows directly
from the eigenvalue density ρ(x). Eq. (1.1) was first considered in [17] and further used
in [12]. We have not been able to solve (1.1) analytically for arbitrary values of λ, so we
will limit ourselves to analyzing its solutions in two regimes, at weak and strong coupling λ.
Given a solution of (1.1) (approximate or exact), there is a well-defined procedure [1, 6] to
recover correlation functions of the physical theory by combining appropriate derivatives of
F0.

Computations based on the weak coupling expansion of the solutions of (1.1) are pretty
straightforward and, technically, they follow closely the logic of [12, 17]. At strong coupling
the analysis of eq. (1.1) is considerably harder. As was first pointed out in [17] approximate
solutions can be obtained with the use of the Wiener-Hopf method.2 Using this method we
estimate the large-λ scaling of 2-point functions of single-trace operators in the chiral ring,
extending partial results in [12], and the large-λ scaling of 3-point functions. The large-λ
scaling of 2-point functions is also discussed from an independent point of view based on the
analysis of the density of connected 2-point functions in the matrix model.

Plan of the paper and summary of the main results. In the main text of the paper
we focus on properties and results of correlators on R4. Intermediate results based on
localization and the corresponding matrix model are relegated to the appendices, where the
reader can find all the pertinent details.

In section 2 we discuss in detail the correlation functions of interest and we set the
conventions that are used in the rest of the paper. In addition, we review the relation
between extremal correlation functions in the N = 2 chiral ring, the deformed partition
function on S4 and the matrix model that arises from localization.

In section 3 we discuss general properties of correlation functions in the large-N limit.
We explain what contributions can be extracted from the leading order large-N free energy

2We should point out that these approximations are not parametrically controlled, so we cannot prove
conclusively that the large-λ scalings obtained in this way persist in the exact solution of the saddle-point
equations.
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of the S4 partition function and how issues involving the mixing of single-trace and multi-
trace operators affect our computations. We also define appropriate quadratic combinations
of the structure constants and show that they obey a recursion relation, coming from the tt∗

equations, that can be solved in closed form.
Results specific to the weak coupling expansion of the theory are presented in section

4. We provide closed form expressions for 2- and 3-point functions both at tree level and
at the first nontrivial subleading order in perturbation theory. Along the way, we present a
method, specific to the large-N limit, that allows us to determine the correlation functions
of single-trace operators without going through the full Gram-Schmidt orthogonalization
procedure proposed in [6]. In this section we also discuss how the use of parallel transport
on the conformal manifold leads to unambiguous perturbative expressions for the single-trace
3-point functions. The basis-independent structure constant squared combinations, defined
in section 3, are computed perturbatively in λ at the end of the section.

Finally, partial results in the strong coupling limit of the theory are discussed in section
5. We emphasize the large-λ scaling of 2- and 3-point functions and discuss the technical
difficulties associated to the current use of the Wiener-Hopf method.

Four appendices at the end of the paper provide the technical background for the com-
putations presented in the main text. Appendix A summarizes the matrix model that arises
from localization and the corresponding saddle-point equations in the large-N limit. In this
appendix the reader can also find the derivation of an integral equation obeyed by the den-
sity of connected 2-point functions, as well as an explicit solution of this equation at infinite
’t Hooft coupling. Appendix C describes the perturbative solution of the saddle-point equa-
tions at weak coupling and appendix D the approximate solution based on the Wiener- Hopf
method. Appendix B provides the proof of a technically efficient general relation between
3-point functions in the gauge theory and derivatives of the matrix model planar free energy
in the large-N limit.

2. Exact 2- and 3-point functions in the N = 2 chiral ring

In this paper we focus on extremal correlation functions ofN = 2 chiral primary operators
in a specific class of N = 2 superconformal field theories defined as N = 2 SYM theory with
gauge group SU(N) coupled to 2N hypermultiplets (in short, SU(N)N = 2 superconformal-
QCD, or N = 2 SCQCD). We will mostly follow the conventions of [1, 18], where one can
also find a detailed description of generic properties of the N = 2 chiral primary operators
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and further useful references to the literature.
We begin with a quick summary of the operators of interest tailored to the specific features

of the N = 2 SCQCD theories and the goals of this paper. Then, we proceed to define
the correlation functions that will play a central role in our discussion and to summarize
recent developments that allow their exact non-perturbative computation. Along the way,
we emphasize the implications of the recent developments on 2- and 3-point functions.

Operator notation. In the course of the paper we will consider the N = 2 theory either
on R4 or S4. To keep the distinction between these cases explicit at all times, we will refer to
the chiral primary operators on R4 as OK and the corresponding operators on S4 as OS4

K . K
is an appropriate multi-index that labels the operator. Moreover, for notational economy we
will frequently refer to single-trace generators Tr[ϕk] on R4 as k inside correlation functions,
double-trace operators Tr[ϕk1 ]Tr[ϕk2 ] as k1k2, etc. The S4 operators may acquire a further
label, OR4 , that refers to specific linear combinations of single/multi-trace operators to be
defined.

Correlation function notation. Correlation functions on R4 will be denoted as 〈· · · 〉R4

(or simply as 〈· · · 〉 without index), correlation functions on S4 as 〈· · · 〉S4 and correlation
functions on the associated matrix model as 〈〈· · ·〉〉.

2.1. SU(N) N = 2 chiral ring

We begin by considering the SU(N) N = 2 SCQCD theory on flat space, R4. The
N = 2 chiral primary operators are, by definition, local superconformal primary operators
annihilated by all four left-chiral Poincaré supercharges Qi

α̇, where i = 1, 2 is an SU(2)R
index and α̇ = ± a spinor index. In the N = 2 SCQCD theory these operators have a
simple description as generic multi-trace operators of the adjoint complex scalar field ϕ in
the N = 2 vector multiplet. Using a multi-index K = {n`} we denote them as

OK ≡ O{n`} ∝
N−1∏
`=1

(
Tr
[
ϕ`+1

])n`
, (2.1)

where n` are arbitrary non-negative integers. The proportionality symbol refers to an overall
normalization factor that will be fixed later. Corresponding multi-trace operators built out
of the complex conjugate field ϕ will be denoted as OK ; those are N = 2 anti-chiral primary
operators annihilated by all four right-chiral Poincaré supercharges Qi

α.
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The scaling dimension ∆K of each of the operators OK is half their U(1)R charge RK

∆K = RK

2 =
N−1∑
`=1

(`+ 1)n` . (2.2)

This relation holds non-perturbatively for generic values of the exactly marginal coupling
constant of the theory τ = θ

2π + i4π
g2 , where as usual θ is the theta-angle of the theory and g

the gauge coupling.
It is clear from the definition (2.1) that the full class of chiral primary multi-trace op-

erators OK can be generated by Operator Product Expansion (OPE) multiplication from a
finite set of N − 1 single-trace operators Tr

[
ϕ`+1

]
, ` = 1, . . . , N − 1. In what follows we

will adopt a normalization convention, consistent with the so-called holomorphic gauge [1],
where the leading term in the OPE between two chiral primary operators,

OK(x)OL(0) = CM
KLOM(0) + . . . , (2.3)

is
OK(x)OL(0) = OK+L(0) + . . . . (2.4)

The dots indicate higher-dimension descendant operators. OK+L is the multi-trace operator
: OKOL :. The absence of a spacetime singularity in the OPE of two chiral primary operators
is a characteristic property of chiral primary operators. The convention (2.4), which sets3

CM
KL = δMK+L , (2.5)

allows us to fix the normalization of all multi-trace operators OK in terms of the normaliza-
tion of the single-trace generators Tr

[
ϕ`+1

]
.

2.2. Extremal correlation functions in the N = 2 chiral ring

The main interest of the paper lies in the so-called extremal correlation functions, defined
as correlation functions of chiral and anti-chiral primary operators with a single anti-chiral
insertion

〈OK1(x1)OK2(x2) · · ·OKn(xn)〉 . (2.6)

The U(1)R charge conservation requires the R-charge relation
n−1∑
i=1

RKi = −RKn , (2.7)

3In this expression δJ
I is the obvious multi-index Kronecker delta.
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otherwise the correlator vanishes.
In [1, 2] it was argued that all extremal correlation functions can be reduced to the

computation of the 2- and 3-point functions, respectively

〈OK(x1)OL(x2)〉 = gKL̄
|x12|2∆ , x12 ≡ x1 − x2 , (2.8)

〈OK(x1)OL(x2)OM(x3)〉 = CKLM
|x12|∆K+∆L−∆M |x13|∆K+∆M−∆L|x23|∆L+∆M−∆K

. (2.9)

∆ is the common scaling dimension of the two insertions in the 2-point function (2.8),
and ∆K etc. the scaling dimensions of each operator in the 3-point function (2.9). The
interesting datum in each of these correlation functions is the position independent, but
generally coupling constant dependent, numerator gKL̄ in the 2-point functions and CKLM
in the 3-point functions. In the rest of the text it will be convenient to refer to these
coefficients using the notation

〈OK , OL〉 ≡ gKL , 〈OK , OL, OM〉 ≡ CKLM . (2.10)

There is a simple well-known relation between the 2- and 3-point function coefficients
and the OPE coefficients CM

KL in the N = 2 chiral ring

CKLM = CI
KL gIM . (2.11)

Notice that by using the convention (2.5) equation (2.11) reduces to

CKLM = gK+L,M . (2.12)

As an explicit illustration of this relation, consider the computation of the 3-point function
of single-trace operators

〈k1, k2, k1 + k2〉 =
〈
Tr
[
ϕk1

]
,Tr

[
ϕk2

]
,Tr

[
ϕk1+k2

]〉
, (2.13)

where following the aforementioned convention we denote the single trace operator Tr[ϕk]
simply as k in a correlation function. Equation (2.12) implies that this is equal to

〈k1, k2, k1 + k2〉 = 〈k1k2, k1 + k2〉 =
〈(

Tr
[
ϕk1

]
Tr
[
ϕk2

])
,Tr

[
ϕk1+k2

]〉
, (2.14)

which is a 2-point function between a double-trace operator and a single-trace operator.
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2.3. 2- and 3-point functions from S4 partition functions and matrix models

So far we exclusively discussed correlation functions of the N = 2 SCQCD theory on
R4. In recent developments, however, a concrete relation has been put forward between the
2-point function coefficients 〈OK , OM〉 of the theory on R4 and the derivatives of a suitably
deformed partition function of the theory on the four-sphere S4 [5, 6, 19, 20]. The latter is
further related by supersymmetric localization [4] to the partition function of a corresponding
matrix model.

Let us briefly review the main elements of this relation and set up the appropriate no-
tation. For additional explanations and details we refer the reader to the original work
in [5, 6, 19,20].

2.3.1. Deformed partition functions on S4 and their localization

The first step of the procedure starts, quite generally, by placing the N = 2 supercon-
formal field theory on S4 in a manner that preserves the supergroup of a general massive
theory, osp(2|4). In addition, we deform the theory by F-term interactions that are upper
components of short multiplets containing the N = 2 chiral primary fields OK . It is enough
for our purposes to consider deformations restricted to the single-trace chiral primary fields
Tr
[
ϕk
]
. In superspace form the deformations of interest are

δS = − 1
32π2

N∑
n=2

∫
d4x

∫
d4θ EτnTr[ϕn] + c.c. , (2.15)

where E is the N = 2 chiral density. τ2 ≡ τ = θ
2π + i4π

g2 is the exactly marginal deformation
of the N = 2 SCQCD theory.

Now consider the partition function of this theory

ZS4 (τn, τ̄n) . (2.16)

The finite part of this quantity is physical [5, 20] and depends non-trivially on the complex
couplings (τn, τ̄n). Interestingly, although this quantity is given by a complicated path in-
tegral, it can be reduced by supersymmetric localization to a corresponding matrix integral
that can be analyzed with standard methods [4]. The precise form of the matrix integral in
the case of the N = 2 SCQCD theories is presented in appendix A.
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2.3.2. Relation between the S4 partition function and 2-point functions on R4

Recently, [6] put forward a concrete general prescription that relates the τn-derivatives
of ZS4 to the flat-space 2-point function coefficients 〈OK , OM〉. One way to summarize the
prescription is the following.

Assume we want to evaluate the 2-point function coefficient 〈OK , OM〉R44 for two opera-
tors OK , OM of the same scaling dimension ∆ in the N = 2 chiral ring. Consider the same
(single or multi-trace) operators on S4 —OS4

K for the counterpart of OK— and construct
linear combinations OR4

K where operators at scaling dimension ∆ mix with all operators of
smaller dimension ∆− 2,∆− 4, . . . (including the identity operator when ∆ is even)

OR4

K = OS4

K +
∑
I∈S∆

aIO
S4

I , O
R4

M = O
S4

M +
∑
I∈S∆

bIO
S4

I . (2.17)

The sum ∑
I runs over the set S∆, which is defined to include all the chiral primaries of

scaling dimension ∆I < ∆, ∆I = ∆ mod 2. The coefficients aI , bI are clearly dimensionful
and therefore proportional to an appropriate power of the sphere radius. They are fully fixed
by implementing the Gram-Schmidt orthogonalization procedure,

〈OR4

K , O
S4

L 〉S4 = 0 , 〈OR4

L , O
S4

M 〉S4 = 0 for all L ∈ S∆ . (2.18)

The key statement of [6] is the relation5

〈OK , OM〉R4 = 〈OR4

K , O
R4

M 〉S4 . (2.19)

Employing eqs. (2.17), (2.18) we obtain

〈OK , OM〉R4 = 〈OS4

K , O
S4

M 〉S4 −
∑

I,J∈S∆

〈OS4

K , O
S4

I 〉S4

(
A−1

)
IJ
〈OS4

J , O
S4

M 〉S4 , (2.20)

where the matrix A has, by definition, the elements

AIJ = 〈OS4

I , O
S4

J 〉S4 , I, J ∈ S∆ . (2.21)

In eq. (2.20) we assumed that the matrix A is invertible, which is a prerequisite for the
prescription of [6] to work properly.

4At this point we will include an index R4 or S4 in the notation of the correlation functions to denote
explicitly whether we refer to correlation function on R4 or S4.

5Notice that the conformal mapping between the sphere and the plane introduces an additional factor of
4∆ in the relation between the sphere and the plane 2-point functions. To avoid clutter in the equations, we
absorb this factor in the normalization of the operators OK . Of course this has no effect on the normalized
correlators that we discuss in the rest of the paper.
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The final element is the statement that the 2-point function coefficients 〈OS4
I , O

S4

J 〉S4 are
simply given by derivatives of the deformed S4 partition function as follows

〈OS4

{k`}, O
S4

{m′
`
}〉S4 = 1

ZS4

N−1∏
`,`′=1

∂

∂τ`+1

∂

∂τ̄`′+1
ZS4

∣∣∣∣∣
τ2=τ, τk=0, k 6=2

≡
N−1∏
`,`′=1
〈〈
(
Tr
[
ϕ`+1

])n` (Tr
[
ϕ`
′+1
])n`′ 〉〉 . (2.22)

〈〈· · ·〉〉 denotes a correlation function in the matrix model of appendix A.
Having determined the 2-point functions in this manner we have essentially fixed the

normalization conventions for all the N = 2 chiral primary operators. At this point one
should wonder if this prescription is consistent with the choice (2.5) for the OPE coefficients.
Following the work in [1], Ref. [6] demonstrated that the ansatz (2.22) satisfies the full set
of tt∗ equations with (2.5) incorporated. This is a strong explicit check that (2.22) is indeed
consistent with (2.5).

2.3.3. Formulae for 3-point functions

Combining equations (2.12), (2.20), (2.22) we are now in position to write down an
explicit formula for 3-point functions on R4

〈OK , OL, OM〉R4 = 〈OS4

K+L, O
S4

M 〉S4 −
∑

I,J∈S∆M

〈OS4

K+L, O
S4

I 〉S4

(
A−1

)
IJ
〈OS4

J , O
S4

M 〉S4 . (2.23)

All 2-point functions on the r.h.s. of this equation can be expressed via (2.22) in terms of
derivatives of the deformed S4 partition function, or alternatively in terms of derivatives of
the free energy

F = − logZS4 (2.24)

of the corresponding matrix model.
As an explicit example consider again the 3-point function of three single-trace operators.

The above prescription gives
〈
Tr
[
ϕk1

]
,Tr

[
ϕk2

]
,Tr

[
ϕk1+k2

]〉
R4

= 〈〈Tr
[
ϕk1

]
Tr
[
ϕk2

]
Tr
[
ϕ̄k1+k2

]
〉〉

−
∑

I,J∈Sk1+k2

〈〈Tr
[
ϕk1

]
Tr
[
ϕk2

]
O
S4

I 〉〉
(
A−1

)
IJ
〈〈OS4

J Tr
[
ϕ̄k1+k2

]
〉〉 . (2.25)

Obviously, the structure of the sum on the r.h.s becomes increasingly complicated with
increasing scaling dimension.
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For a more concrete illustration consider a 3-point function that involves the lowest lying
single-trace operators, e.g. 〈Tr [ϕ2] ,Tr [ϕ2] ,Tr [ϕ4]〉R4 . In this case the matrix A appearing
on the r.h.s. of eq. (2.25) is

A =
 〈〈Tr [ϕ2] Tr [ϕ̄2]〉〉 〈〈Tr [ϕ2]〉〉

〈〈Tr [ϕ̄2]〉〉 1

 =
−∂τ2∂τ̄2F + ∂τ2F ∂τ̄2F − ∂τ2F

−∂τ̄2F 1

 . (2.26)

Explicit evaluation gives the following simple 2- and 3-point function formulae〈
Tr
[
ϕ2
]
,Tr

[
ϕ̄2
]〉

R4
= −∂τ2∂τ̄2F , (2.27)

〈
Tr
[
ϕ4
]
,Tr

[
ϕ̄4
]〉

R4
= −∂τ4∂τ̄4F + ∂τ2∂τ̄4F ∂τ4∂τ̄2F

∂τ2∂τ̄2F
, (2.28)

〈
Tr
[
ϕ2
]
,Tr

[
ϕ2
]
,Tr

[
ϕ4
]〉

R4
= −∂2

τ2∂τ̄4F +
∂τ2∂τ̄4F ∂

2
τ2∂τ̄2F

∂τ2∂τ̄2F
, (2.29)

where the final result is expressed directly in terms of derivatives of the matrix model free
energy F .

The correlation functions of operators with higher scaling dimensions can be expressed
similarly solely in terms of F , but the final expression is considerably more complicated.
Further simplifications occur, however, in the large-N limit, which is the main topic of the
following sections.

3. Correlation functions at large N

In this section we study extremal correlation functions in the large-N limit and their
relation to the matrix model. Due to large-N factorization, the behavior of correlators in-
volving multi-trace operators is dominated at large N by the factorized answer. Therefore,
we introduce a notion of “connected” 2-point functions, which involves, as usual, the full
2-point functions minus the factorized pieces. We argue that these correlators can be deter-
mined by the leading contribution to the free energy in the large-N limit, which in turn can
be computed by the saddle-point method.

At a later part of this section we specialize to the two main classes of observables that we
are interested in. First, we study in detail the relation between single-trace 3-point functions
and the free energy, and discuss some useful simplifications that occur at large N . We also
discuss in detail issues related to mixing between single- and multi-trace operators, which in
principle can affect the results of our computation, and propose one way to get around these
difficulties by using the natural connection provided by conformal perturbation theory.
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Lastly, we define a new interesting class of observables, which are quadratic combinations
of the structure constants that enjoy many useful properties. Most notably, these observables
are manifestly free from ambiguities related to the choice of basis of chiral operators, so they
are not affected by the subtleties associated to large-N mixing between single- and multi-
trace operators. In addition, the tt∗ equations provide a very simple recursion relation for
these observables, which can be solved in closed form in terms of simple geometric data on
the conformal manifold.

The explicit analysis of these quantities at weak and strong coupling is the subject of
subsequent sections.

3.1. Correlation functions and the matrix model free energy at large N

We consider the large-N limit at fixed ’t Hooft coupling constant λ = g2N . Similarly, we
rescale the sources of the higher Casimir operators so that the parameters6

gn = 2
N

Im τn , n = 2, 3, . . . (3.1)

are kept fixed in the limit, as was done in [12]. The free energy (2.24) has the following
large-N expansion

F = N2F0({gn}) + F1({gn}) + . . . (3.2)

F0 is the leading large-N contribution. It can be evaluated using the saddle-point approxi-
mation, details of which we review in appendix A.

In the previous section, we reviewed how generic 2-point functions (of single-trace or
multi-trace operators) in the chiral ring on R4 can be expressed in terms of an algebraic func-
tional of derivatives of the free energy F . In the large-N limit, and after the Gram-Schmidt
procedure has been properly applied, the result contains a finite number of derivatives of F
with respect to the parameters gn. The leading contribution to this result comes from F0,
and may scale with N in different ways depending on the specifics of the operator insertions.

For instance, the 2-point function of two single-trace operators
〈
k , k

〉
∼ O(N0) , (3.3)

6In [12], a different convention for the couplings was used, namely gthere
n = π

n
2 ghere

n . We find that our
choice is more convenient for the purpose of this paper, as it avoids various explicit factors of π that would
otherwise appear in intermediate formulae. This effectively corresponds to a different overall normalization of
the chiral operators compared to [12], which of course does not have any effect on the normalized correlators.
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scales at large N as a constant. Similarly, the 2-point function of a multi-trace operator with
a single-trace operator scales like

〈
k1 · · · km , k

〉
∼ O(N−m+1) . (3.4)

So, for example, the leading order scaling of the 2-point function of a double-trace and a
single-trace operator is of order O(N−1) in agreement with the 3-point function scaling and
eq. (2.12). 3-point functions of single-trace operators are one of the main quantities we will
consider explicitly in the rest of the paper.

The scaling of 2-point functions between general multi-trace operators is more intricate
because of large-N factorization. For example, the 2-point function of two double-trace
operators behaves at leading order as

〈
k1 k2 , k3 k4

〉
∼
〈
k1 , k3

〉 〈
k2 , k4

〉
+
〈
k1 , k4

〉 〈
k2 , k3

〉
∼ O(N0) . (3.5)

The leading order behavior is dominated by factorization, unless the single-trace 2-point
functions above vanish. Clearly, at this order the 2-point function (3.5) does not contain
any new information beyond (3.3). However, the connected version of

〈
k1 k2 , k3 k4

〉
,

〈
k1 k2 , k3 k4

〉
c
≡
〈
k1 k2 , k3 k4

〉
−
〈
k1 , k3

〉 〈
k2 , k4

〉
−
〈
k1 , k4

〉 〈
k2 , k3

〉
∼ O(N−2) , (3.6)

is far more interesting and scales with a subleading power of N , as O(N−2). The lead-
ing contribution to the connected correlator is also determined by suitable combinations of
derivatives of the free energy term F0. Hence, quantities like (3.6) are also accessible within
the saddle-point approximation of the matrix model and contain useful information about
the large-N gauge theory. We will consider observables related to (3.6) in subsection 3.3.

More generally, we can consider the 2-point function of multi-trace operators
〈
k1 · · · km , km+1 · · · km+n

〉
c
≡
〈
k1 · · · km , km+1 · · · km+n

〉
−(factorized pieces) ∼ O(N2−m−n) .

(3.7)
This quantity is precisely what we would get if we started from a connected (m + n)-point
function and took the limit where the insertions of all the chiral operators go to infinity
and the insertions of the anti-chiral operators go to zero. Again, since these objects are
expressed in terms of 2-point functions of chiral primaries, they can be computed in terms of
the matrix model free energy F . Their leading behavior in 1/N is determined by the leading
term of the free energy, F0.
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3.2. Single-trace 2- and 3-point functions

Next let us take a closer look at the Gram-Schmidt procedure, [6], at large N . It was
argued in [12] that mixing between single- and multi-trace operators can be ignored for the
purpose of computing single-trace 2-point functions in flat space from the sphere correlators.
As a consequence, the 2-point functions on the plane can be easily calculated from F0. Using
standard formulae for the Gram-Schmidt diagonalization in terms of matrix determinants,
we thus obtain7

〈k, k〉 ≡
〈
Tr
[
ϕk
]
,Tr

[
ϕk
]〉

R4
= detMk

detMk−2
, (3.8)

whereMk is the k × k matrix given by

Mk = {−∂gm∂gnF0}m,n=k,k−2,... . (3.9)

As a trivial check, eq. (3.8) is in agreement with the examples (2.27), (2.28). Explicit
expressions around the weakly coupled point will be presented in section 4.

The single-trace 3-point functions can also be determined in terms of F0. More concretely,
we are interested in computing

〈
k1 , k2 , k3

〉
≡
〈
Tr
[
ϕk1

]
,Tr

[
ϕk2

]
,Tr

[
ϕk3

]〉
R4

, k3 = k1 + k2 . (3.10)

The following (streamlined) procedure leads to the desired result. First, we perform the
Gram-Schmidt orthogonalization procedure by diagonalizing the matrix of sphere 2-point
functions of single-trace operators only. This leads to the following formal identification

OR4

k =
∑
`

c`k O
S4

` , (3.11)

where ckk = 1 and the remaining c`k’s are determined from the condition
〈
OR4
k1 , O

R4

k2

〉
S4

= 0
for k1 6= k2. Our claim is that

〈
k1 , k2 , k3

〉
=

∑
`1,`2,`3

c`1k1 c
`2
k2 c

`3
k3

〈[
OS4

`1 O
S4

`2

]
, O

S4

`3

〉
S4

= 1
N

∑
`1,`2,`3

c`1k1 c
`2
k2 c

`3
k3 ∂g`1∂g`2∂g`3F0 . (3.12)

The proof of this statement is presented in appendix B. This formula is non-trivial because
in principle it differs from the prescription presented in subsection 2.3.3. According to that

7As explained in [12], when we map 2-point functions from the sphere to the plane, we get an additional
factor 4∆ coming from the conformal mapping.
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prescription , to compute (3.10) we would have to perform the Gram-Schmidt diagonalization
for the operator

[
OR4
k1 O

R4
k2

]
directly, whose expression in terms of sphere operators differs from

the square of (3.11). The reason why we can work directly with the single-trace operators
at large N is due to large-N factorization of correlators, as explained in appendix B.

3.2.1. Mixing with multi-trace operators

The single-trace 3-point functions are affected by the following subtlety: R-charge con-
servation implies that the only non-vanishing 3-point functions are “extremal”, or more
specifically k3 = k1 + k2 in (3.10). This means that the single-trace 3-point functions, unlike
the 2-point functions, are sensitive to mixing with multi-trace operators [16]. As a conse-
quence, different choices for the basis of operators away from the weakly coupled point will
lead to different answers for these 3-point functions.

This is best illustrated in an example. Let us consider the operator

O′4 ≡ O4 + α(λ)
N

(O2)2 , (3.13)

where α(λ) is an arbitrary function of the coupling constant λ. Its 2-point function at large
N is identical to the one for O4, so it cannot be used to distinguish the two operators.
However, the 3-point function of this operator with two O2 operators reads

〈2, 2, 4′〉 ≈
N�1
〈2, 2, 4〉+ 2α(λ)

N
〈2, 2〉2 . (3.14)

Since both terms on the r.h.s. contribute at the same order, 1/N , the leading term at large
N for this correlator depends on the arbitrary function α(λ). At tree level, we can explicitly
check that the correlators computed from the sphere partition function match the ones
computed with Feynman diagrams in the standard trace basis (4.19), (4.20), so α(0) = 0.
As we move away from the weakly coupled point, however, it is not obvious a priori that the
scheme we are employing matches the one of ordinary perturbation theory in flat space.

There are two possibilities to get around this issue. One is to work with quantities that are
manifestly free from ambiguities related to the choice of basis. This is the approach that is
described in the following subsection. Alternatively, one can fix the basis of operators away
from the weakly-coupled point using the following well-motivated procedure. Conformal
perturbation theory provides us with a preferred connection on the space of operators [3].
This connection can be used to parallel transport the operators away from the weakly-
coupled point. While this procedure depends on the path chosen to connect the points on
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the conformal manifold, at large N a preferred path emerges, since the conformal manifold
effectively becomes one-dimensional. We explain how to implement this procedure explicitly,
and provide various examples, in section 4.3.

3.3. Basis-independent 3-point functions

So far we have discussed correlation functions in a specific basis of chiral operators, where
both 2- and 3-point functions are non-trivial. In general, however, it is customary to work
in a different basis, where the 2-point functions are unit normalized, and all the non-trivial
information is encoded in the coupling-constant dependence of higher-point correlators. Al-
ternatively, we can work directly with quantities that are manifestly free from ambiguities
arising from the choice of basis. In geometric language, we can look at scalar quantities on
the conformal manifold. The simplest such quantity that can be constructed solely from the
chiral ring data is

|C(∆1,∆2)|2 ≡ gM∆1J∆1C
P∆1+∆2
J∆1K∆2

gP∆1+∆2Q∆1+∆2
C
∗Q∆+2
M∆1R∆2

gR∆2K∆2 . (3.15)

This object is closely related to the “properly normalized” 3-point functions defined in [1].
For example, in the case of gauge group SU(2), the chiral ring is generated by O2 = Tr[ϕ2]

and the 2-point functions in the chiral ring are given by g2n ≡
〈
On

2 , O
n
2

〉
, so we have

|C(2m,2n)
SU(2) |

2 = g2m+2n

g2m g2n
≡ (Ĉ2m+2n

2m 2n )2 , (3.16)

where Ĉ2m+2n
2m 2n are the 3-point functions written in a basis where the 2-point functions are

unity. These quantities were computed exactly in [1].
In order to compute (3.15) at large N , we would need to compute the 2-point functions

of all the chiral operators (both single- and multi-trace) to the appropriate order in N and
then take the large-N limit. The leading order O(N0) term in |C(∆1,∆2)|2 is a combinatoric
constant determined by large-N factorization, so to get non-trivial results we have to consider
the terms of order 1/N2 in (3.15).

It is easy to see that these 1/N2 corrections are captured by the leading order free energy
F0. Indeed, we can work in a basis where CK

IJ = δKI+J , so that (schematically)

|C(∆1,∆2)|2 = gM∆1J∆1 gR∆2K∆2 gJ∆1+K∆2 ,M∆1+R∆2
(3.17)

= gM∆1J∆1 gR∆2K∆2

(
gJ∆1M∆1

gK∆2R∆2
+ gJ∆1R∆2

gK∆2M∆1
+ gc

J∆1+K∆2 ,M∆1+R∆2

)
.

(3.18)
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gc
J∆1+K∆2 ,M∆1+R∆2

is the limit of the connected 4-point function
〈
OJ∆1

OK∆2
OM∆1

OR∆2

〉
c

where the (anti-)chiral operators are sent to the same point. In the large-N limit, the first two
terms in the expression above give the O(N0) factorized contribution to |C(∆1,∆2)|2, while the
connected 4-point function behaves as O(1/N2). The free energy is the generating function
for the connected correlators, hence we conclude that the 1/N2 correction to |C(∆1,∆2)|2 can
indeed be computed (at least in principle) from the leading term in the free energy F0.

In fact, in the case where ∆1 = 2, ∆2 = ∆, we can derive an explicit relation for the 1/N2

correction to |C(2,∆)|2 in terms of the single-trace 2-point functions (3.8). This is possible
because this quantity obeys a very simple recursive relation coming from the tt∗ equations
that can be solved explicitly.

3.3.1. tt∗ equations and |C(2,∆)|2

We recall the general tt∗ equations for a (complex) 1-dimensional moduli space

∂τ
(
gM∆L∆∂τgK∆M∆

)
(3.19)

= C
P∆+2
2K∆

gP∆+2Q∆+2
C
∗Q∆+2
2R∆

gR∆L∆ − gK∆N∆
C∗N∆

2U∆−2
gU∆−2V∆−2CL∆

2V∆−2
− g2 δ

L∆
K∆

.

If we contract the indices appropriately and define the quantity

R(∆) ≡ (g2)−1∂τ
(
gM∆K∆∂τgK∆M∆

)
, (3.20)

the equations (3.19) simply become

|C(2,∆)|2 = |C(2,∆−2)|2 +R(∆) + n(∆) , (3.21)

where n(∆) is the number of chiral primary operators of dimension ∆. This recursion equation
can be solved explicitly, and it gives

|C(2,∆)|2 =
∑

∆′≤∆
(n(∆′) +R(∆′)) , (3.22)

where the sum runs over even conformal dimensions only.
Let us now examine how the recursion equation (3.21) and its solution (3.22) behave

in the large-N limit. We begin by analyzing the “curvature” term (3.20). Recall that the
large-N limit is taken by keeping the ’t Hooft coupling constant fixed

λ = g2N = 8πiN
τ − τ

. (3.23)
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Since instanton corrections are suppressed in this limit, we can assume that all the quantities
(in particular, the 2-point functions) depend on λ only. Therefore

R(∆) = (g2)−1∂τ
(
gM∆K∆∂τgK∆M∆

)
= (g2)−1 λ2

64π2N2∂λ
(
λ2 gM∆K∆∂λgK∆M∆

)
. (3.24)

The matrix of 2-point functions can be written as

gK∆M∆
= g0,K∆M∆

+ 1
N
g1,K∆M∆

+ . . . , (3.25)

and its inverse has a similar expansion, where the leading term is just (g0,K∆M∆
)−1. Therefore

we have
R(∆) = 1

N2R
(∆)
0 + . . . , (3.26)

where the ellipses indicate higher order terms in 1/N and R(∆)
0 is given by

R
(∆)
0 = (g2)−1 λ2

64π2∂λ

(
λ2 gM∆K∆

0 ∂λg0,K∆M∆

)
. (3.27)

g0,K∆M∆
is in turn given by the 2-point functions of single-trace operators only, which can

be computed using (3.8).
We can now consider the behavior of |C(2,∆)| at large-N . Using (3.22) we see that

|C(2,∆)|2 =
∑

∆′≤∆
n(∆′) + 1

N2

∑
∆′≤∆

R
(∆′)
0 +O( 1

N3 ) . (3.28)

It is clear that the 1/N2 correction to |C(2,∆)|2 can be determined directly from F0 using
equation (3.8). We will give explicit formulae for |C(2,∆)|2 as a perturbative series in λ around
λ = 0 in section 4.4.

4. Weak coupling results

In this section we analyze in detail the correlators described in the previous section
around the weak coupling point λ = 0. We begin by implementing explicitly the Gram-
Schmidt diagonalization procedure at tree-level. This allows us to compute the flat-space
tree-level 2-point functions and 3-point functions of single-trace operators. At this order,
the computation is identical to N = 4 SYM and indeed we reproduce the results of [14].

We then show that the first non-trivial subleading corrections to these correlators can
also be computed explicitly in flat space, thanks to a simplifying property of the 1-loop
determinant of the matrix model noticed in [6]. Using the techniques of appendix C, we
also present several examples of 3-point functions computed to much higher order in λ. We
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also deal with the subtleties related to mixing with multi-trace operators, anticipated in
section 3.2.1, by introducing a notion of parallel transport of operators, which is natural in
conformal perturbation theory.

Finally, we analyze the squared structure constants |C(2,∆)|2 defined in (3.15); we ex-
plicitly compute the leading and subleading (order λ2) results for general ∆ and we present
results to higher orders in λ in examples.

4.1. Single trace 2- and 3-point functions at tree-level

Here we consider the Gram-Schmidt procedure at large N and at tree-level in λ. For
simplicity we present the procedure for the sector of even chiral primaries. We start with
the matrix of 2-point functions of single-trace operators on the sphere, which is given by [12]

〈
OS4

2k1 , O
S4

2k2

〉
S4

=
(
λ

4π

)k1+k2 Γ
(
k1 + 1

2

)
Γ
(
k1 + 1

2

)
π(k1 + k2)Γ(k1)Γ(k2) . (4.1)

We will also need the 3-point functions on the sphere [12]
〈
OS4

2k1 , O
S4

2k2 , O
S4

2k3

〉
S4

=
(
λ

4π

)k1+k2+k3 Γ
(
k1 + 1

2

)
Γ
(
k2 + 1

2

)
Γ
(
k3 + 1

2

)
π3/2Γ(k1)Γ(k2)Γ(k3) . (4.2)

A more general formula for even and odd chiral primary three-point functions on the sphere
is given in appendix C. Performing the Gram-Schmidt procedure we find

OR4

2k =
∑
`

c`kO
S4

2` (4.3)

with

c`k = −2k
(
− λ

16π

)k−` Γ(k + `)
Γ(2`+ 1)Γ(k − `+ 1) . (4.4)

These coefficients agree with the Chebyshev prescription of [13]. We can then use our
previous formulae to compute 2- and 3-point functions on R4. We find

〈
2k , 2k

〉
= 2k

(
λ

16π

)2k

, (4.5)

〈
2k1 , 2k2 , 2k1 + 2k2

〉
= 8k1k2(k1 + k2)

(
λ

16π

)2k1+2k2

(4.6)

If we normalize canonically the 2-point functions, we find〈
2k1 , 2k2 , 2k1 + 2k2

〉
= 2

√
2k1k2(k1 + k2) , (4.7)

which agrees with the results of [14].
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4.2. Single-trace 2- and 3-point functions at higher orders in λ

Using (3.8) and (3.12), it is straightforward to explicitly compute the 2- and 3-point
functions up to arbitrarily high order in λ. Remarkably, it is possible to obtain a closed
form expression for the 2- and 3-point functions in flat space to second order in λ. Indeed, it
was noticed in [6] that the 1-loop determinant of the matrix model expanded around a = 0
(for finite N) is given by

Z1−loop(a) = 1− 3ζ(3)(Tra2)2 + . . . , (4.8)

which means that the ζ(3) correction to a correlation function can be obtained from the
tree-level result by applying an appropriate derivative operator. We now find this operator
explicitly and study its behavior at large N .

We can rewrite (4.8) in the form

〈〈A〉〉 ≈ 1
Z

(
1− 3ζ(3) ∂2

∂(2πImτ)2

)
Z0[A] , (4.9)

where Z0[A] is the matrix model partition function at tree-level with the insertion of the
operator A. Notice that in converting the expansion of the 1-loop determinant into a deriva-
tive, we have assumed that A itself does not depend on τ in its representation inside the
integral. In particular, this means that this equation cannot be applied directly to connected
correlators, since the mixing of an operator with the identity on the sphere will exhibit a
non-trivial dependence on τ . It is easy to show that the equation above is equivalent to

〈〈A〉〉 ≈ 〈〈A〉〉0 − 3ζ(3)
( 2
Z0

∂Z0 ∂〈〈A〉〉0 + ∂2〈〈A〉〉0
)
, (4.10)

where 〈〈A〉〉0 is the expectation value of A at tree-level and we have defined

∂ ≡ ∂

∂(2πImτ) (4.11)

to avoid clutter in the equations. A connected correlator will then satisfy

〈〈A1A2〉〉c ≡ 〈〈A1A2〉〉 − 〈〈A1〉〉〈〈A2〉〉

≈ 〈〈A1A2〉〉0,c − 3ζ(3)
( 2
Z0

∂Z0 ∂〈〈A1A2〉〉0,c + ∂2〈〈A1A2〉〉0,c + 2∂〈〈A1〉〉0 ∂〈〈A2〉〉0
)
.

(4.12)

In the large-N limit, only the first and third terms in the brackets will contribute, since they
scale like N0 while the second term scales like N−2.
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Translating these formulae to the language of connected correlation functions on the
sphere we have〈
OS4

k1 , O
S4

k2

〉
S4
≈
〈
OS4

k1 , O
S4

k2

〉
S4,0

− 6
π2 ζ(3)

(
λ3

128π2∂λ

〈
OS4

k1 , O
S4

k2

〉
S4,0

+
〈
OS4

2 , OS4

k1

〉
S4,0

〈
OS4

2 , O
S4

k2

〉
S4,0

)
.

(4.13)

Analogously, one can derive the ζ(3) correction to the connected 3-point function as〈
OS4

k1 , O
S4

k2 , O
S4

k3

〉
S4
≈
〈
OS4

k1 , O
S4

k2 , O
S4

k3

〉
S4,0

− 6
π2 ζ(3)

(
λ3

128π2∂λ

〈
OS4

k1 , O
S4

k2 , O
S4

k3

〉
S4,0

+
〈
OS4

2 , O
S4

k1

〉
S4,0

〈
OS4

2 , OS4

k2 , O
S4

k3

〉
S4,0

+ permutations
)
.

(4.14)

Remarkably, these formulae are valid even for flat-space correlators. To prove this, con-
sider for definiteness the case of 2-point functions (4.13) applied to the case k1 = k2 = k.
Employing the Gram-Schmidt procedure as in section 2.3.2

OR4

k =
∑
i≤k

ciO
S4

i , O
R4

k =
∑
j≤k

c̄jO
S4
j (4.15)

we deduce that the leading perturbative correction to the flat-space 2-point function can be
written as

δ
〈
k , k

〉
R4

=
∑
i,j

cic̄j δ
〈
OS4

i , O
S4

j

〉
S4

+
∑
i

δci

〈
OS4

i , O
R4

k

〉
S4

+
∑
j

δc̄j

〈
OR4

k , O
S4

j

〉
S4

=
∑
i,j

cic̄jδ
〈
OS4

i , O
S4

j

〉
S4

, (4.16)

where in the last equality we used that the operators OR4
k are orthogonal to all the operators

of lower conformal dimension by definition. Applying (4.13) to the previous expression, and
using the same argument to move the derivative in front of the sum, we find

〈
k , k

〉
≈
〈
k , k

〉
0
− 6
π2 ζ(3)

(
λ3

128π2∂λ
〈
k , k

〉
0

+
〈
2 , k

〉
0

〈
2 , k

〉
0

)
. (4.17)

The same argument applies to the 3-point functions as well. Consequently, if we know
the tree-level 2- and 3-point functions on the plane, we can determine their ζ(3) correction
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using (4.13) and (4.14). The final result is

〈
k , k

〉
= k

(
λ

16π

)k (
1− 3 ζ(3)

4(2π)4 (k + δk,2)λ2 + . . .

)
, (4.18)

〈
k1 , k2 , k3

〉
= k1 k2 k3

(
λ

16π

)(k1+k2+k3)/2

× (4.19)(
1− 3 ζ(3)

4(2π)4

(
k1 + k2 + k3

2 + δk1,2 + δk2,2 + δk3,2

)
λ2 + . . .

)
,

〈
k1 , k2 , k3

〉
n
≡

〈
k1 , k2 , k3

〉
√〈

k1 , k1
〉 〈
k2 , k2

〉 〈
k3 , k3

〉
=
√
k1 k2 k3

(
1− (δk1,2 + δk2,2 + δk3,2) 3ζ(3)

8(2π)4λ
2 + . . .

)
. (4.20)

We first notice that the tree-level results match the ones computed in [14], as they should.
Furthermore, the λ2 corrections only appear when one of the operators is O2 = Tr[ϕ2]. This
property does not hold at higher orders in λ. Indeed, it is easy to use (3.12) to explicitly
compute some examples of 3-point functions to higher order in λ, even though we do not
have a closed form expression for them valid for arbitrary operators:

〈2 , 2 , 4〉n = 4
(

1− 3ζ(3)
64π4 λ

2 + 45ζ(5)
512π6 λ

3 + 3(72ζ(3)2 − 1085ζ(7))
32768π8 λ4 + . . .

)
, (4.21)

〈2 , 4 , 6〉n = 4
√

3
(

1− 3ζ(3)
128π4λ

2 + 15ζ(5)
256π6 λ

3 + 99ζ(3)2 − 2275ζ(7)
32768π8 λ4 + . . .

)
, (4.22)

〈4 , 4 , 8〉n = 8
√

2
(

1 + 15ζ(5)
512π6 λ

3 − 665ζ(7)
16384π8λ

4 + . . .

)
, (4.23)

〈4 , 6 , 10〉n = 4
√

15
(

1 + 15ζ(5)
512π6 λ

3 − 35(263520ζ(3)2 − 501551ζ(7))
32768π8 λ4 + . . .

)
, (4.24)

. . .

In particular, notice that while the λ2 corrections are absent in the normalized 3-point
functions that do not involve the operator O2, the λ3 and higher corrections are present.

4.3. 3-point functions in the parallel transported basis

As we anticipated in section 3.2.1, the 3-point functions defined above are sensitive to
mixing with multi-trace operators. At the weakly coupled point, the canonical trace basis is
particularly convenient, and we can ask if this basis can be extended (or transported) in a
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canonical way across the conformal manifold. Since conformal perturbation theory defines a
natural connection on the space of operators, it is sensible to use this connection to parallel
transport the canonical trace basis defined at the weakly coupled point to other points in
the conformal manifold. In general, this is an ambiguous operation, because the parallel
transported basis will depend on the particular path chosen due to curvature. Fortunately,
at large N , the conformal manifold becomes effectively 1-dimensional, and a preferred path
emerges, the one “along λ”.

Let us define the vielbein-like objects eIk(λ) such that

eIk(λ)OI ∝ Ok +O(λ2) . (4.25)

Here the index I is allowed to run over all the chiral primaries (both single- and multi-trace)
of dimension ∆ = k and the arbitrary proportionality constant can be chosen so that the
diagonal part of the 2-point functions is unity. A choice of eIk(λ) corresponds to a choice of
basis of chiral primaries that agree (up to an overall normalization) with the tree-level trace
basis when λ = 0. The parallel transported basis will be determined by demanding that

∇λe
I
k(λ) = 0 , (4.26)

where ∇λ is the covariant derivative along λ. The parallel transported 3-point functions will
then be given by

eIk1(λ) eJk2(λ) eKk3(λ)
〈
OI , OJ , OK

〉
. (4.27)

It is clear that these correlators will agree with (4.20) at leading order in λ.
In order to implement this procedure explicitly in the present case, we need to determine

the connection from the S4 partition function. To do so, we will assume that the basis of
operators on the plane implicitly defined by the Gram-Schmidt procedure is a holomorphic
basis.8 This assumption passes an important consistency check, namely that the resulting
2-point functions do obey the tt∗ equations written in a holomorphic basis [6]. However, as
we noted previously at the end of section 2.3.2, we are not aware of a complete proof of this
statement. If the assumption is correct, then it is easy to show [1] that the connection along
λ is

∇λ = ∂λ + 1
2g
−1∂λg , (4.28)

8Strictly speaking, the basis that we are considering is holomorphic only when the operators are multiplied
by the factor eR

c K, where K is the Kähler potential of the theory. For more details and a discussion on the
effect of Kähler ambiguities, we refer the reader to [1].
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where g is the matrix of 2-point functions at the appropriate level. Using this and the explicit
results up to order λ2 of the previous subsection, it would be easy to compute (4.27) up to
this order. However, due to the property in equation (4.8), this correction will vanish.

To exemplify how the procedure works in practice, we explicitly work out the case k1 =
k2 = 2, k3 = 4 up to order λ3. The relevant matrices of 2-point functions are then

g(2) = 2
(
λ

16π

)2 (
1− 9 ζ(3)

64π4 λ
2 + 15 ζ(5)

128π6 λ
2 + . . .

)
, (4.29)

g(4) = 4
(
λ

16π

)4
2− 9ζ(3)

16π4 λ
2 + 15ζ(5)

32π6 λ
3 + . . . 1

N

(
4− 9ζ(3)

8π4 λ
2 + 145ζ(5)

128π6 λ
3 + . . .

)
1
N

(
4− 9ζ(3)

8π4 λ
2 + 145ζ(5)

128π6 λ
3 + . . .

)
1− 3ζ(3)

16π4 λ
2 + 5ζ(5)

32π6 λ
3 + . . .

 .

(4.30)

We now have everything we need to solve (4.26). The result is
√

2λ
16π e2(λ) = 1 + 9ζ(3)

128π4λ
2 − 15ζ(5)

256π6 λ
3 + . . . , (4.31)

2λ2

(16π)2 e
I
4(λ) =

 3ζ(3)
32π4 N

λ2 − 65ζ(5)
512π6N

λ3

1 + 3ζ(3)
32π4 λ

2 − 5ζ(5)
64π6 λ

3

+ . . . . (4.32)

We notice that e4 acquires a component along the multi-trace chiral primary (O2)2 at order
λ2. This means that as we parallel transport the operator O4 to non-zero λ, it mixes with
(O2)2. This mixing is a 1/N effect, as expected.

Finally, the 3-point function in the parallel transported basis reads

e2 e2 e
I
4

〈
O2 , O2 , OI

〉
= 1
N

(
4 + 25ζ(5)

256π6 λ
3 +O(λ4)

)
. (4.33)

The tree-level piece is of course the same as before. We also notice that the λ2 correction
is absent, as expected from (4.8), but the correlator does receive quantum corrections from
order λ3 and higher.

4.4. Basis-independent 3-point functions

In this final subsection, we study the objects |C(2,∆)|2 defined in (3.15) at weak coupling.
We start by giving an analytic expression of the curvatures R(∆)

0 , defined in (3.27), to order
λ2. Since only the leading order O(N0) part of the metric contributes, the problem simplifies
considerably. First of all, the metric is diagonal. Also, the diagonal elements are either
single-trace 2-point functions or multi-trace 2-point functions that factorize into the product
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of single-trace 2-point functions at leading order in 1/N . The curvature for the single-trace
part is given by

Rk
0 ≡

1〈
2 , 2̄

〉∂τ∂τ̄ log
〈
k , k̄

〉
= 2 k − 9 k ζ(3)

32π4 λ2 − δk,2
9 ζ(3)
16π4 λ

2 + . . . . (4.34)

The piece of the curvature coming from the 2-point functions of the operators ∏k k
nk will

then be given by
R
{nk}
0 =

∑
k

nkR
k
0 , (4.35)

where we used large-N factorization. Therefore, the leading large-N contribution to the
curvature on the space of chiral primaries of conformal dimension ∆ is given by

R
(∆)
0 =

∑
{nk}∑
k
nkk=∆

∑
k

nkR
k
0 = 2 ∆n(∆) −

(
∆n(∆) + 2 p(∆)

) 9 ζ(3)
32π4 λ

2 + . . . , (4.36)

where n(∆) is the dimension of the space of chiral primaries at level ∆ (https://oeis.org/

A182746) and p(∆) is the number of 2’s in all partitions of ∆ that do not contain 1 as part
(https://oeis.org/A182716). Combining this result with (3.28) gives us the 1/N2 piece to
order λ2 exactly. As before, it is very easy to compute higher-order corrections by following
the algorithm of section 3.2, but we do not have a closed form expression for them.

The case where ∆ = 2 is particularly interesting, as it gives the leading contribution to
the conformal block expansion of the 4-point function〈

φ2(x1)φ2(x2)φ2(x3)φ2(x4)
〉

(4.37)

in the chiral channel, namely x1 → x2, x3 → x4. In the case of N = 4 SYM, the analogous
object was studied both from the field theory side [21] and the gravity side [22], and the
results turned out to be independent of the coupling constant consistent with the N = 4 non-
renormalization theorem [14–16,23–29]. In our case, we can explicitly see that this quantity
does depend non trivially on the coupling constant, its first perturbative corrections around
λ = 0 being

|C(2,2)|2 = 2+ 1
N2

(
4− 9ζ(3)

8π4 λ2 + 75ζ(5)
32π6 λ3 + 9(27ζ(3)2 − 350ζ(7))

1024π8 λ4 +O(λ5)
)

+O(N−3) .

(4.38)
This result is consistent with the lower bound

|C(2,2)|2 ≥ 2 + 2
3c (4.39)

in [30] that follows from conformal bootstrap techniques.
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5. Partial strong coupling results

The analysis of 2- and 3-point functions at strong coupling requires a solution of the
large-N saddle-point equation of the matrix model at large λ. The saddle point equation
has the qualitative form∫ µ+

µ−
dx

[
1

x− y
−K(x− y)

]
ρ(y) = 8π2

λ
x−K(x) +

M∑
n=2

tnx
n . (5.1)

Details about the function K(x), as well as the meaning of the couplings tn can be found in
appendix A. We are interested in a single-cut solution with the density of eigenvalues ρ(x)
supported in the interval [µ−, µ+]. Unfortunately, we have not been able to find an analytic
solution of the integral equation (5.1) at arbitrary finite values of the couplings. However,
in [17] it was argued that µ = µ+ = −µ− → ∞ in the strong coupling limit, λ → ∞, at
tn = 0. It was further argued that the leading order relation between λ and µ in this limit is

µ ' 2
π

log λ , λ� 1 . (5.2)

The presence of small higher single-trace couplings tn (n ≥ 2) will not affect this qualitative
behavior of µ±, but the specifics of the dependence of µ± on the general tn, that generalizes
(5.2), requires a careful analysis of the integral equation (5.1).

Ref. [17] further proposed an approximate analysis of (5.1) based on the Wiener-Hopf
method. Details of this approach, suitably generalized to include the effects of the couplings
tn, are presented in appendix D. By running the approximate Wiener-Hopf method for the
saddle-point equations, evaluating matrix model correlation functions and performing the
eventual Gram-Schmidt orthogonalization procedure we can obtain approximate results for
2- and 3-point functions of single-trace operators in the R4 theory. For example, in this way
we obtain the following large-λ behavior of the correlation functions (2.27),9 (2.28), (2.29)〈

Tr
[
ϕ2
]
,Tr

[
ϕ2
]〉

R4
∼ (log λ)2 , (5.3)〈

Tr
[
ϕ4
]
,Tr

[
ϕ4
]〉

R4
∼ (log λ)6 , (5.4)〈

Tr
[
ϕ2
]
,Tr

[
ϕ2
]
,Tr

[
ϕ4
]〉

R4
∼ λ (log λ)3 . (5.5)

Many more explicit results like this can be obtained from the computations of appendix D.
Determining the precise numerical prefactor in these expressions is hard. As we detail in

appendix D the employed Wiener-Hopf approximations are not based on a well-controlled
9The behavior of

〈
Tr
[
ϕ2] ,Tr

[
ϕ2]〉

R4 at strong coupling, determined by the same approximation method,
was reported also in [12] and agrees with our results below.
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expansion in terms of a parametrically small number. In fact, performing this computation at
the next iteration we found corrections to the leading order coefficients that are numerically
comparable to the leading contribution.

In search of an independent check of the leading large-λ scaling of correlation functions
obtained with the Wiener-Hopf method, let us consider the connected 2-point functions of
single-trace operators in the matrix model. Using the independent results of appendix A.2,
in particular equations (A.21) and (A.52), we focus on the following contribution to the
general connected 2-point function in the matrix model

〈Tr[ϕn]Tr[ϕm]〉c ∼
∫ µ

−µ
dx
∫ µ

−µ
dy ρ2(x, y)xnym + . . . . (5.6)

The dots indicate corrections from the integration of subleading terms in the density of
connected 2-point functions ρ̄2(x, y). We assume that such contributions either exhibit the
same scaling in the large-µ limit or subleading scaling. In the case of the standard matrix
model, where the exact two-point function density is known (see eq. (A.49)) we can check
that these corrections exhibit the same large-µ scaling as (5.6) correcting the numerical
coefficients one finds from (5.6).

In any case, focusing on the leading scaling of the term on the r.h.s. of (5.6) we find∫ µ

−µ
dx
∫ µ

−µ
dy ρ2(x, y)xnym = µn+m+2

∫ 1

−1
dx
∫ 1

−1
dy ρ2(µx, µy)xnym

∼ − 3√
2π3/2

µn+m+2
∫ 1

−1
dx
∫ 1

−1
dy

xnym

(µx− µy)4 ∝ µn+m−2 . (5.7)

To obtain the second line we used the large-µ asymptotics of the expression (A.52) at finite
non-vanishing x− y. If (5.7) is indeed a term that contributes to the leading large-µ scaling
of 〈Tr[ϕn]Tr[ϕm]〉c we deduce that

〈Tr[ϕn]Tr[ϕm]〉c ∼ O(µn+m−2) = O((log λ)n+m−2) . (5.8)

This prediction agrees well with the large-µ scaling obtained with the approximate Wiener-
Hopf method. This is partially reassuring.

Let us also note in passing that the result (5.3) is trivially consistent with the bootstrap
bound (4.39). The coefficient of the 1/N2 correction to |C(2,2)|2 is a large positive number
scaling as λ2/(log λ)3. The λ2 factor is consistent with the linear λ factor in (5.5).

It would be very interesting to obtain a better handle on the precise numerical coefficients
in front of the above scalings of the 2- and 3-point functions, either by improving the Wiener-
Hopf method, or by developing further the computation of connected 2- and higher-n-point
function densities (we refer the reader to appendix A.2 for additional comments on this
approach).
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A. Deformed matrix integrals from supersymmetric localization

In section 2.3 we reviewed how extremal correlation functions are related to derivatives
of the free energy of the N = 2 theory on S4. Via supersymmetric localization this is also
the free energy of a corresponding matrix model. In the case of the SU(N) N = 2 SCQCD
theory the deformed partition function of interest is (after localization) [4]

ZS4 =
∫
dNa δ

(
N∑
i=1

ai

)∏
i<j

[
(ai−aj)2H2(ai−aj)

]∣∣∣∣∣ei∑N

n=2 π
n/2τn

∑N

i=1(ai)n
∣∣∣∣∣
2

e−2N
∑N

i=1 logH(ai)|Zinst|2 .

(A.1)
The function H(x) is defined as

H(x) =
∞∏
n=1

(
1 + x2

n2

)n
e−

x2
n . (A.2)

Zinst are instanton contributions. The integral is performed over the N − 1 elements of the
SU(N) Cartan subalgebra. In the U(N) theory there is no δ-function restriction on the
N elements of the Cartan subalgebra. From now on, and in appendices C, D, it is more
convenient to work in the U(N) matrix model. Eventually, the translation of the matrix
model results to the SCFT on R4 are identical in the SU(N) and U(N) cases as far as the
leading large-N contribution to correlators is concerned.

A.1. Large-N limit and the saddle-point equations

In the large-N limit we can further set the instanton contributions Zinst → 1, and express
the single-trace couplings τn in terms of their ’t Hooft combinations (3.1). Since the end
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result depends only on the imaginary part of the couplings τn we set

gn ≡
2
N

Imτn . (A.3)

Then, the large-N (U(N)) partition function takes the form

ZS4 = e−N
2F({gn}) =

∫
dNa

∏
i<j

[
(ai − aj)2H2(ai − aj)

]
e−N

∑N

i=1[
∑N

n=2 gn π
n/2(ai)n+2 logH(ai)].(A.4)

In the large-N limit it is also convenient to introduce the density of eigenvalues

ρ(x) = 1
N

∑
i

δ(x− ai) , (A.5)

which is normalized so that ∫
dx ρ(x) = 1 . (A.6)

Below we will deal exclusively with single-cut solutions, where the saddle-point eigenvalues
are located in a single connected interval [µ−, µ+].

The saddle-point equations of the integral (A.4) are a special case of the general integral
equation

−
∫
dy ρ(y)

(
1

x− y
−K(x− y)

)
= f(x) , (A.7)

where
K(x) = −H

′(x)
H(x) = 2x

∞∑
n=1

( 1
n
− n

n2 + x2

)
, (A.8)

f(x) = 1
2
dV

dx
−K(x) , V (x) =

∞∑
n=2

πn/2gnx
n . (A.9)

−
∫
denotes a principal value integral. The function K controls the measure of the matrix

integral, and the function f controls its potential.
The undeformed version of these equations, with gn = 0 for all n > 2, was analyzed

previously in [17]. An analysis of the deformed equations, with gn = 0 for all odd n,
was initiated more recently in [12]. We revisit this analysis below and extend it in several
directions.

Following [17], it is possible, for a general single-cut configuration, to recast the saddle-
point equations (A.7) into the form

ρ(x) = − 1
π2−
∫ µ+

µ−

dy

x− y

√√√√(µ+ − x)(x− µ−)
(µ+ − y)(y − µ−)

∫
dzρ(z)

(
f(y) +K(y − z)

)
= 1

2π

∞∑
n=2

n−2∑
k=0

n−k−2∑
r=0

ngnπ
n/2brbn−k−2−rµ

r
+µ

n−k−r−2
−

√
(µ+ − x)(x− µ−)xk
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− 1
π2−
∫ µ+

µ−

dy

x− y

√√√√(µ+ − x)(x− µ−)
(µ+ − y)(y − µ−)

∫
dzρ(z)

(
K(y − z)−K(y)

)
. (A.10)

To obtain this result we used the identity [12]

−
∫ µ+

µ−

dy

x− y
yn−1√

(µ+ − y)(y − µ−)
= −π

n−2∑
k=0

n−k−2∑
r=0

brbn−k−r−2µ
r
+µ

n−k−r−2
− xk (A.11)

with

bk = 1√
π

Γ
(
k + 1

2

)
k! . (A.12)

Integrating this equation further over the domain of eigenvalues gives, in conjunction with
the normalization condition (A.6),

1 = −1
2

∞∑
n=2

n−2∑
k=0

n−k−2∑
r=0

k+2∑
s=0

ngnπ
n/2brbn−k−2−rσsσk−s+2µ

r+s
+ µn−s−

− 1
π2−
∫ µ+

µ−
dx−
∫ µ+

µ−

dy

x− y

√√√√(µ+ − x)(x− µ−)
(µ+ − y)(y − µ−)

∫
dzρ(z)

(
K(y − z)−K(y)

)
. (A.13)

We used the identities [12]
∫ µ+

µ−
dx
√

(µ+ − x)(x− µ−)xk = −π
k+2∑
s=0

σsσk−s+2µ
s
+µ

k−s+2
− , (A.14)

where

σk = 1
2
√
π

Γ
(
k − 1

2

)
k! . (A.15)

The simultaneous solution of the above equations determines µ± and ρ(x) parametrically
in terms of the single-trace coupling constants gn. Technical aspects of the solution are
discussed in detail in the two subsequent appendices in different regimes. Once a solution is
known the free energy is determined by the expression

F({gn}) = −−
∫
dx dy ρ(x)ρ(y) log

(
(x−y)H(x−y)

)
+
∫
dx ρ(x)

(
V (x)+2 logH(x)

)
, (A.16)

which can be manipulated further, using the saddle-point equations, to the more convenient
form

F({gn}) =
∫ µ+

µ−
ρ(x)

(1
2V (x)− log |x|

)
(A.17)

that does not contain directly the special function H(x).
It is useful to highlight here the following properties of the saddle-point equations and

their solutions.
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A. Self-contained system of equations. There are obviously enough equations ((A.10),
(A.13)) to obtain the eigenvalue density ρ(x) and the bounds of the support µ± when µ− =
−µ+. This occurs when the deformation is even, i.e. when only gn with n even are present.
In that case the density is symmetric around the origin, ρ(x) = ρ(−x). More generally, e.g.
when odd interactions are allowed in the potential V , the eigenvalue density is not symmetric
and µ+ 6= −µ−. In that case, there is an additional non-trivial condition [12, 31] that can
be used to fix the relation between µ+ and µ−. It follows from the requirement that the
resolvent

ω(x) = −
∫ µ+

µ−
dy

ρ(y)
x− y

∼ 1
x

(A.18)

at large x. To ensure this drop-off the resolvent cannot contain any terms proportional to
xn with n > 0. This is equivalent to the requirement

−
∫ µ+

µ−
dx

ω(x)√
(µ+ − x)(x− µ−)

= 0 . (A.19)

This equation is automatic when µ+ = −µ− and the density is even.

B. Special cases vs generic K. When the function K vanishes (this occurs in the case of
N = 4 SYM theory) the matrix integral has the standard measure and the exact solution of
the saddle point equations follows immediately from (A.10)

ρ(x)
∣∣∣
K=0

= 1
2π

∞∑
n=2

n−2∑
k=0

n−k−2∑
r=0

ngnπ
n/2brbn−k−2µ

r
+µ

n−k−r−2
−

√
(µ+ − x)(x− µ−)xk . (A.20)

In the presence of a non-trivial function K, however, an exact solution is not known in closed
form. In appendices C and D we analyze the density ρ and free energy F perturbatively
in the strong and weak g2 = 8π2

λ
regime, respectively. Although it is possible to perform a

comprehensive analysis of the weak-λ regime at any desired order of perturbation theory,
current techniques do not provide an equally satisfactory treatment of the strong coupling
side.

C. Universality. Once a solution of the saddle-point equations is obtained, the result can be
inserted into the free energy F to obtain a generating function for the connected correlation
functions of the model. Remarkably, the final expression of the correlation functions can be
written solely in terms of µ± (the limits of the eigenvalue support), and is independent of the
details of the potential function f . We will give an example of this property of universality
in a moment for connected 2-point functions. The explicit dependence on the single-trace
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couplings that appear in the function f arises from the corresponding dependence of the
quantities µ±.

A.2. Aside: density for connected 2-point functions of single-trace operators

In the previous subsection, and in appendices C, D, we evaluate the free energy of the
deformed matrix model at general values of the single-trace couplings gn and take derivatives
at gn = 0 for n > 2, and g2 = 8π

λ
free. This allows us to compute connected correlation

functions of the matrix model at any value of g2 and gn = 0 for n > 2.
In this appendix we consider a different evaluation of the same connected correlation

functions that does not go through the computation of the free energy in the deformed matrix
model with gn 6= 0 (n > 2). We focus on the 2-point functions of single-trace operators.
The result is expressed as a double integral over the eigenvalues with an appropriate 2-point
function density ρ̄2(x, y)

〈Tr[ϕn+1]Tr[ϕm+1]〉c =
∫
dx
∫
dy ρ̄2(x, y)xn+1ym+1 . (A.21)

There are well-known results in the literature regarding ρ̄2 (and its higher n-point gen-
eralizations) —for a recent comprehensive review we refer the reader to [32]. For example,
in the case of the standard Hermitian matrix model

Z =
∫
dM e−N TrV (M) (A.22)

where V is a real polynomial of some degree, the leading large-N contribution to the con-
nected 2-point function density ρ̄2 takes the form

ρ̄2(x, y) = 1
2π2

1
(x− y)2

xy − µ2
√
x2 − µ2

√
y2 − µ2 . (A.23)

We have assumed a single-cut solution of the saddle-point equations in the symmetric interval
[−µ, µ]. In accordance to point C in the previous subsection, this expression is universal,
namely independent of the details of the potential V .

Integral equation for ρ2

At this point we take the opportunity to derive a general integral equation obeyed by
ρ2 (we are not aware of a similar derivation in the literature). In an attempt to be fairly
general, let us consider the large-N limit of the matrix integral

ZO =
∫
dNa

∏
i<j

∆2(ai − aj) e−N
∑N

i=1 V (ai)
∏
L

OL(ai) , (A.24)
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where OL are (local) single-trace operator insertions of the N × N Hermitian matrix over
which we integrate. Z1, the matrix integral without any operator insertions, denotes the
partition function of the matrix model. By definition, the normalized correlation functions
in this matrix model are of the form

〈
∏
L

OL〉 = ZO
Z1

. (A.25)

An elementary computation of ZO in the saddle-point approximation leads to the following
expressions.

For starters, the effective action for the eigenvalues ai is

Seff (ai) =
N∑
i=1

V (ai)−
1
N

∑
i 6=j

log ∆(ai − aj)−
1
N

∑
L

logOL(ai) . (A.26)

The leading-order saddle-point equations are
∂V

∂ai
− 2
N

∑
k 6=i

(log ∆)′(ai − ak) = 0 . (A.27)

We dropped the term
− 1
N

∑
L

∂ai logOL (A.28)

which is O(1/N) (the other terms are O(N0)). We denote the solution of the system of
equations (A.27) as a(0)

i .
Then, setting (in standard fashion)

ai = a
(0)
i + 1√

N
δi (A.29)

and performing the Gaussian integrations over δi we obtain

ZO =
∏
i<j

∆2
(
a

(0)
i − a

(0)
i

)
e−N

∑N

i=1 V (a(0)
i )∏

L

OL
(
a

(0)
i

)
e

1
2NP

TQ−1P e
− 1

2 log det QO
detQ1 , (A.30)

where P and QO are respectively the vector and matrix

Pi := ∂aiSeff
∣∣∣
0

= −1
2
∑
L

∂ai logOL
∣∣∣
0
, (A.31)

Qij := ∂aiajSeff

∣∣∣∣
0

= ∂V

∂ai∂aj
δij −

1
N

∑
L

∂ai∂aj logOL −
1
N

∑
k 6=m

∂ai∂aj log ∆(am − ak)
∣∣∣∣
a(0)

.

(A.32)
After a few straightforward algebraic manipulations one can show that up to order O(N−2)

〈
∏
L

OL〉 = ZO
Z1

=
∏
L

OL
(
a

(0)
I

)(
1 + 1

2NP
TQ−1P − 1

2Tr
[
Q−1dP

]
+O(N−4)

)
. (A.33)

34



dP is the matrix with elements

(dP )ij = − 1
N

∑
L

∂ai∂aj logOL
∣∣∣∣
0
. (A.34)

On the r.h.s. of equation (A.33) the first term is the factorizable disconnected part of the
correlation function and the second part is the first subleading contribution in 1/N .

Now assume that the saddle-point configuration is a one-cut solution on the symmetric
interval [−µ, µ] with eigenvalue density ρ(x), and consider the two-point function of two
single-trace operators, namely set

∏
L

OL = Tr[ϕn+1]Tr[ϕm+1] . (A.35)

Moreover, for concreteness, let us specialize further to the matrix model of interest in this
paper where

∆(x) = |x|H(x) , V (x) = g2x
2 + 2 logH(x) . (A.36)

Then, in the continuum limit explicit evaluation gives

1
2N P TQ−1P − 1

2Tr
[
Q−1dP

]
= 1
N

∫ µ

−µ
dx
∫ µ

−µ
dy ρ(x)ρ(y)Q−1(x, y)(n+ 1)(m+ 1)

mn+1mm+1
xnym

+ 1
2N

∫ µ

−µ
dx ρ(x)Q−1(x, x)

[
n(n+ 1)
mn+1

xn−1 + m(m+ 1)
mm+1

xm−1
]
, (A.37)

where mn are the moments
mn =

∫ µ

−µ
dx ρ(x)xn , (A.38)

and Q−1(x, y) is the functional inverse of Q(x, y)

−
∫ µ

−µ
dz ρ(z)Q(x, z)Q−1(z, y) = 1

N2
δ(x− y)
ρ(y) . (A.39)

Combining this equation with the definition of Q (A.32) (in its continuous form) we deduce
that the leading O(N−1) part of Q−1 obeys the more explicit integral equation

−
∫ µ

−µ
dz ρ(z)

(
1

(x− z)2 +K ′(x− z)
)
Q−1(z, y) = 1

2N
δ(x− y)
ρ(y) . (A.40)

Equation (A.37) has two characteristic features:

(i) The first term on the r.h.s. depends only on the combination

F2(x, y) := ρ(x)ρ(y)Q−1(x, y) . (A.41)
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(ii) The second term on the r.h.s. involves the singular quantity Q−1(x, x). Part of the
prescription we propose to adopt in the evaluation of the above expressions is to remove
this singular term by hand. We will soon see that this prescription works quite well
and in agreement with known results in the standard Hermitian matrix model, which
corresponds to the special case K = 0.

Consequently, with these specifications the connected two-point function 〈Tr[ϕn+1]Tr[ϕm+1]〉c
that follows from (A.33) takes the form

〈Tr[ϕn+1]Tr[ϕm+1]〉c = 1
N
−
∫ µ

−µ
dx−
∫ µ

−µ
dy F2(x, y)∂x(xn+1)∂y(ym+1) . (A.42)

Requiring the boundary conditions

F2(±µ, y) = 0 , ∂xF2(x,±µ) = 0 (A.43)

we can perform two integrations by part to recast (A.42) as

〈Tr[ϕn+1]Tr[ϕm+1]〉c = 1
N
−
∫ µ

−µ
dx−
∫ µ

−µ
dy ∂x∂yF2(x, y)xn+1 ym+1 . (A.44)

This implies
ρ̄2(x, y) = N∂x∂yF2(x, y) . (A.45)

We will discuss the self-consistency of the boundary conditions (A.43) in a moment.
Armed with the relation (A.45) and the equation (A.40) obeyed by the inverse Q−1(x, y)

we are now in position to formulate an integral equation for the density of connected 2-point
functions ρ̄2. Integrating by parts on the integral of the l.h.s. in eq. (A.40) and using the
first of the boundary conditions (A.43) we obtain

−
∫ µ

−µ
dz
( 1
x− z

−K(x− z)
)
∂zF2(z, y) = − 1

2N δ(x− y) . (A.46)

Applying the integral
−
∫ µ

−µ
dx
√
µ2 − x2 1

w − x
(A.47)

on both sides of (A.46) we obtain

∂wF2(w, y) = − 1
2Nπ2

√
µ2 − y2

µ2 − w2
1

w − y
− 1
π2−
∫ µ

−µ
dx

√
µ2 − x2

µ2 − w2
1

w − x

∫
dz K(x− z)∂zF2(z, y) ,

(A.48)
which is an integral equation for the derivative of F2, ∂xF2(x, y). Solving this equation, or its
progenitor (A.46), and applying a second derivative on the second argument of F2 we obtain
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the density ρ2 that allows us to determine the connected two-point function of single-trace
operators at any value of the ’t Hooft coupling at leading order in the 1/N expansion.

As an additional comment on the boundary conditions (A.43), notice that the first one
is a natural consequence of the assumption that the inverse Q−1(x, y) is regular at x = ±µ
(or not singular enough —an example is provided by the standard Hermitian matrix model,
K = 0, below) and the fact that the density of eigenvalues vanishes at the boundaries of the
eigenvalue support, ρ(±µ) = 0. The second boundary condition in (A.43) is a self-consistent
ansatz from the point of view of the integral equation (A.48).

Recovering the standard Hermitian matrix model formula

As a test of the proposed relation (A.45) consider the case of the Hermitian matrix model
(A.22), which corresponds to the special caseK = 0 in the above analysis. Then, a derivative
of eq. (A.48), where only the first term on the r.h.s contributes, gives

ρ̄2(x, y) = N∂x∂yF2(x, y) = 1
2π2

1
(x− y)2

xy − µ2
√
x2 − µ2

√
y2 − µ2 (A.49)

in exact agreement with the known result (A.23).

ρ2 at infinite ’t Hooft coupling in the matrix model of SU(N) N = 2 SCQCD

An analytic solution of eq. (A.46), or (A.48), at all values of the ’t Hooft coupling λ
is currently not known. It is straightforward, however, to obtain the analytic solution at
infinite coupling. Since, the strong coupling regime is hard to analyze with existing methods,
it is of some value to report here the analytic profile of ρ̄2 at infinite coupling.

For this purpose it is convenient to return to eq. (A.46). Since ∂xF2(x, y) is a function of
the difference x− y, we can perform a simple Fourier transformation

∂xF2(x) = 1√
2π

∫ ∞
−∞

dk eikx∂̂xF2(k)

∂̂xF2(k) = 1√
2π

∫ ∞
−∞

dx e−ikx∂xF2(x) (A.50)

to obtain
∂̂xF2(k) = i

Nπ
sgn(k)

sinh2 k
2

cosh k , (A.51)

which gives in real space

ρ2(x− y)
∣∣∣
λ=∞

= 1
16
√

2Nπ3/2

[
16

(x− y)2 + ψ′
(1

4(1 + i(x− y))
)

+ ψ′
(1

4(1− i(x− y))
)
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+ψ′
(1

4(3 + i(x− y))
)

+ ψ′
(1

4(3− i(x− y))
) ]

. (A.52)

As usual, ψ(z) = Γ′(z)
Γ(z) is the logarithmic derivative of the Γ-function.

Unfortunately, this datum is not enough to determine the large-λ behavior of the con-
nected single-trace two-point functions. When we apply the formula (A.21) at large but finite
λ we need to know also the first subleading (in 1

λ
) correction to ρ̄2. The mere knowledge

of (A.52) appears to provide the correct leading large-µ scaling of the connected two-point
functions but fails to capture the exact numerical coefficient.

Towards higher connected n-point functions

Working directly with the densities of connecting n-point functions (as we did above for
n = 2) is a direction with a potential for promising results. In the past considerable results
have been obtained in standard matrix models through the analysis of the matrix model loop
equations which provide recursive equations between the generating functions of connected
n-point functions (see [32] for a modern review and references to the original literature).
Such results can be extended to more general cases (like (A.24)) —see, for instance, the
recent work [33]. It would be interesting to pursue this approach for the matrix models of
interest in this paper. We hope to return to this aspect in a future publication.

B. Proof of (3.12)

In this appendix we prove formula (3.12). Let us first recall that the 3-point function we
are interested in is given by the formula

〈
(Ok1Ok2)R

4
, OR4

k3

〉
, (B.1)

where, as always, the R4 indices on the operators indicate that we have applied the full
Gram-Schmidt procedure, i.e. the primed operators are orthogonal to all the operators of
lower conformal dimension, both single- and multi-trace. We want to prove that in the
large-N limit the 2-point function above is given by the simpler expression

〈(
OR4

k1 O
R4

k2

)
, OR4

k3

〉
, (B.2)

where the operators OR4
k are orthogonal to all the single-trace operators of lower conformal

dimension only, and
(
OR4
k1 O

R4
k2

)
is simply the product of the operators OR4

k1 and OR4
k2 .
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We first examine the difference between the operators (Ok1Ok2)R
4
and

(
OR4
k1 O

R4
k2

)
. We

have

(Ok1Ok2)R
4

= OS4

k1 O
S4

k2 + (single-trace) +
∑
`1≤`2

c`1,`2k1,k2 (O`1O`2)R
4

+ 1
N

(higher traces) , (B.3)

where the last three terms on the r.h.s. involve operators of conformal dimension less than
k1 + k2. Let us analyze the double-trace coefficients c`1,`2k1,k2 . They are given by

c`1,`2k1,k2 =

〈
OS4
k1 O

S4
k2 , (O`1O`2)R

4〉〈
(O`1O`2)R4

, (O`1O`2)R4〉 . (B.4)

Using large N -factorization, we obtain∑
`1≤`2

c`1,`2k1,k2 (O`1O`2)R
4

=
∑
`1,`2

c`1k1c
`2
k2 O

R4

`1 O
R4

`2 +O(1/N2) (B.5)

where c`k is given by

c`k =

〈
OS4
k , O

R4
`

〉
〈
OR4
` , O

R4
`

〉 . (B.6)

From this we conclude that

(Ok1Ok2)R
4

=
(
OR4

k1 O
R4

k2

)
+ (single-trace) + 1

N
(higher traces) +O(1/N2) . (B.7)

Also recall that up to O(1/N) corrections the linear combinations OR4
k involve only single-

trace operators.
If we now examine again equation (B.1), we see that the single-trace operators on the

r.h.s. of (B.7) do not contribute since OR4
k3 is orthogonal to all of them, while the higher-trace

operators are suppressed in the large-N limit. This proves (3.12). Notice that it is important
that the operator

(
OR4
k1 O

R4
k2

)
does not appear in the r.h.s. of the definition of OR4

k3 , otherwise it
could give a contribution of the same order as (B.2) by large-N factorization. For correlators
that respect R-charge conservation, namely k3 = k1+k2, the higher-trace operators in the full
definition of OR4

k3 must have conformal dimension ∆ < k1 + k2, so
(
OR4
k1 O

R4
k2

)
indeed cannot

appear. In the case k3 > k1 + k2, applying (3.12) would give a non-zero result, inconsistent
with R-charge conservation. However, this is precisely the case where we cannot ignore the
double-trace operator

(
OR4
k1 O

R4
k2

)
in the expansion of OR4

k3 ; its effect is to precisely cancel the
non-zero contribution coming from (3.12).

In summary, we have proven that the formula (3.12) gives the correct 3-point function
in the large-N limit for operators that respect R-charge conservation, which are the only
non-zero 3-point functions on the plane.
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C. Large-N matrix model at weak coupling

In this short appendix we collect some explicit expressions for the three-point functions at
tree-level. Similar results were presented in [12]. Here we generalize the results of appendix C
in [12] to obtain three-point functions for single-trace operators of both even and odd powers
at tree-level. This serves as input for the closed form diagonalization procedure discussed in
section 4.

As reviewed in appendix A (see equations (A.7),(A.8),(A.9)) in the continuum limit we
obtain the saddle-point equation

1
2
∑
n=1

gnπ
n
2 nxn−1 −K(x) = −

∫ µ+

−µ−
dy ρ(y)

(
1

x− y
−K(x− y)

)
. (C.1)

This equation can be inverted to get an expression for ρ(x) by applying the integral operator
−
∫ µ+
−µ−

dx√
(µ+−x)(µ−+x)(x−z)

. Further use of the integral identities (A.11), (A.14) provides implicit
relations for the moments up to an arbitrary but finite number of loops

mq = −1
2
∑
n=1

ngnπ
n
2

n−2∑
k=0

n−k−2∑
r=0

brbn−k−r−2

q+k+2∑
s=0

σsσk+q−s+2µ
r+s
+ µn+q−r−s

−

+ 2
M∑
p=1

(−1)pζ(2p+ 1)
2p∑
k=1

(−1)k
(

2p+ 1
k

)
mk

2p−k∑
l=0

2p−k−l∑
r=0

brb2p−k−r−l

×
q+l+2∑
s=0

σsσq+l+2−sµ
r+s
+ µ2p+q+2−k−r−s

− . (C.2)

The moments appear linearly in this expression, hence by truncating the perturbation the-
ory to a finite order and solving the corresponding system of linear equations we obtain
expressions for the moments accurate up to that order.

In what follows it will be useful to define a separate expression for the first line of the
previous expression

φq(gn) = −1
2
∑
n=1

nπ
n
2 gn

n−2∑
k=0

n−k−2∑
p=0

bpbn−k−p−2

k+q+2∑
s=0

µp+s+ µn+q−p−s
− σk+q−s+2σs . (C.3)

The function φq(gn) is equal to the tree-level contribution to the moments. For quick refer-
ence, we note here its second derivative with all couplings set to zero, except g2 (and hence
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appropriately µ− set to −µ+)

∂2φq
∂ga∂gc

= −1
2
∂µ+

∂gc
aπ

a
2

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+q+2∑
s=0

(p+ s)(−1)a+q−p−sµa+q−1
+ σk+q−s+2σs

− 1
2
∂µ+

∂ga
cπ

c
2

c−2∑
k=0

c−k−2∑
p=0

bpbc−k−p−2

k+q+2∑
s=0

(p+ s)(−1)c+q−p−sµc+q−1
+ σk+q−s+2σs

+ 1
2
∂µ−
∂gc

aπ
a
2

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+q+2∑
s=0

(a+ q − p− s)(−1)a+q−p−s−1µa+q−1
+ σk+q−s+2σs

+ 1
2
∂µ−
∂ga

cπ
c
2

c−2∑
k=0

c−k−2∑
p=0

bpbc−k−p−2

k+q+2∑
s=0

(c+ q − p− s)(−1)c+q−p−sµc+q−1
+ σk+q−s+2σs

+
(
∂µ+

∂ga

∂µ−
∂gc

+ ∂µ−
∂ga

∂µ+

∂gc

)
πg2

q+2∑
s=0

s(q − s+ 2)(−1)q−s+1µq+σq−s+2σs

− πg2

q+2∑
s=0

σsσq−s+2s(−1)q−s
(

(s− 1)∂µ+

∂ga

∂µ+

∂gc
+ µ+

∂2µ+

∂ga∂gc

)
µq+

− πg2

q+2∑
s=0

σsσq−s+2(q − s+ 2)(−1)q−s
(

(q − s+ 1)∂µ−
∂ga

∂µ−
∂gc

+ µ+
∂2µ−
∂ga∂gc

)
µq+ .

(C.4)

C.1. Results at tree-level

At tree-level the moments simply reduce to mq = φq(gn). In addition, when all the
couplings except g2 have been set to zero the endpoints of the eigenvalue distribution are
given by the expressions µ+(g2) = −µ−(g2) =

√
2
πg2

. To specify the derivatives of the
endpoints with respect to the coupling gn we require two conditions. The first condition
comes from the normalization of the eigenvalue density

m0 =
∫ µ+

−µ−
ρ(x)dx = 1. (C.5)

The second condition, (A.19), turns into the constraint

0 = π

2
∑
n=1

ngnπ
n
2

n−1∑
k=0

bkbn−k−1µ
k
+µ

n−k−1
− . (C.6)
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By taking implicit derivatives of the conditions (C.5) and (C.6) we can determine the deriva-
tives of the endpoints by means of Gaussian elimination

∂µ+

∂ga
= − aπ

a
2

2
√

2πg2

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+2∑
s=0

σsσk−s+2(−1)a−p−s
(

2
πg2

)a
2

− aπ
a
2

2πg2

a−1∑
k=0

bkba−k−1(−1)a−k−1
(

2
πg2

)a−1
2

, (C.7)

and

∂µ−
∂ga

= − aπ
a
2

2
√

2πg2

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+2∑
s=0

σsσk−s+2(−1)a−p−s
(

2
πg2

)a
2

+ aπ
a
2

2πτ

a−1∑
k=0

bkba−k−1(−1)a−k−1
(

2
πg2

)a−1
2

. (C.8)

By means of quadratic transformations these expressions can be further simplified to

∂µ+

∂ga
= − aπ

a
2

4πg2
((−1)a−1 + 1)

(
2
πg2

)a−1
2

ba−1
2
− aπ

a
2

4
√

2πg2
((−1)a + 1)

(
2
πg2

)a
2

ba
2
, (C.9)

and

∂µ−
∂ga

= aπ
a
2

4πg2

(
(−1)a−1 + 1

)( 2
πg2

)a−1
2

ba−1
2
− aπ

a
2

4
√

2πg2
((−1)a + 1)

(
2
πg2

)a
2

ba
2
. (C.10)

Similarly, by taking an additional derivative of the conditions we can find expressions for
the second derivatives

∂2µ+

∂ga∂gc
= −f(g2, a, c)

π2g2
− h(g2, a, c)√

2πg2
, (C.11)

and
∂2µ−
∂ga∂gc

= f(g2, a, c)
π2g2

− h(g2, a, c)√
2πg2

, (C.12)

where respectively

f(g2, a, c) = 1
2aπ

a+2
2 (−1)a

(
2
πg2

)a−2
2

×[(
∂µ+

∂gc
+ ∂µ−
∂gc

)
σa−2 2F1

(3
2 , 2− a; 5

2 − a;−1
)

+ 1
2
∂µ−
∂gc

((−1)a−1 + 1)ba−1
2

]
+ (a↔ c) ,
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and

h(g2, a, c) = −1
2aπ

a
2
∂µ+

∂gc

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+2∑
s=0

(p+ s)(−1)a−p−s
(

2
πg2

)a−1
2

σk−s+2σs

+ 1
2aπ

a
2
∂µ−
∂gc

a−2∑
k=0

a−k−2∑
p=0

bpba−k−p−2

k+2∑
s=0

(a− p− s)(−1)a−p−s−1
(

2
πg2

)a−1
2

σk−s+2σs

1
8πg2

(
∂µ+

∂ga

∂µ+

∂gc
+ ∂µ−
∂ga

∂µ−
∂gc

+ ∂µ+

∂ga

∂µ−
∂gc

+ ∂µ−
∂ga

∂µ+

∂gc

)
+ (a↔ c) . (C.13)

Substituting these expression for the derivatives of the endpoints back into expression
(C.4) gives us an explicit expression for the second derivative of the moments which can be
related back to the tree-level three-point function of single-trace operators on the sphere by

〈Tr [ϕa] Tr [ϕc] Tr [ϕq]〉S4 = π
q
2
∂2φq
∂ga∂gc

. (C.14)

The combination of these results with the formulae developed in section 4.2 yields results on
the tree-level flat-space three-point functions and their first subleading correction.

D. Large-N matrix model at strong coupling

The analysis of [17] at infinite coupling shows that the size of the cut of the eigenvalue
distribution grows with the value of the ’t Hooft coupling. In that case, a more sophisti-
cated treatment of the saddle-point equations is needed. Ref. [17] proposed an approximate
Wiener-Hopf approach. Similar to the weak coupling case we can extend this method by
adding appropriate polynomial sources to the free energy. In this appendix we consider only
the case of even source terms. This extension was also suggested and partially implemented
in [12].

For the benefit of the reader, and in order to set up the appropriate notation, we begin
with a quick review of the Wiener-Hopf method used in [17].

D.1. Wiener-Hopf method

Employing the following integral identity for the function K(x)

K(x) =
∫ ∞
−∞

dw
w coth(πw)
x− w

(D.1)
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we can rewrite our saddle-point equation as a slightly generalized version of equation (4.15)
of [17]

ρ(x)−
∫
dy ρ(y)(x− y) coth π(x− y) + x coth(πx) =

1
2π

√
µ2 − x2

∑
n=1

ng2nπ
n
n−1∑
p=0

2n− 2p− 3
n− n− 1 µ2n−2p−2bn−p−2x

2p

− 1
π

∫
|w|>µ

dw

w − x

√
µ2 − x2

w2 − µ2

∫
dy ρ(y) [(w − y) coth π(x− y)− w coth(πw)] , (D.2)

where the coefficients bk are given in (A.12). As an integral equation this expression strictly
holds true only within the interval [−µ, µ]. This means that as an operator the integration
kernel is singular. In the Wiener-Hopf method we can exploit the knowledge that ρ(x) is zero
outside of the interval. Accordingly, the goal is to find an expression whose inverse Fourier
transfrom vanishes outside of the interval. A general method for this was given in [34], but
it requires solving a very non-trivial factorization problem. We will not attempt to solve
this factorization problem here. Instead, following [17], we will aim to find a function that
is guaranteed to vanish only for x > µ. We will then argue that as long as µ� 1 the other
endpoint will not be of major concern. As a result, we need to find an expression of the form

ρ(k) = eiµkf(k) , (D.3)

where f(k) is a function that is analytic in the lower half-plane. Computing the inverse
Fourier transform by means of contour integration shows us that this satisfies the boundary
condition.

To find an expression of the form (D.3) we proceed by first computing the Fourier trans-
form of equation (D.2):
∫ ∞
−∞

dk

2πe
−ikx

(
cosh(k)

2 sinh2(k2 )
ρ(k)− 1

2 sinh2(k2 )
− F (k) + e−iµkX−(k) + eiµkX+(k)

)
= 0 , (D.4)

where F (k) is the Fourier transform of the right-hand side of (D.2), and where everything
that is not strictly determined by the integral equation is encapsulated by the two free
functions X−(k) and X+(k). Note that if X±(k) is analytic in, respectively, the upper or
lower half-plane then X±(x) = 0 for either x > µ or x < −µ.

The key step in what follows is that the integration kernel in Fourier space has a known
analytic decomposition

cosh(k)
2 sinh2

(
k
2

) = 1
G−(k)G+(k) (D.5)
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where

G±(k) =
√

8π32± ikπ Γ
(

1
2 ∓

ik
π

)
kΓ2

(
∓ ik

2π

) . (D.6)

Most notably, these functions are respectively analytic in either the upper or lower half-plane
and they go to zero sufficiently fast as k → ∞. Also note that their poles are located at
respectively ∓iνl where νl = π(l + 1

2). At these poles the residues are given by

rl =
(−2)l+1Γ2

(
l
2 + 5

4

)
√
π
(
l + 1

2

)
Γ(l + 1)

. (D.7)

Next we multiply the integrand of (D.4) with G+(k) and subtract the poles in the lower
half-plane by means of the integral transform

F−(k) = −
∫ ∞
−∞

dk′

2π
F(k′)

k′ − k + iε
. (D.8)

This operation provides the expression

ρ(k)e−iµω
G−(k) = −

∫ ∞
−∞

dk′

2πi(k′ − k + iε)G+(k′)
 1

2 sinh2
(
k′

2

) + F (k′)
 e−iµk′

−
∫ ∞
−∞

dk′

2πi(k′ − k + iε)G+(k′)X−(k′)e−2iµk′ . (D.9)

In the regime of very large, but finite µ, the last term can be argued to be small. Treating this
term perturbatively leads to an approximation scheme where we have an accurate description
only at the right endpoint of the eigenvalue density. However, since we add only even sources
to the action we can find a valid description for ρ(x) in the interval [0, µ], assume that ρ(x)
is an even function, and reflect it around x = 0. In this way, one finds [17]

ρ(k) = −G−(k)eikω
∫ ∞
−∞

dk′

2πi(k′ − k + iε)G+(k′)
 1

2 sinh2
(
k′

2

) + F (k′)
 e−iµk′ . (D.10)

The integral has the effect of subtracting the poles in the lower half-plane, therefore this
expression is of the form (D.3). The integral that appears in this equation can be evaluated
further by closing the contour around the lower half-plane

ρ(k) = 1
cosh(k) +

2 sinh2(k2 )
cosh(k) F (k) +G−(k)eiµk

∞∑
l=0

rle
−µνl

k + iνl
(1− F (−iνl)) . (D.11)

At the first iteration of this scheme

F (k) = 1
2
√
π

∑
n=1

ng2nµ
2nπn

n−1∑
p=0

bn−p−1
Γ(p+ 1

2)
Γ(p+ 2) 1F2(n + 1

2; 1
2 , p + 2;−1

4k
2µ2) . (D.12)
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D.2. Computing the moments

The condition that arises from the normalization of the eigenvalue distribution was found
in [17] by exploiting the fact that the eigenvalue density is an even function

1 = 2
∫ µ

0
dx ρ(x) =

∫ ∞
−∞

dk

2π
ρ(k)
k − iε

. (D.13)

By closing the contour in the lower half-plane, [17] finds
∞∑
l=0

rle
−µνlF (−iνl)
νl + ν0

= r0

2ν0
e−µν0 . (D.14)

Moreover, we have the eigenvalue density in Fourier space we can find an expression for
the moments as follows

m2n = 2
∫ µ

0
dx x2n

∫ ∞
−∞

dk

2π e
−ikxρ(k) = i2n

π

∫
dk ρ(k)

∫ µ

0

d2n

dk2n e
−ikx

= i2n+1

π

∫ ∞
−∞

dk ρ(k) d
2n

dk2n
e−ikµ − 1

k
' (−1)n(2n)!

iπ

∫ ∞
−∞

dk
ρ(k)
k2n+1 . (D.15)

In the last step we have eliminated all terms that oscillate rapidly in the µ � 1 regime.
From the form of ρ(k) it is clear that we can close the contour in the positive half-plane
and pick up all the poles, which are the ones originating from G−(k) and the higher order
poles at zero. Let us consider the manipulations of each of the terms appearing in (D.15)
individually.

First, the term
(−1)n(2n)!

iπ

∫ ∞
−∞

dk
2 sinh2(k2 )

k2n+1 cosh(k)F (k) (D.16)

is simply given by evaluating the residue at zero

(−1)n lim
k→0

d2n

dk2n
2 sinh2(k2 )
cosh(k) F (k) . (D.17)

The last term is only slightly more complicated

(−1)n(2n)!
iπ

∫ ∞
−∞

dk

k2n+1G−(k)eiµk
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l=0

rle
−µνl

k + iνl
(1− F (−iνl))

= (−1)n lim
k→0

d2n

dk2nG−(k)eiµk
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l=0

rle
−µνl

k + iνl
(1− F (−iνl))

+ 2(−1)n(2n)!
∞∑

l,m=0

rlrme
−µ(νl+νm)

(iνm)2n+1(iνl + iνm)(1− F (−iνl)) . (D.18)

46



By noting that limk→0 G−(k) = 0, the first line of the r.h.s. can be simplified to

(−1)n lim
k→0

d2n

dk2nG−(k)eiµk
∞∑
l=0

rle
−µνl

k + iνl
(1− F (−iνl))

= (−1)n
[
d2n

dk2n (−i)G−(k)
]
k=0
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l=0

rle
−µνl

νl
(1− F (−iνl)) . (D.19)

For the last line, note that it is dominated by the first term in the sum over m

∞∑
l,m=0

rlrme
−µ(νl+νm)

(iνm)2n+1(iνl + iνm)(1 − F (−iνl)) '
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l=0

rlr0e
−µ(νl+ν0)

(iν0)2n+1(iνl + iν0)(1 − F (−iνl)) = 0,

(D.20)

and is therefore killed due to the normalization condition (D.14).
Putting everything together we find the following expression for the moments

m2n = hn+(−1)n lim
k→0

d2n

dk2n
2 sinh2(k2 )
cosh(k) F (k)+(−1)n

[
d2n

dk2n (−i)G−(k)
]
k=0

∞∑
l=0

rle
−µνl

νl
(1−F (−iνl)),

(D.21)
where hn is an unimportant set of constants. We want to calculate correlators which are
derivatives of the moments with respect to coupling constants, so the explicit value of the
constants hn is not needed.

Next let us focus on the infinite sum in the rightmost term of the last equation, (D.21).
We rewrite this term by means of the normalization condition (D.14) and by removing terms
that are exponentially suppressed in the regime µ� 1,

∞∑
l=0

rle
−µνl

νl
(1− F (−νl)) = r0e

−µνl

ν0
−
∞∑
l=0

rle
−µνl

νl
F (−iνl)

=
∞∑
l=0

2rle−µνl
νl + ν0

F (−iνl)−
rle
−µνl

νl
F (−iνl) =

∞∑
l=0

(νl − ν0)rle−µνl
νl(νl + ν0) F (−iνl) . (D.22)

Continuing to ignore the exponentially suppressed terms the hypergeometric function con-
tained within F (−iνl) has the following asymptotic expansion

1F2

(
n+ 1

2; 1
2 , n+ 2; ν

2
l µ

2

4

)
∼ Γ(n+ 2)

Γ(n+ 1
2)e

µνl
∞∑
k=0

√
2ck(µνl)−k−

3
2 , (D.23)

where the coefficients ck obey the recursive equation

ck = − 1
8k (1 + 2k)(7− 6k + 8n)ck−1 −

1
16k (1 + 2k)(2k − 1)(2k − 4n− 5)ck−2 (D.24)
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with c0 = 1 and c1 = −3n − 3
8 . Now expanding each term of F (−iνl) up to the order of

interest we obtain

∞∑
l=0

(νl − ν0)rle−µνl
νl(νl + ν0) F (−iνl) = 1√

2π
∑
n=1

ng2n

n−1∑
p=0

bn−p−1

2n−2∑
k=0

ckαkπ
n−k− 3

2µ2n−k− 3
2 , (D.25)

where αk is a set of numerical constants defined as

αk ≡
∞∑
l=0

lrl
l + 1(l + 1

2)−k− 5
2 . (D.26)

This series converges and can therefore be determined up to arbitrary numerical precision
by computing partial sums.

Including this result into the expression (D.21) we find the following expression for the
moments

m2n = hn + (−1)n lim
k→0

d2n

dk2n
2 sinh2(k2 )
cosh(k) F (k)

+ (−1)n 1√
2π

[
d2n

dk2n (−i)G−(k)
]
k=0

∑
n=1

ng2nπ
n
n−1∑
p=0

bn−p−1

2n−2∑
k=0

ckαkπ
n−k− 3

2µ2n−k− 3
2 . (D.27)

This formula gives the moments at the first iteration of the above scheme, where the last
term on the r.h.s. of equation (D.9) has been completely dropped.

D.3. Computing correlators

Unlike the computation of correlators in the weak coupling regime, in this subsection we
will bypass the evaluation of the planar free energy by means of the following relation

∂

∂g2n
F = πn

∫ µ

−µ
dz z2nρ(z) = πnm2n . (D.28)

Since the correlators are, by default, given by higher derivatives of the free energy we can
obtain them by taking derivatives of the moments [12]

〈
Tr[φ2]n2Tr[φ3]n3 ...Tr[φm]nm ,Tr[φ̄2]n̄2 ...Tr[φ̄m]n̄m

〉
S4

= −N2∏
k

(
∂

∂gk

)nk+n̄k
F (λ, gn) = −N2 ∏

k 6=i
πi
(
∂

∂gk

)nk+n̄k ( ∂

∂gi

)nk+n̄k−1

m2i . (D.29)

This relation also provides a non-trivial check for the moments as they naturally have to
satisfy the following commutativity property πm ∂

∂g2n
m2m = πn ∂

∂g2m
m2n.
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Figure 1: The dotted line represents the numerical solution of µ as a function of log(λ) after
all other source terms have been set to zero, for comparison the solid line represents a plot
of µ = 2

π
log(λ)

As in the weak coupling computation, one of the most difficult steps is the inversion of the
normalization condition. In its present form it is an implicit function relating the size of the
cut µ to the coupling constants g2n. We should use this to eliminate µ from the correlators
in favor of the couplings. The normalization condition is given by equation (D.14). The
plot of the numerical solution of the normalization condition as a function of log(λ) (see Fig.
(1)) suggests that µ ∼ 2

π
log(λ) in the strong coupling regime where λ � 1. This scaling

was already conjectured in [17] by means of an interpolation between the weak coupling and
infinite ’t Hooft coupling regime.

Using this proposed behavior for µ as a function of λ and the orthogonalization procedure
of [6] we find the leading order behavior for the correlators quoted in section 5.
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