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Abstract

The number of walks of k steps from the node 0 to the node λ on the representation graph (McKay
quiver) determined by a finite group G and a G-module V is the multiplicity of the irreducible G-module
Gλ in the tensor power V⊗k, and it is also the dimension of the irreducible module labeled by λ for the
centralizer algebra Zk(G) = EndG(V⊗k). This paper explores ways to effectively calculate that number
using the character theory of G. We determine the corresponding Poincaré series. The special case
λ = 0 gives the Poincaré series for the tensor invariants T(V)G =

⊕∞
k=0(V⊗k)G. When G is abelian,

we show that the exponential generating function for the number of walks is a product of generalized
hyperbolic functions. Many graphs (such as circulant graphs) can be viewed as representation graphs,
and the methods presented here provide efficient ways to compute the number of walks on them.

1 Introduction

Let G be a finite group, and assume that the elements λ of Λ(G) index the irreducible complex representa-
tions of G, hence also the conjugacy classes of G. Let Gλ denote the irreducible G-module indexed by λ,
and let χλ be its character. The module G0 denotes the trivial one-dimensional G-module with χ0(g) = 1
for all g ∈ G.

The representation graph RV(G) (also known as the McKay quiver) associated to a finite-dimensional G-
module V over the complex field C has nodes corresponding to the irreducible G-modules {Gλ | λ ∈ Λ(G)}.
For ν ∈ Λ(G), there are aν,λ edges from ν to λ in RV(G) if

Gν ⊗ V =
⊕

λ∈Λ(G)

aν,λGλ. (1.1)

If aν,λ = aλ,ν , then we draw aν,λ edges without arrows between ν and λ. The number of edges aν,λ from ν
to λ in RV(G) is the multiplicity of Gλ as a summand of Gν ⊗ V. Since each step on the graph is achieved
by tensoring with V,

mλ
k : = number of walks of k steps from 0 to λ

= multiplicity of Gλ in G0 ⊗ V⊗k ∼= V⊗k.
(1.2)

For a faithful G-module V, any irreducible G-module Gλ occurs in V⊗` for some ` by Burnside’s theorem
(in fact, for some ` such that 0 ≤ ` ≤ |G| by Brauer’s strengthening of that result [CR, Thm. 9.34]). This
implies that there is a directed path with ` steps from G0 to Gλ in RV(G).
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funded by the Ministry of Education (2015R1D1A1A01057484). The hospitality of the Mathematics Department at the University
of Wisconsin-Madison while this research was done is gratefully acknowledged.
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The centralizer algebra,

Zk(G) = {z ∈ End(V⊗k) | z(g.w) = g.z(w) ∀ g ∈ G, w ∈ V⊗k}, (1.3)

plays a critical role in studying V⊗k, as it contains the projection maps onto the irreducible summands of
V⊗k.

Let Λk(G) denote the subset of Λ(G) corresponding to the irreducible G-modules that occur in V⊗k with
multiplicity at least one. Schur-Weyl duality establishes essential connections between the representation
theories of G and Zk(G):

• Zk(G) is a semisimple associative C-algebra whose irreducible modules Zλk(G) are in bijection with
the elements λ of Λk(G).

• dimZλk(G) = mλ
k , the number of walks of k steps from the trivial G-module G0 to Gλ on RV(G).

• If dλ = dimGλ, then the tensor space V⊗k has the following decompositions:

V⊗k ∼=
⊕

λ∈Λk(G)

mλ
k Gλ as a G-module,

∼=
⊕

λ∈Λk(G)

dλ Z
λ
k(G) as a Zk(G)-module,

∼=
⊕

λ∈Λk(G)

(
Gλ ⊗ Zλk(G)

)
as a (G,Zk(G))-bimodule.

(1.4)

• dimZk(G) = dimZ0
2k(G) = m0

2k if V is isomorphic to its dual G-module.

Thus, the following numbers are the same, and our aim in this paper is to demonstrate various ways to
compute these values effectively:

(1) the number of walks of k steps from 0 to λ ∈ Λ(G) on RV(G),

(2) the (0, λ)-entry (Ak)0,λ of Ak, where A = (aν,λ) is the adjacency matrix of RV(G),

(3) the multiplicity mλ
k of the irreducible G-module Gλ in V⊗k,

(4) the dimension of the irreducible module Zλk(G) labeled by λ ∈ Λk(G) for the centralizer algebra
Zk(G) = EndG(V⊗k),

(5) the number of paths from 0 at level 0 to λ at level k on the Bratteli diagram BV(G) (see Section 4.3
for the definition).

(∗) Moreover, when λ = 0, these values are all equal to the dimension dim (V⊗k)G of the space of
G-invariants (V⊗k)G = {w ∈ V⊗k | g.w = w ∀g ∈ G} in V⊗k.

Many graphs can be viewed as representation graphs RV(G) for some choice of G and V, and the methods
described here provide an efficient approach to computing walks on them. This is true, for example, of
circulant graphs, as illustrated in Section 3.2.

We fix a set {cµ}µ∈Λ(G) of conjugacy class representatives of G, and let Cµ denote the conjugacy class
of cµ. Then c0 is the identity element, |C0| = 1, and the following result holds:
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Theorem 1.5. (Theorem 2.3) Assume V is a finite-dimensional module over C for the finite group G. The
number of walks of k-steps from node ν to node λ on the representation graph RV(G) is

(Ak)ν,λ = |G|−1
∑

µ∈Λ(G)

|Cµ| χν(cµ) χ
V
(cµ)k χλ(cµ) = |G|−1

∑
g∈G

χν(g) χ
V
(g)k χλ(g). (1.6)

Therefore, the Poincaré series for the number of walks from 0 on λ on RV(G) (hence also for the
multiplicities of the G-module Gλ in the tensor powers V⊗k and for the dimensions of the centralizer algebra
modules dimZλk(G)) is given by

Pλ(t) =
∞∑
k=0

(Ak)0,λ t
k = |G|−1

∑
µ∈Λ(G)

|Cµ|
χλ(cµ)

1− χ
V
(cµ)t

= |G|−1
∑
g∈G

χλ(g)

1− χ
V
(g)t

. (1.7)

Since the space T(V)G =
⊕∞

k=0(V⊗k)G of G-invariants in T(V) =
⊕∞

k=0 V
⊗k is the sum of the trivial

G-summands G0 in T(V), it follows that the Poincaré series for the tensor invariants is given by

P0(t) = |G|−1
∑

µ∈Λ(G)

|Cµ|
1

1− χ
V
(cµ)t

= |G|−1
∑
g∈G

1

1− χ
V
(g)t

. (1.8)

(An alternate derivation of (1.8) can be found in [DF].) The results in (1.7) and (1.8) are tensor analogues
of Molien’s 1897 formulas for polynomials that have played a prominent role in combinatorics, coding
theory, commutative algebra, and physics (see, for example, Stanley [S1], Sloane [Sl], Murai [Mu], and
Forger [Fo]). Let {z1, . . . , zn} be a basis for V, and let S(V) = C[z1, . . . , zn] be the symmetric algebra of
polynomials in the zi. Assume Sk(V) is the space of polynomials in S(V) of total degree k, and let Sλk(V)
be the sum of all the copies of Gλ in Sk(V) (the λ-isotypic component). According to [Mo], the Poincaré
series are given by

PλS(t) =
∞∑
k=0

dimSλk(V) tk = |G|−1
∑

µ∈Λ(G)

|Cµ|
χλ(cµ)

detV(I− tcµ)
= |G|−1

∑
g∈G

χλ(g)

detV(I− tg)
, (1.9)

P0
S(t) = |G|−1

∑
µ∈Λ(G)

|Cµ|
1

detV(I− tcµ)
= |G|−1

∑
g∈G

1

detV(I− tg)
. (1.10)

From (1.1) we see that ∑
λ∈Λ(G)

aν,λ χλ(cµ) = χ
V
(cµ)χν(cµ), (1.11)

which implies that the eigenvalues of the adjacency matrix A of RV(G) are the character values χ
V
(cµ) as

µ ranges over the elements of Λ(G), and the eigenvector corresponding to χ
V
(cµ) is the column vector with

entries χλ(cµ) for λ ∈ Λ(G). The matrix of these eigenvectors is exactly the character table of G. (Compare
[St, Sec. 1] which considers the matrix dI− A, where d = χ

V
(c0) = dimV.)

Theorem 2.1 of [B2] shows that the Poincaré series Pλ(t) can be expressed as a quotient of two deter-
minants under the assumption that the module V is isomorphic to its dual G-module. But that assumption is
unnecessary if the matrix A is replaced by its transpose in computing the determinant in the numerator, as in
the statement below. A proof of this result can be deduced from the proposition in Appendix I, which holds
for walks on arbitrary finite directed graphs. In considering the rows and columns of the adjacency matrix
A in the next theorem, we assume that the elements of Λ(G) have been ordered in some fashion and that 0
is always the first element relative to that ordering.
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Theorem 1.12. Let G be a finite group with irreducible modules Gλ, λ ∈ Λ(G), over C, and let V be a
finite-dimensional G-module. Let A =

(
aν,λ

)
be the adjacency matrix of the representation graph RV(G),

and let Mλ be the matrix I− tAT with the column indexed by λ replaced by δ0 =

 1
0
...
0

. Then

Pλ(t) =
det(Mλ)

det(I− tA)
=

det(Mλ)∏
µ∈Λ(G) (1− χ

V
(cµ)t)

. (1.13)

In [Mc], John McKay described a remarkable correspondence between the finite subgroups G of the
special unitary group SU2 and the simply laced affine Dynkin diagrams. Almost a century earlier, Felix
Klein had determined that a finite subgroup of SU2 must be isomorphic to one of the following: (a) a cyclic
group Zn = Z/nZ of order n, (b) a binary dihedral group Dn of order 4n, or (c) one of the 3 exceptional
groups: the binary tetrahedral group T of order 24, the binary octahedral group O of order 48, or the
binary icosahedral group I of order 120. McKay’s observation was that the representation graph RV(G)
for G = Zn,Dn,T,O, I relative to its defining representation V = C2 corresponds exactly to the affine
Dynkin diagram Ân−1, D̂n+2, Ê6, Ê7, Ê8, respectively, where the node labeled by 0 corresponding to the
trivial G-module is the affine node. The matrix C = 2 I − A, where A is adjacency matrix of RV(G), is the
associated affine Cartan matrix. In this case, the Poincaré series for the tensor invariants in Theorem 1.12
specializes to the following:

Theorem 1.14. [B2, Thm. 3.1] Let G be a finite subgroup of SU2 and V = C2. Then the Poincaré series
for the G-invariants T(V)G in T(V) =

⊕∞
k=0 V

⊗k is

P0(t) =
det
(
I− tÅ

)
det (I− tA)

=
det
(
I− tÅ

)∏
µ∈Λ(G) (1− χ

V
(cµ)t)

, (1.15)

where A is the adjacency matrix of the representation graph RV(G) (i.e. the affine Dynkin diagram corre-
sponding to G), and Å is the adjacency matrix of the finite Dynkin diagram obtained by removing the affine
node.

As shown in [B2, Sec. 3], the eigenvalues of Å and A are related to the exponents of the finite and affine
root systems respectively, and the determinants in this formula can be expressed as Chebyshev polynomials
of the second kind. Results in a similar vein for the doubly laced root systems can be found in [B1].

We illustrate the results in our paper by computing many examples, as described below for various
choices of G and V. When G is abelian, the conjugacy classes consist of a single element of G, so we will
always identify Λ(G) with G when G is abelian.

1. G = Zr (a cyclic group of order r) and V = G1 ⊕ Gr−1:
In Section 3.1, we obtain a formula for the number of walks of k steps on a circular graph with r
nodes.

2. G = Z13 and V =
⊕

j Gj , where j = 1, 3, 4, 9, 10, 12; or G = Z2m and V =
⊕

j Gj , where
j = 1,m, 2m− 1:
As shown in Section 3.2, the first example leads to an expression for the number of walks on the Paley
graph P13 of order 13. Paley graphs arise in studying quadratic residues in finite fields, and the key
fact germane to the results here is that Paley graphs are circulant graphs (their adjacency matrices are
circulant matrices). The same method used for P13 can be applied to compute walks on any circulant
graph. We demonstrate this further with the second example which yields a formula for the number
of walks on the Möbius ladder graph of order 2m.
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In Section 3.3, we adopt a different approach and determine closed-form formulas for the number of
walks of k steps from 0 to any node on a Paley (di)graph Pp of order p for an arbitrary odd prime
p using Theorem 2.3 and number-theoretic properties of Gauss sums. When p ≡ 1mod 4, Pp is an
undirected graph, and when p ≡ 3mod 4, Pp is a directed graph (digraph).

3. G = Sn, the symmetric group on n letters, and V is its n-dimensional permutation module:
Our results here lead to a proof of the relation

dimZk(Sn) = (n !)−1
∑
σ∈Sn

F(σ)2k =

n∑
`=0

{
2k

`

}
(1.16)

between the number of fixed points F(σ) of permutations σ, and the Stirling numbers
{

2k
`

}
of the

second kind, which count the number of ways to partition a set of 2k objects into ` nonempty disjoint
parts. (Note that

{
0
`

}
= 0 unless ` = 0, in which case it is 1.) The relation in (1.16) was proven by

Farina and Halverson in [FaH] under the additional assumption that n ≥ 2k using the characters of
the partition algebra Pk(n), which is the centralizer algebra Zk(Sn) = EndSn(V⊗k) when n ≥ 2k.

The partitions λ of n index the irreducible Sn-modules. Using [BHH, Thm. 5.5(a)], we determine that

dimZλk(Sn) = (n!)−1
∑
σ∈Sn

F(σ)k χλ(σ) =
n∑
`=0

{
k

`

}
Kλ,(n−`,1`), (1.17)

where Kλ,(n−`,1`) is the Kostka number, and (n−`, 1`) is the partition of nwith one part of size n−`
and ` parts of size 1. Equation (1.16) is a special case of (1.17), since dimZk(Sn) = dimZ0

2k(Sn),
and the relevant Kostka numbers are all 1 in this case. It follows from (1.17) with λ = 0 that the
dimension of the Sn-invariants in V⊗k is given by

dim (V⊗k)Sn = (n!)−1
∑
σ∈Sn

F(σ)k =
n∑
`=0

{
k

`

}
, (1.18)

and the Poincaré series for the tensor invariants is given by

P0(t) =
∞∑
k=0

dim (V⊗k)Sn tk = (n!)−1
∑
σ∈Sn

1

1− F(σ)t
. (1.19)

It would be nice to have a bijective combinatorial proof of the identity in (1.17).

4. G = Zr oSn (the wreath product) and V is its n-dimensional module over C on which G acts by n×n
monomial matrices with entries of the form ωj for j = 0, 1, . . . , r− 1, where ω is a primitive rth root
of unity for r ≥ 2:
In Theorem 4.9, we show that

dim (V⊗k)G =
1

rnn !

n∑
m=1

rmFn(m)k

 ∑
`1,`2,...,`m

(
k

`1, `2, . . . , `m

) ,

where the inner sum of multinomial coefficients is over all 0 ≤ `1, `2, . . . , `m ≤ k such that `1 + `2 +

· · · + `m = k and `1 ≡ `2 ≡ · · · ≡ `m ≡ 0 mod r, and Fn(m) =
n!

m!

n−m∑
j=0

(−1)j

j !
is the number
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of permutations in Sn with exactly m fixed points. Equation (4.18) gives a second expression for the
dimension of the invariants using the fact that the irreducible modules for G = Zr o Sn are indexed by
r-tuples α = (α(1), α(2), . . . , α(r)) of partitions α(i) with

∑r
i=1 |α(i)| = n:

dim (V⊗k)G =
∑

α∈Λ(G)

(∑r
i=1 F(α(i))ωi−1

)k
rp(α)

∏n
j=1 j

pj(α)
(∏r

i=1 pj(α
(i))!
) for G = Zr o Sn. (1.20)

In this formula pj(α
(i)) is the number of parts of α(i) of size j; pj(α) =

∑r
i=1 pj(α

(i)); p(α) =∑n
j=1 pj(α); and F(α(i)) = p1(α(i)), the number of parts of α(i) of size 1, (the number of fixed

points of a permutation with cycle type α(i)). It is desirable to have a direct proof of the equivalence
of these two formulas for dim (V⊗k)G. When r = 2, the group G = Z2 o Sn is the Weyl group
corresponding to the root systems Bn and Cn, and the dimension of the tensor invariants can be
obtained by specializations of these formulas (see (4.19)). Some particular cases are worked out
explicitly in Sections 4.7 and 4.8.

5. G is the general linear group GL2(Fq) of invertible 2× 2 matrices over a finite field Fq of q elements,
where q is odd, or G is the special linear subgroup SL2(Fq) of matrices of determinant 1. The G-
module V is the (q + 1)-dimensional module over C obtained by inducing the trivial module for the
Borel subgroup B of upper-triangular matrices in G:
The module V decomposes as a G-module, V = G0 ⊕ Vq, where G0 is the trivial G-module and Vq
is the q-dimensional irreducible Steinberg module. In Theorems 5.3 and 5.11, we derive formulas for
the dimension of the spaces (V⊗k)G and (V⊗kq )G of G-invariants and determine the Poincaré series for
the tensor invariants T(V)G and T(Vq)

G.

6. G is an arbitrary finite abelian group, say G = Zr1 × · · · × Zrn , and V = Gε1 ⊕ · · · ⊕ Gεn , where εj
is the element of G with 1 as its jth component and 0 as its other components:
In Section 6, we show that the exponential generating function for the number of walks on the rep-
resentation graph (equivalently, for the multiplicities of the irreducible G-modules in V⊗k; also, for
the dimensions of the irreducible modules Zλk(G) for the centralizer algebra Zk(G)), is a product of
generalized hyperbolic functions. We deduce that the number of walks can be expressed as a sum of
multinomial coefficients. When r1 = r2 = · · · = rn = 2, we obtain a formula for the number of
walks on a hypercube of dimension n and the expression for the exponential generating function for
the number of walks as a product of hyperbolic sines and cosines that was given in [BM, Cor. 4.29].
In Sections 6.2 and 6.3, we exhibit a basis for Zk(G) and view Zk(G) as a diagram algebra by giving
a diagrammatic realization of the basis elements.

2 Walks and Poincaré series

2.1 Expressions for counting walks, multiplicities, and centralizer algebra dimensions

There is a Hermitian inner product on the class functions of a finite group G defined by

〈φ, ψ〉 = |G|−1
∑
g∈G

φ(g)ψ(g) = |G|−1
∑

µ∈Λ(G)

|Cµ|φ(cµ)ψ(cµ),

6



where “−” denotes the complex conjugate. The irreducible characters χλ for λ ∈ Λ(G) satisfy the well-
known orthogonality relations relative to this inner product (see for example, [FuH, (2.10) and Ex. 2.21]):

〈χν , χλ〉 = |G|−1
∑
g∈G

χν(g)χλ(g) = δν,λ, (2.1)

|G|−1
∑

λ∈Λ(G)

χλ(cµ)χλ(cν) =

{
|Cµ| if µ = ν,
0 if µ 6= ν.

(2.2)

Therefore, if U is a G-module over C with character χ
U
, then (2.1) implies that

〈χ
U
, χλ〉 = |G|−1

∑
g∈G

χ
U
(g)χλ(g) = |G|−1

∑
µ∈Λ(G)

|Cµ|χU
(cµ)χλ(cµ)

is the multiplicity of Gλ as a summand of U. Applying this to the G-module Gν ⊗V⊗k, which has character
χνχ

k
V
, gives the following result.

Theorem 2.3. Assume V is finite-dimensional module for the finite group G. The number of walks of k-steps
from node ν to node λ on the representation graph RV(G) (equivalently, the multiplicity of Gλ in Gν ⊗V⊗k)
is equal to

(Ak)ν,λ = |G|−1
∑

µ∈Λ(G)

|Cµ| χν(cµ) χ
V
(cµ)k χλ(cµ). (2.4)

Corollary 2.5. Under the hypotheses of Theorem 2.3, the dimension of the irreducible module Zλk(G) for
the centralizer algebra Zk(G) = EndG(V⊗k) is given by

dimZλk(G) = (Ak)0,λ = |G|−1
∑

µ∈Λ(G)

|Cµ|χV
(cµ)k = |G|−1

∑
g∈G

χ
V
(g)k χλ(g), (2.6)

and when V is a self-dual G-module,

dimZk(G) = dimZ0
2k(G) = (A2k)0,0 = |G|−1

∑
µ∈Λ(G)

|Cµ| χV
(cµ)2k = |G|−1

∑
g∈G

χ
V
(g)2k. (2.7)

2.2 Poincaré series

It is a consequence of the results in (2.6) and (2.7) that the Poincaré series

Pλ(t) :=

∞∑
k=0

(Ak)0,λ t
k =

∞∑
k=0

mλ
k t

k =

∞∑
k=0

dimZλk(G) tk (2.8)

has the following expression

Pλ(t) = |G|−1
∑

µ∈Λ(G)

|Cµ|
χλ(cµ)

1− χ
V
(cµ)t

= |G|−1
∑
g∈G

χλ(g)

1− χ
V
(g)t

(2.9)

=
det(Mλ)

det(I− tA)
=

det(Mλ)∏
µ∈Λ(G) (1− χ

V
(cµ)t)

, (2.10)

7



where Mλ is the matrix I − tAT with the column indexed by λ replaced by δ0 =

 1
0
...
0

 as in Theorem

1.12. Then a special case of this formula is the Poincaré series for the tensor invariants T(V)G in T(V) =⊕∞
k=0 V

⊗k:

P0(t) = |G|−1
∑

µ∈Λ(G)

|Cµ|
1

1− χ
V
(cµ)t

= |G|−1
∑
g∈G

1

1− χ
V
(g)t

=
det(M0)

det(I− tA)
=

det(M0)∏
µ∈Λ(G) (1− χ

V
(cµ)t)

.

(2.11)

These are analogs of Molien’s formulas

PλS(t) =
∞∑
k=0

dimSλk(V) tk = |G|−1
∑

µ∈Λ(G)

|Cµ|
χλ(cµ)

detV(I− tcµ)
, (2.12)

P0
S(t) = |G|−1

∑
µ∈Λ(G)

|Cµ|
1

detV(I− tcµ)
= |G|−1

∑
g∈G

1

detV(I− tg)
. (2.13)

for multiplicities of G-modules and invariants in polynomials, as described in the Introduction.

3 Cyclic examples

3.1 G = Zr
When G = Zr = Z/rZ, we identify the elements of Λ(G) with the elements {0, 1, . . . , r − 1} of Zr.
Then for a ∈ G, the character χa of Ga is given by χa(b) = ωab for a, b ∈ G, where ω = e2πi/r. We
assume V = G1 ⊕ Gr−1. The representation graph RV(Zr) is a circular graph with r nodes, and a step
from a node on the graph amounts to moving one step to the left or to the right. Then for b ∈ G, we have
χ

V
(b) = χ1(b) + χr−1(b) = ωb + ω−b = 2cos(2πib/r). Therefore

χ
V⊗k

(b) = χ
V
(b)k = (ωb + ω−b)k =

k∑
`=0

(
k

`

)
ω(k−`)bω−`b =

k∑
`=0

(
k

`

)
ω(k−2`)b.

Now using the fact that
r−1∑
b=0

ωmb =

{
r if m ≡ 0 mod r,
0 otherwise,

(3.1)

and Theorem 2.3, we have the following expression for the number of walks of k steps from a to c on
RV(Zr):

(Ak)a,c = r−1
∑
b∈Zr

χa(b)χV
(b)kχc(b) = r−1

r−1∑
b=0

ω(a−c)b
k∑
`=0

(
k

`

)
ω(k−2`)b

= r−1
k∑
`=0

(
k

`

) r−1∑
b=0

ω(k−2`+a−c)b =
∑

0≤`≤k
k−2`≡ c−amod r

(
k

`

)
.

(3.2)

8



Therefore, the dimension of the irreducible module Zck(Zr) for the centralizer algebra Zk(Zr) = EndZr(V
⊗k)

is

dimZck(Zr) = (Ak)0,c =
∑

0≤`≤k
k−2`≡ cmod r

(
k

`

)
.

In particular, in order for the irreducible Zr-module labeled by c to occur in V⊗k with multiplicity at least
one, equivalently, in order for dimZck(Zr) to be nonzero, it must be that k − c ≡ 2`mod r for some `. Let
`c be the least nonnegative integer with that property. Then

dimZck(Zr) =
∑

0≤`≤k
`≡ `c mod r̃

(
k

`

)
,

where r̃ = r if r is odd, and r̃ = r/2 if r is even. Since the module V is self dual,

dimZk(Zr) = dimZ0
2k(Zr) =

∑
0≤`≤k

k−`≡0mod r̃

(
2k

`

)
.

(Compare [BBH, Thm. 2.17(i) and Thm. 2.8(d)].) These formulas can be interpreted as computing Pascal’s
triangle on a cylinder of diameter r̃. (See [BBH, Sec. 4.2] for more details.)

Here is a specific example to demonstrate the above results.

Example 3.3. When k = 6 and r = 10,

dimZ6(Z10) =
∑

0≤`≤12
6−`≡ 0mod 5

(
12

`

)

=

(
12

1

)
+

(
12

6

)
+

(
12

11

)
= 12 + 924 + 12 = 948.

This can be seen from the Bratteli diagram for the cyclic group of order 10 (which can be found in the
Appendix of this paper and in [BBH, Sec. 4.2]). The right-hand column there displays the dimension of
the centralizer algebra. Since the dimension of the irreducible module Z8

6(Z10) is the number of walks of 6
steps from 0 to 8 on the representation graph for G = Z10 and V = G1 ⊕ G9, we have from (3.2),

dimZ8
6(Z10) =

∑
0≤`≤k

6−2`≡ 8mod 5

(
6

`

)
=

(
6

4

)
= 15.

This is the subscript on the node labeled 8 on level 6 of the Bratteli diagram for the cyclic group of order 10.

3.2 Circulant graphs

The Paley graphs are a family of graphs constructed from quadratic residues in finite fields. The Paley
graph P13 of order 13 is pictured below. Every Paley graph is a circulant graph, which is equivalent to saying
its adjacency matrix is a circulant matrix. There are many different characterizations of circulant graphs and
circulant matrices. (The article by Kra and Simanca [KS] nicely summarizes many of them.) Most relevant
here is the fact that a graph is circulant if and only if its automorphism group contains a cyclic group acting
transitively on its nodes. For P13 this group is Z13. In the notation of the previous example, we can take the
module V so that χ

V
=
∑

j χj , where the sum is over j = 1, 3, 4, 9, 10, 12. Then a step on P13 corresponds

9



0
1

2

3

4

5

67

8

9

10

11

12

Figure 1: Paley graph P13

to tensoring with this particular choice of Z13-module V. Using that fact and Theorem 2.3, we have the
following (where ω is a primitive 13th root of 1):

Corollary 3.4. The number of walks of k steps from 0 to c ∈ {0, 1, . . . , 12} on the Paley graph P13 is

(
Ak
)
0,c

= (13)−1
∑

0≤`1,`2,...,`6≤k
`1+···+`6=k

(
k

`1, `2, . . . , `6

)( 12∑
b=0

ω(`1+3`2+4`3+9`4+10`5+12`6−c)b

)

=
∑

0≤`1,`2,...`6≤k, `1+···+`6=k
`1+3`2+···+12`6 ≡ cmod 13

(
k

`1, `2, . . . , `6

)
.

Walks on any circulant graph can be enumerated by exactly the same type of argument.
To illustrate this point with one further family of graphs, we consider the Möbius ladder graph M2m

with 2m nodes, which is obtained from a prism graph of order 2m by applying a twist, as pictured below
for M16. These are toroidal graphs that embed without crossings on a torus or projective plane. Since these
graphs are known to be circulant, we can take G = Z2m and assume the G-module V is chosen so that
χ

V
= χ1 +χm +χ2m−1. The next corollary follows readily from Theorem 2.3 and (3.1) with ω = e2πi/2m.

0
1

14

13

12

114

5

6

7

8

15

2

310

9

Figure 2: Möbius ladder graph M16

Corollary 3.5. The number of walks of k steps from 0 to c ∈ {0, 1, . . . , 2m − 1} on the Möbius ladder
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graph M2m is(
Ak
)
0,c

= (2m)−1
∑

0≤`1,`2,`3≤k
`1+`2+`3=k

(
k

`1, `2, `3

) 2m−1∑
b=0

ω(`1+m`2+(2m−1)`3−c)b =
∑

0≤`1,`2,`3≤k, `1+`2+`3=k
`1+m`2+(2m−1)`3 ≡ cmod 2m

(
k

`1, `2, `3

)
.

3.3 Paley (di)graphs Pp of order p an odd prime

Suppose p is an odd prime and ω = e2πi/p. The nodes in the Paley (di)graph Pp are labeled by the elements
in {0, 1, . . . , p − 1}, and the ones connected to 0 are labeled by the distinct square values x2 in Z×p =
{1, 2, . . . , p− 1} (the quadratic residues modulo p). For p = 13, these are the values x2 = 1, 3, 4, 9, 10, 12.
When p ≡ 1mod 4, Pp is an undirected graph, and for p ≡ 3mod 4 it is a digraph, as illustrated below for
p = 7.

0

1

2

34

5

6

Figure 3: Paley digraph P7

We take V so that RV(Zp) is Pp. Then

χ
V
(b) = f(b) :=

∑
x2∈Z×p

ωbx
2
,

and we know from (2.6) that the number of walks of k steps from 0 to c on the graph Pp is given by

(Ak)0,c =
1

p

∑
b∈Zp

χ
V
(b)kχc(b) =

1

p

p−1∑
b=0

f(b)kω−cb (3.6)

We evaluate this expression using well-known facts about Gauss sums, which can be found for example in
[IR, Chap. 8]. Suppose

ξ =

{
1 if p ≡ 1 mod 4,
i =
√
−1 if p ≡ 3 mod 4.

(3.7)

The Gauss sum g(b) =
∑p−1

x=0 ω
bx2 equals p when b = 0, and for b ∈ Z×p

g(b) =

(
b

p

)
g(1) =

{
ξ
√
p if b is a quadratic residue modulo p,

−ξ√p if b is a quadratic nonresidue modulo p,

where
(
b
p

)
is the Legendre symbol, which is 1 if b is a quadratic residue and−1 otherwise. Since the number

of quadratic residues equals the number of quadratic nonresidues, it follows that

f(b) =
1

2
(g(b)− 1) =


1
2(ξ
√
p− 1) if b is a nonzero quadratic residue modulo p,

−1
2(ξ
√
p+ 1) if b is a quadratic nonresidue modulo p,

1
2(p− 1) if b = 0.
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Our aim in this section is to prove

Theorem 3.8. Assume Pp is the Paley (di)graph of order p a prime and ξ is as in (3.7). Then the number of
walks of k steps from 0 to c on Pp is given by one of the following:

(i) If c is a nonzero quadratic residue, then

(Ak)0,c =


1

2k+1p

(
2 (p− 1)k +

(√
p− 1

)k+1
+ (−1)k+1

(√
p+ 1

)k+1
)

if p ≡ 1 mod 4,
1

2k+1p

(
2 (p− 1)k + (p+ 1)

(
i
√
p− 1

)k−1
+ (−1)k(p+ 1)

(
i
√
p+ 1

)k−1
)

if p ≡ 3mod 4.

(ii) If c is a quadratic nonresidue, then

(Ak)0,c =


p−1

2k+1p

(
2 (p− 1)k−1 +

(√
p− 1

)k−1
+ (−1)k

(√
p+ 1

)k−1
)

if p ≡ 1 mod 4

1
2k+1p

(
2 (p− 1)k −

(
i
√
p+ 1

)k+1
+ (−1)k+1

(
i
√
p+ 1

)k+1
)

if p ≡ 3mod 4.

(iii) If c = 0, then

(Ak)0,0 =
p− 1

2k+1p

(
2 (p− 1)k−1 + (ξ

√
p− 1)k + (−1)k (ξ

√
p+ 1)k

)
.

Proof. Since the quadratic nonresidues modulo p are all of the form ax2 for some fixed quadratic nonresidue
a, we have from (3.6)

(Ak)0,c =
1

p

(p− 1

2

)k
+
∑
x2∈Z×p

(
ξ
√
p− 1

2

)k
ω−x

2c +
∑
x2∈Z×p

(−1)k
(
ξ
√
p+ 1

2

)k
ω−ax

2c


=

1

p

(p− 1

2

)k
+

(
ξ
√
p− 1

2

)k ∑
x2∈Z×p

ω−x
2c + (−1)k

(
ξ
√
p+ 1

2

)k ∑
x2∈Z×p

ω−ax
2c

 .

(3.9)

Now if c 6= 0, then

g(−c) =

(
−c
p

)
g(1) =

(
c

p

)(
−1

p

)
g(1) =

{
g(c) if p ≡ 1 mod 4

−g(c) if p ≡ 3 mod 4,

so that

f(−c) =

{
f(c) if p ≡ 1 mod 4,
−(f(c) + 1) if p ≡ 3 mod 4.

Therefore when c 6= 0,

(Ak)0,c =


1
p

((
p−1

2

)k
+
(√

p−1
2

)k
f(c) + (−1)k

(√
p+1
2

)k
f(ac)

)
if p ≡ 1 mod 4

1
p

((
p−1

2

)k
−
(
i
√
p−1
2

)k
(f(c) + 1) + (−1)k+1

(
i
√
p+1
2

)k
(f(ac) + 1)

)
if p ≡ 3 mod 4.

(3.10)

We examine the expression in (3.10) for the scenarios in (i) and (ii) of Theorem 3.8.
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(i) When c ∈ Z×p is a quadratic residue modulo p, then

(Ak)0,c =


1

2k+1p

(
2 (p− 1)k +

(√
p− 1

)k+1
+ (−1)k+1

(√
p+ 1

)k+1
)

if p ≡ 1 mod 4,
1

2k+1p

(
2 (p− 1)k −

(
i
√
p− 1

)k
(i
√
p+ 1) + (−1)k+1

(
i
√
p+ 1

)k (
i
√
p− 1

))
= 1

2k+1p

(
2 (p− 1)k + (p+ 1)

(
i
√
p− 1

)k−1
+ (−1)k(p+ 1)

(
i
√
p+ 1

)k−1
)

if p ≡ 3mod 4.

(ii) When c is a quadratic nonresidue modulo p,

(Ak)0,c =


p−1

2k+1p

(
2 (p− 1)k−1 +

(√
p− 1

)k−1
+ (−1)k

(√
p+ 1

)k−1
)

if p ≡ 1 mod 4,
1

2k+1p

(
2 (p− 1)k −

(
i
√
p+ 1

)k+1
+ (−1)k+1

(
i
√
p+ 1

)k+1
)

if p ≡ 3mod 4.

(iii) Finally, when c = 0, then (3.9) implies

(Ak)0,0 =
1

2k+1p

(
2 (p− 1)k + (ξ

√
p− 1)k (p− 1) + (−1)k (ξ

√
p+ 1)k (p− 1)

)
=
p− 1

2k+1p

(
2 (p− 1)k−1 + (ξ

√
p− 1)k + (−1)k (ξ

√
p+ 1)k

)
,

to give the assertion in part (iii).

4 The groups Sn and Zr o Sn
4.1 The symmetric group Sn

The irreducible modules for the symmetric group Sn are in one-to-one correspondence with the partitions
λ ` n, and the conjugacy classes are determined by the cycle decomposition of the permutations, hence they
also are indexed by the partitions of n. If V is taken to be the n-dimensional permutation module on which
Sn acts by permuting the basis elements, then for all σ ∈ Sn,

χ
V
(σ) = trV(σ) = F(σ), (4.1)

where F(σ) is the number of fixed points of σ. As a result, we know from (2.11) that the Poincaré series for
the tensor invariants T(V)Sn is given by

P0(t) = (n !)−1
∑
µ`n
|Cµ|

1

1− F(cµ)t
= (n !)−1

∑
σ∈Sn

1

1− F(σ)t

=
det(M0)

det(I− tA)
=

det(M0)∏
µ`n (1− F(cµ)t)

(4.2)

where M0 and A are as in Theorem 1.12. For the centralizer algebra Zk(Sn) = EndSn(V⊗k) and its irre-
ducible module Zλk(Sn),

dimZλk(Sn) = (n !)−1
∑
σ∈Sn

F(σ)k χλ(σ),

dimZk(Sn) = (n !)−1
∑
µ`n
|Cµ| F(cµ)2k = (n !)−1

∑
σ∈Sn

F(σ)2k.
(4.3)

The centralizer algebra Zk(Sn) for the Sn-action on the k-fold tensor power of its permutation module
V is a homomorphic image of the partition algebra Pk(n) →→ Zk(Sn) = EndSn(V⊗k), and Zk(Sn) is

13



isomorphic to Pk(n) when n ≥ 2k (see for example [HR] for basic facts about partition algebras). Parts (a)
and (c) of [BHH, Thm. 5.5] give expressions for the dimension of Zλk(Sn) and Zk(Sn) respectively in terms
of Stirling numbers of the second kind, and these expressions combine with the ones above to show that

(n!)−1
∑
σ∈Sn

F(σ)kχλ(σ) = dimZλk(Sn) =
n∑
`=0

Kλ,(n−`,1`)

{
k

`

}
,

(n!)−1
∑
σ∈Sn

F(σ)2k = dimZk(Sn) =

n∑
`=0

{
2k

`

}
.

(4.4)

The Kostka number Kλ,(n−`,1`) counts the number of semistandard tableaux of shape λ with n − ` entries
equal to 0 and one entry equal to each of the numbers 1, 2, . . . , ` such that the entries weakly increase
across the rows and strictly increase down the columns of the Young diagram of λ (more details on Kostka
numbers can be found in [Sa, Sec. 2.11] or [S2, Sec. 7.10]). The first relation in (4.4) was proven by Farina
and Halverson in [FaH] under the additional assumption that n ≥ 2k. In that case, Zk(Sn) ∼= Pk(n), and

the right-hand side
n∑
`=0

{
2k

`

}
=

2k∑
`=0

{
2k

`

}
equals the Bell number B(2k). The relations in (4.4) hold for

all n, k ∈ Z≥1.
Next we examine the particular case of the symmetric group S4 to illustrate the above results.

4.2 The special case of the symmetric group S4

The irreducible modules and conjugacy classes for the symmetric group S4 are indexed by the partitions
λ ` 4, where λ ∈ {(4), (3, 1), (22), (2, 12), (14)}. The trivial module corresponds to the partition (4) with
just one part, and the 4-dimensional permutation module for S4 is given by V = (S4)(4) ⊕ (S4)(3,1). The
corresponding representation graph RV(S4) is pictured in Figure 4. Hence, by (2.4), the dimensions of the

(4) (3,1)

(22)

(2, 12) (14)

Figure 4: Representation graph RV(S4) for V = (S4)(4) ⊕ (S4)(3,1)

irreducible modules Zλk(S4) for the centralizer algebra Zk(S4) = EndS4(V⊗k) are given by

dimZλk(S4) = (Ak)(4),λ = (24)−1
∑
µ`4

|Cµ| χV
(cµ)kχλ(cµ).

The necessary information to evaluate this expression is displayed in the table below and can be gotten from
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the character table for S4 (see for example [FuH, Sec. 2.3]).

λ \ µ (14) (2, 12) (22) (3, 1) (4)

|Cµ| 1 6 3 8 6
χ(4)(cµ) 1 1 1 1 1

χ(3,1)(cµ) 3 1 −1 0 −1

χ(22)(cµ) 2 0 2 −1 0

χ(2,12)(cµ) 3 −1 −1 0 1

χ(14)(cµ) 1 −1 1 1 −1

χk
V
(cµ) 4k 2k 0 1 0

(4.5)

From this we determine that for k ≥ 1,

dimZ
(4)
k (S4) =

1

24

(
4k + 6 · 2k + 8

) (
=

4∑
`=1

{
k

`

})

dimZ
(3,1)
k (S4) =

1

24

(
3 · 4k + 6 · 2k

) (
=

{
k

1

}
+ 2

{
k

2

}
+ 3

{
k

3

}
+ 3

{
k

4

})
dimZ

(22)
k (S4) =

1

24

(
2 · 4k − 8

) (
=

{
k

2

}
+ 2

{
k

3

}
+ 2

{
k

4

})
dimZ

(2,12)
k (S4) =

1

24

(
3 · 4k − 6 · 2k

) (
=

{
k

2

}
+ 3

{
k

3

}
+ 3

{
k

4

})
dimZ

(14)
k (S4) =

1

24

(
4k − 6 · 2k + 8

) (
=

{
k

3

}
+

{
k

4

})
dimZk(S4) = dimZ

(4)
2k (S4) =

1

24

(
42k + 6 · 22k + 8

) (
=

4∑
`=1

{
2k

`

})
.

(4.6)

On the right-hand side above, we have given expressions for the dimensions in terms of Stirling numbers of
the second kind, which were derived using the following closed-form formula:{

k

`

}
=

1

` !

∑̀
j=0

(−1)`−j
(
`

j

)
jk. (4.7)

The coefficients of the Stirling numbers
{
k
`

}
are the Kostka numbers Kλ,(n−`,1`) for n = 4, and they

enumerate the semistandard tableaux of shape λ and type (4− `, 1`) as pictured below for λ = (22):

` = 2

0 0

1 2

0 1

2 3

0 2

1 3

` = 3

1 2

3 4

1 3

2 4

` = 4

.

4.3 Bratteli diagram

The Bratteli diagram BV(G) is an infinite graph with vertices labeled by the elements of Λk(G) on level
k. A walk of k steps on the representation graph RV(G) from 0 to λ is a sequence

15



(
λ(0) = 0, λ(1), λ(2), . . . , λ(k) = λ

)
starting at λ(0) = 0, such that λ(j) ∈ Λj(G) for each 1 ≤ j ≤ k, and

λ(j−1) is connected to λ(j) by an edge in RV(G). Such a walk is equivalent to a unique path of length k on
the Bratteli diagram BV(G) from 0 at the top to λ ∈ Λk(G) on level k. The subscript on vertex λ ∈ Λk(G)
in BV(G) indicates the number mλ

k of paths from 0 on the top to λ at level k. This can be easily computed
by summing, in a Pascal triangle fashion, the subscripts of the vertices at level k − 1 that are connected to
λ. This is dimension of the irreducible Zk(G)-module Zλk(G), which is also the multiplicity of Gλ in V⊗k.
The sum of the squares of those dimensions at level k is the number on the right, which is the dimension of
the centralizer algebra Zk(G) by Wedderburn theory.

The top levels of the Bratteli diagram for the group G = S4 and its 4-dimensional permutation module
V are exhibited in Figure 5.

k = 0 (4)1 1

k = 1 (4)1 (3,1)1 2

k = 2 (4)2 (3,1)3 (22)1 (2,12)1 15

k = 3 (4)5 (3,1)10 (22)5 (2,12)6 (14)1 187

k = 4 (4)15 (3,1)36 (22)21 (2,12)28 (14)7 2795

k = 5 (4)51 (3,1)136 (22)85 (2,12)120 (14)35 43947

k = 6 (4)187 (3,1)528 (22)341 (2,12)496 (14)155 700075

Figure 5: Levels k = 0, 1, . . . , 6 of the Bratteli diagram BV(S4) for S4 and its permutation module V

4.4 The group Zr o Sn
In this section, G is the wreath product Zr o Sn viewed as n × n monomial matrices with entries of the

form ωj for j = 0, 1, . . . , r − 1, where ω = e2πi/r, a primitive rth root of unity for r ≥ 2. The module
V is the space of n × 1 column vectors with complex entries on which G acts by matrix multiplication.
We present a formula for the dimension of the G-invariants (V⊗k)G in V⊗k, equivalently, for the dimension
dimZ0

k(G) = |G|−1
∑

g∈G χV
(g)k of the irreducible module labeled by 0 for the centralizer algebra Zk(G) =

EndG(V⊗k). Our formula will depend on the number of entries on the main diagonal of a monomial matrix
in G (the number of fixed points of the underlying permutation in Sn), and so for m = 1, 2, . . . , n, we
set Fn(m) := |{σ ∈ Sn | F(σ) = m}|. This number, which is sometimes referred to as a rencontres
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number, counts the number of “partial derangements” of n with m fixed points. It equals
(
n
m

)
Dn−m, where

Dn−m is the number of derangements of n−m (permutations in Sn−m with no fixed points). From known
expressions for the derangement numbers, we have

Fn(m) =

(
n

m

)
Dn−m =

(
n

m

)
(n−m)!

n−m∑
j=0

(−1)j

j !
=

n!

m!

n−m∑
j=0

(−1)j

j !
. (4.8)

Theorem 4.9. For G = Zr o Sn and V the n-dimensional G-module on which G acts by monomial matrices,
the dimension of the space of G-invariants in V⊗k (equivalently, dimZ0

k(G)) is given by

dim (V⊗k)G =
1

rnn !

n∑
m=1

rmFn(m)k

 ∑
`1,`2,...,`m

(
k

`1, `2, . . . , `m

) , (4.10)

where the sum is over all 0 ≤ `1, `2, . . . , `m ≤ k such that `1 + `2 + · · · + `m = k and `1 ≡ `2 ≡ · · · ≡

`m ≡ 0 mod r, and Fn(m) =
n!

m!

n−m∑
j=0

(−1)j

j !
. In particular, the space (V⊗k)G of invariants is 0 unless

k ≡ 0mod r.

Proof. We know from Theorem 2.3 that dim (V⊗k)G = (Ak)0,0 = |G|−1
∑

g∈G χV
(g)k, from which we

have

dim (V⊗k)G =
1

rn n !

n∑
m=1

Fn(m)k
∑

b1,b2,...,bm∈{0,1,...,r−1}

(
ωb1 + ωb2 + · · ·+ ωbm

)k

=
1

rn n !

n∑
m=1

Fn(m)k

 ∑
`1+`2+···+`m=k

(
k

`1, `2, . . . , `m

) r−1∑
b1=0

ω`1b1

 r−1∑
b2=0

ω`2b2

 · · ·
 r−1∑
bm=0

ω`mbm


=

1

rn n !

n∑
m=1

Fn(m)krm

 ∑
`1+`2+···+`m=k

`1≡`2≡···≡`m≡0mod r

(
k

`1, `2, . . . , `m

) by (3.1).

Remark 4.11. It is a consequence of (4.10) that for G = Zr o Sn,

dim (V⊗k)G =
1

rnn !

n∑
m=1

rmFn(m)k

 ∑
(q1+q2+···+qm)r=k

(
k

q1r, q2r, . . . , qmr

) . (4.12)

Therefore, the exponential generating function for the invariants is given by

g0(t) =

∞∑
k=0

dim (V⊗k)G
tk

k!
=

1

rnn !

n∑
m=1

rm
∞∑
k=0

Fn(m)k

 ∑
(q1+q2+···+qm)r=k

(
k

q1r, q2r, . . . , qmr

)
tk

k!


=

1

rnn !

n∑
m=1

r2m

r−1
∞∑
q1=0

(Fn(m)t)q1r

(q1r)!

r−1
∞∑
q2=0

(Fn(m)t)q2r

(q2r)!

 · · ·
r−1

∞∑
qm=0

(Fn(m)t)qmr

(qmr)!


=

1

rnn !

n∑
m=1

r2m h1 (Fn(m)t, r)m ,

(4.13)

where h1 is a generalized hyperbolic function (see (6.10) and (6.14) below for more details.)
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4.5 G = Zr o Sn for some special choices of r and n

Assume G = Zr o S2 and V = C2. Then since F2(1) =
(

2
1

)
D1 = 0, and F2(2) =

(
2
2

)
D0 = 1, we have

dim (V⊗k)G = dimZ0
k(G) =

1

2

∑
`1+`2=k

`1≡`2≡0mod r

(
k

`1, `2

)
. (4.14)

So, for example, when r = 2,

dim (V⊗k)G =


1

2

1
2
k∑

`=0

(
k

2`

)
=

1

2
2k−1 = 2k−2 if k is even and k ≥ 2,

0 if k is odd and k ≥ 1.

P0(t) =
∞∑
k=0

dim (V⊗k)G tk = 1 + t2
∞∑
j=0

(4t2)j = 1 +
t2

1− 4t2
=

1− 3t2

1− 4t2
.

(4.15)

4.6 The group G = Zr o Sn – a different approach

The irreducible modules Gα for G = Zr o Sn, hence also the G-conjugacy classes Cα, are labeled by
r-tuples of partitions α = (α(1), α(2), . . . , α(r)) such that n =

∑r
i=1 |α(i)| (see for example [AK, Sec. 2]).

For x ∈ C, let J`(x) be the `× ` Jordan block matrix given by

J`(x) =



0 1
0 0 1

. . .
...

. . .
0 1

x 0 0 0


Then a conjugacy class representative of G corresponding to α is

cα =

r⊕
i=1

⊕
p

J
α
(i)
p

(ωi−1),

where ω = e2πi/r, the parts α(i)
p of the ith partition α(i) are α(i)

1 ≥ α
(i)
2 ≥ . . ., and this sum represents the

n×nmatrix with blocks down the main diagonal starting with J
α
(1)
1

(ω0), then J
α
(1)
2

(ω0), . . ., and continuing

down to J
α
(r)
`

(ωr−1) corresponding to the last part α(r)
` of the last partition α(r).

For a partition λ, assume pj(λ) is the number of parts of λ equal to j. Set

zλ =

n∏
j=1

jpj(λ) pj(λ)!.

This is the order of the centralizer of an element of S|λ| with cycle structure given by the partition λ. Now

for α = (α(1), α(2), . . . , α(r)), we define

pj(α) =

r∑
i=1

pj(α
(i)) and p(α) =

n∑
j=1

pj(α). (4.16)

18



Thus, pj(α) is the total number of parts equal to j in the partitions comprising α, and p(α) is the total
number of nonzero parts in the partitions of α. Then according to [AK, Sec. 2], the size of the centralizer of
cα in G is given by

zα =
∏
i,j

(rj)pj(α
(i)) pj(α

(i))! = rp(α)
n∏
j=1

jpj(α)

(
r∏
i=1

pj(α
(i))!

)
= rp(α)

r∏
i=1

zα(i) . (4.17)

Hence, the size of the conjugacy class Cα corresponding to the element cα is given by

|Cα| =
|G|
zα

=
|G|

rp(α)
∏n
j=1 j

pj(α)
(∏r

i=1 pj(α
(i))!
) .

Thus, we know that

dim (V⊗k)G = dimZ0
k(G) = |G|−1

∑
α∈Λ(G)

|Cα|χV
(cα)k =

∑
α∈Λ(G)

χ
V
(cα)k

rp(α)
∏n
j=1 j

pj(α)
(∏r

i=1 pj(α
(i))!
) .

Observe that

χ
V
(cα) = trV

(
cα
)

=

r∑
i=1

p1(α(i))ωi−1 =

r∑
i=1

F(α(i))ωi−1

where p1(α(i)) is the number of parts equal to 1 in α(i), as the only contributions to the trace come from the
matrix blocks of size one in cα. Since that is the number of fixed points of a permutation of cycle type α(i),
we write F(α(i)) by a slight abuse of notation. Therefore, we obtain a second expression for the dimension
of the G-invariants in V⊗k using the definitions in (4.16):

dim (V⊗k)G = dimZ0
k(G) =

∑
α∈Λ(G)

(∑r
i=1 F(α(i))ωi−1

)k
rp(α)

∏n
j=1 j

pj(α)
(∏r

i=1 pj(α
(i))!
) for G = Zr o Sn, (4.18)

The group G = Z2 oSn is the Weyl group for a root system of type Bn or Cn. The irreducible G-modules
are labeled by pairs α = (α(1), α(2)) of partitions such that |α(1)|+ |α(2)| = n. Since ω = −1 in this case,
we have the following formula for the dimension of the space of G-invariants in V⊗k:

dim (V⊗k)G = dimZ0
k(G) =

∑
α∈Λ(G)

(
F(α(1))− F(α(2))

)k
2p(α)

∏n
j=1 j

pj(α)
(
pj(α(1))! · pj(α(2))!

) for G = Z2 o Sn,

(4.19)
where pj(α

(i)) and p(α) are as in (4.16).

Remark 4.20. In [T], Tanabe investigated the centralizer algebra Zk(G), where G is a complex reflection
group G(m, p, n) viewed as n × n matrices acting on V = Cn. The group G(r, 1, n) is the wreath product
Zr o Sn. Using results from [T], we showed in [BM] for G = Z2 o Sn that

dimZk(G) =

n∑
s=1

T(k, s),

where T(k, s) is the number of set partitions of a set of size 2k into s nonempty disjoint parts of even size.
The numbers T(k, s) correspond to sequence A156289 in the Online Encyclopedia of Integer Sequences
[OEIS] and have many different interpretations. They are known to satisfy

T(k, s) =
1

s! 2s−1

s∑
j=1

(−1)s−j
(

2s

s− j

)
j2k =

∑
λ

1∏
j≥1 pj(λ)

(
2k

2λ1, 2λ2, . . . , 2λs

)
,
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where the last sum is over all partitions λ = {λ1 ≥ λ2 ≥ · · · ≥ λs > 0} of k into s nonzero parts λi (see
[BM, Sec. 4.2] for details). In particular, since V is self-dual, we see that

dim (V⊗2k)G = dimZk(G) =

n∑
s=1

T(k, s), for G = Z2 o Sn. (4.21)

It would be interesting to show the equivalence of the formulas in Theorem 4.9 and (4.19) and then relate
them (with 2k in place of k) to (4.21).

Next we derive a few special instances of the formula in (4.19).

4.7 The G = Z2 o S2 case revisited

It is convenient to display the information needed to compute dim (V⊗k)G = dimZ0
k(G) using (4.19) in the

following table. Since the partitions in α are small, we won’t bother using parentheses in listing them.

α F(α(1)) F(α(2))
trV(cα) =

F(α(1))− F(α(2))
p(α) 2p(α)

∏2
j=1 j

pj(α)
(
pj(α

(1))! · pj(α(2))!
)

(2, ∅) 0 0 0 1 4

(12, ∅) 2 0 2 2 8

(1, 1) 1 1 0 2 8

(∅, 12) 0 2 −2 2 8

(∅, 2) 0 0 0 1 4
(4.22)

Therefore, we have

dim (V⊗k)G = dimZ0
k(G) =

∑
α∈Λ(G)

(
F(α(1))− F(α(2))

)k
2p(α)

∏2
j=1 j

pj(α)
(∏2

i=1 pj(α
(i))!
) =

2k + (−2)k

8
for G = Z2 o S2

=

{
2k−2 if k is even and k ≥ 2,
0 if k is odd and k ≥ 1,

(4.23)

in agreement with (4.15).
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4.8 G = Z2 o S3

The relevant information for applying (4.19) is given in the table below.

α F(α(1)) F(α(2))
trV(cα) =

F(α(1))− F(α(2))
p(α) 2p(α)

∏3
j=1 j

pj(α)
(
pj(α

(1))! · pj(α(2))!
)

(3, ∅) 0 0 0 1 6

((2, 1), ∅) 1 0 1 2 8

(13, ∅) 3 0 3 3 48

(2, 1) 0 1 −1 2 8

(12, 1) 2 1 1 3 16

(1, 2) 1 0 1 2 8

(1, 12) 1 2 −1 3 16

(∅, 13) 0 3 −3 3 48

(∅, (2, 1)) 0 1 −1 2 8

(∅, 3) 0 0 0 1 6
(4.24)

dim (V⊗k)G = dimZ0
k(G) =

∑
α∈Λ(G)

( (
F(α(1))− F(α(2))

)k
2p(α)

∏3
j=1 j

pj(α)
(
pj(α(1))! · pj(α(2))!

))

=
15(1k + (−1)k) + (3k + (−3)k)

48
for G = Z2 o S3

=


3k−1 + 5

8
if k is even and ≥ 2,

0 if k is odd and ≥ 1.

P0(t) =

∞∑
k=0

dim (V⊗k)G tk = 1 +
1

8

∞∑
j=1

(32j−1 + 5) t2j =
1− 9t2 + 3t4

(1− t2)(1− 9t2)
.

(4.25)

5 G = GL2(Fq) and G = SL2(Fq)

Let Fq be a finite field of q elements. Then q = p` for some prime p and some ` ≥ 1, and we assume p
is odd to simplify considerations. In this section, G is the general linear group GL2(Fq) of 2 × 2 invertible
matrices over Fq or the special linear subgroup SL2(Fq) of matrices with determinant equal to 1. We assume
V = IndGBB0, the G-module induced from the trivial module B0 for the subgroup B of upper triangular
matrices in G, and Vq is its q-dimensional irreducible summand, which is Steinberg module. (Here we write
Vq rather than the customary St, to emphasize its analogy to V in previous sections.) Our aim in this section
is to develop a formula for dim (V⊗k)G and for dim (V⊗kq )G and to determine the corresponding Poincaré
series for the tensor invariants.

5.1 G = GL2(Fq)

Let B =

{(
x y
0 z

) ∣∣∣x, z ∈ F×q , y ∈ Fq
}

be the Borel subgroup of upper-triangular matrices in G =

GL2(Fq) and V be the induced G-module V = IndGBB0 = C[G] ⊗C[B] B0. Since the order of G is
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q(q+ 1)(q− 1)2 and the order of B is q(q− 1)2, we have dimV = q+ 1. The module V decomposes into a
sum V = G0⊕Vq of a copy of the trivial G-module G0 and a copy of a q-dimensional irreducible G-module
Vq (the Steinberg module).

Let ε be a non-square in F×q , and define the following elements of G,

ax =

(
x 0
0 x

)
, bx =

(
x 1
0 x

)
, cx,y =

(
x 0
0 y

)
, dx,y =

(
x εy
y x

)
(x ∈ F×q ) (x ∈ F×q ) (x, y ∈ F×q , x 6= y) (y ∈ F×q )

(5.1)

We will use the information in the table below, which can be derived from [FuH, Sec. 5.2]. As before, cµ,
µ ∈ Λ(G), is a representative of the conjugacy class Cµ of G.

cµ ax bx cx,y dx,y

no. of such classes q − 1 q − 1 1
2(q − 1)(q − 2) 1

2q(q − 1)

|Cµ| 1 q2 − 1 q2 + q q2 − q
χ

V
(cµ) q + 1 1 2 0

χ
Vq

(cµ) q 0 1 −1

(5.2)

Therefore, we have the following consequence of Theorem 2.3.

Theorem 5.3. Assume G = GL2(Fq) where q is odd.

(a) For the G-module V = IndGBB0 = G0 ⊕Vq induced from the trivial module B0 for the Borel subgroup
B of upper-triangular matrices in G,

dim (V⊗k)G =

 1 when k = 0,
1

q(q − 1)

(
(q + 1)k−1 + q(q − 2) · 2k−1 + q − 1

)
when k ≥ 1.

(5.4)

The Poincaré series for the G-invariants T(V)G in T(V) =
⊕∞

k=0 V
⊗k is

P0(t) =
∞∑
k=0

dim (V⊗k)G tk =
1− (q + 3)t+ (2q + 3)t2 − qt3

(1− t) (1− 2t) (1− (1 + q)t)
. (5.5)

(b) For the Steinberg module Vq, dim (V⊗kq )G = 1 when k = 0, and

dim (V⊗kq )G =
1

2(q2 − 1)

(
2qk−1 − q(q − 1)(−1)k−1 + (q + 1)(q − 2)

)
when k ≥ 1, (5.6)

=


q2` − 1

q2 − 1
=

`−1∑
j=0

q2j if k = 2`+ 1 ≥ 1,

1 + q
q2`−2 − 1

q2 − 1
= 1 +

`−2∑
j=0

q2j+1 if k = 2` ≥ 2.

(5.7)

The Poincaré series P0
q(t) for the G-invariants T(Vq)

G in T(Vq) =
⊕∞

k=0 V
⊗k
q is

P0
q(t) =

∞∑
k=0

dim (V⊗kq )G tk =
1− qt+ t3

(1− t) (1 + t) (1− qt)
. (5.8)
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Proof. (a) From Theorem 2.3 and Table 5.2 we know that

dim (V⊗k)G = dimZk(G) =
1

|G|
∑

µ∈Λ(G)

|Cµ|χV
(cµ)k

=
1

(q − 1)2q(q + 1)

(
(q − 1)(q + 1)k + (q − 1)(q2 − 1) 1k +

1

2
q(q + 1)(q − 1)(q − 2) 2k +

1

2
q2(q − 1)2 0k

)
=

1

q(q − 1)

(
(q + 1)k−1 + q(q − 2) · 2k−1 + q − 1

)
when k ≥ 1.

Therefore,

P0(t) =

∞∑
k=0

dim (V⊗k)G tk = 1 +
1

q(q − 1)

( ∞∑
k=1

(q + 1)k−1 + q(q − 2) · 2k−1 + (q − 1)

)
tk

= 1 +
1

q(q − 1)

(
t

∞∑
k=1

(q + 1)k−1tk−1 + q(q − 2)t

∞∑
k=1

2k−1tk−1 + (q − 1)t

∞∑
k=1

tk−1

)

= 1 +
1

q(q − 1)

(
t

1− (q + 1)t
+
q(q − 2)t

1− 2t
+

(q − 1)t

1− t

)
=

1− (q + 3)t+ (2q + 3)t2 − qt3

(1− t) (1− 2t) (1− (q + 1)t)
.

(b) Now for Vq and k ≥ 1, we have

dim (V⊗kq )G =
1

|G|
∑

µ∈Λ(G)

|Cµ|χVq
(cµ)k

=
1

(q − 1)2q(q + 1)

(
(q − 1)qk + (q − 1)(q2 − 1) 0k +

1

2
q(q + 1)(q − 1)(q − 2) 1k +

1

2
q2(q − 1)2 (−1)k

)
=

1

2(q2 − 1)

(
2qk−1 + q(q − 1)(−1)k + (q + 1)(q − 2)

)

=


q2` − 1

q2 − 1
=

`−1∑
j=0

q2j if k = 2`+ 1 ≥ 1,

1 + q
q2`−2 − 1

q2 − 1
= 1 + q

`−2∑
j=0

q2j if k = 2` ≥ 2.

5.2 G = SL2(Fq)

For the group G = SL2(Fq) (q odd), we introduce the following elements of G:

ux =

(
x 0
0 x−1

)
(x 6= 0), vy =

(
1 y
0 1

)
, wx,y =

(
x y
yε x

)
(x2 − εy2 = 1). (5.9)

We will use the information in the following table, which can be derived from [Mur, Chap. 3] or [FuH,

23



Sec. 5.2]. As before, cµ, µ ∈ Λ(G), is a representative of the conjugacy class Cµ of G.

cµ ±I ux, x 6= ±1 vy, y = 1, ε −vy, y = −1,−ε wx,y, x 6= ±1

no. of such classes 2 1
2(q − 3) 2 2 1

2(q − 1)

|Cµ| 1 q(q + 1) 1
2(q2 − 1) 1

2(q2 − 1) q(q − 1)

χ
V
(cµ) q + 1 2 1 1 0

χ
Vq

(cµ) q 1 0 0 −1

(5.10)

The order of G = SL2(Fq) is q(q − 1)(q + 1) and the order of its Borel subgroup B of upper triangular
matrices is q(q− 1). Therefore, the induced G-module V = IndGBB0 has dimension q+ 1, and V = G0⊕Vq,
where Vq is the q-dimensional irreducible Steinberg module for G. Using this Table 5.10 and Theorem 2.3,
we have the next result.

Theorem 5.11. Assume G = SL2(Fq), where q is odd.

(a) For V = IndGBB0 = G0 ⊕ Vq, the G-module over C induced from the trivial module B0 for the Borel
subgroup B of upper-triangular matrices in G, we have

dim (V⊗k)G =

 1 when k = 0
1

q(q − 1)

(
2(q + 1)k−1 + q(q − 3) · 2k−1 + 2(q − 1)

)
when k ≥ 1.

(5.12)

The Poincaré series for the G-invariants T(V)G in T(V) =
⊕∞

k=0 V
⊗k is

P0(t) =

∞∑
k=0

dim (V⊗k)G tk =
1− (q + 3)t+ (2q + 3)t2 − (q − 1)t3

(1− t) (1− 2t) (1− (q + 1)t)
. (5.13)

(b) For the Steinberg module Vq, dim (V⊗kq )G = 1 when k = 0, and

dim (V⊗kq )G =
1

2(q2 − 1)

(
4qk−1 + (q − 1)2(−1)k + (q − 3)(q + 1)

)
when k ≥ 1,

=


2(q2` − 1)

q2 − 1
= 2

`−1∑
j=0

q2j if k = 2`+ 1 ≥ 1,

1 + 2q
(q2`−2 − 1)

q2 − 1
= 1 + 2

`−2∑
j=0

q2j+1 if k = 2` ≥ 2.

(5.14)

(b) The Poincaré series P0
q(t) for the G-invariants T(Vq)

G in T(Vq) =
⊕∞

k=0 V
⊗k
q is

P0
q(t) =

∞∑
k=0

dim (V⊗k)G tk =
1− qt+ 2t3

(1 + t) (1− t) (1− qt)
. (5.15)

Proof. The proofs are analogous to those for Theorem 5.3 and are left to the reader.
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6 The case G is abelian and exponential generating functions

It is convenient to regard an arbitrary finite abelian group (G,+) as a multiplicative group and write ea for
a ∈ G, so that the group operation is given by eaeb = ea+b, a, b ∈ G, where the sum a + b is addition in
G. The identity element is e0. Since G is abelian, the irreducible G-modules are all one-dimensional, and
we label them and the conjugacy classes with the elements of G. Thus, for a ∈ G, let Ga = Cxa, where
ebxa = χa(b)xa, and let χa denote the corresponding character. The characters satisfy

χa(b + b′) = χa(b)χa(b
′) for all a, b, b′ ∈ G, and (6.1)

χa+a′(b) = χa(b)χa′(b) for all a, a′, b ∈ G, (6.2)

as Ga ⊗ Ga′
∼= Ga+a′ . for all a, a′ ∈ G. Since χa(b)χ−a(b) = χa−a′(b) = χ0(b) = 1 and χa(0) = 1 for all

a, b ∈ G, the following hold:

χ−a(b) = χa(b)−1 = χa(b)

χa(−b) = χa(b)−1 = χa(b).
(6.3)

By the fundamental theorem of finite abelian groups, we may suppose that G = Zr1 × Zr2 × · · · × Zrn
where the rj are powers of not necessarily distinct primes. The elements of G have the form eb, where
b = (b1, b2, . . . , bn) and bj ∈ Zrj for each j. Set ωj = e2πi/rj . Then Ga = Cxa, where

ebxa = χa(b)xa and χa(b) = ωa1b11 ωa2b22 · · ·ωanbnn . (6.4)

Let εj be the n-tuple with 1 in position j and 0 for all its other components. Here we suppose that
V = Gε1 ⊕ · · · ⊕ Gεn , so for b = (b1, b2, . . . , bn) ∈ G, the character values are given by

χ
V
(b) =

n∑
j=1

χεj (b) =

n∑
j=1

ω
bj
j χ

V⊗k
(b) = χ

V
(b)k =

 n∑
j=1

ω
bj
j

k

. (6.5)

We have the following corollary to Theorem 2.3:

Corollary 6.6. The number of walks of k-steps from node a to node c on the representation graph RV(G)
for G = Zr1 × Zr2 × · · · × Zrn and V = Gε1 ⊕ · · · ⊕ Gεn is

(Ak)a,c =
∑

0≤`1,`2,...,`n≤k

(
k

`1, `2, . . . , `n

)
(6.7)

where the sum is over all `1, `2, . . . , `n such that `1 + `2 + · · · + `n = k and ci − ai ≡ `imod ri for all
i ∈ [1, n] = {1, 2, . . . , n}.

25



Proof. Now

(Ak)a,c =
∑

0≤`1,...,`n≤k
|G|−1

∑
b∈G

χa(b)χk
V
(b)χc(b) = |G|−1

∑
b∈G

χa−c(b)χk
V
(b)

= |G|−1
∑
b∈G

ω
(a1−c1)b1
1 · · · ω(an−cn)bn

n

 n∑
j=1

ω
bj
j

k

= |G|−1
∑
b∈G

ω
(a1−c1)b1
1 · · · ω(an−cn)bn

n

 ∑
0≤`1,...,`n≤k

(
k

`1, `2, . . . , `n

)
ω`1b11 · · ·ω`nbnn


= |G|−1

∑
0≤`1,...,`n≤k

(
k

`1, `2, . . . , `n

)r1−1∑
b1=0

ω
(a1−c1+`1)b1
1

 · · ·
rn−1∑
bn=0

ω
(an−cn+`n)bn
1


=

∑
0≤`1,...,`n≤k

(
k

`1, `2, . . . , `n

)
(6.8)

by applying (3.1) repeatedly, where the sum is over all `1, `2, . . . , `n such that `1 + `2 + · · · + `n = k and
`i ≡ ci − aimod ri for all i ∈ [1, n].

6.1 Exponential generating functions

For c ∈ G = Zr1 × Zr2 × · · · × Zrn and V = Gε1 ⊕ · · · ⊕ Gεn , let

gc(t) :=

∞∑
k=0

(Ak)0,c
tk

k!

denote the exponential generating function for walks of k steps from 0 to c on the representation graph
RV(G) (and also for the multiplicity of Gc in V⊗k and for dimension of the irreducible module Zc

k(G) for
the centralizer algebra). We determine an expression for gc(t) in terms of generalized hyperbolic functions.

The generalized hyperbolic function hj(t, r) for j ∈ Z is defined by

hj(t, r) := r−1
r−1∑
m=0

ω(1−j)meω
mt, (6.9)

where ω = e2πi/r. In particular,

h1(t, r) = r−1
r−1∑
m=0

eω
mt, (6.10)

so that h1(t, 1) = et and h1(t, 2) = cosh t. Because

hj+r(t, r) = hj(t, r) for j ∈ Z,

there are r distinct generalized hyperbolic functions hj(t, r) for a fixed value of r.

Theorem 6.11. For G = Zr1 × Zr2 × · · · × Zrn and c = (c1, c2, . . . , cn) ∈ G, the exponential generating
function for the number of walks of k steps from 0 to c on RV(G) is

gc(t) =
∞∑
k=0

(Ak)0,c
tk

k!
= h1+c1(t, r1)h1+c2(t, r2) · · · h1+cn(t, rn).
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Before giving the proof, we note the following immediate consequences.

Corollary 6.12. For G = Zr1 × Zr2 × · · · × Zrn and V = Gε1 ⊕ · · · ⊕ Gεn ,

(a) g0(t) =
∞∑
k=0

(Ak)0,0
tk

k!
= h1(t, r1)h1(t, r2) · · · h1(t, rn).

(b) When G = Znr , then g0(t) = h1(t, r)n.

Remark 6.13. Part (b) of this corollary generalizes [BM, Cor. 4.29], which says that the generating function
for the number of walks on a hypercube of order n is given by g0(t) = (cosh t)n = h1(t, 2)n. Theorem 4.25
of [BM] shows that for Zn2 ,

gc(t) = (cosh t)r−h(c)(sinh t)h(c),

where h(c) is the Hamming weight of c (the number of ones in c). This follows directly from Theorem 6.11,
since each component of c equal to 1 contributes a factor h2(t, 2) = sinh t, and each component of c equal
to 0 gives a factor h1(t, 2) = cosh t.

Proof of Theorem 6.11. Observe that by (6.5) and Corollary 6.6,

gc(t) =
∞∑
k=0

(A)k0,c
tk

k!

= |G|−1
∞∑
k=0

∑
b=(b1,...,bn)∈G

ω−b1c11 · · · ω−bncnn

 n∑
j=1

ω
bj
j

k

tk

k!

= r−1
1 · · · r

−1
n

∞∑
k=0

∑
b∈G

ω−b1c11 · · ·ω−bncnn

 ∑
`1+···+`n=k

ωb1`11 t`1

`1 !
· · · ω

bn`n
n t`n

`n !


=

r−1
1

r1−1∑
b1=0

∞∑
`1=0

ω−b1c1
ωb1`11 t`1

`1 !

× · · · ×
r−1

n

rn−1∑
bn=0

∞∑
`n=0

ω−bncnn

ωbn`nn t`n

`n !


=

r−1
1

r1−1∑
b1=0

ω−b1c11 eω
b1
1 t

 × · · · ×
r−1

n

rn−1∑
bn=0

ω−bncneω
bn
n t


= h1+c1(t, r1) h1+c2(t, r2) · · · h1+cn(t, rn). �

Using (3.1) and the definition of the generalized hyperbolic function hj(t, r), one sees that the Taylor
series expansion of hj(t, r) is given by

hj(t, r) =

∞∑
m=0

tmr+j−1

(mr + j − 1)!
(6.14)

Suppose c = (c1, c2, . . . , cn) ∈ G = Zr1 × Zr2 × · · · × Zrn , where 0 ≤ cj < rj for all j, and let
|c| =

∑n
j=1 cj . We have shown in Theorem 6.11 that the exponential generating function gc(t) is given by

gc(t) =
∞∑
k=0

(Ak)0,c
tk

k!
= h1+c1(t, r1)h1+c2(t, r2) · · · h1+cn(t, rn).
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Combining that with the expressions coming from (6.14), we have

gc(t) = h1+c1(t, r1)h1+c2(t, r2) · · · h1+cn(t, rn)

=

 ∞∑
q1=0

tq1r1+c1

(q1r1 + c1)!

 ∞∑
q2=0

tq2r2+c2

(q2r2 + c2)!

 · · ·
 ∞∑
`n=0

tqnrn+cn

(qnrn + cn)!


=
∞∑
k=0

∑
q1r1+···+qnrn+|c|=k

k!

(q1r1 + c1)!(q2r2 + c2)! · · · (qnrn + cn)!

tk

k!

Setting qiri+ci = `i for i = 1, . . . , n gives the result in Corollary 6.6 with a = 0, which provides a formula
for the dimension of the irreducible module Zc

k(G) for the centralizer algebra Zk(G):

dimZc
k(G) = (Ak)0,c =

∑
0≤`1,`2,...,`n≤k

(
k

`1, `2, . . . , `n

)
. (6.15)

The sum is over all 0 ≤ `1, `2, . . . , `n ≤ k such that `1 + · · ·+ `n = k and `i ≡ ci mod ri for all i ∈ [1, n].
In particular, when G = Zr1 × Zr2 × · · · × Zrn and c = 0, then

dim (V⊗k)G = dimZ0
k(G) =

∑
0≤`1,`2,...,`n≤k

(
k

`1, `2, . . . , `n

)
, (6.16)

where `1 + `2 + · · ·+ `n = k and `i ≡ 0mod ri for all i ∈ [1, n].
An alternate approach to the result in (6.15) is via characters. For G = Zr1 × · · · × Zrn and V =

Gε1 ⊕ · · · ⊕ Gεn , where Gεj = Cxεj for all j, the character of the kth tensor power of V is given by

χV⊗k = χk
V

= (χε1 + · · ·+ χεn)k

=
∑

0≤`1,`2,...,`n≤k
`1+`2+···+`n=k

(
k

`1, `2, . . . , `n

)
χ`1ε1 · · ·χ

`n
εn

=
∑

0≤`1,`2,...,`n≤k
`1+`2+···+`n=k

(
k

`1, `2, . . . , `n

)
χ`1ε1+`2ε2+···+`nεn .

Now for c = (c1, c2, . . . , cn) with 0 ≤ ci < ri for all i ∈ [1, n], the multiplicity of the character χc in this
expression is exactly the number of n-tuples (`1, `2, . . . , `n) such that `i ≡ cimod ri for all i ∈ [1, n], as in
(6.15).

Example 6.17. Consider G = Z4 × Z2 and the tensor power V⊗6 for V = Gε1 ⊕ Gε2 . Then

(χε1 + χε2)6 = χ6ε1 + 6χ5ε1+ε2 + 15χ4ε1+2ε2 + 20χ3ε1+3ε2

+ 15χ2ε1+4ε2 + 6χε1+5ε2 + χ6ε2

= 16χ2ε1 + 12χε1+ε2 + 16χ0 + 20χ3ε1+ε2 .

Thus, dimZ
(2,0)
6 (G) = 16, dimZ

(1,1)
6 (G) = 12, dimZ

(0,0)
6 (G) = 16, and dimZ

(3,1)
6 (G) = 20.
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k = 0 (0,0)1 1

k = 1 (1,0)1 (0,1)1 2

k = 2 (2,0)1 (1,1)2 (0,0)1 6

k = 3 (3,0)1 (2,1)3 (1,0)3 (0,1)1 20

k = 4 (0,0)2 (3,1)4 (2,0)6 (1,1)4 72

k = 5 (1,0)6 (0,1)6 (3,0)10 (2,1)10 272

k = 6 (2,0)16 (1,1)12 (0,0)16 (3,1)20 1056

Figure 6: Levels k = 0, 1, . . . , 6 of the Bratteli diagram for Z4 × Z2

6.2 The Bratteli diagram and a basis for Zk(G) when G = Zr1 × Zr2 × · · · × Zrn and
V = Gε1 ⊕ · · · ⊕ Gεn

A walk of k steps on the representation graph RV(G) from 0 to c corresponds to a path
(
c(0), c(1), . . . , c(k)

)
on the Bratteli diagram BV(G) starting at c(0) = 0 = (0, . . . , 0) at level 0 and ending at c = c(k) at level k
such that c(i) ∈ G for each 1 ≤ i ≤ k, and c(i) = c(i−1) + εγi for some γi ∈ [1, n], where c(i) is connected
to c(i−1) by the edge corresponding to γi in RV(G). The subscript on node c at level k in BV(G) indicates
the number of such paths, which is the multiplicity of the irreducible G-module Gc in V⊗k and also equal to
the dimension of the irreducible Zk(G)-module Zc

k(G). The sum of the squares of those dimensions at level
k is the number on the right, which is the dimension of the centralizer algebra Zk(G). Levels 0,1,. . . ,6 of the
Bratteli diagram for Z4 × Z2 are displayed in Figure 6. The nodes of the diagram correspond to elements
c = (c1, c2) ∈ Z4 × Z2 and have c1 ∈ {0, 1, 2, 3} and c2 ∈ {0, 1}.

Remark 6.18. The subscripts in the last row of the Bratteli diagram in Figure 6, exactly match with the
dimensions determined in Example 6.17. The sequence of numbers in the right-hand column of Figure 6
(i.e. the dimension d(k) of the centralizer algebra Zk(Z4 × Z2)) satisfies d(k) = a(k − 1) in sequence
[OEIS, A063376], where a(−1) = 1 and a(k − 1) = 2k−1 + 4k−1 for k ≥ 1. Among the objects that
a(k − 1) counts is the number of closed walks of length 2k at a vertex of the circular graph on 8 nodes,
which is the same as dimZk(G) for G = Z8 and V = G1 ⊕ G7 (see Section 3.1).

Much of the next result is evident from the above considerations.

Theorem 6.19. Assume G = Zr1 × Zr2 × · · · × Zrn and V = Gε1 ⊕ · · · ⊕ Gεn . Then the following hold:

(i) For c = (c1, . . . , cn) ∈ G, a basis for the irreducible Zk(G)-module Zc
k(G) ⊆ V⊗k is{

x(γ) := xεγ1 ⊗ · · · ⊗ xεγk
∣∣ γi ∈ [1, n] for all i ∈ [1, k], and

∑k
i=1εγi = c

}
.
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(ii) eax(γ) = χc(a)x(γ) for all a ∈ G and all x(γ) in (i), where χc(a) =
∏n
j=1 ω

ajcj
j and ωj = e2πi/rj

for all j ∈ [1, n], so that Zc
k(G) is also a G-submodule of V⊗k; it is the sum of all the copies of the

irreducible G-module Gc in V⊗k.

(iii) For γ = (γ1, . . . , γk), β = (β1, . . . , βk) ∈ [1, n]k with
∑k

i=1 εγi =
∑k

i=1 εβi , let Eβγ ∈ End(V⊗k) be
defined by Eβγx(α) = δα,γx(β) for α ∈ [1, n]k. Then EηϑE

β
γ = δβ,ϑE

β
η for all such ϑ, η, and the Eβγ

determine a basis for Zk(G) = EndG(V⊗k).

Proof. From the calculation below it is easy to see that the transformations Eβγ for γ, β ∈ [1, n]k as in (iii) of
Theorem 6.19 commute with the action of G on V⊗k, hence belong to Zk(G). Indeed, suppose α ∈ [1, n]k

with
∑k

i=1 εαi = c′ ∈ G, and assume a ∈ G. Then

eaEβγ
(
x(α)

)
= δα,γe

ax(β) = δα,γχc(a)x(β)

Eβγe
a
(
x(α)

)
= χc′(a)δα,γx(β).

Both expressions are 0 when α 6= γ, and when α = γ, then c′ = c, and the two expressions are identical. The
transformations Eβγ are clearly linearly independent. The number of γ = (γ1, . . . , γk) such that

∑k
i=1 εγi =

c is the number of paths from 0 at level 0 to c at level k of the Bratteli diagram BV(G), which is dimZc
k(G).

Therefore, the number of Eβγ in (iii) equals
(
dimZc

k(G)
)2, and since dimZk(G) =

∑
c∈G

(
dimZc

k(G)
)2,

taking the union of the sets of transformations Eβγ as c ranges over all the elements of G will give a basis for
Zk(G).

Remark 6.20. The condition
∑k

i=1 εγi =
∑k

i=1 εβi in Theorem 6.19 is equivalent to saying (#γi = j) ≡
(#βi = j)mod rj for all j = 1, . . . , n. That interpretation leads to the diagrammatic point of view that we
describe next.

6.3 A diagram basis for Zk(G) for G = Zr1 × Zr2 × · · · × Zrn

In this section, we present a realization Zk(G) as a diagram algebra. We identify the basis element Eβγ
with a diagram having two rows of k nodes. The components of γ = (γ1, . . . , γk), which lie in [1, n], label
the nodes on the bottom row, and those of β = (β1, . . . , βk) the top row. Nodes having the same labels are
connected, but the way the edges are drawn is immaterial. What matters is that nodes with identical labels are
all connected somehow, and those with different labels are not. Thus, for γ = (3, 4, 4, 1, 4, 4, 2, 4, 3, 4, 4, 2)

and β = (2, 4, 1, 3, 1, 2, 2, 4, 1, 2, 2, 3) in [1, 4]12, the basis element Eβγ is identified with the diagram

3 4 4 1 4 4 2 4 3 4 4 2

2 4 1 3 1 2 2 4 1 2 2 3

Eβγ = .

(6.21)
Observe that in this example (#γi = j) ≡ (#βi = j)mod rj for r1 = 2, r2 = 3, r3 = 2, r4 = 5. Thus,
Eβγ is a legitimate basis element for Z12(G), where G = Z2 × Z3 × Z2 × Z5. Since EηϑE

β
γ = δβ,ϑE

η
γ , the

top row of Eβγ must exactly match the bottom row of Eηϑ to achieve a nonzero product. Thus for Eηβ with

η = (2, 3, 2, 1, 4, 2, 4, 2, 3, 3, 2, 3), we place the diagram for Eηβ on top of the diagram for Eβγ and concatenate
the two diagrams, as pictured below.
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3 4 4 1 4 4 2 4 3 4 4 2

2 3 2 1 4 2 4 2 3 3 2 3

2 4 1 3 1 2 2 4 1 2 2 3

Eβγ =

Eηβ =

(6.22)
The result is EηβE

β
γ = Eηγ where

3 4 4 1 4 4 2 4 3 4 4 2

2 3 2 1 4 2 4 2 3 3 2 3

Eηγ = .

(6.23)

7 Appendix I

Let G be a directed graph with finite vertex set Γ and adjacency matrix A = (aα,γ)α,γ∈Γ. Then aα,γ is the
number of edges (arrows) from α to γ in G, and (Ak)α,γ is the number of walks of k steps from α to γ on G.
We consider the corresponding generating function for the number of walks from α to γ,

wα,γ(t) =

∞∑
k=0

(Ak)α,γ t
k,

where A0 = I, the identity matrix.

Proposition 7.1. Let δα be the |Γ|×1 matrix with 1 in row α and zeros elsewhere so that entry γ of δα is the
Kronecker delta δα,γ , and assume Mγ

α is the matrix I − tAT with column γ replaced by δα (here T denotes
the transpose). Then

wα,γ(t) =
det(Mγ

α)

det(I− tA)
.

Proof. First a simple observation: (Ak+1)α,γ =
∑

β∈Γ(Ak)α,β aβ,γ , for all k ≥ 0. Then
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wα,γ(t) =
∞∑
k=0

(Ak)α,γ t
k

= δα,γ + t
∑
k≥1

(Ak)α,γ t
k−1

= δα,γ + t
∑
k≥0

(Ak+1)α,γ t
k

= δα,γ + t
∑
k≥0

∑
β∈Γ

(Ak)α,β aβ,γ

 tk

= δα.γ + t
∑
β∈Γ

aβ,γ

∑
k≥0

(Ak)α,β t
k


= δα,γ + t

∑
β∈Γ

aβ,γ wα,β(t).

Letting wα be the |Γ|×1 matrix with wα,γ(t) in row γ, we see from the above calculation that the matrix
equation wT

α (I− tA) = δTα , or equivalently,
(
I− tAT

)
wα = δα holds. It follows then from Cramer’s rule

that

wα,γ(t) =
det(Mγ

α)

det(I− tAT)
=

det(Mγ
α)

det(I− tA)
.

8 Appendix II

Levels 0-6 of the Bratteli diagram for the cyclic group G = Z10 and its module V = G1 ⊕ G9 are pictured
below. The label inside the node is the index of the irreducible G-module. The trivial module is indicated in
white, and the module V in black. The subscript on node λ on level k indicates the number of paths from
0 at the top to λ at level k (equivalently, the number of walks from 0 to λ of k steps on the representation
graph RV(G); also the multiplicity of Gλ in V⊗k; also the dimension of the irreducible module Zλk(G) for
the centralizer algebra Zk(G) = EndG(V⊗k)).
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k = 0 0 1

k = 1 9 1 2

k = 2 8 0 2 6

k = 3 7 9 1 3 20

k = 4 6 8 0 2 4 70

k = 5 5 7 9 1 3 254

k = 6 6 8 0 2 4 948

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

2 5 10 10 5

7 15 20 15 7
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