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Walks on Graphs and Their Connections with
Tensor Invariants and Centralizer Algebras

Georgia Benkart and Dongho Moon*

Abstract

The number of walks of k steps from the node 0 to the node A on the representation graph (McKay
quiver) determined by a finite group G and a G-module V is the multiplicity of the irreducible G-module
G, in the tensor power V®*_ and it is also the dimension of the irreducible module labeled by A for the
centralizer algebra Z;,(G) = Endg(V®¥). This paper explores ways to effectively calculate that number
using the character theory of G. We determine the corresponding Poincaré series. The special case
A = 0 gives the Poincaré series for the tensor invariants T(V)® = @2 ,(V®*)¢. When G is abelian,
we show that the exponential generating function for the number of walks is a product of generalized
hyperbolic functions. Many graphs (such as circulant graphs) can be viewed as representation graphs,
and the methods presented here provide efficient ways to compute the number of walks on them.

1 Introduction

Let G be a finite group, and assume that the elements A of A(G) index the irreducible complex representa-
tions of G, hence also the conjugacy classes of G. Let Gy denote the irreducible G-module indexed by A,
and let y be its character. The module Gg denotes the trivial one-dimensional G-module with xo(g) = 1
forallg € G.

The representation graph Ry (G) (also known as the McKay quiver) associated to a finite-dimensional G-
module V over the complex field C has nodes corresponding to the irreducible G-modules {Gy | A € A(G)}.
For v € A(G), there are a, ) edges from v to A in Ry/(G) if

G, ®V= P aGn (1.1)
AEA(G)

If a, » = ay,, then we draw a,, )\ edges without arrows between v and A. The number of edges a, ) from v
to A in Ry(G) is the multiplicity of Gy as a summand of G, ® V. Since each step on the graph is achieved
by tensoring with V,

m7 : = number of walks of k steps from 0 to \

(1.2)

= multiplicity of Gy in Go @ V&F 2 V&F,

For a faithful G-module V, any irreducible G-module Gy, occurs in V& for some ¢ by Burnside’s theorem

(in fact, for some ¢ such that 0 < ¢ < |G| by Brauer’s strengthening of that result [CR, Thm. 9.34]). This
implies that there is a directed path with /¢ steps from Gg to Gy, in Ry(G).
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The centralizer algebra,
Z1(G) = {z € End(V®) | z(g.w) = g.2(w) Vg € G,w € V&F}, (1.3)
pla%s a critical role in studying V®*, as it contains the projection maps onto the irreducible summands of
®
' Let A (G) denote the subset of A(G) corresponding to the irreducible G-modules that occur in V®* with

multiplicity at least one. Schur-Weyl duality establishes essential connections between the representation
theories of G and Z;(G):

e 7;(G) is a semisimple associative C-algebra whose irreducible modules ZQ(G) are in bijection with
the elements \ of A (G).

e dim Z}(G) = my, the number of walks of k steps from the trivial G-module Gg to Gy on Ry (G).

e If dy = dim Gy, then the tensor space V®* has the following decompositions:

VOk @ m7 G as a G-module,
AEAL(G)
= @ dyZ3(G) as a Z,(G)-module, (1.4)
AEAL(G)
~ D (szg(c)) as a (G, Z,(G))-bimodule.
AEAL(G)

e dimZ,(G) = dimZ3,(G) = mY, if V is isomorphic to its dual G-module.

Thus, the following numbers are the same, and our aim in this paper is to demonstrate various ways to
compute these values effectively:

(1) the number of walks of k steps from 0 to A € A(G) on Ry (G),
(2) the (0, \)-entry (A¥)g \ of A¥, where A = (a, ) is the adjacency matrix of Ry (G),
(3) the multiplicity mﬁ of the irreducible G-module G in V&F,

(4) the dimension of the irreducible module Z3(G) labeled by A € A(G) for the centralizer algebra
Z1(G) = Endg(V®*),

(5) the number of paths from 0 at level O to A at level & on the Bratteli diagram By (G) (see Section
for the definition).

(*) Moreover, when A = 0, these values are all equal to the dimension dim (V®*)C of the space of
G-invariants (V&¥)¢ = {w € V& | g.w = w Vg € G} in V&F,

Many graphs can be viewed as representation graphs Ry (G) for some choice of G and V, and the methods
described here provide an efficient approach to computing walks on them. This is true, for example, of
circulant graphs, as illustrated in Section

We fix a set {c,. },c A(G) of conjugacy class representatives of G, and let €, denote the conjugacy class
of c,,. Then cq is the identity element, |Co| = 1, and the following result holds:



Theorem 1.5. (Theorem[2.3) Assume V is a finite-dimensional module over C for the finite group G. The
number of walks of k-steps from node v to node \ on the representation graph Ry(G) is

(AR = 16171 Y 1€l xulen) Xy (€u)* xalen) = 1617 " xw(9) (9 xalg).  (1.6)
HEA(G) geG

Therefore, the Poincaré series for the number of walks from 0 on A on Ry(G) (hence also for the
multiplicities of the G-module Gy in the tensor powers V®* and for the dimensions of the centralizer algebra
modules dim Z(G)) is given by

PAt) = (AR)oatF =[G \G,tll_x(( Gy A ) (1.7)
k=0 \Y;

HEA(G) geG N XV

Since the space T(V)® = @2, (VE*)C of G-invariants in T(V) = @, VEF is the sum of the trivial
G-summands Gg in T(V), it follows that the Poincaré series for the tensor invariants is given by

PO(t) =IGI7" > |GM|T G|~ 12 - (1.8)

LEA(G) g€G Xv(g

(An alternate derivation of (I.8)) can be found in [DF].) The results in and (I.8) are tensor analogues
of Molien’s 1897 formulas for polynomials that have played a prominent role in combinatorics, coding
theory, commutative algebra, and physics (see, for example, Stanley [S1], Sloane [Sl], Murai [Mu], and
Forger [Fol). Let {z1, ..., z,} be a basis for V, and let S(V) = C|z1,.. ., z,] be the symmetric algebra of
polynomials in the z;. Assume S (V) is the space of polynomials in S(V) of total degree k, and let S (V)
be the sum of all the copies of Gy in S(V) (the A-isotypic component). According to [Ma], the Poincaré
series are given by

A — A k -1 xa(cu) -1 xA(9)
) =S dimS}(V)t" =G| €, |22 |G| G (1.9)
kzzo k ug(:c) a detV(I—th) g;detv(l—tg)
0 _ —1 1
PO =161 Y 1€l g =16 Ejdetv et (1.10)
HEA(G)

From (L.T)) we see that

> anxalen) = xylew)xu(en), (1.11)
AEA(G)

which implies that the eigenvalues of the adjacency matrix A of Ry/(G) are the character values X, (c,) as
p ranges over the elements of A(G), and the eigenvector corresponding to x,, (c,,) is the column vector with
entries x(c,) for A € A(G). The matrix of these eigenvectors is exactly the character table of G. (Compare
[St, Sec. 1] which considers the matrix dI — A, where d = x,,(co) = dimV.)

Theorem 2.1 of [B2] shows that the Poincaré series P*(¢) can be expressed as a quotient of two deter-
minants under the assumption that the module V is isomorphic to its dual G-module. But that assumption is
unnecessary if the matrix A is replaced by its transpose in computing the determinant in the numerator, as in
the statement below. A proof of this result can be deduced from the proposition in Appendix I, which holds
for walks on arbitrary finite directed graphs. In considering the rows and columns of the adjacency matrix
A in the next theorem, we assume that the elements of A(G) have been ordered in some fashion and that 0
is always the first element relative to that ordering.



Theorem 1.12. Let G be a finite group with irreducible modules Gy, A\ € A(G), over C, and let V be a

finite-dimensional G-module. Let A = (am ,\) be the adjacency matrix of the representation graph Ry (G),

1
0

and let M* be the matrix 1 — tAT with the column indexed by ) replaced by 5o = | : |. Then

0
det(M?) det(M?)
det(I—tA)  [len) (1= xulcu)t)

In [Mc], John McKay described a remarkable correspondence between the finite subgroups G of the
special unitary group SUs and the simply laced affine Dynkin diagrams. Almost a century earlier, Felix
Klein had determined that a finite subgroup of SUs must be isomorphic to one of the following: (a) a cyclic
group Z,, = Z/nZ of order n, (b) a binary dihedral group D,, of order 4n, or (c) one of the 3 exceptional
groups: the binary tetrahedral group T of order 24, the binary octahedral group O of order 48, or the
binary icosahedral group I of order 120. McKay’s observation was that the representation graph Ry (G)
for G = Zy,, D,, T, O, I relative to its ' defining representation V = C? corresponds exactly to the affine
Dynkin diagram An_1, Dn+2, Ee, Ex, Es, respectively, where the node labeled by 0 corresponding to the
trivial G-module is the affine node. The matrix C = 21 — A, where A is adjacency matrix of Ry (G), is the
associated affine Cartan matrix. In this case, the Poincaré series for the tensor invariants in Theorem [1.12]
specializes to the following:

PA(t) = (1.13)

Theorem 1.14. [B2, Thm. 3.1] Let G be a finite subgroup of SUs and V = C2. Then the Poincaré series
for the G-invariants T(V)® in T(V) = @7, VE- is
0()_det(I—tA)_ det (I—tA)
det(I—tA)  Tl.eae (1= xul(cu)t)’
where A is the adjacency matrix of the representation graph Ry (G) (i.e. the affine Dynkin diagram corre-

sponding to G), and A is the adjacency matrix of the finite Dynkin diagram obtained by removing the affine
node.

(1.15)

As shown in [B2, Sec. 3], the eigenvalues of A and A are related to the exponents of the finite and affine
root systems respectively, and the determinants in this formula can be expressed as Chebyshev polynomials
of the second kind. Results in a similar vein for the doubly laced root systems can be found in [B1]].

We illustrate the results in our paper by computing many examples, as described below for various
choices of G and V. When G is abelian, the conjugacy classes consist of a single element of G, so we will
always identify A(G) with G when G is abelian.

1. G = Z, (a cyclic group of order r) andV = Gy & G,_1:
In Section 3.1, we obtain a formula for the number of walks of & steps on a circular graph with r
nodes.

2. G = Zyg and V = @j Gj, where j = 1,3,4,9,10,12; or G = Zgy, and V = @j Gj, where
j=1m,2m—1:
As shown in Section[3.2] the first example leads to an expression for the number of walks on the Paley
graph P13 of order 13. Paley graphs arise in studying quadratic residues in finite fields, and the key
fact germane to the results here is that Paley graphs are circulant graphs (their adjacency matrices are
circulant matrices). The same method used for P13 can be applied to compute walks on any circulant
graph. We demonstrate this further with the second example which yields a formula for the number
of walks on the Mobius ladder graph of order 2m.
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In Section we adopt a different approach and determine closed-form formulas for the number of
walks of k steps from O to any node on a Paley (di)graph P, of order p for an arbitrary odd prime
p using Theorem and number-theoretic properties of Gauss sums. When p = 1 mod4, P, is an
undirected graph, and when p = 3 mod 4, P,, is a directed graph (digraph).

. G =S, the symmetric group on n letters, and V is its n-dimensional permutation module:
Our results here lead to a proof of the relation

dimZ,(Sn) = (n!))™' > F(o)** = i {Qf} (1.16)

oES, /=0

between the number of fixed points F(o) of permutations o, and the Stirling numbers {2;“ } of the

second kind, which count the number of ways to partition a set of 2k objects into £ nonempty disjoint
parts. (Note that {2} = 0 unless £ = 0, in which case it is 1.) The relation in was proven by
Farina and Halverson in [FaH]] under the additional assumption that n > 2k using the characters of
the partition algebra Py, (n), which is the centralizer algebra Z;(S,,) = Endg, (V¥¥) when n > 2k.

The partitions A of n index the irreducible S,-modules. Using [BHH, Thm. 5.5(a)], we determine that

dimZp(S,) = (n) ™" > F(o)f xalo) =) {’;} K (n_t,1¢); (1.17)

oES, £=0

where K\ (,_¢ ¢y is the Kostka number, and (n—¢, 1%) is the partition of n with one part of size n—/
and ¢ parts of size 1. Equation (T.16) is a special case of (I.17), since dim Zx(S,,) = dim Z3,(S,).
and the relevant Kostka numbers are all 1 in this case. It follows from with A = 0 that the
dimension of the S, -invariants in V®* is given by

n
k
dim (VER)Se = ()™ ) " F(o)k = 1.18
im (VP = ()T Y D F(@) =) 4 p (1.18)
0ESH =0
and the Poincaré series for the tensor invariants is given by
- 1
PO(t) =)  dim (VEF)Snth = ()=t Y " —— 1.19
(1) = dim (V¥*) (n!) Zl_F(U)t (1.19)
k=0 oES,
It would be nice to have a bijective combinatorial proof of the identity in (L.17]).

. G =7Z,1S,, (the wreath product) and V is its n-dimensional module over C on which G acts by n X n
monomial matrices with entries of the form w’ for j = 0,1, ...,r — 1, where w is a primitive rth root
of unity forr > 2:

In Theorem 4.9] we show that

_ 1 -, k
dim (V&) = rn ! Z " (m)f Z <€1 lo 14 ) 7
* m:1 ) syt m

£1,82,..0m
where the inner sum of multinomial coefficients is over all 0 < ¢y, 0o, ..., #,, < k such that /1 + {5 +
o .
! —1)7
o+l =kand ly =l = - =4, = 0modr, and F,,(m) = % ( ,|) is the number
m! j!

J=0



of permutations in S,, with exactly m fixed points. Equation (4.18)) gives a second expression for the
dimension of the invariants using the fact that the irreducible modules for G = Z,. ! S,, are indexed by
r-tuples a = (@M, a® ... a(") of partitions a? with 3°7_, |a)| = n:

for G =7Z,1S,,. (1.20)

r @)y, i-1\F
dim (VE)6 = 3 (nZlF(((;‘ )t’ ) |
aEA(G) rP(@) TT7, 5% @ ([Ti=y pi(a®)!)

In this formula p;(a() is the number of parts of a'¥) of size j; p;(a) = Y1, pj(a); p(a) =
301 pj(@); and F(a®) = pi(a®), the number of parts of a'?) of size 1, (the number of fixed
points of a permutation with cycle type o). Tt is desirable to have a direct proof of the equivalence
of these two formulas for dim (V®*)¢. When r = 2, the group G = Zy 1 S, is the Weyl group
corresponding to the root systems B,, and C,,, and the dimension of the tensor invariants can be

obtained by specializations of these formulas (see (#.19)). Some particular cases are worked out
explicitly in Sections . 7)and 4.8]

5. G is the general linear group GLo(IF,) of invertible 2 x 2 matrices over a finite field F, of q elements,

where q is odd, or G is the special linear subgroup SLy(F,) of matrices of determinant 1. The G-
module V is the (q + 1)-dimensional module over C obtained by inducing the trivial module for the
Borel subgroup B of upper-triangular matrices in G:
The module V decomposes as a G-module, V = Go @ V,, where G is the trivial G-module and V,
is the ¢g-dimensional irreducible Steinberg module. In Theorems [5.3|and [5.11] we derive formulas for
the dimension of the spaces (V®*)© and (Vgg’k’)G of G-invariants and determine the Poincaré series for
the tensor invariants T(V)® and T(V,)°.

6. G is an arbitrary finite abelian group, say G = Zy, X -+ X Zy,, andV = G, @ --- ® G, where ¢
is the element of G with 1 as its jth component and 0 as its other components:
In Section [6] we show that the exponential generating function for the number of walks on the rep-
resentation graph (equivalently, for the multiplicities of the irreducible G-modules in V®*; also, for
the dimensions of the irreducible modules Z3(G) for the centralizer algebra Z(G)), is a product of
generalized hyperbolic functions. We deduce that the number of walks can be expressed as a sum of
multinomial coefficients. When r; = 7o = --- = r,, = 2, we obtain a formula for the number of
walks on a hypercube of dimension n and the expression for the exponential generating function for
the number of walks as a product of hyperbolic sines and cosines that was given in [BM| Cor. 4.29].
In Sections [6.2]and [6.3] we exhibit a basis for Z;(G) and view Z;(G) as a diagram algebra by giving
a diagrammatic realization of the basis elements.

2 Walks and Poincaré series

2.1 Expressions for counting walks, multiplicities, and centralizer algebra dimensions

There is a Hermitian inner product on the class functions of a finite group G defined by

(6.0) = 6] S ()09 = 1617 3 1€l b(c,)blc,),

9€G HEA(G)



where “—”" denotes the complex conjugate. The irreducible characters x for A € A(G) satisfy the well-
known orthogonality relations relative to this inner product (see for example, [FuH, (2.10) and Ex. 2.21]):

(v xa) = 1617 )~ xw(9)xa(9) = dun, 2.1
g€eG
_ (& if u=v,
6ty xA<cu>xA<cy>={l) o 22)
AEA(G) if p#v.

Therefore, if U is a G-module over C with character x,, then (2.1I)) implies that

(oo x0) = 1617 T x(@)xale) = 16171 D 1€l xy (cu)xa(cn)

9€G HEA(G)

is the multiplicity of G as a summand of U. Applying this to the G-module G,, ® V®¥, which has character
XVX\]f, gives the following result.

Theorem 2.3. Assume V is finite-dimensional module for the finite group G. The number of walks of k-steps
from node v to node ) on the representation graph Ry (G) (equivalently, the multiplicity of Gy in G, @ VEF)
is equal to

(Ak)u,/\ = ’G’_l Z 1€l xo(cp) Xv(cu)k X (cp)- (2.4)
REA(G)

Corollary 2.5. Under the hypotheses of Theorem the dimension of the irreducible module ZQ(G) for
the centralizer algebra Z;,(G) = Endg(V®¥) is given by

dimZ}(G) = (Ao =G0 Y [Culxy(e)" =161 x(9) (2.6)
HEA(G) geG

and when V is a self-dual G-module,

dimZ,(G) = dimZ3,(G) = (A*)oo = |G|™" > [€ul xy ()™ =167 Y xv(9)*. @7
HEA(G) geG

2.2 Poincaré series

It is a consequence of the results in and (2.7) that the Poincaré series

PA(t) =) (AF)on tF = Zm th=> " dimZp(G) t* (2.8)
k=0 k=0

has the following expression

- XaC X
P =67 Y el 6 '3 e 29)
HEA(G) Xvie vl
det(M?) det(M?)

— = , 2.10
det(I — tA) HueA(G) (1= xv(cu)t) ( :



where M? is the matrix I — ¢tAT with the column indexed by X replaced by 6o = [ : | as in Theorem

0
Then a special case of this formula is the Poincaré series for the tensor invariants T(V)® in T(V) =

Dilo Vek:

1 1
PO(t) = |G| ! Culr—r— =167y —
O =16 2, |M|1_Xv(cu)t ¢l g;l—xv(g)t

HEA(G)

(2.11)
_det(M%) det(MP©)
detI—tA)  [lueace) (1 = xu(cp)t)
These are analogs of Molien’s formulas
> _ xXx(u)
3() =) dimSp(V) ¢ =Gt Y yeu|m, (2.12)
k=0 LEA(G) v p
0/ — |c1—1 1
Ps(t) = Gl Z ’e”|det (I — tc Gl Z dety (2.13)

LEA(G)

for multiplicities of G-modules and invariants in polynomials, as described in the Introduction.

3 Cyclic examples

31 G=2,

When G = Z, = Z/rZ, we identify the elements of A(G) with the elements {0,1,...,7 — 1} of Z,.
Then for a € G, the character y, of G, is given by x,(b) = w® for a,b € G, where w = 2™/ We
assume V = G; @ G,_;. The representation graph Ry(Z,) is a circular graph with r nodes, and a step
from a node on the graph amounts to moving one step to the left or to the right. Then for b € G, we have
Xy (0) = x1(b) + Xr—1(b) = w® + w™ = 2cos(27ib/r). Therefore

k k
k k
_ E_ (b —b\k _ k—0)b, —b _ k—20)b
Yoo (0) = X (0)F = (W +070) _ZQ)W( P _ZQ)W( %
Now using the fact that
r—1 .
fm=0 dr,

Zwmb _ {7“ I m . modr (31)
b=0 0

otherwise,

and Theorem we have the following expression for the number of walks of % steps from a to ¢ on
Rv(Zr)I

r—1 k
(Ao =113 Xal0)xy (0)xe(0) = 71 Y wl@9Py™ (’f) (k=200
bEZy o —
i 3.2)
r1 (k—20+a—c)b _
oy (! )zw > (9
=0 0<t<k

k—2{=c—amodr



Therefore, the dimension of the irreducible module Z§ (Z, ) for the centralizer algebra Z;(Z,) = Endz, (V&F)

: anzie) -0 - 3 (1)

0<e<k
k—20=cmodr

In particular, in order for the irreducible Z,-module labeled by ¢ to occur in V®* with multiplicity at least

one, equivalently, in order for dim Z{,(Z,) to be nonzero, it must be that £ — ¢ = 2¢ mod r for some ¢. Let

£, be the least nonnegative integer with that property. Then

dimZg(Z,) = ) (2) ,

0<1<k
L=4cmod T

where 7 = r if r is odd, and 7 = r /2 if r is even. Since the module V is self dual,

dimZy(Z,) = dimZ3(Z,) = ) _ <2€k>.

0<t<k
k—£=0 mod 7
(Compare [BBH, Thm. 2.17(i) and Thm. 2.8(d)].) These formulas can be interpreted as computing Pascal’s
triangle on a cylinder of diameter 7. (See [BBH. Sec. 4.2] for more details.)
Here is a specific example to demonstrate the above results.

Example 3.3. When k£ = 6 and r = 10,

dimZg(Z1o) = ) (1;)

0<e<12
6—¢=0mod5

12 12 12
= =12 24 412 = 948.
(D) +(5) + (1) = 12wz 12 0as

This can be seen from the Bratteli diagram for the cyclic group of order 10 (which can be found in the
Appendix of this paper and in [BBH| Sec. 4.2]). The right-hand column there displays the dimension of
the centralizer algebra. Since the dimension of the irreducible module Z§(Z1¢) is the number of walks of 6
steps from O to 8 on the representation graph for G = Z1p and V = G; & Gy, we have from (3.2)),

dimZ§(Zio) = ) (?) = (2) = 15.

0<t<k
6—2¢=8mod5

This is the subscript on the node labeled 8 on level 6 of the Bratteli diagram for the cyclic group of order 10.

3.2 Circulant graphs

The Paley graphs are a family of graphs constructed from quadratic residues in finite fields. The Paley
graph P13 of order 13 is pictured below. Every Paley graph is a circulant graph, which is equivalent to saying
its adjacency matrix is a circulant matrix. There are many different characterizations of circulant graphs and
circulant matrices. (The article by Kra and Simanca [KS|| nicely summarizes many of them.) Most relevant
here is the fact that a graph is circulant if and only if its automorphism group contains a cyclic group acting
transitively on its nodes. For P13 this group is Z13. In the notation of the previous example, we can take the
module V so that x,, = Zj X;j> where the sum is over j = 1, 3,4, 9,10, 12. Then a step on P13 corresponds

9



Figure 1: Paley graph P13

to tensoring with this particular choice of Z13-module V. Using that fact and Theorem we have the
following (where w is a primitive 13th root of 1):

Corollary 3.4. The number of walks of k steps from 0 to ¢ € {0, 1,...,12} on the Paley graph P13 is

12
k
(Ak)o,c_ (13)7" Z <€1 lo. ... €6> (Zw(h+3é2+453+9e4+10z5+12e6_c)b)

0<¢7 ,bo,...,.0g<k b=0
L1+ +lg=k

k
- > <£1,£2,...,£6>‘

0<ey ,by,..L<k, b1+ +Lg=k
£1+3€o+-+-+12€g = cmod 13

Walks on any circulant graph can be enumerated by exactly the same type of argument.

To illustrate this point with one further family of graphs, we consider the Mobius ladder graph Mo,
with 2m nodes, which is obtained from a prism graph of order 2m by applying a twist, as pictured below
for M1g. These are toroidal graphs that embed without crossings on a torus or projective plane. Since these

graphs are known to be circulant, we can take G = Zs,, and assume the G-module V is chosen so that
Xy = X1+ Xm + X2m—1. The next corollary follows readily from Theorem and (3.1 with w = e>7/2™,

Figure 2: Mobius ladder graph Mg

Corollary 3.5. The number of walks of k steps from 0 to ¢ € {0,1,...,2m — 1} on the Mébius ladder

10



graph Mo, is

2m—1
B 1 k (61 +mlba+(2m—1)ls—c)b _ k
(A )o,c— (2m) Z (51,52,&) Z w = Z 01,09, 03)

0<01 ,£9,63<k b=0 0<01 ,£9,63<k, £14+Ly+E3=k
l1+La+l3=k £1+mlg+(2m—1)f3 = cmod 2m

3.3 Paley (di)graphs P, of order p an odd prime

Suppose p is an odd prime and w = e2™/P_The nodes in the Paley (di)graph P, are labeled by the elements
in {0,1,...,p — 1}, and the ones connected to 0 are labeled by the distinct square values x2 in Z; =
{1,2,...,p — 1} (the quadratic residues modulo p). For p = 13, these are the values z?=1,3,4,9,10,12.
When p = 1 mod4, P, is an undirected graph, and for p = 3 mod 4 it is a digraph, as illustrated below for
p="1.

Figure 3: Paley digraph Py

We take V so that Ry/(Z,) is P,. Then
2
xo(b) = fb):== Y W,
22€Z)
and we know from that the number of walks of k steps from O to ¢ on the graph P, is given by
1 S
(Aoe =~ Xy (0 xeld) = 3 F(B)w ™ (3.6)
P ez, P>
We evaluate this expression using well-known facts about Gauss sums, which can be found for example in
[IR! Chap. 8]. Suppose
1 if p=1 mod4,
£=9. T (3.7
1=+/-1 if p=3 mod4.

The Gauss sum g(b) = ZI;:;(I) whe? equals p when b = 0, and for b € Z;
() = <b> (1) = £\/p if b is a quadratic residue modulo p,
= D B —&£/P if b is a quadratic nonresidue modulo p,

where (z%) is the Legendre symbol, which is 1 if b is a quadratic residue and —1 otherwise. Since the number
of quadratic residues equals the number of quadratic nonresidues, it follows that

%(5 P —1) if bis a nonzero quadratic residue modulo p,
fb)==(g(b) —1) = —%(5\/}5 + 1) if bis a quadratic nonresidue modulo p,
s(p—1) ifb=0.
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Our aim in this section is to prove

Theorem 3.8. Assume P, is the Paley (di)graph of order p a prime and & is as in (3.7). Then the number of
walks of k steps from 0 to c on P, is given by one of the following:

(1) If c is a nonzero quadratic residue, then

k+1 k+1 .
s (20— D"+ (vp— 1) + (D) (p+ 1) ) if p =1 mod4,

k: =
(A%o. 7 (20 -0 + 0+ 1) ((Vp - 1)+ (D e+ 1) (iyp+1)"") if p = 3mod 4.

(ii) If c is a quadratic nonresidue, then

% 2(p—1)k71+(\f—1)k_1+(— 1) (\[4_1)’“_1) if p=1mod4

k —
(A%)o,c = e (20— 1F = (15 + 1P+ (DM (15 4+ 1) ) if p=3mod4.

(iii) Ifc =0, then

(W)a0 = Jez (2= D"+ (65— D + (()F (6vF + 1))

Proof. Since the quadratic nonresidues modulo p are all of the form ax? for some fixed quadratic nonresidue
a, we have from (3.6))

(Ak)chzl (p;1>’f+ > (43\/132—1) b 3 (- <£\[+1> na?e

p

ety et (3.9)
Nk 1Nk , 1\ k , '
() (8 B (o) g
z2€Zy z2€Zy
Now if ¢ # 0, then
(< [\ (-1 ) gle) if p=1mod4
9(=e) = <p )g(l) B (p) ( P )g(l) B {—g(c) if p=3 mod4,
so that .
f(—c):{f(c) Tfpfl mod 4,
(fle)+1) if p=3 mod4.
Therefore when ¢ # 0,
w1 (5" + (5 1) + (- (@“)kf(ac)) if p=1mod4
0,c — .
()" - () @+ 0+ 0 () G +1) it p=3moda
(3.10)

We examine the expression in (3.10) for the scenarios in (i) and (ii) of Theorem

12



(1) When ¢ € Z; is a quadratic residue modulo p, then

ﬁ 2 (p 4_(\/1»9 )k+1 T (- 1)k+1 (\[+1)k+1> if p =1 mod4,
(Ao = { e (2 (B D) (B + 1)+ (DM (5 + 1) (15— 1))
=2ki1p( (- > 0+ (ivp =1 + (D e+ 1) (ivp+ 1)) ifp=3mods.

(i1) When c is a quadratic nonresidue modulo p,
_ _ k—1 .
% 2(p—1)k1—|—(\f—1) + (=1)k \f—i—l ) if p=1 mod4,
B+l .
ﬁ 2(p—1)F - (iyvPp+1)" + (- )k+1(\f+1) > if p=3mod4.

(iii) Finally, when ¢ = 0, then (3.9) implies

(Ak)O,c =

()00 = 5 (20 = D"+ (€5 = D" (0= D+ (<D (6v5+ 1) (= 1))
— Iy (20- D 6B D (DR VB 1))

to give the assertion in part (iii). O

4 The groups S, and Z, 1 S,,

4.1 The symmetric group S,

The irreducible modules for the symmetric group S,, are in one-to-one correspondence with the partitions
A F n, and the conjugacy classes are determined by the cycle decomposition of the permutations, hence they
also are indexed by the partitions of n. If V is taken to be the n-dimensional permutation module on which
S, acts by permuting the basis elements, then for all o € S,,,

xy(o) = try(o) = F(o), (4.1)

where F (o) is the number of fixed points of o. As a result, we know from (2.11) that the Poincaré series for

the tensor invariants T(V)S» is given by
_ 1
P ZK‘BM‘ ) (n') ! Z 1—F(O’)t
ukn 0ESH
4.2)
det(M°) det(MO)

T et —tA)  TL,., (- Fle)d)

where M? and A are as in Theorem For the centralizer algebra Z;,(S,,) = Endg, (V®*) and its irre-
ducible module Z(S,,),

dimZp(Sp) = (n))™' Y F(o

gES, (43)
dimZi(Sn) = (n )71 (€Ul Flc)® = ()™ 3 F(o)?. '
ukn o€Sy

The centralizer algebra Z(S,,) for the S,,-action on the k-fold tensor power of its permutation module
V is a homomorphic image of the partition algebra Py(n) — Zi(S,) = Ends, (V¥¥), and Z;(S,) is

13



isomorphic to P (n) when n > 2k (see for example [HR] for basic facts about partition algebras). Parts (a)
and (c) of [BHH, Thm. 5.5] give expressions for the dimension of Z}(S,,) and Z(S,,) respectively in terms
of Stirling numbers of the second kind, and these expressions combine with the ones above to show that

(n)™" ) F(o)xalo) = dimZp(Sn) = > Ky (n_r.1 {lz}

oES, =0

(n)™" > F(o)** = dim Z,(S,) = {Qf}.
0

oESy (=

4.4)

3 |l

The Kostka number Ky (,,_g 1¢y counts the number of semistandard tableaux of shape A with n — £ entries
equal to O and one entry equal to each of the numbers 1,2,...,¢ such that the entries weakly increase
across the rows and strictly increase down the columns of the Young diagram of A (more details on Kostka
numbers can be found in [Sal Sec. 2.11] or [S2, Sec. 7.10]). The first relation in was proven by Farina
and Halverson in [FaH| under the additional assumption that n > 2k. In that case, Zx(S,,) = Px(n), and

n 2k
2k 2k
the right-hand side E { ’ } = g { ’ } equals the Bell number B(2k). The relations in (4.4) hold for
(=0 /=0

alln, k € ZZI-
Next we examine the particular case of the symmetric group Sy to illustrate the above results.

4.2 The special case of the symmetric group S,

The irreducible modules and conjugacy classes for the symmetric group S, are indexed by the partitions
A4, where X € {(4),(3,1),(2%),(2,12), (1%)}. The trivial module corresponds to the partition (4) with
just one part, and the 4-dimensional permutation module for Sy is given by V = (S4)(4) @ (S4)(3,1)- The
corresponding representation graph Ry (Sy) is pictured in Figure |4} Hence, by (2.4), the dimensions of the

g\

Figure 4: Representation graph Ry (S4) for V = (S4)(4) © (S4) (3,1
irreducible modules Z7(S4) for the centralizer algebra Zj(S4) = Endg, (V®*) are given by

dim Z3(S4) = (A)yx = (2471 ) 1€l X (cu) X (cn).
pH4

The necessary information to evaluate this expression is displayed in the table below and can be gotten from
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the character table for S4 (see for example [FuH, Sec. 2.3]).

1 5 5 4.5)
LN\ Y@ @) G [ @]
|C,| 1 6 3 8 6
X(4)(cp) 1 1 1 1 1
X(3,1)(Cp) 3 1 -1 0 —1
X2y (cu) || 2 0 2 | -1 ] o0
X(2,12)(C,u) 3 -1 -1 0 1
X4 (cp) 1 -1 1 1 | -1
xF(cu) 4F 2F 1 |0
From this we determine that for k£ > 1,
(@) ~ [k
k k _
dim Z,) (S1) = 5 (4 +6-2 +8) (;{A)
(3,1) k ok |k k k k
dim Z(*V(84) = (3-45+6-2%) <_ {1}+2{2}+3{3}+3{4}>
(22) 1 ko |k k k
dim 227 (8,) 4(2 4 8) (_{2}+2 S +2 4})
i 4.6)
fooli))

_ 1 k
dim 2\ (s,) = 3 (4k—6-2k+8> <: {3} +

dim Zy(S4) = dimZ{)(S) = o (42k+6 22k+8> (:i{i’“}).

(=1

On the right-hand side above, we have given expressions for the dimensions in terms of Stirling numbers of
the second kind, which were derived using the following closed-form formula:

(i} =age () 2

The coefficients of the Stirling numbers {];} are the Kostka numbers K, (,,_;¢) for n = 4, and they

enumerate the semistandard tableaux of shape A and type (4 — £, 1¢) as pictured below for A = (22):

(=2 (=3 (=4

4.3 Bratteli diagram

The Bratteli diagram By(G) is an infinite graph with vertices labeled by the elements of Ax(G) on level
k. A walk of k steps on the representation graph Ry (G) from 0 to A is a sequence
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()\(0) =0, @ Ak = )\) starting at A(9) = 0, such that A\ ¢ A;(G) foreach 1 < j < k, and
AU~ is connected to AU) by an edge in Ry/(G). Such a walk is equivalent to a unique path of length & on
the Bratteli diagram By/(G) from O at the top to A € A;(G) on level k. The subscript on vertex A € A, (G)
in By(G) indicates the number mﬁ of paths from 0 on the top to A at level k. This can be easily computed
by summing, in a Pascal triangle fashion, the subscripts of the vertices at level k£ — 1 that are connected to
A. This is dimension of the irreducible Z;(G)-module Z}(G), which is also the multiplicity of Gy in V&*.
The sum of the squares of those dimensions at level % is the number on the right, which is the dimension of
the centralizer algebra Z;(G) by Wedderburn theory.

The top levels of the Bratteli diagram for the group G = Sy and its 4-dimensional permutation module
V are exhibited in Figure[5]
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Figure 5: Levels k = 0, 1, ..., 6 of the Bratteli diagram By, (Sy4) for S; and its permutation module V

4.4 The group Z, S,

In this section, G is the wreath product Z, ! S,, viewed as n X n monomial matrices with entries of the
form w’ for j = 0,1,...,7 — 1, where w = €2™/", a primitive rth root of unity for » > 2. The module
V is the space of n x 1 column vectors with complex entries on which G acts by matrix multiplication.
We present a formula for the dimension of the G-invariants (V®]‘7)G in V®k, equivalently, for the dimension
dimZ2(G) = |G|~ Y 96G Xv (9)¥ of the irreducible module labeled by 0 for the centralizer algebra Z,(G) =
Endg(V®*). Our formula will depend on the number of entries on the main diagonal of a monomial matrix
in G (the number of fixed points of the underlying permutation in S,), and so for m = 1,2,...,n, we
set F,(m) := |{o € S, | F(6) = m}|. This number, which is sometimes referred to as a rencontres
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number, counts the number of “partial derangements” of n with m fixed points. It equals (7?1) Dyp—m, where
Dy, —m, is the number of derangements of n — m (permutations in S,,_,, with no fixed points). From known
expressions for the derangement numbers, we have

Fa(m) = CD O = (n> w-mpy CF B EF @8

Theorem 4.9. For G = 7,1 S,, and V the n-dimensional G-module on which G acts by monomial matrices,
the dimension of the space of G-invariants in V¥ (equivalently, dim Zg(G)) is given by

k
. ®k: m
dim (V - r”n' Zr Fu( Z (617627“.’%) , (4.10)

l1,02,....m

where the sum is over all 0 < 61,62,.. by < ksuchthatly +blo+ - -+ by, =kandly =4y = --- =

ISR/
Ly, = 0 modr, and F,,(m) = n' ~ ,') . In particular, the space (NV®*)C of invariants is 0 unless
m! 4 g!
J=0

k=0modr.

Proof. We know from Theorem [2.3|that dim (V&¥)¢ = (AK)gq = |G|7! > geG Xy (g)¥, from which we

have
n

dim (V®k)G _ rnln' Z Fn(m)k Z (wln + wb2 4t wbm)k
m=1 b1,b2, b €{0,1,....r—1}
1 n k r—1 r—1 r—1
_ g Z Fn(m)k Z <€ y , ) Z w€1b1 Z wﬁzbz - Z wﬁmbm
" m=1 Gttt b=k N 12 M T by=0 b =0

1 < k
_ F,,(m)krm by (3.1).
rmnl Z (m)"r Z <€1,€2,...,£m> y G-1)

m=1 L1 +loy++lm=k
l1=Lly=-=lm=0modr

Remark 4.11. It is a consequence of (4.10)) that for G = Z, 1 S,,,

k
dim (VEH)© = M ( ) 4.12
'm ( T”n' Z " Z <q1707 qr, ... ,qmr> ( )

(g1+q2+-+gqm)r=k

Therefore, the exponential generating function for the invariants is given by

N " .
Zdum (V&F) !_r"n'mz: ZF Z ) k(qlr,m,...,qmr)k!

k=0 1 (QI+q2+“‘+Q'm) -
1 o [ o1 (Fa(m)t)™” o1 2k - )
I e Sl N B o
Tnn'mzl q1:0 (qlr) o= 0 q2r am =0 er
1 n

(4.13)
where hy is a generalized hyperbolic function (see (6.10) and (6.14) below for more details.)

17



4.5 G=17Z,15, for some special choices of r and n
Assume G = Z,. 1 Sg and V = C2. Then since F5(1) = (%) D; =0, and Fo(2) = (3) Dy = 1, we have
1 k
. ®k\G _ ;50 _
dim (VE9)® = dim Z}(G) = > (zl,@)' (4.14)
L1+Lo=k
£1=£y=0mod r

So, for example, when r = 2,

1 k L ok—1 k—2 . .

- = -2 =2 f > 2
)G {2 2 <2€> 5 if £ isevenand k ,

0

if k£ isoddand k > 1. (4.15)

> > t2 1—3t2
=Y dim(VEHCF =142y 42y =1 =

dim (V&F
PO

4.6 The group G =7, S, — a different approach

The irreducible modules G, for G = Z, ! S,,, hence also the G-conjugacy classes C,, are labeled by
r-tuples of partitions a = (a(V),a?) ... o) such thatn = "7_, |a?)| (see for example [AK] Sec. 2]).
For z € C, let J;(x) be the £ x ¢ Jordan block matrix given by

01
0 01
Jo(z) =
0 1
xz 0 0 0
Then a conjugacy class representative of G corresponding to « is
T
— !
e = D0,
=1 p
where w = e>™/7, the parts ozz(,i) of the ith partition a(*) are agi) > ag) > ..., and this sum represents the
n X n matrix with blocks down the main diagonal starting with Ja(l) (w?), then Ja“) (w?), ..., and continuing
1 2

(r)

"=1) corresponding to the last part a, ~ of the last partition o),

down to Jay) (w

For a partition A, assume p;(\) is the number of parts of A equal to j. Set
n
Z) = ijjo\) p]()\>'
j=1

This is the order of the centralizer of an element of S|, with cycle structure given by the partition A. Now

for o = (oM, a?, ..., al")), we define
pila) = pj(@®) and  pla) =) pja) (4.16)
=1 =1
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Thus, p;(c) is the total number of parts equal to j in the partitions comprising «, and p(c) is the total
number of nonzero parts in the partitions of «. Then according to [AK] Sec. 2], the size of the centralizer of
Cq in G is given by

T

P H(rj)Pj(a(i)) pj(a(i))! () ijj(g) (H pj(a(i))!> — rp(@) Hza@')- 4.17)
i j=1 i=1

i=1
Hence, the size of the conjugacy class C, corresponding to the element c,, is given by

16l _ |G|

Col = —.

Cal = Zy -~ pp(e) H?:l ij(Q) (ngl pj(a(l))!)
Thus, we know that

_ . _ Xy (€a)”
dim (V¥¥)¢ = dim Z)(G) = |G|~ |Cal Xy (ca)® = o T TR
aezA(:@ S aezA(:@ rP(@) [Ty 5% ([Ti=y pi(a)1)
Observe that . .
Xy (Ca) = trv (ca) = Z pr(a®)wi~! = Z Fla®)wi?
i=1 i=1

where p; (a(i)) is the number of parts equal to 1 in a?), as the only contributions to the trace come from the
matrix blocks of size one in c,. Since that is the number of fixed points of a permutation of cycle type old),
we write F(a(i)) by a slight abuse of notation. Therefore, we obtain a second expression for the dimension
of the G-invariants in V®* using the definitions in (#.16):

(Sr Fla®)wt)’

dim (V¥)¢ = dimZQ(G) = e for G =Z,1S,, (4.18)
r (0%

ot P =i 7@ (ITizy py(a®))
The group G = Z21S,, is the Weyl group for a root system of type B,, or C,,. The irreducible G-modules
are labeled by pairs a = (o)), a(?)) of partitions such that || + |a(?)| = n. Since w = —1 in this case,

we have the following formula for the dimension of the space of G-invariants in V®:

Fa) — F(a®))"
dim (V¥)¢ = dimZ0(G) = @) (( ) —H ))

R for G = Zy 1S,
ainie) 2 [T}=1 7P (pi(aM)!-p;(a@)!)

(4.19)
where p;(a(?) and p(«) are as in (#.16).

Remark 4.20. In [T], Tanabe investigated the centralizer algebra Z(G), where G is a complex reflection
group G(m, p,n) viewed as n x n matrices acting on V = C". The group G(r, 1, n) is the wreath product
Zy 1 Sy Using results from [T1], we showed in [BM]] for G = Z5 ! S,, that

dimZ,(G) =) " T(k, ),
s=1

where T(k, s) is the number of set partitions of a set of size 2k into s nonempty disjoint parts of even size.
The numbers T(k, s) correspond to sequence A156289 in the Online Encyclopedia of Integer Sequences
[OEIS] and have many different interpretations. They are known to satisfy

s

2s 2k
T(k -2k
(ks 8) = oo 12 < > anlp] )<2)\1,2)\2, ...,2/\5)’
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where the last sum is over all partitions A = {A\; > A\g > --- > A\g > 0} of k into s nonzero parts \; (see

[BM, Sec. 4.2] for details). In particular, since V is self-dual, we see that

dim (V¥2)¢ = dimZ,(G) = > T(k,s),  forG
s=1

= Z2 1Sy, 4.21)

It would be interesting to show the equivalence of the formulas in Theorem and (4.19) and then relate

them (with 2k in place of k) to (4.21).

Next we derive a few special instances of the formula in (4.19).

4.7 The G = Z, S, case revisited

It is convenient to display the information needed to compute dim (V&*)¢ = dim Z%(G) using @19) in the
following table. Since the partitions in « are small, we won’t bother using parentheses in listing them.

o [ Fa) [ | L L et | 20 2L 20 (i) pia®))
(2,0) 0 0 0 1 4
(1%,0) 2 0 2 2 8
(1,1) 1 1 0 2 8
(0,1%) 0 2 -2 2 8
(0,2) 0 0 0 1 4
(422
Therefore, we have
k
(Fla®) — F(a®)) 2 1 (—2)f

dim (VEF)© = dim 29(G) = ‘
Y 2p(a) H?Zl jPil@) (H?Zl pj(a(Z))!)

B ok—2 if k£ isevenand k > 2,
o if k isoddand k > 1,

in agreement with (4.13).

20

= 3 for G = Zy 1S9
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48 G=1751S3
The relevant information for applying (4.19)) is given in the table below.

trV(Cg) = a 3 pila
a [ Fe®) [Fa®) |0 p ey | p@) | 2@ T (pial)!-pia®))
(3,0) 0 0 0 1 6
((2,1),0) 1 0 1 2 8
(13,0) 3 0 3 3 48
(2,1) 0 1 -1 2 8
(12,1) 2 1 1 3 16
(1,2) 1 0 1 2 8
(1,1%) 1 2 -1 3 16
0,13) 0 3 -3 3 48
(0,(2,1)) 0 1 -1 2 8
(0,3) 0 0 0 1 6
(4.24)
FlaM) — F(a®@))*
aehG) 2p(a) szljp](g) (p](a(l))‘ . pj(a( ))‘)
k _1\k k _a\k
_ 15(1F + ( 1)31;(3 + (—=3)%) for G — 79 1S
b1 (4.25)
_ % if k isevenand > 2,
0 if £ is oddand > 1.

1—9¢t2 4+ 3t4
(1—2)(1-92)

e’} 1 e’} ] )
POt) =D dim (VM) th =1+ 3 > B 4 5)tH =
k=0 j=1

5 G= GLQ(]FQ) and G = SLQ(]FQ)

Let IF, be a finite field of ¢ elements. Then ¢ = p* for some prime p and some ¢ > 1, and we assume p
is odd to simplify considerations. In this section, G is the general linear group GLy(F,) of 2 x 2 invertible
matrices over [, or the special linear subgroup SLy(F,) of matrices with determinant equal to 1. We assume
V = Inngo, the G-module induced from the trivial module Bg for the subgroup B of upper triangular
matrices in G, and V, is its g-dimensional irreducible summand, which is Steinberg module. (Here we write
V, rather than the customary St, to emphasize its analogy to V in previous sections.) Our aim in this section
is to develop a formula for dim (V®*)© and for dim (V?”“)G and to determine the corresponding Poincaré
series for the tensor invariants.

51 G=GLy(F,)

0
GLy(F,) and V be the induced G-module V = Ind$By = C[G] ®@cg) Bo- Since the order of G is

Let B = {(m Z) ’:r, zeF;,ye Fq} be the Borel subgroup of upper-triangular matrices in G =
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q(q+1)(g—1)? and the order of B is ¢(¢ — 1)?, we have dimV = ¢ + 1. The module V decomposes into a
sum V = Gg @ V,, of a copy of the trivial G-module Gg and a copy of a g-dimensional irreducible G-module
V, (the Steinberg module).

Let € be a non-square in ¢, and define the following elements of G,

_(x O [z 1 [z 0 (T ey
ar_(o x) bx_(o :c) CW‘(O y) d”‘(y x> (5.1)
(z € Fy) (z € Fy) (z,y €Fy,z#y) (y € F5)

We will use the information in the table below, which can be derived from [FuH, Sec. 5.2]. As before, c,,
p € A(G), is a representative of the conjugacy class €, of G.

o T e b ey, [ dy ] o
no. of suchclasses || g —1 | ¢—1 %(q —1)(qg—2) %q(q -1)
|Cyl 1 [ ¢-1 ¢ +q ¢ —q
Xy (c“) q+1 1 2 0
Xv, () q 0 1 -1

Therefore, we have the following consequence of Theorem [2.3]

Theorem 5.3. Assume G = GLa(IF,) where q is odd.

(a) For the G-module V = Inngo = Go © Vq induced from the trivial module Bg for the Borel subgroup
B of upper-triangular matrices in G,

. 1 when k£ = 0,
q+1 +q(g—2)-2"""4+q—1 when k > 1.
i (0 e 20
The Poincaré series for the G-invariants T(V)® in T(V) = @ge, V& is
- 1—(q+3)t+ (2 + 3)t* — gt®
PO(t) =) dim (VEF)CF = . (5.5)
(0= dim (V) = S - (5 0

(b) For the Steinberg module V4, dim (V?”“)G = 1whenk =0, and

. 1 _ _
dim (Vg@k)G = 3Z 1) <2qk U glg =D (=) 4+ (g + 1) (g — 2)) when k > 1, (5.6)

2 1 /-1 ‘
==Y it k=20+1>1,
q° — ;

— 3=0

_ e e2 (5.7)
I+ g——— =1+ ¢7"! if k=20>2.

= . 1—qt+13
PO(t) = ) dim (VER)C ¢k — . 5.8
o) kzo m e = Ty U (=) ©-8)
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Proof. (a) From Theorem[2.3|and Table [5.2] we know that
1

dim (VE)® = dimZ,(G) = — Y [Culxy(cu)”
Gl HEA(G)
1 & 2 kL kLo 2 0k
CENZCES) ((q—l)(q+1) +(g=1(¢" = 11"+ Ja(g + 1)(g — 1)(g = 2) 2" + 5¢°(¢ = 1)70 >
1 _ _
= D (@+1 " +alg—2) 2 +g—1) whenk>1.
Therefore,

PO(t) = i dim (VER)C k=1 + ! (i(q + 1) 4 q(g—2)- 284 (g — 1)) tk
k=0

q(qg—1) \ =
=14 _ (t i(q + D) (g — 2)ti ok =1h=1 (¢ — 1)titk_1>
q(q - 1) k=1 k=1 k=1
1 t alg—2)t  (¢—1)t
BRRTCE (1—<q+1>t+ [T )

1= (q+3)t+ (2q + 3)t* — gt
A=A =-2)1—(g+1t)

(b) Now for V, and k& > 1, we have

dim (VEH)6 = ‘; S leul v, (c)*
LEA(G)
= . <(q—1)qk+(q—1)(q2—1)0’“+lq(q+1)(q—1)(q—2) 14 2g2(g—1)? (—D"’)
(¢ —1)%q(g+1) 2 2

1 k—1 k
. — —1)(-1 1 —2)
27—y (24 e DED (- 2)
2(_1 -1 '
g N ¥ if k=20+1>1,
-1 =
- 2?1 (=2 .

52 G =SLy(F,)

For the group G = SLy(F,) (¢ odd), we introduce the following elements of G:

0 1
Uy = <g $1> (:C # 0)) Vy = <0 31/> y Wgy = (:;I; i) ('12 - €y2 = 1) (59)

We will use the information in the following table, which can be derived from [Mur, Chap. 3] or [FuH,
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Sec. 5.2]. As before, c,,, 1 € A(G), is a representative of the conjugacy class C,, of G.

(5.10)
’ Cu H +1 ‘uz,x;é:tl‘vy,yzl,a‘—vy,y:—l,—g‘wm,y,x;é:lzl‘
no. of such classes 2 2(q—3) 2 2 2(q—1)
1Cul 1 gla+1) | 3(®—1) 2> = 1) q(q —1)
Xy (Cu) q+1 2 1 1 0
Xy, (1) q 1 0 0 —1

The order of G = SLy(IF) is ¢(¢ — 1)(¢ + 1) and the order of its Borel subgroup B of upper triangular
matrices is ¢(q — 1). Therefore, the induced G-module V = Indg Bo has dimension ¢ + 1, and V = Go @V,
where V, is the g-dimensional irreducible Steinberg module for G. Using this Table and Theorem
we have the next result.

Theorem 5.11. Assume G = SLy(F,), where q is odd.

(a) ForV = Inngo = Go @© Vy, the G-module over C induced from the trivial module By for the Borel
subgroup B of upper-triangular matrices in G, we have

e 1 when k =0
dim (V&F)® = 5.12
im (VZ5) S — (2(q LR 4 g(g—3) 2" 1 2(g - 1)) whenk > 1. 012
(g —1)
The Poincaré series for the G-invariants T(V)® in T(V) = @52, V= is
oo
. 1—(qg+3)t+ (2¢+3)t> — (¢ — 1)t3
PO(t) =) dim (VEF)C¢F = 5.13
0 =) dim (v*") (-0 —20(—(g+ D0 Gy
(b) For the Steinberg module V4, dim (V?k)G = 1when k =0, and
1
; ®k\G _ k—1 2 k
dim (V") —m@q +(¢g—1)7(-1) +(q—3)(q+1)) when k > 1,
-1
2((1% -1 2j :
— J=0
N (g2 -1 =2 yiit
14205 — =142 ¢t if k=20>2.
j=0
(b) The Poincaré series Pg () for the G-invariants T(V)® in T(V,) = @72, Vg@k is
o
) 1—qt+ 2t
PO(t) =)  dim (V&G = : 5.15
o) g m VT = - = 615
Proof. The proofs are analogous to those for Theorem [5.3|and are left to the reader. O
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6 The case G is abelian and exponential generating functions

It is convenient to regard an arbitrary finite abelian group (G, +) as a multiplicative group and write e? for
a € G, so that the group operation is given by e®e® = €2 a b € G, where the sum a + b is addition in
G. The identity element is €°. Since G is abelian, the irreducible G-modules are all one-dimensional, and
we label them and the conjugacy classes with the elements of G. Thus, for a € G, let G, = Cx,, where

ePx, = xa(b)x,, and let y, denote the corresponding character. The characters satisfy

Xa(b+b’) = xa(b)xa(b’) forall a,b,b’ € G, and 6.1)
Xata'(b) = xa(b)xar(b)  forall a,a’,b € G, (6.2)

as G, ® Gy =2 G, 4. forall a,a’ € G. Since xa(b)x—a(b) = xa_ar(b) = xo(b) = 1 and x,(0) = 1 for all
a, b € G, the following hold:

X-a(b) = Xa(brl
Xa(—b) = Xa(b)_l = Xa(b).
By the fundamental theorem of finite abelian groups, we may suppose that G = Z,, X Zy, X -+ X Zy,,

where the r; are powers of not necessarily distinct primes. The elements of G have the form e®, where
b= (by,bs,...,by) and b; € Z,, for each j. Set w; = */i. Then G, = Cx,, where

I
>
j5]
—
o
N—

(6.3)

ez, = Xa(b)za and xa(b) = w‘l“blw‘g?b? Ce o nbn, (6.4)
Let €; be the n-tuple with 1 in position j and O for all its other components. Here we suppose that
V=G, @ ®Gg,,soforb=(by,by,...,b,) € G, the character values are given by

k
n

() = xe, () =Y w Xyor (0) = Xy () = [ S w | (6.5)
j=1 j=1

J=1

We have the following corollary to Theorem [2.3}

Corollary 6.6. The number of walks of k-steps from node a to node c on the representation graph Ry (G)
for G ="Zy, X Zipy X -+ X Ly, and\V = G, & --- D G, is

k
Ae= 3 (41,62,',.,&1) 6.7)

O§€17£27"'3£7L§k

where the sum is over all {1,0o, ... 0, such that {1 + lo + --- + £, = k and ¢; — a; = £; modr; for all
iell,n]={1,2,...,n}
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Proof. Now
(Ak)a,c = Z |G|_IZXa(b)X§(b)Xc(b) = |G|_IZXafC(b)X€(b)

0<lr,ln<k beG beG
k
n
_ —epb _ b;
_ ‘G| 1Zw§a1 c)br w7(1an ¢n)bn wj]
beG =1
_ —e1)b _ k
= |G| 1Zw§al bt yfan—en)bn (f p ' >wf1b1 wynte
beG 0<l1, A<k N 1E200-50n
k ri—1 rn—1
_ |G|_1 Z < Z §a1701+51)b1 . Z wganfcn“l’en)bn
01,09,....¢
01yl <l N 177200000 b1=0 bn=0

k
= 2 <£1,£2,...,en>

Ogely---,zngk
(6.8)

by applying (3.1) repeatedly, where the sum is over all /1, ¢, ..., ¢, such that 1 + ¢o + --- 4+ ¢, = k and
0 =c; —a;modr; foralli € [1,n]. O
6.1 Exponential generating functions

Force G=Zy X Zyy X -+ X 2Ly, andV = G, & --- P G, , let

oo tk
g(t) =D (Ao
k=0

denote the exponential generating function for walks of k steps from 0 to c on the representation graph

Rv(G) (and also for the multiplicity of G in V®* and for dimension of the irreducible module Z(G) for

the centralizer algebra). We determine an expression for g©(¢) in terms of generalized hyperbolic functions.
The generalized hyperbolic function h;(t,r) for j € Z is defined by

r—1
hi(t,r) =171 Y wlIme™t, (6.9)
m=0
where w = ¢2™/"_ In particular,
r—1
hy(t,r) =r~t ) ™, (6.10)
m=0

so that hy(¢,1) = e’ and hy (¢, 2) = cosh t. Because
hj+r(t,r) = hj(t,’l“) forj € Z,
there are r distinct generalized hyperbolic functions h;(¢,r) for a fixed value of .

Theorem 6.11. For G = Zy, X Zy, X -+ X Ly, and c = (c1,Ca,...,¢,) € G, the exponential generating
Sfunction for the number of walks of k steps from 0 to c on Ry (G) is

(o} S tk
g (t) = E (Ak)o,cg = hl+cl (ta Tl)h1+02 (tv TQ) e hl+cn (t7 Tn)-
k=0 ’
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Before giving the proof, we note the following immediate consequences.

Corollary 6.12. For G = Zy, X Zy, X -+ X Ly, andV = G, & --- B G,,,

[e.9]

(@) g°(t) = ) (A" hi(t,ri)ha(t,r2) - ha(t, 7).

k=0
(b) When G = Z, then g°(t) = hy(t,r)".

Remark 6.13. Part (b) of this corollary generalizes [BM, Cor. 4.29], which says that the generating function
for the number of walks on a hypercube of order n is given by g%(¢) = (cosh t)™ = hy(t,2)". Theorem 4.25
of [BM]] shows that for Z7%,

g%(t) = (cosh )"~ (sinh )9,

where h(c) is the Hamming weight of ¢ (the number of ones in c). This follows directly from Theorem|6.11]
since each component of ¢ equal to 1 contributes a factor ha (¢, 2) = sinh ¢, and each component of ¢ equal
to 0 gives a factor hy (¢, 2) = cosh .

Proof of Theorem Observe that by (6.5) and Corollary [6.6]

20 = S (Mo 1y
k=0 ’

k

[ee] n k
—1 —bic1 _bncn bj t
CEDIND SR § ) s

J=1 '

k=0 b=(b1,....bn)EG

b1l 44 bl 10
_ —1 —1 71;101 bncn wy Tttt wyrintin
k=0 beG Oetly=k L n
ri—1 oo 140 rn—1 oo é 12
_ 1 —b161 wl t ! —1 —bncn o
! E A
b1=0¢1= bn=04¢,=0
ri—1 rn—1 b
— 1 § : W] —bicy "-’1 NI 7‘;1 § : wfbncnewn"t
b1=0 b, =0
= hl—l-cl (ta Tl) h1+62 (ta TQ) t h1+Cn (t7 TTL)' U

Using (3.1) and the definition of the generalized hyperbolic function h;(¢,7), one sees that the Taylor
series expansion of h;(t,r) is given by

oo tmr+] 1
Z ol (6.14)
o (mr+j —

Suppose ¢ = (c1,¢2,...,¢n) € G = Zypy X Lpy X -+ X Ly,, where 0 < ¢; < 7; for all j, and let

|c| = >=%_; ¢j. We have shown in Theoremm that the exponential generating function g(¢) is given by

o0

= (AY) Oc - =hige, (8 r1)hie, (6 72) -+ hige, (8,70).
k=0



Combining that with the expressions coming from (6.14)), we have

gc(t) = h1+01 (t7rl)hl+02 (ta TQ) e h1+cn (tvrn)

i tari+e i ta2r2tc2 i tanTntcn
- 1 1 !
= (@ et |\ 2= (qar2 + e2)! = (@nrn + cn)!
S 3 k! ¢
- ! .. [ k!
s v (qir1 4 c1)W(gara + c2)! -+ (qurn + cn)! k!
Setting ¢;7; +¢; = £; fori = 1, ..., n gives the result in Corollary[6.6) with a = 0, which provides a formula

for the dimension of the irreducible module Z(G) for the centralizer algebra Z;(G):

k
dim Z$(G) = (AF)g . = > <€1 0. £n>' (6.15)

0<ly,02,....n <k

The sumis overall 0 < ¢q,4s,...,¢, < ksuchthat{;+---+/¢, = kand {; = ¢; mod r; foralli € [1,n].
In particular, when G = Z;, X Zy, X - -+ X Z,, and c = 0, then

dim (VER)© = dimZ%(G) = Y (61 . k , ) (6.16)

0<ly,02,....n <k

where (1 + 0y + -+ + £, = kand £; = Omod r; for all i € [1,n].
An alternate approach to the result in (6.13) is via characters. For G = Z,, X -+ X Z,, and V =
Gey @ - @ Ge,, where G, = Cz,; for all j, the character of the kth tensor power of V is given by

Xver = Xg = (Xer + -+ Xen)"

_ k 0 tn
= 2 <el,62,...,£n>xfl Xen

0<0q Lo, tn <k
G +logFtln=k

k
= Z (617527 ey £n> X£151+f2€2+...+£n6n'

0<0q Lo, tn <k
1 +Llo++ln=F

Now for ¢ = (¢1,c2,...,¢,) With 0 < ¢; < r; for all i € [1, n], the multiplicity of the character . in this
expression is exactly the number of n-tuples (¢1, ¢, . .., ¢, ) such that £; = ¢; mod r; for all ¢ € [1,n], as in
(6.15).

Example 6.17. Consider G = Z, x Zs and the tensor power V= for V = G., @ G.,. Then

(Xa1 + X£2)6 = X6e; T 6X551+52 + 15X421+252 + 20X3£1+352
+ 15X261+452 + 6X61+5€2 + X6e2
= 16X2€1 + 12X€1+82 + 16XO + 20X3€1+52~

Thus, dimZ3Y(G) =16, dimz{""(G) = 12, dimZ{""(G) = 16, and dim Z{*(G) = 20.
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k=0 (0,0)1 1

k=1 (1,0)1\(0,1)1 2
k=2 (2,0)1\(1,1)2\(0,0)1 6
k=3 (3,0)1\(2,1);.,,\(1,0)3\(0,1)1 20
k=4 (0,0;;_—— (31)4\(20)6\\(11)4 72
k=5 (1,0;(;_—— __((_),-1;(;\"(;0—)_1(?\(2,’1)10 272
k=6 (2,0)’1;?\—(_1_,i)_l_z"\-(;):()-);?\(.‘a,l)zo 1056

Figure 6: Levels k = 0,1, ..., 6 of the Bratteli diagram for Z4 X Zo

6.2 The Bratteli diagram and a basis for Z,(G) when G = Z,, X Z,, X --- X Z,, and
V:Gel@...@Gsn

A walk of k steps on the representation graph Ry (G) from 0 to c corresponds to a path (c(o), W ., c(k))

on the Bratteli diagram By (G) starting at () = 0 = (0,...,0) at level 0 and ending at ¢ = c*) at level k
such that ¢ € G for each 1 < i<k, and @) = cli=1) 4 €, for some v; € [1,n], where c@ is connected
to c~1) by the edge corresponding to ; in Ry(G). The subscript on node c at level k in By/(G) indicates
the number of such paths, which is the multiplicity of the irreducible G-module G, in V®* and also equal to
the dimension of the irreducible Z;(G)-module Z§(G). The sum of the squares of those dimensions at level
k is the number on the right, which is the dimension of the centralizer algebra Z;(G). Levels 0,1....,6 of the
Bratteli diagram for Z, x Z are displayed in Figure [6] The nodes of the diagram correspond to elements
c = (c1,¢2) € Zy X Zy and have ¢; € {0,1,2,3} and ¢ € {0, 1}.

Remark 6.18. The subscripts in the last row of the Bratteli diagram in Figure [6] exactly match with the
dimensions determined in Example The sequence of numbers in the right-hand column of Figure [
(i.e. the dimension d(k) of the centralizer algebra Z;(Z4 X Z2)) satisfies d(k) = a(k — 1) in sequence
[OEIS, A063376], where a(—1) = 1 and a(k — 1) = 2¥=1 4 4%=1 for k£ > 1. Among the objects that
a(k — 1) counts is the number of closed walks of length 2k at a vertex of the circular graph on 8 nodes,
which is the same as dim Z(G) for G = Zg and V = G; @& Gy (see Section 3.1)).

Much of the next result is evident from the above considerations.

Theorem 6.19. Assume G = Zy, X Zy, X -+ X Ly, and\V = Gz, & --- @ G;,,. Then the following hold:
(i) Forc=(c1,...,cy) € G, a basis for the irreducible Z1,(G)-module Z$(G) C V®F is

{x('y) = Tey, @ ® Te,, |vi € [1,n] foralli € [1,k], and Zfﬂg% = c} .
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(ii) e®z(7) = xc(a)z(v) for all a € G and all x(v) in (i), where xc(a) = [[}_, w?jcj and w; = ¥/
for all j € [1,n], so that Z5,(G) is also a G-submodule of V®E. it is the sum of all the copies of the

irreducible G-module G in V.

(iii) Fory = (y1,-- ), 8= (B1,....B) € [Ln)F with ¥ e, =S 4 let ES € End(VEF) be
defined by Eg:v(a) = Sa2(B) for a € [L,n]*. Then EZEg = 55779E5 for all such ¥, n, and the Eg
determine a basis for Z1,(G) = Endg(V®F).

Proof. From the calculation below it is easy to see that the transformations Eg for v, B € [1,n]" as in (iii) of
Theorem commute with the action of G on V®*, hence belong to Z;(G). Indeed, suppose a € [1,7n]"
with >>F_ ¢,. = ¢’ € G, and assume a € G. Then

eaEg (x(a)) = 0o~ 2(B) = dayxc(a)z(B)
Egea (55(04)) = X' (a)0a 7 (B)-

Both expressions are 0 when o # v, and when o = +, then ¢’ = ¢, and the two expressions are identical. The
transformations Eg are clearly linearly independent. The number of v = (71, ..., 7x) such that Ele Evy; =
c is the number of paths from 0 at level O to c at level £ of the Bratteli diagram By (G), which is dim Z§,(G).
Therefore, the number of Eg in (iii) equals (dim Zi(G))Q, and since dimZ(G) = Y . (dim Zi(G))z,
taking the union of the sets of transformations Eg as c ranges over all the elements of G will give a basis for
Z(G). O

Remark 6.20. The condition Z;“:l Evyy = Zle €3, in Theorem is equivalent to saying (#v; = j) =
(#B; = j)modr; forall j = 1,...,n. That interpretation leads to the diagrammatic point of view that we
describe next.

6.3 A diagram basis for Z;(G) for G = Z,, X Z,, X -+ X Zy,

In this section, we present a realization Z;(G) as a diagram algebra. We identify the basis element Eg
with a diagram having two rows of k nodes. The components of v = (71, ..., %), which lie in [1, n], label
the nodes on the bottom row, and those of 8 = (f1, ..., Bx) the top row. Nodes having the same labels are
connected, but the way the edges are drawn is immaterial. What matters is that nodes with identical labels are
all connected somehow, and those with different labels are not. Thus, for v = (3,4,4,1,4,4,2,4,3,4,4,2)
and 8 = (2,4,1,3,1,2,2,4,1,2,2,3) in [1, 4]'2, the basis element E is identified with the diagram

2 4 1 3 1 2 2 4 1 2 2 3
ES =
3 4 4 1 4 4 2 4 3 4 4 2
(6.21)

Observe that in this example (#v; = j) = (#8; = j)modr; forry = 2,70 = 3,r3 = 2,74 = 5. Thus,
Eg is a legitimate basis element for Z15(G), where G = Zg X Zz X Zy x Zs. Since EZEQ = dp9E7, the
top row of Eg must exactly match the bottom row of Eg to achieve a nonzero product. Thus for Eg with
n=1(2,3,2,1,4,2,4,2,3,3,2,3), we place the diagram for Eg on top of the diagram for Eg and concatenate
the two diagrams, as pictured below.
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2 3 2 1 4 2 4 2 3 3 2 3
°
EY =
e« v e e v e
3 4 4 4 4 2 4 3 4 4 2
(6.23)

7 Appendix I

Let G be a directed graph with finite vertex set I and adjacency matrix A = (da,y)a,ver. Then aq  is the
number of edges (arrows) from « to y in G, and (A* )a, is the number of walks of & steps from o to y on G.
We consider the corresponding generating function for the number of walks from « to v,

Wy (1) = (AF)gy tF,

k=0

where A? = I, the identity matrix.

Proposition 7.1. Let 0, be the |I'| x 1 matrix with 1 in row « and zeros elsewhere so that entry 7y of d,, is the
Kronecker delta 0, -, and assume M{, is the matrix I — tAT with column ~ replaced by 8., (here T denotes
the transpose). Then
det(M3)
)= ——
war () = Gt — 1Ay

Proof. First a simple observation: (AF+1), . = Zﬁer(Ak>a,ﬂ ag,, forall k > 0. Then
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k=0

= 504,7 +1 Z (Ak)a Y tkil
k>1

= dapy +1 Z (Ak+1)aﬁ t*
k>0

=Gaqtty | D (ANagag, |t
k>0 \ger

= 0oy +1 Z A8y Z(Ak)a,ﬂ t*
Ber k>0

=0any +t Z agWa,g(t).
pel

Letting w,, be the |I'| x 1 matrix with w,_(t) in row -y, we see from the above calculation that the matrix
equation w! (I —tA) = 6}, or equivalently, (I — tAT) Wqo = 0 holds. It follows then from Cramer’s rule
that

t) det(MJ) det(M2)
w = = .
o det(I — tAT)  det(I —tA)

8 Appendix II

Levels 0-6 of the Bratteli diagram for the cyclic group G = Z¢ and its module V = G; & Gg are pictured
below. The label inside the node is the index of the irreducible G-module. The trivial module is indicated in
white, and the module V in black. The subscript on node A on level & indicates the number of paths from
0 at the top to A at level k£ (equivalently, the number of walks from O to A of k steps on the representation
graph Ry (G); also the multiplicity of Gy in V®*; also the dimension of the irreducible module Z(G) for
the centralizer algebra Z;(G) = Endg(V®*)).
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k=0 1
E=1 2
k=2 6
k=3 20
k=4 70
k=5 254
k=6 948
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