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Abstract

The Jacobsthal function has aroused interest in various contexts in the past
decades. We review several algorithmic ideas for the computation of Jacobsthal’s
function for primorial numbers and discuss their practicability regarding compu-
tational effort. The respective function values were computed for primes up to
251. In addition to the results including previously unknown data, we provide
exhaustive lists of all sequences of the appropriate maximum lengths in ancillary
files.

1 Introduction

Henceforth, we denote the set of integral numbers by Z and the set of natural num-
bers, i.e. positive integers, by N. P = {pi | i ∈ N} is the set of prime numbers with
p1 = 2. As usual, we define the nth primorial number as the product of the first n
primes: pn# = ∏n

i=1 pi , n ∈ N. We essentially follow the notation of Hagedorn 2009
[5].

The ordinary Jacobsthal function j(n) is defined to be the smallest positive integer
m, such that every sequence of m consecutive integers contains at least one integer
coprime to n [8, 3, 5, 2].

Definition 1.1. Jacobsthal function. [6]
For n ∈N, the Jacobsthal function j(n) is defined as

j(n) = min {m ∈N | ∀ a ∈ Z ∃ q ∈ {1, . . . , m} : a + q⊥n}.

This definition is equivalent to the formulation that j(n) is the greatest difference
m between two terms in the sequence of integers which are coprime to n.

j(n) = max {m ∈N | ∃ a ∈ Z : a⊥n ∧ a + m⊥n ∧
∀ q ∈ {1, . . . , m− 1} : a + q 6⊥n}.

In other words, (j(n)− 1) is the greatest length m∗ = m− 1 of a sequence of consec-
utive integers which are not coprime to n. For this reason, we define a reduced variant
of the Jacobsthal function [8]. This will make a simplified representation possible.
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Definition 1.2. Reduced Jacobsthal function. [13]
For n ∈N, the reduced Jacobsthal function j∗(n) is defined as

j∗(n) = j(n)− 1 = max {m∗ ∈N | ∃ a ∈ Z ∀ q ∈ {1, . . . , m∗} : a + q 6⊥n}.

Remark 1. The following statements are elementary consequences of the definition of
Jacobsthal’s function and describe some interesting properties of it [8].

Product.
∀ n1, n2 ∈N : j(n1·n2) ≥ j(n1) ∧ j(n1·n2) ≥ j(n2).

Coprime product.
∀ n1, n2 ∈N > 1 | n1⊥n2 : j(n1·n2) > j(n1) ∧ j(n1·n2) > j(n2).

Greatest common divisor.
∀ n1, n2 ∈N : j(gcd(n1, n2)) ≤ j(n1) ∧ j(gcd(n1, n2)) ≤ j(n2).

Prime power.
∀ n, k ∈N ∀ p ∈ P : j(pk ·n) = j(p·n).

Prime separation.
∀ n, k ∈N ∀ p ∈ P | n = pk ·n∗, p⊥n∗ : j(n) = j(p·n∗).

The last remark implies that the entire Jacobsthal function is determined by its val-
ues for products of distinct primes [8]. In his subsequent elaborations [8, 9, 10, 11, 12],
Jacobsthal derived explicit formulae for the calculation of function values for square-
free integers containing up to 7 distinct prime factors, and bounds of the function for
up to 10 distinct prime factors.

The particular case of primorial numbers is therefore most interesting because the
function values at these points contain the relevant information for constructing gen-
eral upper bounds. The Jacobsthal function of primorial numbers h(n) [5] is therefore
defined as the smallest positive integer m, such that every sequence of m consecutive
integers contains an integer coprime to the product of the first n primes.

Definition 1.3. Primorial Jacobsthal function. [7]
For n ∈N, the primorial Jacobsthal function h(n) is defined as

h(n) = j(pn#).

By analogy with definition 1.2, we also define a reduced variant of the latter func-
tion which represents the greatest length of a sequence of consecutive integers which
are not coprime to the nth primorial number.

Definition 1.4. Reduced primorial Jacobsthal function. [15]
For n ∈N, the reduced primorial Jacobsthal function h∗(n) is defined as

h∗(n) = h(n)− 1,
h∗(n) = max {m∗ ∈N | ∃ a ∈ Z ∀ q ∈ {1, . . . , m∗} : a + q 6⊥ pn#}.

For the effective computation of h(n), or h∗(n) respectively, it is sufficient to omit
the first prime 2 from the calculation. Therefore, we define a condensed Jacobsthal
function ω(n) which is directly related to h(n). Its computation reduces unnecessary
effort. Hagedorn described this function in the context of killing sieves [4, 5] which we
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avoid here. We prefer the straightforward derivation of it for our purpose. Further-
more, we harmonise the arguments of the functions ω(n) and h(n) so that n in both
of them refer to the greatest considered prime pn whereas Hagedorn [5] links ω(n) to
pn+1.

Definition 1.5. Condensed Jacobsthal function. [20]
For n ∈ N, the condensed Jacobsthal function ω(n) is defined as the greatest length
of a sequence of consecutive integers which are not coprime to the product of the odd
primes through pn.

ω(n) = j∗(pn#/2).

In other words, ω(n) is the greatest length of a sequence of consecutive integers
each of which is divisible by one of the odd primes through pn.

The prime 2 plays a specific role for the Jacobsthal function. The following lemma
describes an interesting property of it and makes the direct calculation of j(n) as a
function of ω(n) possible.

Lemma 1.1. Let n ∈N with 2 -n. Then

j(2·n) = 2· j(n).

Proof. According to definition 1.2, we resume

j(n) = max {m ∈N | ∃ a ∈ Z ∀ q ∈ {1, . . . , m− 1} : a + q 6⊥n}.

Given m ∈ N and a ∈ Z as above. Then, there exists an a∗ ∈ Z with a∗ ≡ 2·a (mod n)
and a∗ ≡ 1 (mod 2) due to the Chinese remainder theorem. With this a∗, we get for
q = 1, . . . , m− 1

a∗ + 2·q ≡ 2·a + 2·q ≡ 2·(a + q) (mod n), and

a∗ + 2·q− 1 ≡ 1 + 2·q− 1 ≡ 0 (mod 2).

Because in addition a∗ + 2·m− 1 ≡ 0 (mod 2),

∃ a∗ ∈ Z ∀ q ∈ {1, . . . , 2·m− 1} : a + q 6⊥2·n}

holds, and j(2·n) ≥ 2·m = 2· j(n) follows. The maximality remains retained in both
directions.

Corollary 1.2.
h(n) = 2·ω(n) + 2.

Proof.
ω(n) = j∗(pn#/2) = j(pn#/2)− 1 = j(pn#)/2− 1.
h(n) = j(pn#) = 2·ω(n) + 2.
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The counting of ω(n) remains the central computational problem. By definition,
ω(n) is the greatest length of a sequence of consecutive integers which are not coprime
to all of the first n − 1 odd primes p2, . . . , pn. This means that every integer of the
sequence must be divisible by at least one of these primes. On the other hand, those
sequences can be characterised by a unique choice of non-zero residue classes for each
prime.

Proposition 1.3. Let m, n ∈N, n > 1.
The following two statements are equivalent.

(1) There is an a ∈ Z so that every integer of the sequence {a + 1, . . . , a + m}
is divisible by one of the primes p2, . . . , pn.

∃ a ∈ Z ∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : a + q ≡ 0 (mod pi).

(2) For every prime p2, . . . , pn, there exists one non-zero residue class
so that every integer of the sequence {1, . . . , m} belongs to one of them.

∃ ai ∈ {1, . . . , pi − 1}, i = 2, . . . , n
∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : q ≡ ai (mod pi).

Proof.
(1)⇒ (2):

ai ≡ −a (mod pi), i = 2, . . . , n satisfy the respective congruences of (2).
(2)⇒ (1):

According to the Chinese remainder theorem, there exists an a ∈ Z solving the
system of simultaneous congruences a ≡ −ai (mod pi), i = 2, . . . , n. With this solution
a, {a + 1, . . . , a + m} fulfils (1).

Remark 2. In this proposition, m is not necessarily the maximum sequence length. It
remains true for m ≤ ω(n), too. Furthermore, the proposition holds for any set of
distinct primes. The specific choice of the primes was not used in the proof.

Corollary 1.4. For every sequence of maximum length satisfying proposition 1.3 (2), there
exists a reverse sequence with

∃ bi ∈ {1, . . . , pi − 1}, i = 2, . . . , n
∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : m + 1− q ≡ bi (mod pi).

Proof. The maximum length of the given sequence implies m + 1 6≡ ai (mod pi) for
all i = 2, . . . , n. Therefore, bi ≡ m + 1− ai (mod pi), i = 2, . . . , n satisfy the require-
ments.

The pairs of reverse sequences define a symmetry within the set of sequences of
maximum length. The algorithmic exploitation of this interesting feature, however,
seems to be difficult because m is a priori unknown.

There is another way to characterise a sequence with the considered properties.
Given a permutation of the primes {p2, . . . , pn}, the sequence can be constructed from
left to right covering the next free position recursively. Conversely, a permutation of
this kind can be derived from a given sequence.
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Proposition 1.5. Let m, n ∈N, n > 1.
The following two statements are equivalent if m = ω(n).

(2) For every prime p2, . . . , pn, there exists one non-zero residue class
so that every integer of the sequence {1, . . . , m} belongs to one of them.

∃ ai ∈ {1, . . . , pi − 1}, i = 2, . . . , n
∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : q ≡ ai (mod pi).

(3) There exists a permutation (π2, . . . , πn) of {p2, . . . , pn} and a tuple (q2, . . . , qn) so that
the sequence {1, . . . , m} is completely covered by the residue classes qi mod πi when all
πi were recursively assigned to the first free position qi, respectively.

∃ πi ∈ {p2, . . . , pn} ∃ qi ∈ {1, . . . , m}, i = 2, . . . , n
with {π2, . . . , πn} \ {p2, . . . , pn} = ∅,
qi 6≡ 0 (mod πi), i = 2, . . . , n,
i < j⇒ qi < qj, i, j ∈ {2, . . . , n},
q2 = 1, and
qi = min{j ∈ {1, . . . , m} | ∀k < i : j 6≡ qk (mod πk)}, i = 3, . . . , n
∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : q ≡ qi (mod πi).

Proof.
(2)⇒ (3):

We set q2 = 1 and choose the smallest pj with aj ≡ 1 (mod pj) as π2. Given qk and
πk for 2 ≤ k < i ≤ n, we set qi = min{j ∈ {1, . . . , m} | ∀k < i : j 6≡ qk (mod πk)}.
Then we choose πi as the smallest pj with aj ≡ qi (mod pj). There must exist a proper
pj because m = ω(n). Otherwise, at least pj was not needed to cover a sequence of
length m and this sequence could be extended to a longer one by setting qi = m + 1
and πi = pj which contradicts to the definition of ω(n). All qi and πi inductively
selected as described above fulfils (3).
(3)⇒ (2):

For every i ∈ {2, . . . , n} , there exists a unique j ∈ {2, . . . , n} with πj = pi because
(π2, . . . , πn) is a permutation of {p2, . . . , pn}. ai ≡ qj (mod pi), i = 2, . . . , n satisfies the
respective congruences of (2).

Remark 3. The set of sequences with the properties (2) include any sequence fulfilling
(3), even if m < ω(n). The proof did not make use of that condition. The proposition
again holds for any set of distinct primes. The specific choice of the prime set was also
not used in the proof.

Example 1. We give an example for n = 6 for all of the three variants of the propo-
sitions 1.3 and 1.5. The primes to be considered are 3, 5, 7, 11, and 13. The result
ω(n)=10 is reached in a sequence with the following properties:
Prime sequence. Proposition 1.3 (1).

a = 12227.
3/(a + 1), 7/(a + 2), 5/(a + 3), 3/(a + 4), 11/(a + 5),
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13/(a + 6), 3/(a + 7), 5/(a + 8), 7/(a + 9), 3/(a + 10).
Set of remainders. Proposition 1.3 (2) or proposition 1.5 (2).

a2 = 1, a3 = 3, a4 = 2, a5 = 5, a6 = 6.
1 ≡ 1 (mod 3), 2 ≡ 2 (mod 7), 3 ≡ 3 (mod 5), 4 ≡ 1 (mod 3), 5 ≡ 5 (mod 11),
6 ≡ 6 (mod 13), 7 ≡ 1 (mod 3), 8 ≡ 3 (mod 5), 9 ≡ 2 (mod 7), 10 ≡ 1 (mod 3).

Prime Permutation. Proposition 1.5 (3).
π2 = 3, π3 = 7, π4 = 5, π5 = 11, π6 = 13.
q2 = 1, q3 = 2, q4 = 3, q5 = 5, q6 = 6.
1 ≡ 1 (mod 3), 2 ≡ 2 (mod 7), 3 ≡ 3 (mod 5), 4 ≡ 1 (mod 3), 5 ≡ 5 (mod 11),
6 ≡ 6 (mod 13), 7 ≡ 1 (mod 3), 8 ≡ 3 (mod 5), 9 ≡ 2 (mod 7), 10 ≡ 1 (mod 3).

Remark 4. As a consequence of the propositions 1.3 and 1.5, we can formulate three
equivalent descriptions of the condensed Jacobsthal function ω(n) for n > 1.

(1) The function ω(n) is the maximum length m of a sequence of consecutive in-
tegers where each of them is divisible by at least one of the first n odd primes
p2, . . . , pn.

ω(n) = max {m ∈N | ∃ a ∈ Z

∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : a + q ≡ 0 (mod pi)}.

(2) The function ω(n) is the maximum m ∈ N for which there exists a set of re-
mainders ai mod pi, i = 2, . . . , n so that every q ∈ {1, . . . , m} satisfies one of the
congruences q ≡ ai (mod pi).

ω(n) = max {m ∈N | ∃ ai ∈ {1, . . . , pi − 1}, i = 2, . . . , n
∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : q ≡ ai (mod pi)}.

(3) The function ω(n) is the maximum m ∈ N for which there exists a permuta-
tion (π2, . . . , πn) of {p2, . . . , pn} and a tuple (q2, . . . , qn) so that the sequence
{1, . . . , m} is completely covered by the residue classes qi mod πi when all πi
were recursively assigned to the first free position qi, respectively.

ω(n) = max {m ∈N | ∃ πi ∈ {p2, . . . , pn} ∃ qi ∈ {1, . . . , m}, i = 2, . . . , n
with {π2, . . . , πn} \ {p2, . . . , pn} = ∅,
qi 6≡ 0 (mod πi), i = 2, . . . , n,
i < j⇒ qi < qj, i, j ∈ {2, . . . , n},
q2 = 1, and
qi = min{j ∈ {1, . . . , m} | ∀k < i : j 6≡ qk (mod πk)}, i = 3, . . . , n
∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : q ≡ qi (mod πi)}.

In the next chapter, we will review several algorithmic ideas for the computation
of Jacobsthal’s function for primorial numbers. All of these approaches utilise the ver-
sions (2) or (3) of understanding ω(n). When we present our results below, we will get
back to the recent remark in order to derive demonstrative forms for the presentation
of sequences.
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2 Computation of ω(n)

2.1 Basic algorithms

Brute force is the most obvious idea for computing ω(n). All possible remainder com-
binations according to proposition 1.3, statement (2), are processed sequentially. To
each of them, a fill&cont procedure is applied as follows. For each of the residue
classes, all positions of a previously empty array of sufficient length covered by that
residue class are labelled. The first unlabelled position corresponds to m + 1 where m
is the length of the related sequence. This length is then registered for searching the
maximum possible length.

This naïve algorithm is henceforth referred to as Basic Sequential Algorithm (BSA).
It can be implemented as a recursive procedure as depicted in the pseudocode 1.

Algorithm 1 Basic Sequential Algorithm (BSA).
procedure BASIC_SEQUENTIAL(arr,k)

for i=1 to plist[k]-1 do
arr1=arr; fill_array(arr1,i,plist[k])
if k<n-1 then basic_sequential(arr1,k+1)
else count_array(arr1)
end if

end for
end procedure
arr=empty_array . Sequence array
plist=[p2,...,pn] . Array of primes
k=1 . Starting prime array index
basic_sequential(arr,k) . Recursion

The filling of a previously empty array of sufficient length from left to right ac-
cording to proposition 1.5, statement (3), is another simple idea for computing ω(n).
All permutations (π2, . . . , πn) of the given primes {p2, . . . , pn} are processed sequen-
tially. Starting with position 1, the first prime π2 is chosen and with it the residue class
1 mod π2. After labelling all positions covered by that residue class, the next unla-
belled position is searched and the next prime of the permutation under consideration
is analogously used until all primes are consumed.

If in any case a prime divides the index of the next unlabelled position then this
case can be omitted because only non-zero residue classes are appropriate. Handling
all permutations where primes are not divisors of their related position-numbers will
therefore discover all sequences of the maximum possible length. This Basic Permuta-
tion Algorithm is described in pseudocode 2.
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Algorithm 2 Basic Permutation Algorithm (BPA).
procedure BASIC_PERMUTATION(arr,plist,k,q)

for i=k to n-1 do
if q 6≡ 0 (mod plist[i]) then

arr1=arr; fill_array(arr1,q,plist[i])
if k<n-1 then

plist1=plist; interchange(plist1[k],plist1[i])
k1=k+1; q1=next_free_position(arr1)
basic_permutation(arr1,plist1,k1,q1)

else count_array(arr1)
end if

end if
end for

end procedure
arr=empty_array . Sequence array
plist=[p2,...,pn] . Array of primes
k=1 . Starting prime array index
q=1 . Starting sequence position
basic_permutation(arr,plist,k,q) . Recursion

Both of the presented algorithms are not really effective for practical purpose. A
simple estimation of their complexities reveals the problem. The number NBSA of
residue class combinations in the Basic Sequential Algorithm is

NBSA =
n

∏
i=2

(pi − 1).

For the Basic Permutation Algorithm, we have

NBPA ≤ (n− 1)!� NBSA.

However, (n− 1)! also grows too fast to be reasonable. In the upcoming sections, we
describe possibilities of how to dramatically reduce the number of sequences which
are needed to be considered for determining ω(n).

The Basic Permutation Algorithm as described above is ineffective for another rea-
son. There may exist different, equivalent permutations constituting the same se-
quence. In this case, only one of these permutations must be examined. Selecting
the smallest prime if there are any at choice, defines the additional rule of a Reduced
Permutation Algorithm (RPA) [22] which thereby also downsizes the number of per-
mutations needed to be considered. This principle was yet applied in part (2) ⇒ (3)
of the proof of proposition 1.5. The Basic Permutation Algorithm 2 indeed produces
doublets of sequences.

Proposition 2.1. Let m, n ∈N, n > 1, and m = ω(n).
Given a permutation (π2, . . . , πn) of {p2, . . . , pn} and a tuple (q2, . . . , qn) so that the

sequence {1, . . . , m} is completely covered by the residue classes qi mod πi when all πi were
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recursively assigned to the first free position qi, respectively. And let qk1 ≡ qk2 (mod πk2),
k1 < k2, for any k1, k2 ∈ {2, . . . , n}.

∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : q ≡ qi (mod πi)

where πi ∈ {p2, . . . , pn}, qi ∈ {1, . . . , m}, i = 2, . . . , n,
{π2, . . . , πn} \ {p2, . . . , pn} = ∅,
qi 6≡ 0 (mod πi), i = 2, . . . , n,
i < j⇒ qi < qj, i, j ∈ {2, . . . , n},
q2 = 1, and
qi = min{j ∈ {1, . . . , m} | ∀k < i : j 6≡ qk (mod πk)}, i = 3, . . . , n.
∃ k1, k2 ∈ {2, . . . , n}, k1 < k2 : qk1 ≡ qk2 (mod πk2).

Then there exist an equivalent permutation ($2, . . . , $n) of {p2, . . . , pn} and a tuple (r2, . . . , rn)
according to proposition 1.5, statement (3) so that $k = πk, rk = qk for k < k1 if exist, and
$k1 = πk2 , rk1 = qk1 . Furthermore for k > k1 if exist, rk ≡ qj (mod $k) if $k = πj.

∃ $i ∈ {p2, . . . , pn} ∃ ri ∈ {1, . . . , m}, i = 2, . . . , n
with {$2, . . . , $n} \ {p2, . . . , pn} = ∅,
ri 6≡ 0 (mod $i), i = 2, . . . , n,
i < j⇒ ri < rj, i, j ∈ {2, . . . , n},
r2 = 1,
ri = min{j ∈ {1, . . . , m} | ∀ k < i : j 6≡ rk (mod $k)}, i = 3, . . . , n,
∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : q ≡ ri (mod $i).
∀ k ∈ {2, . . . , n}, k < k1 : $k = πk ∧ rk = qk,
$k1 = πk2 , rk1 = qk1 ,
∀ k ∈ {2, . . . , n}, k > k1 : rk ≡ qj (mod $k) i f $k = πj.

Proof. According to the assumptions, ri and $i satisfy the requirements for i ≤ k1.
Given rk and $k for k1 ≤ k < i ≤ n, we set

ri = min{j ∈ {1, . . . , m} | ∀ k < i : j 6≡ rk (mod $k)}.

There must exist one of the remaining primes πj ∈ {πk1 , . . . , πn} \ {$k1 , . . . , $i−1}with
ri ≡ qj (mod πj) because {1, . . . , m} is completely covered and m = ω(n) is maximum.
If there are several appropriate primes πj to choose from, we set $i = πj for the small-
est πj possible. These ri and $i inductively selected as described above complete the
wanted permutation and tuple.

Example 2. We give an example for n = 8. The primes to be considered are 3, 5, 7, 11,
13, 17, and 19. The result is ω(n)=16.
The permutations

π2 = 3, π3 = 13, π4 = 11, π5 = 7, π6 = 5, π7 = 17, π8 = 17, with
q2 = 1, q3 = 2, q4 = 3, q5 = 5, q6 = 6, q7 = 8, q8 = 9,

and
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$2 = 5, $3 = 13, $4 = 11, $5 = 3, $6 = 7, $7 = 17, $8 = 17, with
r2 = 1, r3 = 2, r4 = 3, r5 = 4, r6 = 5, r7 = 8, r8 = 9

are equivalent because
k1 = 2, k2 = 6 with qk1 ≡ qk2 (mod πk2), i.e. 1 ≡ 6 (mod 5), and
$k1 = πk2 , rk1 = qk1 .

The other required congruences are obvious.

The Reduced Permutation Algorithm (RPA) as depicted in pseudocode 3 makes
use of proposition 2.1 and skips all permutations for which there exists an equivalent
permutation with a smaller prime at a compatible position.

Algorithm 3 Reduced Permutation Algorithm (RPA).
procedure REDUCED_PERMUTATION(arr,plist,k,qlist)

for i=k to n-1 do
if qlist[k] 6≡ 0 (mod plist[i]) then

if forall j<k : qlist[j] 6≡qlist[k] (mod plist[k]) or plist[j]<plist[k] then
arr1=arr; fill_array(arr1,qlist[k],plist[i])
if k<n-1 then

plist1=plist; interchange(plist1[k],plist1[i])
qlist[k+1]=next_free_position(arr1)
reduced_permutation(arr1,plist1,k+1,qlist)

else count_array(arr1)
end if

end if
end if

end for
end procedure
arr=empty_array . Sequence array
plist=[p2,...,pn] . Array of primes
k=1 . Starting prime array index
qlist=empty_array . List of first unlabelled positions
qlist[k]=1 . Starting sequence position
reduced_permutation(arr,plist,k,qlist) . Recursion

2.2 Linear programming

There is another, direct way of computing ω(n). The problem of determining the
maximum length of a sequence covered by a choice of residue classes according to
proposition 1.3, statement (2), can be reformulated as a linear program. This idea was
recently applied by Resta to a similar topic [19]. The possibility of simply using stan-
dard software seems to be tempting. It is not an algorithmic idea itself. But we outline
it in this section for the sake of completeness, simplicity, and mathematical straight-
forwardness.
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Resuming statement (2) of proposition 1.3, there exists one non-zero residue class
for every prime p2, . . . , pn so that every integer of the sequence {1, . . . , m} belongs to
one of them.

∃ ai ∈ {1, . . . , pi − 1}, i = 2, . . . , n
∀ q ∈ {1, . . . , m} ∃ i ∈ {2, . . . , n} : q ≡ ai (mod pi).

For every possible residue class, we define a binary variable xi,j ∈ {0, 1},
i ∈ {2, . . . , n}, j ∈ {1, ..., pi − 1} where xi,j = 1 if and only if j = ai.

For the description of the sequence characterised as above, we formulate two sets
of constraints. First, exactly one remainder should be chosen for each prime. Second,
every position in the sequence 1, ..., m should be covered by at least one of the residue
classes.

pi−1

∑
j=1

xi,j = 1, i = 2, . . . , n,

n

∑
i=2
pi - j

xi,j mod pi ≥ 1, j = 1, ..., m.
(2.1)

The question of interest is whether or not there exist feasible solutions of these
constraints. An objective function is not really needed. So, a dummy objective like

max
n

∑
i=2

pi−1

∑
j=1

xi,j

completes the integer linear program (ILP) with binary variables.

In order to calculate ω(n), a trial and error approach like nested intervals or the
like might be applied, solving the described ILP for different m. If the system has any
feasible solutions for m and none for m + 1 then ω(n) = m.

The search for the maximum suitable m can also be embedded into a single, ex-
tended ILP. Let m1 < ω(n) and m2 > ω(n) be tentative assumptions. We define
additional binary variables yk ∈ {0, 1}, k ∈ {m1, . . . , m2} where yk = 1 if and only if
position k in the sequence is covered by any of the residue classes under consideration,
and formulate the following linear program with binary variables.

11



max
m2

∑
k=m1

2m2−k ·yk,

pi−1

∑
j=1

xi,j = 1, i = 2, . . . , n,

n

∑
i=2
pi - j

xi,j mod pi ≥ 1, j = 1, ..., m1 − 1,

n

∑
i=2
pi - k

xi,k mod pi − yk ≥ 0, k = m1, ..., m2.

(2.2)

This linear program can be solved by using an established ILP solver. There are
three kinds of solutions:

(1) yk = 0 for all k = m1, . . . , m2.

The choice of m1 was too large, ω(n) < m1. Another try with a smaller m1 is
needed.

(2) yk = 1 for all k = m1, . . . , m2.

The choice of m2 was too small, ω(n) ≥ m2. Another try with a larger m2 is
needed.

(3) yk = 1 for all k = m1, . . . , m < m2, ym+1 = 0.
Then ω(n) = m. An appropriate sequence of the length m can be derived from
the solution for the variables xi,j. A longer sequence with the required properties
cannot exist because of the choice of the objective function. Each of its coefficients
is larger than the sum of the following ones.

The above described way of calculating ω(n) is very simple but its feasibility is
limited as well. The required computation time rapidly grows with the increasing
dimension of the problem.

2.3 Bounding the remaining number of coprimes

The principles of the basic algorithms described above can only be reasonably utilised
if the exclusion of many of the theoretically possible cases from the calculation can
be conclusively substantiated. The Basic Sequential Algorithm processes all potential
combinations of residue classes. When particular combinations can be excluded from
the analysis, the computational effort can be improved upon as is done in the Reduced
Permutation Algorithm. A remainder combination may be discarded because it actu-
ally cannot cover a sequence of the considered length. This decision must be based on
proved criteria, which we derive in the following section.
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The general idea was independently realised by Hagedorn [5] and Morack [16] in
very similar approaches. Euler’s totient function ϕ(n) is known to be the number
of positive integers up to a given integer n that are coprime to n. We use a specific
generalisation of the totient function for the introduction of the problem and borrow
its notation from Costello and Watts [1].

The function ϕ(a, m, k) is the number of integers in the sequence a + 1, . . . , a + m
which are coprime to Pk = ∏k

i=2 pi. In other words, ϕ(a, m, k) is the number of un-
covered positions in the given sequence of length m where the set of remainders is
condensed in a.

Definition 2.1. For a ∈ Z, m ∈N, k ∈N ≥ 2, we define

ϕ(a, m, 1) = m,
ϕ(a, m, k) = |{q ∈ {1, . . . , m} | ∀ i ∈ {2, . . . , k} : a + q 6≡ 0 (mod pi)}|, and
ν(a, m, k) = ϕ(a, m, k− 1)− ϕ(a, m, k).

The difference ν(a, m, k) corresponds to the number of integers coprime to
p2, . . . , pk−1 which are not coprime to pk, i.e. which are divisible by pk.

Remark 5. The sequence is completely covered if ϕ(a, m, n) = 0. The successive con-
tribution of prime pk is expressed by ν(a, m, k). Thus for 2 ≤ k ≤ n, we get

ω(n) = max{m ∈N | ∃ a ∈ Z : ϕ(a, m, n) = ϕ(a, m, k− 1)−
n

∑
i=k

ν(a, m, i) = 0}.

Let a solve the simultaneous congruences a ≡ −aj (mod pj) for j = 2, . . . , n. Given
a tentative length m of the sequence, the further processing of the corresponding set
of remainders {aj} can be skipped if

n

∑
i=k

ν(a, m, i) < ϕ(a, m, k− 1)

can be proved for any k. Whereas ϕ(a, m, k − 1) can directly be counted, we below
derive suitable upper bounds for ∑n

i=k ν(a, m, i) for an early and effective decision
whether this inequality applies.

In a first step, we simplify our estimate and make it independent on specific se-
quences, i.e independent on a, or aj, respectively. We consider the lowest possible
number ϕmin(m, k) of m consecutive integers which are coprime to all of the primes
p2, . . . , pk, and the highest possible number νmax(m, k) of m consecutive integers which
are coprime to p2, . . . , pk−1 but divisible by pk.

Definition 2.2. Let m, k ∈N. Then

ϕmin(m, k) = min
a∈Z

ϕ(a, m, k),

νmax(m, k) = max
a∈Z

ν(a, m, k), k ≥ 2.

13



The term νmax(m, k) can be bounded as the result of combinatorial considerations
as follows.

Lemma 2.2. Let bxc denote the maximum integer not exceeding x, and m ∈N, k ∈N ≥ 2.

νmax(m, k) ≤ rm,k − ϕmin(rm,k, k− 1)

where rm,k = 1 +
⌊

m−1
pk

⌋
.

Proof. The number of multiples of pk in a sequence of m consecutive integers is at most
rm,k. Every sequence contains at least rm,k − 1 such terms. Let pk ·(a + j), a ∈ Z and
j = 1, . . . , rm,k, be the representation of rm,k consecutive multiples of pk.

Every term pk ·(a + j) is divisible by pi for i = 2, . . . , k− 1 if and only if pi | (a + j)
because pi ⊥ pk.

pi | (a + j)⇔ pi | pk ·(a + j).

The sequence {a+ 1, . . . , a+ rm,k} contains multiples of pi at the same positions j as the
progression pk·(a + j). The number of elements in this progression which are coprime
to any pi, i = 2, . . . , k− 1 is therefore ϕ(a, rm,k, k− 1) ≥ ϕmin(rm,k, k− 1).

The term rm,k can directly be calculated whereas the function ϕmin(m, k) requires
complex computations. For this purpose, we applied a brute force algorithm very sim-
ilar to the Basic Sequential Algorithm 1. While BSA intends to maximise the number
of covered positions in a given array, the computation of ϕmin(m, k) needs to minimise
it. We provide a table of function values of ϕmin(m, k) for m ≤ 500 and k ≤ 11 in an
ancillary file.

The function ϕmin(m, k) grows very slowly with increasing k while the time needed
for it explodes. So, it must be sufficient to limit the maximum considered prime for
practical application.

Corollary 2.3. Let a ∈ Z, m, n, x ∈ N, k ∈ N ≥ 2, and rm,i = 1 +
⌊

m−1
pi

⌋
, i = k, . . . , n.

For any x < k
n

∑
i=k

ν(a, m, i) ≤
n

∑
i=k

rm,i −
n

∑
i=k

ϕmin(rm,i, x).

Proof. According to lemma 2.2, ν(a, m, i) ≤ νmax(m, i) ≤ rm,i − ϕmin(rm,i, i − 1) holds
for any i = k, . . . , n. The function ϕmin(m, k) is monotonically decreasing in k because
the number of integers not coprime to the respective next greater prime cannot be
negative. So, ϕmin(rm,i, i− 1) ≥ ϕmin(rm,i, x) is a consequence of x < k ≤ i.

With the help of this corollary, we can efficiently improve the naïve sequential algo-
rithm. We recall that the further processing of the set of remainders {ak} for a tentative
sequence length m can be skipped if ∑n

i=k ν(a, m, i) < ϕ(a, m, k− 1) can be proved for
any k. In this context, it is sufficient to verify the criterion

n

∑
i=k

rm,i −
n

∑
i=k

ϕmin(rm,i, x) < ϕ(a, m, k− 1) (2.3)

for a suitable x < k.
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This is the fundamental idea of the Discarding Sequential Algorithm (DSA) 4 to
compute values of ω(n). Starting with a sufficiently long empty array and a tentative
sequence length m, the parameter m is increased if a longer sequence was found.

It has shown to be more efficient if the first cycles, which employ only small primes,
were processed without checking for the possibility of rejection. In later stages of the
recursion, say from pk∗ on, the criterion can be applied. If the table of ϕmin includes
the corresponding values for x = k− 1 then they are preferred. Otherwise, the largest
possible x must be used.

Another modification can slightly speed up the algorithm. The criterion 2.3 need
not be compared for the entire length m of the considered sequence. It is sufficient
to take the maximum length m∗ of a subsequence into account which includes all un-
covered positions. While counting ϕ(a, m, k − 1), the appropriate m∗ can simply be
determined as well.

Algorithm 4 Discarding Sequential Algorithm (DSA).
procedure DISCARDING_SEQUENTIAL(arr,k)

for i=1 to plist[k]-1 do
arr1=arr; fill_array(arr1,i,plist[k])
if k<n-1 then

go_on=true
if k≥ k∗ then

if criterion 2.3 fulfilled then go_on=false
end if

end if
if go_on=true then discarding_sequential(arr1,k+1)
end if

else count_array(arr1)
if longer_sequence_found then increase m
end if

end if
end for

end procedure
arr=empty_array . Sequence array
m=starting_sequence_length . Starting sequence length
plist=[p2,...,pn] . Array of primes
k=1 . Starting prime array index
k∗=starting_index_for_criterion . Starting prime array index for criterion
discarding_sequential(arr,k) . Recursion

15



Although the DSA algorithm includes an efficient way to recognise inappropriate
remainder combinations, it is time-consuming especially for large primes. The num-
ber of permutations to be considered in the RPA algorithm, however is much lower
than the number of possible remainder combinations. The connection of these two
principles in a Combined Reduced Permutation and Discarding Sequential Algorithm
(CRPDSA) 5 can make the advantages of both ideas work together [23].

For smaller primes, the DSA algorithm is applied sequentially up to a fixed prime.
The remaining primes are handled with the RPA algorithm which was extended by
a test of the DSA-criterion. The number of necessary cases can thus rigorously be
reduced. An optimum point k∗ for the switch between both sub-algorithms was em-
pirically found at pn/3 when pn is the largest prime considered. We request pk∗<pn/3.
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Algorithm 5 Combined Reduced Permutation and
Discarding Sequential Algorithm (CRPDSA).

procedure COMBINED_DISCARDING(arr,plist,k,qlist)
if pk<pk/3 then . DSA part

for i=1 to plist[k]-1 do
arr1=arr; fill_array(arr1,i,plist[k]); go_on=true
if k≥ k∗ then

if criterion 2.3 fulfilled then go_on=false
end if

end if
if go_on=true then combined_discarding(arr1,plist,k+1,qlist)
end if

end for
else

if empty_qlist then fill_qlist
end if
for i=k to n-1 do . RPA part

if qlist[k] 6≡ 0 (mod plist[i]) then
if forall j<k : qlist[j] 6≡qlist[k] (mod plist[k]) or plist[j]<plist[k] then

arr1=arr; fill_array(arr1,qlist[k],plist[i])
if k<n-1 then go_on=true

if criterion 2.3 fulfilled then go_on=false
end if
if go_on=true then

plist1=plist; interchange(plist1[k],plist1[i])
qlist[k+1]=next_free_position(arr1)
combined_discarding(arr1,plist1,k+1,qlist)

end if
else count_array(arr1)

if longer_sequence_found then increase m
end if

end if
end if

end if
end for

end if
end procedure
arr=empty_array . Sequence array
m=starting_sequence_length . Starting sequence length
plist=[p2,...,pn] . Array of primes
qlist=empty_array . List of first unlabelled positions
k=1 . Starting prime array index
k∗=starting_index_for_criterion . Starting prime array index for criterion
combined_discarding(arr,plist,k,qlist) . Recursion
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2.4 Counting the actually remaining number of coprimes

The last suggestion of this paper, how to compute ω(n), is an improvement of the DSA
algorithm 4. The actually remaining number of coprimes in the sequence is exactly
counted for every pending prime instead of using a general, estimated bound for it.
This is more time-consuming for a specific sequence under consideration. On the other
hand, exact counts are often lower than the bounds. So, corresponding remainder
constellations can be rejected much earlier. This compensates for the time effort spent
for counting the exact frequencies.

We redefine some functions of the last subsection in a more general way. They
are not restricted to require primes in their ascending order any more. The idea of
permutations plays a role again.

Definition 2.3. Let (π2, . . . , πn) be an arbitrary but fixed permutation of {p2, . . . , pn}.
For a ∈ Z, m ∈N, k ∈N ≥ 2, we define

ϕ(a, m, 1) = m,
ϕ(a, m, k) = |{q ∈ {1, . . . , m} | ∀ i ∈ {2, . . . , k} : a + q 6≡ 0 (mod πi)}|, and
ν(a, m, k) = ϕ(a, m, k− 1)− ϕ(a, m, k).

The difference ν(a, m, k) now corresponds to the number of integers coprime to
π2, . . . , πk−1 which are divisible by πk. Again, let m be the tentative length of the se-
quence, and {aj} a set of remainders where a is the solution of the simultaneous con-
gruences a ≡ −aj (mod πj), j = 2, . . . , n. The further processing of the corresponding
set of remainders {aj} can then be skipped if

n

∑
i=k

ν(a, m, i) < ϕ(a, m, k− 1)

can be proved for any k.
Every position in the sequence corresponds to a definite residue class for each

prime. So, the number of remaining coprimes which belong to a residue class can
easily be counted. By this means, we derive individual bounds for ν(a, m, i) depend-
ing on the specific choice of {aj}.
Definition 2.4. Let (π2, . . . , πn) be an arbitrary but fixed permutation of {p2, . . . , pn},
m, n, k, t ∈N with 2 ≤ k < t ≤ n, and a ∈ Z with a ≡ −aj (mod πj), j = 2, . . . , k.
Then we define

S1 = {1, . . . , m},
Sk = {q ∈ Sk−1 | a + q 6≡ 0 (mod πk)},

and for rt ∈ {1, . . . , πt − 1}
$(a, m, k, t, rt) = |{q ∈ Sk | q ≡ rt (mod πk)}|, and

$max(a, m, k, t) = max
rt∈{1,...,πk−1}

$(a, m, k, t, rt).

The set of positions of a sequence a + 1, . . . , a + m which are coprime to all primes
up to πk is denoted by Sk, i.e. the set of so far uncovered positions. Given the set Sk,
$(a, m, k, k + 1, rk+1) is the number of positions of the sequence which can be covered
in the next step if ak+1 = rk+1 was chosen. We now relate the function ν to $max.
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Lemma 2.4. Let a ∈ Z, and m, n, k, t ∈N with 2 ≤ k < t ≤ n. Then

ν(a, m, t) ≤ $max(a, m, k, t).

Proof. By definition, there exists an rt ∈ {1, . . . , πt − 1}
so that ν(a, m, t) = $(a, m, t− 1, t, rt). For k < t, we get
$(a, m, t− 1, t, rt) ≤ $(a, m, k, t, rt) ≤ $max(a, m, k, t)
because Sk ⊇ St−1.

In consequence of lemma 2.4, it follows

n

∑
i=k

ν(a, m, i) ≤
n

∑
i=k

$max(a, m, k− 1, i),

and we can now formulate the criterion
n

∑
i=k

$max(a, m, k− 1, i) < ϕ(a, m, k− 1) (2.4)

for the rejection of the further processing of the corresponding set of remainders {aj}
for a tentative sequence length m.

The key idea of the effective realisation of this criterion in an algorithm is choos-
ing the residue class with the maximum possible number of newly covered positions
maxt∈{k,...,n} $max(a, m, k− 1, t) in every recursion cycle of level k. This choice implies
a permutation algorithm because it selects πt as the next prime. At the same time, it
selects the residue class rt mod πt with
$(a, m, k − 1, t, rt) = maxt∈{k,...,n} $max(a, m, k − 1, t). Thus, the so-called Greedy Per-
mutation Algorithm (GPA) 6 combines permutations with respect to primes and to
remainders.

After level k + 1 of recursion was done for that specific choice, the following cycles
of level k do not need to consider the consumed rt mod πt again because all com-
binations of it were thereby examined. Otherwise, equivalent permutations would
be considered. For the following cycles of level k, exclusively, the corresponding
$(a, m, k− 1, t, rt) is set to be 0, and $max(a, m, k− 1, t) is determined anew.

Because of the specific choice of the remainders rt, the Greedy Permutation
Algorithm (GPA) is confined to process only prime permutations with
$(a, m, i − 1, i, ri) ≤ $(a, m, j − 1, j, rj) for i < j, i.e. the contribution of the primes
is monotonically decreasing with the permutation order. Furthermore, a cyclic in-
ner permutation of primes with the same contribution is prevented by blocking those
rt mod πt always consumed at an earlier level.

It can be shown that the GPA algorithm is again more efficient if the first cycles,
which employ only small primes, were processed simply sequentially without any
checking for the possibility of rejection. This corresponds to the Basic Sequential Al-
gorithm 1. In later stages of the recursion, say from pk∗ on, the new criterion will be
applied, and the recursion changes to the true Greedy Permutation Algorithm.
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Algorithm 6 Greedy Permutation Algorithm (GPA).
procedure GREEDY_PERMUTATION(arr,k,ftab)

if k<k∗ then . Sequential part
for i=1 to plist[k]-1 do

arr1=arr; fill_array(arr1,i,plist[k])
if k=k∗-1 then

ftab1=ftab
fill_frequency_table_of_remainders(ftab1)

end if
greedy_permutation(arr1,k+1,ftab1)

end for
else

if k<n-1 then . Greedy permutation part
update_ϕmax(. . . , i)
go_on=true
if criterion 2.4 fulfilled then go_on=false
end if
if go_on=true then . Permutation level k+1

select_appropriate_rt_and_πt
arr1=arr; fill_array(arr1,rt,πt)
ftab1=ftab
update_frequency_table_of_remainders(ftab1)
greedy_permutation(arr1,k+1,ftab1)

end if
delete_frequency_of_rt_mod_πt(ftab)
if exists_non-zero_frequency_mod_πt(ftab) then . Permutation level k

greedy_permutation(arr,k,ftab)
end if

else count_array(arr)
if longer_sequence_found then increase m
end if

end if
end if

end procedure
arr=empty_array . Sequence array
m=starting_sequence_length . Starting sequence length
plist=[p2,...,pn] . Array of primes
k=1 . Starting prime array index
k∗=starting_index_for_criterion . Starting prime array index for criterion
ftab=empty_table . Frequency table of remainders
greedy_permutation(arr,k,ftab) . Recursion

20



2.5 Parallel processing

All depicted explicit algorithms can be processed in parallel in a simple way. All of
them are organised as treelike recursive procedures. Given a fixed recursion level k∗,
the recurrent computation can be prepared in a first step by executing the recursive
procedures until level k∗, only. All relevant parameters defining the next procedure
call for level k∗ + 1 are written to a separate parameter file. Now in a second step, the
subsequent subtrees or series of them, each starting at level k∗ + 1, can be processed
to their end on different cores, processors, or even on different computers. The last
step summarises all individual results of these subprocesses, including all sequences
of maximum length.

Parallel computation can be used most efficiently by a prior sorting of the subtrees
of level k∗ + 1 by descending ϕ(a, m, k). This leads to an earlier recognition of longer
sequences on average. The rapid enlargement of the respective array prevents from
examining many too small sequences unnecessarily, and therefore speeds up the entire
approach.
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3 Results

The algorithms described in section 2 act very differently concerning its computational
effort. We computed the entire values of the function h(n) where all involved primes
could be represented as single byte, i.e. pn ≤ 251. In these calculations, we used sev-
eral algorithms each suitable regarding computation time. The equality of correspond-
ing results served as an implicit verification of the correctness of the implementations.
Our data are also in accord with all published data for pn ≤ 227 [5].

For every investigated n, we performed an exhaustive retrieval for all existing se-
quences of maximum length while searching for ω(n). As far as we know, this has not
been done ever before. We provide this data in ancillary files.

3.1 Calculated data

All algorithms output values of the function ω(n) according to definition 1.5 as their
main result. In addition, every compatible sequence of the appropriate length ω(n)
was recorded. The values of h(n), see definition 1.3, were deduced from ω(n) by ap-
plying corollary 1.2.

An initial illustration of the results is outlined in figure 1. We graph the values for
h(n) and number of sequences of length ω(n). This number considerably varies in a
non-obvious manner.
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Figure 1: Values of the function h(n) and the number of respective sequences of maxi-
mum length.
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The complete data are provided in table 1 including the maximum processed prime
pn, the values of h(n) and ω(n), and the number of sequences nseq for every n ≤ 54.

n pn h(n) ω(n) nseq

1 2 − − −
2 3 4 1 1
3 5 6 2 2
4 7 10 4 2
5 11 14 6 2
6 13 22 10 2
7 17 26 12 2
8 19 34 16 2
9 23 40 19 12

10 29 46 22 2
11 31 58 28 2
12 37 66 32 24
13 41 74 36 2
14 43 90 44 48
15 47 100 49 24
16 53 106 52 240
17 59 118 58 60
18 61 132 65 12
19 67 152 75 144
20 71 174 86 52
21 73 190 94 24
22 79 200 99 144
23 83 216 107 16
24 89 234 116 16
25 97 258 128 4
26 101 264 131 40
27 103 282 140 4

n pn h(n) ω(n) nseq

28 107 300 149 24
29 109 312 155 204
30 113 330 164 48
31 127 354 176 2
32 131 378 188 2
33 137 388 193 8
34 139 414 206 22
35 149 432 215 4
36 151 450 224 18
37 157 476 237 4
38 163 492 245 28
39 167 510 254 4
40 173 538 268 4
41 179 550 274 2
42 181 574 286 4
43 191 600 299 4
44 193 616 307 4
45 197 642 320 10
46 199 660 329 10
47 211 686 342 2
48 223 718 358 4
49 227 742 370 2
50 229 762 380 4
51 233 798 398 2
52 239 810 404 2
53 241 834 416 2
54 251 858 428 4

Table 1: Computation results.

3.2 Computation time

All algorithms except ILP were implemented and executed on a common PC with
an i7 processor at boosted 3.8GHz in a single thread application. For solving the re-
spective integer linear programs according to the equations 2.2, however, we utilised
SYMPHONY software [18, 14] which used all threads in parallel. The corresponding
time needs were enlarged by an empirically estimated factor to make them compara-
ble.
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The time consumption of each algorithm rapidly grows with the number of primes.
Figure 2 depicts this growth as well as the variation between different algorithms. A
quasi-logarithmic time scale log(1 + t) was applied where t was the exact time need
rounded to full seconds.
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Figure 2: Comparison of the computational cost for various algorithms.

3.3 Ancillary data

In addition to this paper, we provide four files including the complete results of our
calculations. The first file presents intrinsic data of the DSA algorithm 4.

phi_min.txt

This file contains a table of values of the function φmin(m, k) as described in defini-
tion 2.2 for m ≤ 500 and k ≤ 11. The data were computed using a brute force approach
very similar to the Basic Sequential Algorithm 1. While BSA intends to maximise the
number of covered positions in a given array, the computation of ϕmin(m, k) needs to
minimise it.

The other ancillary files contain exhaustive lists of all sequences of the appropriate
maximum lengths. According to propositions 1.3 and 1.5, these sequences can be rep-
resented in three ways as always has been concluded in remark 4.
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moduli.txt

This file contains the modulus-representation of the sequences. In remark 4, para-
graph (1), every position q ∈ {1, . . . , m} of the sequence was related to at least one
prime modulus pi, i ∈ {2, . . . , n}. The progression of primes pq, q ∈ {1, . . . , m} of
the minimum appropriate moduli pq each position q is a unique representation of the
sequence under consideration.

remainders.txt

This file contains the remainder-representation of the sequences, i.e. the ordered
set of remainders ai (mod pi), i ∈ {2, . . . , n} as described in remark 4, paragraph (2).

permutations.txt

This file contains the permutation-representation of the sequences, i.e. the permu-
tation of primes πi, i ∈ {2, . . . , n} as described in remark 4, paragraph (3).

The sequences in "remainders.txt" are separately sorted for each n by ascending
remainders. This order was maintained in the other files "moduli.txt" and "permuta-
tions.txt" to make a direct comparison possible..

3.4 Final remarks

All depicted algorithms may also be applied to arbitrary sets of different primes. The
specific choice of consecutive primes was not necessarily required. With the help of
prime separation as described in remark 1, all values of the original Jacobsthal function
j(n) can therefore be computed using a generalised implementation of one of these al-
gorithms.
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