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Abstract. We present a surprisingly new connection between two well-studied com-
binatorial classes: rooted connected chord diagrams on one hand, and rooted bridge-
less combinatorial maps on the other hand. We describe a bijection between these
two classes, which naturally extends to indecomposable diagrams and general rooted
maps. As an application, this bijection provides a simplifying framework for some
technical quantum field theory work realized by some of the authors. Most notably, an
important but technical parameter naturally translates to vertices at the level of maps.
Finally, we give a new interpretation of a famous equation due to Arquès and Béraud,
which characterizes the generating function of rooted maps, in terms of indecompos-
able chord diagrams. This interpretation can be specialized to connected diagrams,
and refined to incorporate the number of crossings.

Keywords: bijection; connected chord diagrams; combinatorial maps; combinatorial
Dyson-Schwinger equations

1 Introduction

Connected chord diagrams are well-studied combinatorial objects that appear in numer-
ous mathematical areas such as knot theory, graph sampling, analysis of data structures,
and bioinformatics (see the references for example in [5, 4]). Their counting sequence
(Sloane’s A000699) has been known since Touchard’s early work published in 1952 [12].
In this document we present a bijection with an arguably even more basic class of com-
binatorial objects: bridgeless combinatorial maps. Despite the ubiquity of both families
of objects in the literature, this bijection is, to our knowledge, new. Furthermore, it is
fruitful in the sense that it generalizes and restricts well, and useful parameters carry
through it.

1.1 Definitions

Rooted chord diagrams (or simply chord diagrams or diagrams as there will be no confusion)
are graphical representations of fixed point free involutions or matchings on the set
{1, . . . , 2n}. A chord diagram is obtained by arranging 2n dots on a line, and drawing n
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chords above the line, linking the dots in disjoint pairs. A diagram is said to be connected
or irreducible if the intersection graph (the graph where the vertices are chords and the
edges link two crossing chords) is connected. The size of a diagram is the total number
of chords. Small connected diagrams are depicted in the first row of Table 1.

Objects Size 1 Size 2 Size 3
Connected
diagrams

Bridgeless
maps

Table 1: Small connected diagrams and bridgeless maps

Combinatorial maps are a purely algebraic way of representing an embedding of a
graph into any compact oriented surface [7]. Formally, a combinatorial map is given by
a triple (H, σ, α), where H is a set and σ and α are respectively a permutation and a fixed
point free involution that together act transitively on H. Intuitively, this data determines
a connected graph equipped with a cyclic ordering of the half-edges around each vertex:
H represents the set of half-edges, the cycles of σ form the vertices, and the matching α

describes the gluing together of half-edges to form edges. Typically, combinatorial maps
are rooted by distinguishing a half-edge, but it is essentially equivalent (and we will
find it more convenient) to take the root to be a unique fixed point of the involution α.
This fixed point may be thought of as a "dangling" half-edge, with only one end attached
to a vertex. The size of a rooted combinatorial map is here the total number of edges
including the half-edge where the map is rooted. Some examples of rooted combinatorial
maps are given in the second row of Table 1, where we indicate the unattached end of
the root half-edge by a white vertex. For example, if we label the half-edges of the map
of size 3 at the far right end of Table 1 like so,

the corresponding permutations are σ = (0 1 2)(3 4) and α = (0)(1 3)(2 4).
We distinguish the root from the root edge: the root edge is the edge which follows

the root in the cyclic order given by σ. The root vertex is the unique vertex which is
incident to both the root and the root edge. A corner is the angular section between two
adjacent half-edges. Half-edges are in obvious bijection with corners, but it is often more
convenient to work with the corners: for example, pointing out two corners is a clear
way to show how to insert an edge in a map. The root corner is the corner between the
root and the root edge.
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The examples in Table 1 have the special property of being bridgeless, in the sense
that they do not contain any edge whose deletion disconnects the underlying graph.
We show in this paper that rooted bridgeless combinatorial maps and rooted connected
diagrams are equinumerous.

Theorem 1. Rooted connected diagrams of size n are in bijection with rooted bridgeless combi-
natorial maps of size n.

We should hasten to point out that it is already known that general (i.e., not necessarily
bridgeless) rooted combinatorial maps are equinumerous with indecomposable diagrams,
where a diagram is said to be indecomposable if it cannot be expressed as the concate-
nation of two diagrams. Note that connected implies indecomposable, but the converse
is not true (cf. Table 2). According to Ossona de Mendez and Rosenstiehl [11], in 2006
the fact that rooted maps and indecomposable diagrams are equinumerous was "known
for years, in particular in quantum physics, [... but] no bijective proof of this numerical equiva-
lence was known". Their article [11] gives a bijective account (as a specialization of a more
general bijection they described in [10] between rooted hypermaps and indecomposable per-
mutations), and this bijection was later revisited and analyzed by Cori [3]. However, what
may be surprising in light of our Theorem 1 is that the Ossona de Mendez and Rosen-
stiehl bijection does not restrict to a bijection between bridgeless maps and connected
diagrams (a point we will return to in Section 4). In other words, the bijection we will
describe here appears to be essentially new.

Objects Size 2 Size 3
Indecomposable

disconnected
diagrams

Maps with at
least one bridge

Table 2: Small indecomposable diagrams and maps that are not displayed in Table 1

1.2 Structure of the document

Section 2 describes the above mentioned bijection between connected diagrams and
bridgeless maps, thus proving Theorem 1. It also shows how to generalize this bijec-
tion to indecomposable diagrams and bridgeless maps, recovering the result of Ossona
de Mendez and Rosenstiehl [11]. It finally puts into correspondence the set of planar
maps with a subset of diagrams, defined by a forbidden configuration.
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Section 3 shows how this bijection can be used to simplify existing results in quan-
tum field theory. In fact, it puts in a new light some technical parameters occurring in
solutions of a family of Dyson-Schwinger equations.

Finally, Section 4 establishes a new combinatorial decomposition of indecomposable
and connected chord diagrams. It extends a formula found by Arquès and Béraud [1]
for rooted maps.

2 Description of the main bijection

2.1 Connected diagrams and bridgeless maps

In this section, we establish a recursive correspondence between connected diagrams and
bridgeless maps, which implies Theorem 1. The first step is to prove that the cardinalities
of both classes are the same. To do so, we combinatorially show the following recurrence,
which characterizes the sequence A000699 in the OEIS.

Proposition 2. The number of rooted connected diagrams of size n and the number of rooted
bridgeless maps of size n both satisfy c1 = 1 and

cn =
n−1

∑
k=1

(2k− 1) ck cn−k.

Proof. The recurrence relation translates the fact that it is possible to combine two objects,
one of which is weighted by twice its size (minus 1), to bijectively give a bigger object of
cumulated size. We only need to describe how to do so for our two classes.

diagrams ⊕

maps


⊕

⊕

Figure 1: Schematic decomposition of connected diagrams and bridgeless maps.

Connected diagrams. For connected diagrams, 2k − 1 counts the number of intervals
delimited by k chords. In other words, it means there are 2k − 1 ways to insert a new
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root chord in a diagram of size k. We can find in the literature numerous ways to
combine a diagram C1 with another diagram C2 with a marked interval [9]. The one we
choose comes from [4] and is illustrated in Figure 1. The idea is to insert C2 into C1, just
after the root chord of C1. Then, we move the right endpoint of the root chord of C1 to
the marked interval of C2. We obtain thus our final combined diagram.

To recover C1 and C2, we mark the interval just after the root chord. Then, we pull
the right endpoint of the diagram to the left until the diagram disconnects into two
connected components. The first component is C1, the second one C2.
Bridgeless maps. In maps of size k, the number 2k− 1 refers to the number of corners.
Given two maps M1 and M2 where M2 has a marked corner, we construct a larger map
as follows (this is also illustrated in Figure 1).

If M1 has size 1, we insert a new edge in M2 which links the root corner of M2 to
its marked corner. If M1 has size > 1 then it has a root edge. Let us unstick the second
endpoint of the root edge and insert it in the marked corner of M2. Then, we take the
root of M2 and insert it where the second endpoint of the root chord of M1 was. We thus
obtain our final map. Note that no bridge has been created in the process.

To recover M1 and M2, we start by marking the corner after the second endpoint of
the root chord of the new map. Then, grab this endpoint and slide it up, towards the
root. When a bridge appears, we stop the process and cut the bridge, marking it as a
root. The two resulting diagrams are M1 are M2. If we reach the root vertex with this
process without creating any bridge, then it means that M1 was the trivial map with one
half-edge. In that case, we obtain M2 by just removing the root chord.

The previous proposition yields an implicit correspondence between connected dia-
grams and bridgeless maps, but it does not say which bridgeless map a given connected
diagram must be sent to. In other words, no bijection is explicitly defined.

A bijection via generating trees. To solve this problem, we use the generating trees of
both classes, and put them into bijection. The additional information we need is how
the marking goes from one object to the other, which means that we want to find a
correspondence between the intervals of a diagram and the corners of a map. There are
several ways to proceed, but none is really canonical. The one we choose is based on
induction, and will give the most significant results (see Section 3).

We will next describe the map from bridgeless maps to connected diagrams, see
Figure 2 for an example. First, we recursively decompose the map as described in the
proof of Proposition 2. We obtain a recursion tree. Then, we label every corner of every
map in this recursion tree, using the following rules: Label the unique corner on each
leaf of the recursion tree. Propagate from the leaves to the root in the recursion tree;
whenever a corner is split in half by a new edge, create a new label for the right half.
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∼
∼

∼

∼

Figure 2: An example of bijection between a bridgeless map and a connected diagram. The symbols (crosses,
tildes, squares, . . . ) are used to label the corners and the intervals of the diagrams.

We now want to carry these labels over to the intervals between the end points of the
chord diagrams. The base cases are clear since there is only one interval. When a corner
is split in half, it means in the world of diagrams, that an interval is also split in half.
We then transfer the labels in such a way that the counterclockwise order in the maps
corresponds to the left-right order in diagrams.

2.2 Extension to the indecomposable diagrams and general maps

As said in the introduction, it was already known that rooted maps are in bijection with
indecomposable diagrams [11, 3]. However, these known bijections do not restrict to our
bijection of bridgeless maps to connected diagrams, so we will now give one which does.

Proposition 3. There exists a bijection between the rooted maps and the indecomposable diagrams
in which the bridgeless maps are sent to the connected diagrams.

Proof. (Idea) Here again, it is sufficient to remark that both objects have equivalent de-
compositions. On one hand, a rooted map is a bridgeless map where we have attached
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on each of its corners (sequences of) maps via bridges. On the other hand, an indecom-
posable diagram is a connected diagram where we have inserted (sequences of) inde-
composable maps in each of its intervals. The above bijection for bridgeless maps thus
transfers to general maps (see Table 2 for small examples of that correspondence).

Other descriptions of this bijection exist, notably in terms of root edge/root chord
insertion in a Tutte style recursion.

2.3 Planar maps as diagrams with forbidden pattern

We here characterize the image of planar maps under the previous bijection.

· · ·
· · ·

Figure 3: Forbidden configuration for diagrams corresponding to planar maps.

Proposition 4. Planar rooted maps with n edges are in bijection with indecomposable diagrams
with n chords which do not contain the configuration of Figure 3 as a subdiagram. Addition-
ally, under this bijection, a planar map is bridgeless if and only if the corresponding diagram is
connected.

Proof. (Idea) The core idea is to characterize by induction the covered intervals, i.e., the
intervals which correspond to the corners which break the planarity if we insert a root
chord inside. They are precisely those intervals which are (i) under the root chord but
not the first interval under the root chord or (ii) are already covered in the diagram
obtained by removing the root chord.

3 New perspectives on chord diagram expansions in quan-
tum field theory

3.1 Context

Interestingly, by the work of some of the authors [8, 6, 4], rooted chord diagrams appear
in quantum field theory where they give series solutions to certain Dyson-Schwinger
equations. We are going to see that the bijection of Section 2 will simplify some formulas
in this theory.

To proceed, we need two non-standard definitions concerning rooted connected chord
diagrams. First we define the intersection order of the diagram as follows. The root chord
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is the smallest chord. Remove the root chord and let C1, C2, . . . be the connected compo-
nents. Next sort all the chords of C1 in this recursive order, then all the chords of C2 and
so on. This intersection order is not in general the same as the order by first endpoint
— see [4] for an example. Then we say a chord is terminal if it does not cross any chords
larger than it in this order. Equivalently, a chord c is terminal if every chord intersecting
c is to the left of c.

The main result of [6], generalizing [8], consists of solving a family of Dyson-Schwin-
ger equations in terms of a sum over weighted connected chord diagrams:

Theorem 5 (Hihn, Yeats [6]). For a positive integer s, we define the Dyson-Schwinger equation

G(x, L) = 1− ∑
k≥1

xkG(x, ∂−ρ)
1−sk(e−Lρ − 1)Fk(ρ)ρ=0

where Fk(ρ) = ∑i≥0 ak,iρ
i−1. This equation is solved by

G(x, L) = 1−∑
i≥1

(−L)i

i! ∑
C

b(C)≥i

x‖C‖w(C)ab(C),b(C)−i ∏
c not

terminal

ad(c),0

`

∏
j=2

ad(tj),tj−tj−1
, (3.1)

where the second sum runs over all connected diagrams C, carrying a positive integer weight
d(c) on each of its chords c, and such that the position of the first terminal chord is b(C) ≥ i.
As for the other parameters, |C| denotes the number of chords; ‖C‖ is the sum of the chord
weights; t1 = b(C) < t2 < · · · < t` = |C| lists the positions of all the terminal chords; and
w(C) = ∏|C|`=1 (

d(`)s+ν(`)−2
ν(`)

). For the last quantity, we need another parameter ν(c) which will
be subject to further discussion.

This theorem was shown by checking that the Dyson-Schwinger equation and the
eventual solution both satisfy the same recurrences with the same initial conditions.
Parts of the proof went through some opaque equations coming from some recursion
trees. With the bijection to bridgeless maps, we can better understand the underlying
logic.

3.2 Old and new definitions of the ν parameter

The first definition of the ν parameter given in [6] was quite involved as it could not be
directly interpreted at the level of the diagrams. It was based on some recursion trees of
the objects and the lengths of leftwards paths up these trees.

We give here a new definition of the ν parameter. It is not equivalent to the previous
definition in the sense the two parameters can have different values for a given object,
but both are consistent with Equation (3.1) overall. This generalizes some observations
made by Hihn and will be proved in future work.
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Parameters in connected chord diagrams Parameters in bridgeless maps
chords edges

terminal chords vertices; edges in the spanning tree induced
by the rightmost DFS

position b(C) of the first terminal chord
number of ingoing edges (for the rightmost

DFS) incident to the root vertex

position tj of the jth terminal chord
number of ingoing edges (for the rightmost
DFS) incident to the vertex which has been
visited at position j in the rightmost DFS

Table 3: How parameters intervening in (3.1) transfer from diagrams to maps.

Let us consider the chords of a connected diagram C in intersection order: c1, c2, . . .
For every k in increasing order, we label each interval below ck by the number k. If some
number was already on an interval, we rewrite k onto it. At the end of this procedure,
ν(k) is defined as the number of remaining k-labels.

3.3 Interpretations in terms of maps

It turns out that the parameters occurring in Theorem 5 become more natural when
viewed at the level of maps. In fact, the bijection of Section 2 brings out, maybe sur-
prisingly, the Depth First Search (DFS) of the map where we favor the rightmost edges
(call this a rightmost DFS). This traversal induces an orientation of the edges on a map,
including the root half-edge. This orientation characterizes most of the aforementioned
parameters.

Proposition 6. Under the bijection of Section 2, the parameters of Theorem 5 are transferred as
indicated by Table 3.

This proposition can be shown by a simple induction.
Remarkably, the terminal chords correspond naturally to the vertices of the map.

Consequently, all the asymptotic results of [4] translate over to asymptotics about vertices
of bridgeless maps1.

With some more thought, we can describe the analogue of the ν vector for maps,
but this will be detailed in future work. Let us mention that this analogue enables us
to interpret some formula which was at the time obscure but crucial for the proof of
Theorem 5 (precisely [6, Proposition 6.10]).

1For example, it proves that the number of vertices in a random bridgeless map asymptotically obeys
to a Gaussian law of mean ∼ ln n.
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4 New interpretation of Arquès and Béraud’s equation

4.1 Statement of the equation and implications

In this section we revisit the equation

B(z, u) = u + zB(z, u)B(z, u + 1) (4.1)

derived by Arquès and Béraud [1], who proved that it is satisfied by the generating
function counting rooted maps with respect to edges and vertices. Cori [3] gave a shorter
proof of this equation after analyzing Ossona de Mendez and Rosenstiehl’s bijection
between maps and indecomposable involutions [11], which sends vertices of a map to
left-to-right maxima of the corresponding involution. Speaking in terms of diagrams, left-
to-right maxima correspond to top chords: that is, chords which are not below another
chord. For example, the number of top chords in the diagrams of size 3 of Tables 1 and
2 are respectively 3, 3, 2, and 2 for the connected diagrams, and 1, 1, 1, 2, 2, and 2 for the
disconnected diagrams. Notice, however, that the association between maps and chord
diagrams described in the columns (coming from the bijection of Section 2) does not in
general pair a map with k vertices to a diagram with k top chords.

The question naturally arises of whether Equation (4.1) can be justified directly via
a bijective interpretation, either in the case of rooted maps or of indecomposable chord
diagrams. This question has been previously considered by Arquès and Micheli [2],
who derived Equation (4.1) by introducing certain topological operations on maps of
arbitrary genus2. Here we give a new bijective interpretation directly on indecomposable
diagrams, with the crucial property that it restricts naturally to connected diagrams. (We
also take the opportunity to refine the equation to keep track of the number of crossings.)

Theorem 7. Let B(z, u, v) be the ordinary generating function of indecomposable diagrams
counted with respect to the number of chords minus one (z), the number of top chords (u) and
the number of crossings (v). Similarly, let C(z, u, v) be the generating function for connected
diagrams with the same interpretation of the parameters. The following holds:

B(z, u, v) = u + zB(z, 1 + uv, v) B(z, u, v), (4.2)
C(z, u, v) = u + z(C(z, 1 + uv, v)− C(z, 1, v))C(z, u, v). (4.3)

By Theorem 1, we know that C(z, 1, 1) is also the generating function for bridgeless
maps counted by number of edges. However, the question of the interpretation of the
parameters u and v for bridgeless maps remains open. In particular, an easy inspection
reveals that C(z, u, 1) = u + zu2 + z2(2u2 + 2u3) + z3(10u2 + 12u3 + 5u4) + . . . does not
count bridgeless maps by edges and vertices.

2Thanks to Maciej Dołega for pointing us to this reference.
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4.2 Combinatorial interpretation

For the sake of simplicity, let us forget the variable v counting the number of crossings
(it can be incorporated quite simply afterwards), leaving just the equation B(z, u) =
u + zB(z, 1+ u)B(z, u). From a combinatorial point of view, this equation says that every
indecomposable diagram with a least two chords can be seen as the product of two
indecomposable diagrams, one of which has a marked subset of top chords.

We are going to describe the combination part, building a diagram from two smaller
ones. The decomposition part can be deduced quite simply and will be described in a
longer version of this paper. Figure 4 gives an example of such a combination.

Figure 4: An example of how to combine an indecomposable diagram with another indecomposable diagram
in which a subset of top chords is marked. The first diagram has 4 top chords, 2 of which are marked. The
second diagram has only one top chord. The combination of both induces 3 top chords, as expected.

Let us thus consider two indecomposable diagrams D1 and D2, where some top
chords of D1 are marked. We run the following algorithm:

1. Put D2 on the right of D1.

2. Open the left endpoint of the root chord D2.

3. Consider the rightmost marked top chord. (The top chords are sorted from left to
right without ambiguity.) If there is no more marked top chord, go to 5.

4. Forget the marking of that chord. Then, open its left endpoint, and replace it by
the left endpoint of the other open arc. Go to 3.

5. Close the open arc at the left of D1.

The composition of two diagrams is thus defined. The non-marked top chords are
now below a chord, so they are not top chords anymore.

Note that a new connected component is created by this process if and only if no top
chord is marked. Indeed, the only way to form a new component is to close the root
chord of D2 directly at the left of D1, which can be done by jumping Item 4. So if we
want to enumerate connected diagrams, we have to force diagrams D1 to have at least
one marked top edge. Such diagrams are counted by C(z, 1 + u)− C(z, 1). We recover
Equation (4.3).
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