
ar
X

iv
:1

61
1.

05
05

9v
1

 [
m

at
h.

C
O

]
 1

5
N

ov
 2

01
6

ENUMERATION OF PERMUTATIONS

INDEXING LOCAL COMPLETE INTERSECTION

SCHUBERT VARIETIES

A Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

with a

Major in Mathematics

in the

College of Graduate Studies

University of Idaho

by

Masaki Ikeda

Major Professor

Alexander Woo, Ph.D.

Committee

Jennifer Johnson-Leung, Ph.D.

Terence Soule, Ph.D.

Stefan Tohaneanu, Ph.D.

Department Administrator

Christopher Williams, Ph.D.

June 2016

http://arxiv.org/abs/1611.05059v1

ii

Authorization to Submit Dissertation

This dissertation of Masaki Ikeda, submitted for the degree of Doctor of Philosophy with a Major

in Mathematics and titled “Enumeration of permutations indexing local complete intersection

Schubert varieties,” has been reviewed in final form. Permission, as indicated by the signatures

and dates below, is now granted to submit final copies to the College of Graduate Studies for

approval.

Major Professor:
Alexander Woo, Ph.D. Date

Committee Members:
Jennifer Johnson-Leung, Ph.D. Date

Terence Soule, Ph.D. Date

Stefan Tohaneanu, Ph.D. Date

Department

Administrator:
Christopher Williams, Ph.D. Date

iii

Abstract

We find the generating function for the permutation class A′ = Av(52341, 53241, 52431, 35142,

42513, 351624). Partial motivation for this work comes from algebraic geometry. In particular,

certain classes of Schubert varieties are indexed by permutations in some permutation classes.

For example, as shown by Lakshmibai and Sandhya [29], a smooth Schubert variety is indexed

by a permutation in the class Av(3412, 4231), and a Schubert variety defined by inclusions (dbi

for short) has an index in A = Av(4231, 35142, 42513, 351624), as shown by Gasharov and Reiner

[20]. In addition to those results, Úlfarsson and Woo [38] showed Schubert varieties which are

local complete intersections (lci for short) are indexed by permutations in A′.

The enumeration of the permutations indexing smooth Schubert varieties was initially

found by Haiman [22], and then also discussed by Bousquet-Mélou and Butler [14]. Furthermore,

Albert and Brignall [7] discovered the enumeration of Schubert varieties defined by inclusions.

This dissertation completes the enumeration of the class A′ by extending the method used by

Albert and Brignall to enumerate A in [7].

iv

Acknowledgements

I couldn’t have come this far academically without support provided by my family, friends, and

former/current professors. The biggest appreciation goes to my advisor, Alexander Woo. He

not only guided me to the right direction with his intelligence and knowledge, but also became

a great connection to the community of permutation patterns. I could tell that he always cared

about me and my career as a mathematician. One day, I hope to become a great inspiration to

my own students.

I am truly thankful that I chose the University of Idaho for my graduate career. Teaching

assistantship they provided me each year helped me highly, not only financially, but also for me

to gain remarkable experiences as an instructor. Thanks to my committee members, Jennifer,

Stefan and Terry, and to wonderful staff members, Jana, Melissa, Jaclyn and Stacey, and all

other great professors who helped me to become a better scholar every day. Special thanks goes

to Monte Boisen, the former department chair who supported me even after his retirement. My

stay in Moscow was a truly amazing experience.

I would like to thank Western Oregon University for offering a great position to start my

professional career in academia as well as my wonderful undergraduate experience. It is a shame

that I had to have so many people wait for such a long time as I worked to finish my thesis.

I appreciate all the support from Sue, Debbie and everyone in mathematics department here

at WOU. Especially, Mike Ward, who first taught me the beauty of mathematics. Without his

courses, I would have never stepped into the path I took.

Permutation patterns community was truly supportive. I met wonderful scholars who

were helpful and motivating to complete my thesis. Thanks to Michael Albert, who gave me

such kind words to push me through the toughest time as well as his extremely helpful program,

PermLab to visualize my study. I am very happy to join such friendly community.

Lastly, I want to thank my host family in Oregon and friends. I am grateful to have so many

caring people surrounding me in my life. Jonny Olson, my best friend, was a true motivation and

distraction throughout my graduate career. Congratulations to him for achieving Ph.D. degree

at Louisiana State University. Thanks to Veronica, Frank, Emily, Josh, Amanda and Caitlin, my

second family since 2003, and my best friends, Jeff, Sierra, Ben, Jesse, Jenna, Hannah, Trevor,

Morgan, Josh, Don, Mallory, Veronica, Diadra, Karissa and the ones that I shamefully forgot.

v

Dedication
To my mother, Yuriko, and my father, Katsunobu.

vi

Table of Contents

Authorization to Submit Dissertation . ii

Abstract . iii

Acknowledgements. iv

Dedication. v

Table of Contents . vi

List of Figures . viii

List of Tables . x

1 Introduction . 1

1.1 Result . 1

1.2 History . 1

1.3 Place of dissertation in the literature . 4

2 Definitions and prerequisites . 5

2.1 Permutations and permutation classes . 5

2.1.1 Permutations . 5

2.1.2 Constructions of new permutations . 6

2.1.3 Permutation avoidance and permutation classes 8

2.2 Generating functions . 9

2.3 Simple permutations . 11

2.3.1 Definition . 11

2.3.2 Inflation . 12

2.3.3 The importance of simple permutations 13

2.4 Automata and the transfer matrix method . 15

2.4.1 Definition and example . 15

2.4.2 Transfer matrix method . 17

3 Examples of finding generating functions . 22

3.1 Enumeration of the class Av(123, 213, 132) . 22

3.2 Enumeration of the class Av(4123, 4213, 4132) . 23

3.2.1 Number of permutations in Av(4123, 4213, 4132) 23

vii

3.2.2 Skew-indecomposable permutations in Av(4123, 4213, 4132) 28

4 Enumeration of the class A . 30

4.1 Overview . 30

4.2 Extreme patterns 2413, 3142 and 3412 . 31

4.3 General simple permutations in A. 35

4.3.1 Structure theorem . 35

4.3.2 Proof of Theorem 4.4 (Part 1) . 40

4.3.3 Proof of Theorem 4.4 (Part 2) . 46

4.4 Enumeration . 49

4.4.1 Enumeration of simple permutations in A 49

4.4.2 Enumeration of the whole class of A . 59

5 Structure of general simple permutations in A′ 63

5.1 Extreme patterns 2413, 3142 and 3412 . 63

5.1.1 Structural propositions . 63

5.1.2 Detailed structures . 74

5.2 General simple permutations in A′ . 91

5.2.1 Glue sums and the structure theorem . 92

5.2.2 Proof of Theorem 5.21 (Part 1) . 98

5.2.3 Proof of Theorem 5.21 (Part 2) . 108

6 Enumeration of the class A′. 117

6.1 Enumeration of simple permutations in A′ . 117

6.1.1 Defining the encoding function φ′ and the language L′ 117

6.1.2 Defining the automaton M ′ . 136

6.2 Enumeration of the whole class A′ . 145

6.3 Conclusions . 151

Appendices . 152

A Transitions of M ′
i (1 ≤ i ≤ 10) and adjacency matrix associated with M ′

i 152

B Python code . 178

References . 209

viii

List of Figures

Figure 2.1.: The graph of the permutation π = 316254. 5

Figure 2.2.: The graphs of π−1, πr and πc. 6

Figure 2.3.: The graphs of σ ⊕ τ and σ ⊖ τ . 7

Figure 2.4.: The graph describing 132 � 316254. 9

Figure 2.5.: The inflation of 3142 by 1, 12, 312 and 1. 13

Figure 2.6.: The state diagram of the example automaton. 16

Figure 3.1.: The graphs of a permutation in Cik. 25

Figure 3.2.: The list of Schröder 3-paths. 28

Figure 4.1.: Graph of 25864137. 31

Figure 4.2.: Partial graph of π of extreme pattern 2413. 32

Figure 4.3.: Partial graphs of π with the assumption of having a value in B31. 32

Figure 4.4.: Partial graphs of π with the assumption of having a decreasing sub-segment

in [π−1(b), π−1(d)]. 33

Figure 4.5.: Partial graph of π of extreme pattern 3412. 34

Figure 4.6.: Partial graphs of π with the assumption of having a value in B21. 34

Figure 4.7.: Illustration of σ1
0
1 τ1. 36

Figure 4.8.: Illustration of σ2
0
1 τ2. 38

Figure 4.9.: Structure of π with |π| ≥ 4 and π(2) 6= 1. 39

Figure 4.10.: Graph of π = 2 5 9 3 1 4 8 6 10 12 17 7 11 16 13 15 19 22 20 18 14 21. . . . 40

Figure 4.11.: Illustration of relations among pm, qm, rm and di. 42

Figure 4.12.: Partial graphs of π to show that there exists no value in R2. 43

Figure 4.13.: Notations for sets of values in the crenellation. 47

Figure 4.14.: Encoding of π = 2 5 9 3 1 4 8 6 10 12 17 7 11 16 13 15 19 22 20 18 14 21. . 51

Figure 4.15.: Illustration of the decoding function ψ. 54

Figure 5.1.: Partial graphs of π of extreme pattern 3412. 63

Figure 5.2.: Partial graphs of π with the assumption of having a value in B23 in Figure

5.1. 64

Figure 5.3.: Partial graphs of π with the assumption of having a value in B13 in Figure

5.1. 64

Figure 5.4.: Structure of values corresponding positions in B. 65

Figure 5.5.: Structure of a 231-value chain. 66

ix

Figure 5.6.: Partial graphs of π with the assumption of b corresponding to the 3 in 321

and having a value in B32. 67

Figure 5.7.: Partial graphs of π with the assumption of b corresponding to the 3 in 321

and having a value in B21. 68

Figure 5.8.: Partial graphs of π with b̂ corresponding to the 3 in 321. 69

Figure 5.9.: Partial graphs of π with the assumption of values corresponding to positions

in A contain 23451. 70

Figure 5.10.: Partial graph of π for Lemma 5.4. 71

Figure 5.11.: Partial graphs of π with a 2341 pattern and one descent. 72

Figure 5.12.: Partial graphs of π for the inductive case. 72

Figure 5.13.: Structure of a 312-value chain. 73

Figure 5.14.: Forbidden regions with a 231-value chain. 77

Figure 5.15.: Partial graph of π with the assumption of having two values in [s, t] whose

positions are in A. 78

Figure 5.16.: Partial graphs of π with the assumption of having a value x that is not a

part of a 312-value chain. 81

Figure 5.17.: Partial graphs of π with the assumption of having a value x that is a part

of a 312-value chain. 82

Figure 5.18.: Partial graph of π to show that 52341, 53241, 52431 6� π. 85

Figure 5.19.: Partial graph of π to show that 35142 6� π. 86

Figure 5.20.: Positions of values x with 1 ≤ x ≤ π(1) for π with extreme pattern 2413. . . 89

Figure 5.21.: Positions of values x with π(n) ≤ x ≤ n for π with extreme pattern 2413. . 90

Figure 5.22.: Values of positions s with 1 ≤ s ≤ π−1(1) for π with extreme pattern 3142. . 91

Figure 5.23.: Values of positions s with 1 ≤ π−1(n) ≤ n for π with extreme pattern 3142. 91

Figure 5.24.: Illustration of σ 0
3 τ . 95

Figure 5.25.: Partial graphs of π to show that there exists no value in B21. 99

Figure 5.26.: Partial graphs of π to show the possible existence of r′m. 100

Figure 5.27.: Graphs of µ1
0
1 ν1 and µ2

0
3 ν2. 103

Figure 5.28.: Partial graph of π with the assumption of π−1(x) > π−1(qm). 106

Figure 6.1.: Partial state diagram of M ′. 138

x

List of Tables

Table 4.1.: Classification of simple permutations in A. 35

Table 4.2.: Transitions of M . 57

Table 5.1.: Definitions of NW glue sums (i = σ−1(m) and j = τ(1)). 93

Table 5.2.: Definitions of SE glue sums (i = σ(m) and j = τ−1(1)). 96

Table 5.3.: Classification of simple permutations in A′. 97

Table A.1.: Partial state diagram of M ′. 153

Table A.2.: Adjacency matrix associated with M ′
i . 170

1

Chapter 1.

Introduction

1.1. Result

Denote by Av(B) the set of all permutations avoiding every permutation in B. One essential

study of permutation classes is to find the generating function for Av(B) with a particular set

of permutations B. Our final goal is to prove the following theorem.

Theorem. The generating function for the class A′ is defined by

fA′ =

∑5
i=0 aiḠ

i

∑6
i=0 biḠ

i

where Ḡ = G− 1 and G is the generating function satisfying the equation

Ḡ = 1 +
xḠ

1− xḠ2
,

and

a0 = −1 + 14x− 39x2 + 28x3 + 9x4 − 11x5 + x6,

a1 = −12 + 81x− 100x2 + 15x3 + 46x4 − 19x5,

a2 = −8 + 35x− 20x2 − 25x3 + 31x4 − 6x5 − x6,

a3 = 7, a4 = 1, a5 = −2.

b0 = −1 + 57x− 125x2 + 143x3 − 48x4 − 64x5 + 51x6 − 2x8,

b1 = −54 + 260x − 386x2 + 250x3 + 81x4 − 226x5 + 74x6 + 15x7 − 3x8,

b2 = −18 + 114x − 104x2 − 22x3 + 148x4 − 123x5 + 11x6 + 14x7 − x8,

b3 = 24, b4 = −2, b5 = −5, b6 = 1.

In this chapter, we introduce history of permutation class study as well as the place of disserta-

tion in the literature. Detailed definitions are given in the next chapter.

1.2. History

The concept of permutation avoidance first appeared in the literature in 1915. In [30], MacMa-

hon proved that the number of permutations of length n which can be partitioned into two

2

decreasing subsequences is the Catalan numbers. Also in 1935, Erdős and Szekeres [17] showed

that, given two positive integers a, b and a sequence of n real numbers x = x1, . . . , xn with

n = ab + 1, x either contains a strictly increasing subsequence of length a + 1 or a strictly

decreasing subsequence of length b+1. Despite these early results, we consider the study of per-

mutation classes to have begun in 1968 with Knuth’s The Art of Computer Programming [25].

Knuth proved a permutation π is stack-sortable if and only if π avoids 231, and stack-sortable

permutations are also counted by the Catalan numbers. The result of Knuth brought up the

notion of permutation avoidance and the study of permutation classes. Within two decades

of Knuth’s contribution, many enumeration results were discovered by various researchers. In

particular, Simion and Schmidt [36] summarized permutation classes avoiding permutations of

length 3.

Based on some earlier results, Stanley and Wilf separately conjectured in the late 1980s

that, for any permutation π, there exists a constant Cπ whose n-th power is an upper bound

for the number of permutations of length n avoiding π. In other words, while the growth rate

of the set of length n permutations is factorial, having a restriction of avoiding an arbitrary

single permutation reduces the growth rate to be exponential. This is known as the Stanley-

Wilf conjecture. Some partial results were proved by Bóna [12] and Alon together with Friedgut

[9]. A breakthrough was made by Klazar in 2000 [24], when he showed that the Füredi-Hajnal

conjecture implies the Stanley-Wilf conjecture. The Stanley-Wilf conjecture remained unproven

for almost two decades until Marcus and Tardos proved it in 2004 by proving the Füredi-Hajnal

conjecture [31].

Although the proof of Marcus and Tardos gives an upper bound for the growth rate con-

stant Cπ depending on the length of π, the precise growth rates for most permutation classes are

still unknown. Hence, one of the main problems in present research is to characterize the growth

rates of permutation classes. Pratt [35] as well as Spielman together with Bóna [37] showed the

existence of permutation classes containing infinite antichains. Since such a class contains un-

countably many distinct subclasses, their result implied there exist uncountably many distinct

growth rates. Then in [23], Kaiser and Klazar showed the only possible growth rates of any

permutation class that is less than 2 are positive solutions to 1 − 2xk + xk+1 for some k ≥ 0.

Later, Klazar also showed there are only countably many permutation classes with growth rate

less than 2. As an extension of this result, Vatter showed two noteworthy results in [39]: The

smallest possible growth rate greater than 2 for a permutation class is the unique positive root

of 1+2x+x2+x3−x4, which is approximately 2.06599, and the smallest growth rate for which

there are uncountably many permutation classes is the unique positive root of 1 + 2x2 − x3,

which is approximately 2.20557.

3

Another notable contribution to the study of growth rates was made by Fox in 2014

[18]. It was believed that the growth rates of permutation classes avoiding a single permutation

of length n grows at most quadratically. In [18], Fox showed this is false, but the function

g(k) = max{Cπ : |π| = k} grows mildly exponentially.

While understanding growth rate constants is the primary interest of many researchers,

classifying necessary and sufficient conditions for a permutation class to have a specific type of

generating function is also an important question. For example, in [5], authors defined the no-

tion of geometric griddable class, and showed every geometrically griddable class has a rational

generating function. In 1996, Noonan and Zeilberger conjectured that the generating function

of a finitely based permutation class is D-finite [33], i.e., it is the solution to some differential

equation with polynomial coefficient. However, Zeilberger himself later conjectured to the con-

trary that the generating function counting the permutations avoiding 1324 is not D-finite [16].

This, the Noonan-Zeilberger conjecture, was disproved by Garrabrant and Pak in 2015, who

give a general method for generating counterexamples [19].

As we briefly mentioned, the generating function for the permutation class avoiding 1324

remains unknown. In fact, this is the only class (up to symmetry) avoiding a single permutation

of length 4 that has not been enumerated. To illustrate the difficulty of finding the gener-

ating function for this class, Zeilberger stated “Not even God knows |Av1000(1324)|,” where

|Av1000(1324)| is the number of permutations of length 1000 avoiding 1324. On the other hand,

Steingŕımsson disagrees with Zeilberger by saying “I’m not sure how good Zeilberger’s God is

at math, but I believe that some humans will find this number in the not so distant future.”

Perhaps, our ultimate goal is to prove Steingŕımsson’s claim is correct. The growth rate of this

class is also unknown. Currently, the best known lower bound of the growth rate is approxi-

mately 9.81, as shown by Bevan [10], and the best known upper bound is approximately 13.74,

as shown by Bóna [13].

In order to find the generating functions for more permutation classes as well as for the

one of permutations avoiding 1324, researchers have worked on establishing many enumeration

techniques which can be applied to specific classes. In particular, with the notion of simple

permutation introduced in [2, 4], we can find the generating functions for certain classes by

enumerating simple permutations in these classes first. Also, authors of [5] discovered concrete

enumeration methods for geometric griddable classes. In [7], Albert and Brignall combine these

two ideas to find the generating function for the class avoiding permutations 4231, 35142, 42513

and 351624.

4

1.3. Place of dissertation in the literature

There are objects known as Schubert varieties in algebraic geometry, and certain types of Schu-

bert varieties are indexed by permutations in some permutation classes. For instance, as shown

by Gasharov and Reiner [20], permutations in the class Albert and Brignall enumerated in [7]

index Schubert varieties defined by inclusions. Also, Lakshmibai and Sandhya [29] showed that

smooth Schubert varieties are indexed by permutations avoiding 4231 and 3412, and Úlfarsson

and Woo [38] proved local complete intersection ones are indexed by permutations avoiding

52341, 53241, 52431, 35142, 42513 and 351624. The enumeration of the permutations index-

ing smooth Schubert varieties was initially found by Haiman [22], and then also discussed by

Bousquet-Mélou and Butler [14]. In this dissertation, we enumerate permutations indexing

Schubert varieties that are local complete intersections.

As discussed in the previous section, three aspects of the study of permutation classes

are growth rates, relations between types of generating functions and classes, and enumeration

techniques. With this dissertation, we contribute to all of these aspects. Since we prove our

final result by extending the methods Albert and Brignall used in [7], we primarily contribute

to the study of enumeration techniques. In the future, we plan to use our result to characterize

the permutation classes to which these methods can be applied. In addition, we can see that the

generating function we obtain, like the one in [7], is algebraic. Although we don’t have enough

evidence to establish any conjecture about the types of generating functions related to classes

that can be enumerated by methods we use, there may be some possible connections.

In Chapter 2, we define necessary terminology and provide examples to understand the

study of permutation classes. Chapter 3 specifically covers two examples of enumeration. These

results are stated as lemmas and will be referred in Chapter 6. We spend the entirety of Chapter

4 to describe the methods which Albert and Brignall used in [7] in detail. By extending this

idea in Chapter 5 and 6, we complete our final result.

For a more detailed history of the study of permutation classes, we refer the reader to the

excellent survey of Vatter [40].

5

Chapter 2.

Definitions and prerequisites

2.1. Permutations and permutation classes

2.1.1. Permutations

A permutation π is a bijective function from {1, 2, . . . , n} to itself for some positive integer n,

which is called the length of π, denoted by |π|. We call an integer in the domain of π a position,

and an integer in the image of π a value. In this dissertation, we will write permutations in

one-line notation; a permutation π will be written as a sequence of n positive integers π1 . . . πn,

indicating for each i ∈ {1, 2, . . . , n} that π(i) = πi. (We usually write π(i) instead of πi to refer

to the value in the i-th position of π). For example, π = 316254 is a permutation of length 6,

and π(4) = 2. Let S and Sn be the set of all permutations and the set of all permutations of

length n, respectively. (For n = 0, S0 is the set containing only the empty permutation, which

is denoted by ε). One can easily verify that |Sn|, the number of length n permutations, is n!.

Here, we also introduce the graph of a permutation, as this idea will help to illustrate

some important concepts. Given a permutation of length n, we draw a point at (i, π(i)) on the

Cartesian plane for each i with 1 ≤ i ≤ n. Note that we always have a unique point on each

of x = 1, . . . , x = n and y = 1, . . . , y = n lines. We then draw an n × n grid containing these

points. Figure 2.1 shows the graph of π = 316254.

Figure 2.1.: The graph of the permutation π = 316254.

We frequently abuse notation and think of values as points in the graph. For instance, by

saying the value x of π is located below and to the left of y, we mean x < y and π−1(x) < π−1(y).

6

2.1.2. Constructions of new permutations

In this section, we introduce several methods to construct other permutations from a given

permutation. Let π ∈ Sn. For every i (1 ≤ i ≤ n), the inverse of π is the permutation

π−1 ∈ Sn such that π(π−1(i)) = π−1(π(i)) = i, the reverse of π is the permutation πr ∈ Sn

given by πr(i) = π(n + 1 − i), and the complement of π is the permutation πc ∈ Sn defined by

πc(i) = n+ 1− π(i). Examples of each operation are shown in Figure 2.2 with π = 316254.

→

π = 316254 π−1 = 241653

↓ ց

πr = 452613 πc = 461523

Figure 2.2.: The graphs of π−1, πr and πc.

As we can observe, the inverse, the reverse, and the complement of a permutation π can be

obtained by reflecting π respectively over SW-NE diagonal, vertical, and horizontal lines on the

graph of π. We denote by Sym(π) the set of permutations obtained by applying compositions

of these operations and call this set the symmetry class of π. In other words, Sym(π) is the

orbit of the dihedral group of order 8 acting on the graph of π. For π = 316254, one can eas-

ily verify that Sym(316254) = {316254, 241653, 452613, 461523, 421635, 356142, 325164, 536124}.

7

The previous three operations construct a new permutation of the same length from a given

permutation. Next, we introduce two ways to “glue” two permutations together to construct a

lager permutation. Given σ ∈ Sm and τ ∈ Sn, the sum of σ and τ is the permutation defined

by

σ ⊕ τ = σ(1)σ(2) · · · σ(m)τ ′(1)τ ′(2) · · · τ ′(n)

where τ ′(i) = τ(i) +m for each i with 1 ≤ i ≤ n. Similarly, we define the skew-sum of σ and τ

to be the permutation

σ ⊖ τ = σ′(1)′σ(2) · · · σ′(m)τ(1)τ(2) · · · τ(n)

where σ′(i) = σ(i) + n for each i with 1 ≤ i ≤ n. Figure 2.3 shows the sum and skew-sum of

σ = 1342 and τ = 312. Note that neither of these sum operations is commutative, but they are

associative. For instance, while σ ⊕ τ = 1342756, we have τ ⊕ σ = 3124675.

σ = 1342 τ = 312

σ ⊕ τ = 1342756 σ ⊖ τ = 4675312

Figure 2.3.: The graphs of σ ⊕ τ and σ ⊖ τ .

If π can be constructed by a sum σ1 ⊕ σ2 for some nonempty permutations σ1 and σ2,

then we say π is sum-decomposable. Similarly, if π = σ1 ⊖ σ2 for some nonempty permutations

σ1 and σ2, then we say π is skew-decomposable. More importantly, if π is not sum-decomposable

8

(respectively skew-decomposable), i.e., there does not exist two permutations σ1 and σ2 such

that π = σ1 ⊕ σ2 (respectively π = σ1 ⊖ σ2), then we say π is sum-indecomposable (respectively

skew-indecomposable).

Lastly, there is another method, called inflation, to construct a new permutation that will

be important in this dissertation, but it makes more sense to introduce this construction when

we discuss simple permutations, so we postpone discussing it until Section 1.3.

2.1.3. Permutation avoidance and permutation classes

We now introduce the concept of permutation avoidance. The flattening of a sequence of n

distinct positive real numbers is the unique permutation σ of length n where σ has the same

relative order as the sequence. For example, the flattening of 364 is σ = 132. If a permutation

π has a subsequence (not necessarily consecutive) whose flattening is σ, we say the pattern σ is

contained in π and write σ � π, since pattern containment is a partial order. Notice that the

permutation π = 316254 has a subsequence 364, so σ = 132 is contained in π. More impor-

tantly, if σ is not contained in π, we say π avoids σ pattern and write σ 6� π. With the same

permutation π for example, π avoids τ = 4231 because π does not contain a subsequence of four

positive integers whose flattening is τ .

We can visualize the concepts of containment and avoidance with graphs of permutations.

In the graph of π = 316254, if we take the points corresponding to the subsequence 364 and

disregard all the others, we can construct the graph of σ = 132 by removing the lines with no

points and squeezing together the lines that remain into a 3 × 3 grid, as shown in Figure 2.4.

On the other hand, there is no subset of points that we can choose to construct τ = 4231 in this

way, and hence, τ 6� π.

Define a permutation class to be a set C of permutations with the property that, if π ∈
C and σ � π, then σ ∈ C. The set of permutations β that are minimal (with respect to

containment) among those not in C is called the basis of C. Let B be a set of permutations

and Av(B) be the set of permutations avoiding every permutation in B. We call this set the

permutation class of B. Note that if B is the basis of C, then we have

C = Av(B) = {π : β 6� π for all β ∈ B}.

A trivial example is C = Av(21) (we usually omit superfluous braces). It is a straightfor-

ward exercise to see that for each positive integer n, 12 . . . n is the only permutation in Sn that

9

avoids 21. Thus, Av(21) = {ε, 1, 12, 123, 1234, . . .}.

We conclude this section by introducing some basic properties of permutation classes. The

definition of a permutation class immediately implies the following proposition.

Proposition 2.1 Let B1 and B2 be distinct sets bases of permutation classes. If, for every

β2 ∈ B2, there exists β1 ∈ B1 such that β1 � β2, then Av(B1) (Av(B2).

For example, Av(132, 213) (Av(132, 3142) since 132 � 132 and 213 � 3142.

The following result is less obvious but not too difficult to prove.

Proposition 2.2 Let op be a fixed composition of the inverse, reverse and complement oper-

ations. Given a basis B, define op(B) = {op(β) : β ∈ B}. Then π ∈ Av(B) if and only if

op(π) ∈ Av(op(B)). Hence, |Av(B)| = |Av(op(B))|.

2.2. Generating functions

Given an arbitrary class C, we are interested in discovering a formula called a generating function

which expresses the number of length n permutations in C, if possible. In this section, we define

the notion of generating function for an integer sequence and discuss a few enumerative results

which have been found in recent years.

Suppose we have a sequence of positive integers {an}∞n=0. The generating function for

{an}∞n=0 is a formal power series of the form

f =

∞∑

n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · · .

→

Figure 2.4.: The graph describing 132 � 316254.

10

In particular, a generating function for a permutation class C is a formal power series fC defined

by

fC =
∞∑

n=0

sn(C)xn,

where sn(C) = |Sn ∩ C| (or simply sn, if it is clear from context). In other words, for each i ≥ 0,

the coefficient of xi is the number of length i permutations in C. For instance, the generating

function for the class Av(21) is

fAv(21) =
1

1− x
= 1 + x+ x2 + x3 + x4 + · · · .

It is sometimes convenient (and necessary) to exclude the constant term 1, which corre-

sponds to the empty permutation ε. In this dissertation, we let f̄ = f − 1.

We will also need the concept of multivariate generating functions. The multivariate

generating function with i variables for a sequence of positive integers {an1,n2,...,ni
}n1,n2,...,ni≥0

is a formal power series of the form

f =
∑

n1,n2,...,ni≥0

an1,n2,...,ni
xn1
1 x

n2
2 · · · xni

i .

Once we discover the generating function for a permutation class, we are often able to

find the growth rate of the class. As the Stanley-Wilf conjecture states, any permutation class

has exponential growth. Hence, by applying the Ratio Test and Taylor’s Theorem from complex

analysis, the growth rate is the reciprocal of the distance from 0 to the closest pole (i.e. the ra-

dius of convergence). In particular, gr(C), the growth rate of a permutation class C, is obtained by

gr(C) = lim
n→∞

|an+1|
|an|

=
1

R
,

where R is the radius of convergence of the generating function for C.

There are many different techniques for finding generating function of permutation classes.

We postpone examples of finding generating functions until Chapter 3, where we show how to

enumerate two classes, Av(123, 213, 132) and Av(4123, 4213, 4132). In the remainder of this

section, we will discuss some historical enumerative results.

Since the enumerative study of permutation classes blossomed in 1980s, generating func-

tions for various classes have been discovered. The first well known result is the following.

11

Theorem 2.3 For every permutation β in S3, the number of permutations of length n in Av(β)

is the n-th Catalan number. Hence,

fAv(β) =
1−

√
1− 4x

2x
= 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + · · ·

For β = 123 and β = 231, the above result was classically known [26, 30]. In [36], Simion and

Schmidt summarize this result as well as various results for bases having more than one permu-

tation of length 3, including Av(123, 213, 132), which we introduce in Chapter 3.

In the 1990s, researchers discovered numerous results with bases containing permutations

of length 4 [11,21]. In [11], Bóna not only finds the generating function for Av(1342), but further-

more finds the exact formula for sn(1342) for every n by giving a bijection between permutations

in Av(1342) and labeled plane trees of a certain type on n vertices. The class Av(3412, 4231), the

set of permutations indexing smooth Schubert varieties, was also enumerated in the early 1990s

by Haiman [22]; this result was also discussed in [14]. Other various results are also discussed

in [3, 6], and there are many more.

In addition to these results, researchers have recently established some concrete enumera-

tion techniques which can be applied to certain types of classes. In [15], Brignall summarizes a

variety of techniques coming from simple permutations (introduced in the next section). Also,

[5] defines so-called geometric grid classes and introduces some techniques that can be used to

enumerate this type of class. In Chapter 3, we investigate the method Albert and Brignall use

to enumerate the class A in [7].

2.3. Simple permutations

2.3.1. Definition

We now move onto the discussion of simple permutations. First, we define two kinds of in-

tervals. Given a permutation π of length n, a segment of π is a set of consecutive positions

i, i + 1, . . . , j in π, and a range of π is a set of consecutive values a, a + 1, . . . , b of π. We use

the standard notations of intervals for them. Although permutations only contain positive inte-

ger values, we may sometimes use open intervals to exclude boundary positions or values. For

these intervals, we carry the notion of length from a permutation to denote the number of el-

ements in [i, j], which is simply j−i+1. We call a segment and a range that are not [1, n] proper.

12

Now, we define simple permutations. Let [i, j] be a segment of π whose length is m. If the

set of values {π(i), . . . , π(j)} is an interval [a, b], then [i, j] is called a block of π. In this case,

we may denote by π([i, j]) the corresponding range to the segment [i, j] forming a block. Every

permutation of length n has n singleton blocks as well as the block [1, n]. If a permutation π

only contains these blocks, π is called simple. By convention, π = 1 is not considered simple.

As an example and a non-example of simple permutations, suppose we have π = 25314 and

σ = 4127563. Notice that σ contains segments [2, 3] and [4, 6] which are mapped to ranges [1, 2]

and [5, 7] by π respectively. Thus, they are blocks of length 2 and 3, so σ is not simple. On

the contrary, since the only blocks π contains are singletons and the block [1, 5], π is a simple

permutation. Given a permutation class C, we denote by Si(C) the set of simple permutations

in C.

2.3.2. Inflation

An alternative definition of simple permutations can be given by introducing the following

method to construct a new permutation.

Let π be a permutation of length n and σ1, σ2, . . . , σn be n non-empty permutations of

various lengths. Denote by ij the length of σj for every j with 1 ≤ j ≤ n, and let i0 = 0.

Finally, define intervals Ij = [i0 + i1 + · · ·+ ij−1 +1, i0 + i1 + · · ·+ ij] for each j with 1 ≤ j ≤ n.

The inflation of π by σ1, σ2, . . . , σn is the permutation α of length i1 + · · · + in, denoted by

π[σ1, σ2, . . . , σn], where

1. For every j (1 ≤ j ≤ n), there exists a constant t such that

(α(i0 + · · ·+ ij−1 + 1) − t) · · · (α(i0 + · · ·+ ij)− t) = σj.

2. For distinct j and k (1 ≤ j, k ≤ n), if ℓ ∈ Ij , m ∈ Ik and π(ℓ) ≤ π(m), then α(ℓ) ≤ α(m).

In other words, α = π[σ1, σ2, . . . , σn] is the permutation obtained by replacing each π(j) with a

block whose flattening is σj, so that for every distinct j and k, the relative ordering of α(ℓ) and

α(m) is the same as the relative ordering of π(ℓ) and π(m). An example of inflation is shown in

Figure 2.5, as this concept is best illustrated using graphs.

If the only ways to obtain a permutation π by inflation are π[1, 1, . . . , 1] and 1[π], then π

is simple. Hence, as discussed previously and shown in Figure 2.5, σ = 4127563 is not simple,

whereas π = 25314 is simple.

13

2.3.3. The importance of simple permutations

The notion of simple permutations was introduced in [4], where the authors describe how this

notion is useful in the study of various permutation classes. The most essential proposition in

[4] for our purpose is the following.

Proposition 2.4 (Albert and Atkinson, 2005) For every permutation α, there exists a simple

permutation π of some length n and permutations σ1, σ2, . . . , σn such that

α = π[σ1, σ2, . . . , σn].

Furthermore, if π 6= 12, 21, then the permutation π is uniquely determined by α. If π = 12 or

21, then σ1, σ2 are uniquely determined so long as we require that σ1 is sum-indecomposable or

skew-indecomposable respectively.

In other words, any permutation α can be decomposed as the inflation of a unique simple

permutation π by σ1, . . . , σn. In this case, π is called the skeleton of α. As stated, we must

ensure that |π| 6= 2 (so |π| ≥ 4, since there are no simple permutations of length 3) or, equiva-

lently, that α is sum/skew-indecomposable, to say σ1, . . . , σn are also uniquely determined. For

example, 1234 = 12[1, 123] = 12[12, 12] = 12[123, 1]. We can enforce uniqueness for sum/skew-

decomposable permutations by insisting σ1 be sum-indecomposable, so 1234 = 12[1, 123]. Hence

with Proposition 2.4 being analogous to the Fundamental Theorem of Arithmetic, simple per-

mutations are to permutations as prime numbers are to integers. This essential idea often helps

in discovering more general methods for finding generating functions for certain classes. In

particular, we have the following propositions.

→

3142 3142[1, 12, 312, 1] = 4127563

Figure 2.5.: The inflation of 3142 by 1, 12, 312 and 1.

14

Proposition 2.5 Let C be a permutation class, π be a simple permutation of length n ≥ 4 in

C and iflC(π) be the set of permutations in C which can be inflated from π. Suppose there exist

subclasses Ci of C (for each i, 1 ≤ i ≤ n) such that π[σ1, . . . , σn] ∈ C if and only if σi ∈ Ci. Then

the generating function for ifl(π) is

fiflC(π) =
n∏

i=1

f̄Ci .

If π = 12 (respectively π = 21) satisfies the above hypothesis, then

fiflC(12) = f̄⊕C1
· f̄C2 (respectively fiflC(21) = f̄⊖C1

· f̄C2)

where f̄⊕C1
(respectively f̄⊖C1

) is the generating function for sum-indecomposable (respectively skew-

indecomposable) permutations in C1, excluding the empty permutation.

Proposition 2.6 Let C be a permutation class. If Proposition 2.5 is applicable for all simple

permutations in C, then the generating function for C is

fC =
∑

π∈Si(C)

fiflC(π).

Proposition 2.5 states that if every set of choices for each σi forms a subclass of C inde-

pendently, then by the combinatorial meaning of multiplication together with the definition of

generating functions, the generating function for iflC(π) can be obtained by multiplying each

f̄Ci . If the basis of a class C contains only simple permutations, then Ci = C for all i, so the

hypothesis for Proposition 2.5 is automatically satisfied.

If Proposition 2.5 is applicable to every simple permutation in C, then by the combinatorial

meaning of addition and the definition of generating functions, Proposition 2.6 is an immediate

consequence.

In [2], authors also discuss the asymptotic result stated in Theorem 2.7 as well as Theorem

2.8, which is a strong result about generating functions for permutation classes containing finitely

many simple permutations.

Theorem 2.7 (Albert and Atkinson, 2003 [4]) Let pn be the number of simple permutations of

length n. Then

pn =
n!

e2

(

1− 4

n
+

2

n(n− 1)
+O(n−3)

)

.

15

Theorem 2.8 (Albert and Atkinson, 2005 [2]) If a permutation class contains only finitely many

simple permutations, then it has a finite basis and an algebraic generating function. Furthermore,

if such a class does not contain the permutation n(n−1) · · · 321 for some n, then it has a rational

generating function.

Theorem 2.8 is not applicable to A and A′, the classes we enumerate in this dissertation,

since they have infinitely many simple permutations. However, the method we use for them

heavily depends on the structure of simple permutations in these classes.

2.4. Automata and the transfer matrix method

We conclude this chapter with the discussion of elementary automata theory and the so-called

transfer matrix method. Given a digraph with finitely many vertices and edges, the transfer

matrix method allows us to find the generating function (according to some weight function on

the edges) for paths from a specified vertex to another. We can apply this to the state diagram

of an automaton to find the generating function for the language it accepts. This will be the

key to finding fA and fA′ .

2.4.1. Definition and example

We start with the definition of a deterministic finite-state automaton. An alphabet Σ is a finite

set, and we call the elements of the alphabet letters. For example, Σ = {a, b, c} is an alphabet.

A string of letters α1, α2, . . . , αn where αi ∈ Σ (1 ≤ i ≤ n) is called a word. The string with no

letters is called the empty word, denoted by λ. The set of all words associated with Σ, including

the empty word, is denoted by Σ∗. In particular,

Σ∗ =
∞⋃

i=0

Σi, where Σi = Σ× · · · × Σ
︸ ︷︷ ︸

i times

.

With Σ = {a, b, c}, we have Σ∗ = {λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, . . .}. Any subset of

Σ∗ is called a language.

A deterministic finite-state automaton is a 5-tuple M = (Q,Σ, δ, q0, F) where:

• Q is a finite set. Elements in Q are called states and denoted by q with some subscript.

• Σ is an alphabet.

• δ : Q× Σ → Q is a function called the transition function.

16

• q0 ∈ Q is called the initial state.

• F is a subset of Q. Any state in F is called a accept state.

As an example, let Q = {A,B,C, J} with A being the initial state, F = {C}, Σ = {a, b, c}
and δ defined by

δ(q, α) =

A if (q, α) = (B, a)

B if (q, α) = (A, b), (C, b)

C if (q, α) = (A, c), (B, c), (C, c)

J otherwise

.

Together, we have a deterministic finite-state automaton M = (Q,Σ, δ, A, F). We can provide

a graphical representation of an automaton called the state diagram, which is an edge-labelled

directed graph. States are represented by vertices. If δ(qi, α) = qj, we draw a directed edge

from qi to qj which is labeled with α. Such a directed edge is called a transition from qi to qj.

The initial state is indicated by the arrow with no label, and accept states are shown by double

circles. For the example above, we have the state diagram shown in Figure 2.6(a).

Associated to each automaton is a language L(M). Let w = α0, α1, . . . , αn be a word in

Σ∗. The run of an automaton on w is a sequence of states q0, q1, . . . , qn (not necessarily distinct)

where q0 is the initial state, and qi = δ(qi−1, αi) for every i with 1 ≤ i ≤ n. A word w is said

to be accepted by an automaton (Q,Σ, δ, q0, F) if qn ∈ F . In other words, an automaton reads

letters in w in sequence. As it reads the letter αi, it moves to the state qi. If the final state qn

is in F , then automaton accepts w. The language L(M) is the set of all words accepted by the

A

B

C

J

b

c
a

a c

b

b

c

a

a, b, c

A

B

C

b

c

a
c
b

c

(a) (b)

Figure 2.6.: The state diagram of the example automaton.

17

automaton.

In our example automaton, once we arrive at the state J , the transition function always

gives us J thereon and we are no longer able to go to any other states and in particular any

accept states. We call such a state a jail state and often omit all transitions to jail states as

well as jail states themselves from the state diagram. Thus, we may represent the diagram of

the above example as Figure 2.6(b) instead.

A language K is said to be regular if there exists a deterministic finite-state automaton M

such that L(M) = K. Note that in most textbooks, a regular language is defined as an element

of the set of languages R over Σ which is defined recursively as the following.

• ∅, {λ} ∈ R and for every α ∈ Σ, {α} ∈ R.

• If K,L ∈ R, then K ∪ L,KL = {α1, . . . , αm
︸ ︷︷ ︸

wK

, β1, . . . , bn
︸ ︷︷ ︸

wL

: wK ∈ K,wL ∈ L},K∗ ∈ R.

• R is the minimal set satisfying above two conditions.

A classical theorem states that the definition we provide and the definition above are equivalent.

2.4.2. Transfer matrix method

Here, we introduce a useful application of an automaton. With the method we discuss in this

section, we are able to find the generating function giving the number of n-letter words that are

accepted by a given automaton. To start, we define a weight function on a digraph.

Let D be a finite digraph with a vertex set V and an edge set E. A weight function on

E is a mapping from E to some commutative ring R. For an arbitrary walk Γ = e1e2 · · · en, the
weight of Γ with respect to w is defined by w(e1)w(e2) · · ·w(en). Intuitively, we may think that

every time we pass through an edge, we “count” it by multiplying by the assigned weight.

Given a digraph D = (V,E) with |V | = m and a weight function on D, an adjacency

matrix P of D with respect to w is the m ×m matrix where row i (1 ≤ i ≤ m) and column j

(1 ≤ i ≤ m) are labeled by vertices vi and vj respectively, and each entry is

Pij =
∑

e

w(e)

where the sum is over all edges from vi to vj .

18

As an example, we take the state diagram in Figure 2.6(a). Let w be the weight function

defined by w(t) = x for every transition t. Then we obtain the following adjacency matrix.

P =

A B C J

A 0 x x x

B x 0 x x

C 0 x x x

J 0 0 0 3x

Again, we are not interested in jail states for our purpose, so we omit the row and column

designated for J and express the adjacency matrix of this example as the following.

P =

A B C

A 0 x x

B x 0 x

C 0 x x

(2.1)

With this definition of adjacency matrix, we derive the following theorem.

Theorem 2.9 Let P be the adjacency matrix of some digraph D = (V,E), where |V | = m, with

respect to a weight function w. For any positive integer n and any i and j with 1 ≤ i, j ≤ m,

the (i, j)-entry of Pn is

(Pn)ij =
∑

Γ

w(Γ)

where the sum is over all walks Γ in D of length n from vi to vj. (By convention, we define

P 0 = I even if P is not invertible.)

Proof. The proof is by induction on n. The base case with n = 1 is obvious by the definition of

adjacency matrix. Assume the statement is true for some positive integer k. For any i, j with

1 ≤ i, j ≤ m, the (i, j)-entry of P k+1 is obtained by

(P k+1)ij = (P k)i1P1j + (P k)i2P2j + · · · + (P k)imPmj =
∑

1≤ℓ≤m

(P k)iℓPℓj

By the inductive hypothesis, for each ℓ with 1 ≤ ℓ ≤ m, (P k)iℓ =
∑

∆w(∆) where the

sum is over all walks ∆ in D of length k from vi to vℓ. By multiplying Pℓj =
∑

ew(e) where the

sum is over all edges from vℓ to vj, we have

(P k)iℓPℓj =
∑

∆

w(∆)
∑

e

w(e) =
∑

e

∑

∆

w(∆)w(e) =
∑

Γℓ

w(Γℓ)

19

where the sum is over all walks Γℓ in D of length k + 1 from vi to vj , such that the k-th vertex

is vℓ. Hence,

(P k+1)ij =
∑

1≤ℓ≤m

(P k)iℓPℓj =
∑

1≤ℓ≤m

∑

Γℓ

w(Γℓ) =
∑

Γ

w(Γ)

where the sum is over all walks Γ in D of length k + 1 from vi to vj. �

We provide an example to illustrate the use of this theorem. For the adjacency matrix P

(1) for Figure 2.6(b), we compute P 3. We get

P 3 =

A B C

A x3 3x3 4x3

B 2x3 2x3 4x3

C x3 3x3 4x3

.

We are interested in the entry of row for A and the column C, since A is the initial state and

C is the only accept state. We have 4x3 in the (A,C)-entry, so we look at the details of where

this term comes from. (P 3)AC is the following sum of the nonzero terms:

(P 3)AC = PABPBCPCC + PABPBAPAC + PACPCBPBC + PACPCCPCC . (2.2)

Every time we pass through a transition, we multiply by x. For a walk with three transitions

from A to C, we get x · x · x = x3. With four distinct walks from A to C with exactly three

transitions, we obtain x3 four times, and therefore the (A,C)-entry of P 3 is 4x3.

Hence, by looking at the (A,C)-entry of Pn, we can find the number of distinct walks from

A to C with n transitions. Specifically, this number is the coefficient given our weight function.

This is equivalent to the number of distinct n-letter words that are accepted by the automaton

of the diagram in Figure 2.6(b). In the case where we have multiple accept states, we consider

all the entries in the row corresponding to the initial state and a column corresponding to an

accept state and sum them up.

Our next goal is to find the generating function
∑
snx

n, where sn is the number of distinct

n length walks from one vertex to another by applying this technique. Suppose we have a digraph

D = (V,E) and the weight function w defined by w(e) = x for every edge e ∈ E. Because the

coefficient of xn in the entry (Pn)ij describes the number of distinct walks of length n from vi

to vj, the generating function for this is simply given by

f =

∞∑

n=0

(Pn)ij , or equivalently,

(
∞∑

n=0

Pn

)

ij

.

20

Notice that

I = I + (P − P) + (P 2 − P 2) + · · · = (I + P + P 2 + · · ·)− (P + P 2 + P 3 + · · ·)
= (I + P + P 2 + · · ·)− P (I + P + P 2 + · · ·) = (I + P + P 2 + · · ·)(I − P)

This gives us (I − P)−1 =
∑∞

n=0 P
n, so the (i, j)-entry of the matrix (I − P)−1 is the desired

function.

With the previous example, we obtain

(I − P)−1 =

A B C

A
−x2 − x+ 1

−2x2 − x+ 1

x

−2x2 − x+ 1

x2 + x

−2x2 − x+ 1

B
x− x2

−2x2 − x+ 1

1− x

−2x2 − x+ 1

x2 + x

−2x2 − x+ 1

C
x2

−2x2 − x+ 1

x

−2x2 − x+ 1

1− x2

−2x2 − x+ 1

The (A,C)-entry is
x2 + x

−2x2 − x+ 1
= x+ 2x2 + 4x3 + 8x4 + · · · ,

which is the generating function for the number of distinct n-letter words that are accepted by

the automaton described in Figure 2.6(b).

Finally, we provide another example of the technique described above, which allows us to

obtain more information from P than just the number of distinct n-letter words accepted by

the associated automaton. In the previous example, let us replace the weight function with the

following one.

w : T → Z[a, b, c] defined by w(t) =

a if t is from B to A

b if t is from A to B or from C to B

c if t is from A to C, from B to C or from C to C

where T is the set of all transitions and Z[a, b, c] is the commutative ring generated by elements

a, b and c with integer coefficients. With this weight function, the adjacency matrix is

P =

A B C

A 0 b c

B a 0 c

C 0 b c

.

Again, we look at the (A,C)-entry of P 3 as an example. Since the computation of matrix

multiplication does not change, we still get the equation (2). Hence, it is

(P 3)AC = b · c · c+ b · a · c+ c · b · c+ c · c · c = abc+ 2bc2 + c3.

21

Here, we need to keep in mind that a, b and c are elements of the commutative ring,

not letters for a regular language associated with the automaton. However, the defined weight

function “counts” each transition as a variable according to its label, so the word bacbc ∈ Σ∗ for

example is weighted as ab2c2 ∈ Z[a, b, c] by the weight function.

Thus, the equation above of three variables tells us that not only are there four 3-letter

words accepted by the automaton of Figure 2.6(b), but also that one of them consists of one

a, one b and one c, two of them consist of two b’s and one c, and the other one contains three

c’s. Just as before, we can find the multivariate generating function describing the number of

an1bn2cn3 words as its coefficients by looking at the (A,C)-entry of (I − P)−1. This time, we

obtain

(I − P)−1 =

A B C

A
−bc− c+ 1

−ab− cb− c+ 1

b

−ab− cb− c+ 1

bc+ c

−ab− cb− c+ 1

B
a− ac

−ab− cb− c+ 1

1− c

−ab− cb− c+ 1

ac+ c

−ab− cb− c+ 1

C
ab

−ab− cb− c+ 1

b

−ab− cb− c+ 1

1− ab

−ab− cb− c+ 1

The (A,C)-entry is

bc+ c

−ab− cb− c+ 1
= c+ (bc+ c2) + (abc+ 2bc2 + c3) + (ab2c+ 2abc2 + b2c2 + 3bc3 + c4) + · · ·

In Chapter 4 and 6, we apply this method to find generating functions for simple permu-

tations of length greater than or equal to 4 in A and A′ respectively.

22

Chapter 3.

Examples of finding generating functions

In this chapter, we prove enumerative results for two classes, Av(123, 213, 132) and Av(4123, 4213,

4132), as lemmas. Both are proved by showing that a generating function for the class satisfies

a specific functional equation.

3.1. Enumeration of the class Av(123, 213, 132)

We first state the result.

Lemma 3.1 (Simion and Schmidt, 1985 [36]) The numbers of permutations of length n in

Av(123, 213, 132) form the Fibonacci sequence. Thus, the generating function for Av(123, 213, 132)

is

fAv(123,213,132) =
1

1− x− x2
.

Proof. For convenience, let C = Av(123, 213, 132) and F = fAv(123,213,132). Since clearly,

s0 = s1 = 1, we show this result by proving the number of length n permutations in C is

equal to the sum of the number of length n − 1 permutations in C and the number of length

n− 2 permutations in C for all n ≥ 2. Let π ∈ Sn ∩ C (n ≥ 2) be arbitrary. Suppose the biggest

value n appears after the second position of π, meaning π(i) = n for some i ≥ 3. This is an

immediate contradiction, because either π(1) < π(2) or π(1) > π(2), and hence the flattening of

positions 1, 2 and i is either 123 or 213.

Now suppose π(2) = n. If n− 1 shows up after the second position, then the values π(1),

n and n−1 together create a subsequence whose flattening is 132, so we must have π(1) = n−1.

Thus for the case π(2) = n, we have

π = (n− 1)nπ(3)π(4) · · · π(n).

Notice that π = 12⊖ σ = 21[12, σ] where σ ∈ Sn−2 ∩ C. Since 12 is skew-indecomposable,

Proposition 2.4 guarantees that for each distinct σ, we obtain a unique π. Thus, we have an

obvious bijection between Sn−2 ∩ C and the set {π ∈ Cn ∩ C : π(2) = n}, namely φ(σ) = 12⊖ σ,

23

so the number of length n permutations in C such that π(2) = n is sn−2.

Similarly, if π(1) = n, then we have π = 21[1, σ] = 21[1, σ] where σ ∈ Sn−1 ∩ C. With the

same argument above, we have sn−1 distinct π of length n in C with π(1) = n.

Consequently, combining these observations together, we have the relation

sn = sn−1 + sn−2 for n ≥ 2, s0 = s1 = 1,

showing that sn forms the Fibonacci sequence.

We now translate this into a functional equation. We have

F =

∞∑

n=0

snx
n = 1 + x+

∞∑

n=2

snx
n = 1 + x+

∞∑

n=2

(sn−1 + sn−2)x
n

= 1 + x+

∞∑

n=2

sn−1x
n +

∞∑

n=2

sn−2x
n = 1 + x

(
∞∑

n=0

snx
n

)

+ x2

(
∞∑

n=0

snx
n

)

= 1 + xF + xF 2.

Thus, F = 1 + xF + x2F . Solving this for F , we obtain the desired result. �

The proof we presented suggests that any permutation in Av(123, 213, 132) can be written

as

⊖
σ∈{ε,1,12}

σ.

As it was previously mentioned, Lemma 3.1 was first proved in [36]. Note that with op(β) = βr

where β is a permutation, op({123, 213, 132}) = {321, 312, 231}, so by Proposition 2.2, we have

the same enumeration result for Av(321, 312, 231). Permutations in this class are called free

permutations in [34], and authors describe another way to enumerate this class.

3.2. Enumeration of the class Av(4123, 4213, 4132)

3.2.1. Number of permutations in Av(4123, 4213, 4132)

Next, we derive the generating function for the class Av(4123, 4213, 4132). Note that an alternate

derivation can be found in [8], particularly, in Section 4.2.

24

Lemma 3.2 Let G = fAv(4123,4213,4132). Then G satisfies the equation

G = 1 +
xG

1− xG2
. (3.1)

Proof. For convenience, let C = Av(4123, 4213, 4132). Given that s0 = 1, Equation 3.1 can be

written as

G = 1 + xG− xG2 + xG3 = 1 + xG+G ·G · (G− 1)x

= 1 + (s0x+ s1x
2 + · · ·) + (s0 + s1x+ · · ·)(s0 + s1x+ · · ·)(s1x+ s2x

2 + · · ·)x

Thus, equation 3.1 claims that, for each n ≥ 1,

sn = sn−1 +
∑

0≤i,j≤n−2, 1≤k≤n−1
i+j+k=n−1

sisjsk (3.2)

= sn−1 +(s0sn−2 + s1sn−3 + · · ·+ sn−2s0)s1

+(s0sn−3 + s1sn−4 + · · ·+ sn−3s0)s2
...

+(s0s1 + s1s0)sn−2

+s0s0sn−1

We prove the lemma by showing Equation 3.2 is true for all n ≥ 1.

Let n ≥ 1 be arbitrary. We claim that for each k with 1 ≤ k ≤ n − 1, (s0sn−(k+1) +

s1sn−(k+2) + · · · + sn−(k+1)s0)sk is the number of permutations of length n in C whose last ele-

ment is k + 1. For example, if n = 5 and k = 2, (s0s2 + s1s1 + s2s0)s2 is the total number of

permutations π such that |π| = 5 and π(5) = 3.

To prove this claim, let k be arbitrary with 1 ≤ k ≤ n − 1, and denote by Ck the set of

permutations of length n in C having k+1 in the last position. We also define particular subsets

of Ck. First, let K be the range [1, k]. Let x, y ∈ K be values that have the second right-most

position and the last position respectively, so x = π(a) and y = π(b) where a < b are the two

largest integers with π(a), π(b) ∈ K. If k = 1, we let y = 1 and do not define x. For k 6= 1, let

I = (π−1(x), π−1(y)), the segment between the positions of x and y, but excluding π−1(x) and

π−1(y) themselves. If k = 1, let I = [1, π−1(y)), the segment between the first position and the

one immediately to the left of the position of y = 1. Similarly, let J = (π−1(y), π−1(k + 1)).

25

k + 1

x

y
K

I

J

Figure 3.1.: The graphs of a permutation in Cik.

Notice that for all a ∈ I and b ∈ J , π(a) < π(b) because, otherwise, π would contain 4132 with

y and k+1 corresponding to 1 and 2 respectively. Furthermore, positions of every value greater

than k + 1 must belong to either I or J , because if this is not the case, there exists a value

z ≥ k + 1 such that π−1(z) < π−1(x), and zxy(k + 1) forms either a 4123 or a 4213 pattern.

These observations imply both segments I and J form blocks. The length of these blocks are

some nonnegative integers i and j such that i + j + k = n − 1. For all i with 0 ≤ i ≤ n − 2,

we define Cik to be the set of permutations in Ck such that |I| = i. Figure 3.1 shows what a

permutation in Cik looks like.

Let i and j be positive integers with 0 ≤ i ≤ n−2 and j = (n−1)−k− i. We now define a

bijection between Cik and (Si∩C)× (Sj∩C)× (Sk∩C). Let φ : Cik → (Si∩C)× (Sj∩C)× (Sk∩C)
be a function defined by

φ(π) = (σ1, σ2, σ3)

for all π ∈ Cik where

σ1 is the flattening of π(I), σ2 is the flattening of π(J),

σ3 is the flattening of π(1)π(2) · · · xy.

Needless to say, σ1, σ2 and σ3 are in C simply by the definition of a permutation class.

Also, how we defined each segment and range clearly indicates |σ1| = i, |σ2| = j and |σ3| = k,

so (σ1, σ2, σ3) ∈ (Si ∩ C)× (Sj ∩ C)× (Sk ∩ C).

We prove that φ is a bijection by constructing φ−1, the inverse of φ, and show it is a func-

tion. The inverse map φ−1 : (Si∩C)×(Sj∩C)×(Sk∩C) → Cik is defined by φ−1[(σ1, σ2, σ3)] = π

where

26

π(ℓ) =

σ3(ℓ) if 1 ≤ ℓ ≤ k − 1

σ1(ℓ− (k − 1)) + (k + 1) if k ≤ ℓ ≤ k − 1 + i

σ3(ℓ− i) if ℓ = k + i

σ2(ℓ− (k + i)) + (k + 1 + i) if k + i+ 1 ≤ ℓ ≤ k + i+ j

k + 1 if ℓ = n

.

In one-line notation, this is equivalent to

φ−1[(σ1, σ2, σ3)] = σ3(1) · · · σ3(k − 1)
︸ ︷︷ ︸

x

σ′1(1) · · · σ′1(i)
︸ ︷︷ ︸

I

σ3(k)
︸ ︷︷ ︸

y

σ′2(1) · · · σ′2(j)
︸ ︷︷ ︸

J

(k + 1),

for all (σ1, σ2, σ3) ∈ (Si ∩ C) × (Sj ∩ C) × (Sk ∩ C) where σ′1(ℓ) = σ1(ℓ) + (k + 1) and σ′2(m) =

σ2(m) + (k + 1 + i) for all ℓ and m (1 ≤ ℓ ≤ i, 1 ≤ m ≤ j).

We show φ−1 maps into Cik by contradiction. Suppose there exists (σ1, σ2, σ3) ∈ (Si ∩
C) × (Sj ∩ C) × (Sk ∩ C) such that π = φ−1[(σ1, σ2, σ3)] is not in Cik. Since π has k + 1 in n-th

position, and the way π is constructed forces the segment I to have length i, π /∈ Cik implies

β � π for some β ∈ {4123, 4213, 4132}. Because every permutation in the basis has the value 4

in the 1st position, π must have the value v4 corresponding to the 4 in β before the positions of

the other values v1, v2 and v3 corresponding to 1, 2 and 3 respectively. Let m1, m2, m3 and m4

be the positions of v1, v2, v3 and v4 respectively. Suppose 1 ≤ m4 ≤ k − 1. Since this implies

that the value v4 is at most k, any position m with m4 + 1 ≤ m ≤ n such that π(m) < v4 must

satisfy m4 + 1 ≤ m ≤ k − 1 or m = k + 1. Hence, all of v1, v2, v3 and v4 are determined by

σ3, but this means β ∈ σ3. We can similarly show that we cannot have k ≤ m4 ≤ k − 1 + i or

k + i + 1 ≤ m4 ≤ k + i + j. In addition, m4 6= k + 1 and m4 6= n because there is no position

greater than m4 whose value is less than v4. Consequently, π = φ−1[(σ1, σ2, σ3)] ∈ Cik for every

(σ1, σ2, σ3) ∈ (Si ∩ C)× (Sj ∩ C)× (Sk ∩ C).

The way φ−1 is constructed clearly shows that it is the inverse of φ, so φ is a bijection.

Hence, |Cik| = |(Si ∩ C)× (Sj ∩ C)× (Sk ∩ C)| = sisjsk, and

Ck =
⋃

0≤i≤n−2

Cik,

which implies

|Ck| =
n−(k+1)
∑

i=0

|Cik| = (s0sn−(k+1) + · · · + sn−(k+1)s0)sk,

so this completes the proof of the claim.

27

Finally, we consider permutations in C of length n having a 1 in the last position. Notice

that every permutation π ∈ C where |π| = n and π(n) = 1 can be written as τ ⊖ 1 where τ

is some permutation in C whose length is n − 1 (including the case of π = 1), and for every

permutation τ ∈ Sn−1∩C, τ ⊖ 1 ∈ C. Thus, the number of such permutations is the same as the

number of permutations of length n− 1 in C, which is simply sn−1. Summing up every possible

case, we obtain

sn = sn−1 +

n−1∑

k=1

|Ck|,

for all n ≥ 1, and this is equation 3.2. This proves the generating function G for C satisfies

equation 3.1 and completes the proof. �

There is another famous combinatorial object whose enumeration is related to the class

Av(4123, 4213, 4132). Schröder n-paths are lattice paths in the Cartesian plane using 〈0, 1〉,
〈1, 0〉 and 〈1, 1〉 steps that start at (0, 0), end at (n, n) and stay on or above the x = y line. The

number of distinct Schröder n-paths is called the n-th Schröder number. Figure 3.2 is the list

of all Schröder 3-paths. As we can see, there are 22 distinct Schröder 3-paths.

It turns out the generating function for Schröder (n− 1)-paths with no three consecutive

up-steps is known to satisfy the equation (1) as well (as listed as A106228 in [32]). Hence, the

number of length n permutations in Av(4123, 4213, 4132) is

sn =

{

1 if n = 0
the number of Schröder (n−1)-paths
with no three consecutive up-steps

if n ≥ 1
.

The last path shown in Figure 3.2 is the only one with three consecutive up-steps, so

there are 21 desired Schröder 3-paths. In fact, there are 21 permutations of length 4 in the class

Av(4123, 4213, 4132), namely every permutation of length 4 except the ones in the basis.

Proving Lemma 3.2 by finding a bijection between Sn ∩Av(4123, 4213, 4132) and the set

of Schröder (n − 1)-paths having no triple up-steps for each n ≥ 1 would be ideal. However,

this problem remains unsolved. It is worth noting that if we take any two permutations β1, β2

from {4123, 4213, 4132} and form a subbasis {β1, β2}, then sn(β1, β2) is the (n− 1)-th Schröder

number. Bijective proofs are given in [27, 28], although the bijections given are to Schröder

generating trees rather than Schröder paths themselves. Thus, one could possibly prove this

result bijectively by showing a permutation of length n containing the other permutation β3

corresponds to a tree that represents a Schröder path having triple up-steps.

28

3.2.2. Skew-indecomposable permutations in Av(4123, 4213, 4132)

For the remainder of this chapter, we determine the generating function describing the number

of skew-indecomposable permutations of length n in Av(4123, 4213, 4132) as this will be neces-

sary for the main result in Chapter 6.

As it is discussed at the end of the proof for Lemma 3.2, every permutation π ∈ Av(4123,

4213, 4132) such that |π| = n ≥ 1 and π(n) = 1 can be written as τ ⊖ 1 for some length n − 1

permutations τ in the same class. Except when π = 1, τ is nonempty, so whether τ is skew-

indecomposable or not, such a permutation π of length n ≥ 2 is skew-decomposable.

In addition to the above case, there are some permutations in Av(4123, 4213, 4132) ending

with 12 (i.e. π(n−1) = 1 and π(n) = 2). These are the permutations for which π(n) = 2 and the

segment J , as defined in the proof of Lemma 3.2, is empty. Such permutations can be written

as ρ ⊖ 12 where ρ is a nonempty permutation in Av(4123, 4213, 4132) of length n − 2. There-

fore, permutations of length n ≥ 3 having π(n−1) = 1 and π(n) = 2 are also skew-decomposable.

Figure 3.2.: The list of Schröder 3-paths.

29

We claim that these two are the only ways for a permutation in Av(4123, 4213, 4132) to

be skew-decomposable. Suppose to the contrary that there exists a skew-decomposable permu-

tation π in Av(4123, 4213, 4132) which can be written as π1 ⊖ π2 where π2 6= 1 and π2 6= 12. If

π2 = 21, then this is just the case π2 = 1, so the length of π2 must be strictly greater than 2. If

π2 has the value 2 in the last position, then π2 must contain 132, but with π1, this results in π

containing 4132, so we achieve a contradiction. Likewise, if π2 has some value greater than or

equal to 3 in the last position, then either 123 � π2 or 213 � π2, implying 4123 � π or 4213 � π,

which is again a contradiction. Consequently, a permutation π in Av(4123, 4213, 4132) is skew-

decomposable if and only if π = τ ⊖ 1 or π = ρ⊖ 12, where τ and ρ are nonempty permutations

in Av(4123, 4213, 4132), and |τ | = n− 1, |ρ| = n− 2.

By excluding these two kinds of permutations, we can obtain the number of skew-indecomp-

osable permutations in Av(4123, 4213, 4132) as the following.

Lemma 3.3 Let Ḡ = f̄Av(4123,4213,4132). The generating function for the number of skew-

indecomposable permutations of length n in Av(4123, 4213, 4132), excluding the empty permuta-

tion, is

(1− x− x2)Ḡ.

Proof. Let tn be the number of skew-indecomposable permutations of length n (n ≥ 1) in

Av(4123, 4213, 4132). As we have already discussed, all we have to do is take out the permuta-

tions having forms of π = τ ⊖ 1 or π = ρ ⊖ 12, where τ and ρ are nonempty permutations in

Av(4123, 4213, 4132). The numbers of each are sn−1 for n ≥ 2 and sn−2 for n ≥ 3 respectively,

so we have

tn =

sn if n = 1

sn − sn−1 if n = 2

sn − sn−1 − sn−2 if n ≥ 3

.

Therefore,

t1x+ t2x
2 + t3x

3 + · · · = s1x+ (s2 − s1)x
2 + (s3 − s2 − s1)x

3 + · · ·
= (s1x+ s2x

2 + · · ·)− (s1x+ s2x
2 + · · ·)x− (s1x+ s2x

2 + · · ·)x2

= Ḡ− Ḡx− Ḡx2 = Ḡ(1− x− x2).

�

30

Chapter 4.

Enumeration of the class A

4.1. Overview

This chapter is entirely based on the paper Enumerating indices of Schubert varieties defined

by inclusions by Albert and Brignall [7]. We repeat and expand upon the details of that paper

here since the methods we use to enumerate A′ are an extension of theirs.

To begin, we give a short overview of their method of enumeration. They first enumerate

simple permutations in A. To do this, they characterize the structure of the simple permutations

in A of length greater than or equal to 4. Using this characterization, they define an encoding

of simple permutations in A into words. They then construct an automaton that accepts pre-

cisely these words to show that the set of encoded words form a regular language and apply the

transfer matrix method to complete the enumeration of simple permutations. The whole class is

enumerated by applying Proposition 2.5 and adding in the case of sum and skew decomposable

permutations.

Recall A = Av{4231, 35142, 42513, 351624}. Before we start, we note two symmetry prop-

erties of the class A, introduce new terminology called the extreme pattern of a permutation,

and give the general idea of the enumeration method. Let op1 and op2 be the inverse operation

and the reverse complement operation, i.e. op1(π) = π−1 and op2(π) = (πr)c for every permu-

tation π. Notice that op1({4231, 35142, 42513, 351624}) = op2({4231, 35142, 42513, 351624}) =

{4231, 35142, 42513, 351624}. Thus, by Proposition 2.2, if π is in the class A, then π−1 and (πr)c

are also in A.

Now, we define the extreme pattern of a permutation. The extreme pattern of a permu-

tation is the flattening of the first, the last, the greatest and the least values of a permutation.

For instance, the extreme pattern of π = 47128365 is 2143 due to the subsequence 4185 where

4, 1, 8 and 5 correspond to the first, the least, the greatest and the last value respectively. It is

not always the case that the extreme pattern is length 4, as σ = 52413 has the greatest value 5

in the first position, so its extreme pattern is 312 due to the subsequence 513. However, if π is

simple and |π| ≥ 4, then its extreme pattern must be one of 2143, 2413, 3142 and 3412, since a

simple permutation cannot begin or end with its greatest or least value.

31

4.2. Extreme patterns 2413, 3142 and 3412

In the next section, we will establish the structure of the simple permutations π in A with

|π| ≥ 4 and π(2) 6= 1. Before we do so, we first study some special cases defined by their

extreme patterns. We start with the simple permutations having extreme pattern 2413.

Proposition 4.1 Let π be a simple permutation in A with extreme pattern 2413. Let b, d, a

and c be the first, the greatest, the least and the last values of π respectively. Then the graph

of π is N -shaped, that is, values corresponding to positions in [π−1(b), π−1(d)] are increasing,

values corresponding to positions in [π−1(d), π−1(a)] are decreasing and values corresponding to

positions in [π−1(a), π−1(c)] are increasing.

For instance, Figure 4.1 shows the graph of π = 25864137, a length 8 simple permutation

of extreme pattern 2413 in A. As we can see, drawn points form an N -shape.

Figure 4.1.: Graph of 25864137.

Proof. Let π ∈ A be a simple permutation of the extreme pattern 2413. We provide the graph

of extreme pattern 2413 in Figure 4.2. A permutation π of extreme pattern 2413 has a graph

that can be drawn by filling in more points in the interior regions of this graph. We first claim

that, for π ∈ Si(A), there cannot be any points in the region denoted by B31. In other words,

π cannot have a value less than b whose position is in the segment (π−1(b), π−1(d)).

Suppose to the contrary that there is a point in the region B31. Let x be the point in B31

of minimum value as shown in Figure 4.3(a). We further examine where other values of π can

32

b

d

a

c

B31

B13

Figure 4.2.: Partial graph of π of extreme pattern 2413.

be located. Notice that if π has a point in any of the dark grey regions, π will contain some

permutation in {4231, 35142, 42513, 351624}, so these regions cannot contain any points. For

example, if there exists a point z in the dark grey region (π−1(x), π−1(d)) × (x, b), then bxza

would form a 4231 pattern. In addition, there are no points in the light grey region because we

chose x to be the point of minimum value with position in the segment (π−1(b), π−1(d)). We

use this two-color coding to differentiate forbidden regions in future proofs also.

b

x

d

a

c
B21

b

y

x

d

a

c

(a) (b)

Figure 4.3.: Partial graphs of π with the assumption of having a value in B31.

Since π is a simple permutation, the segment defined by the positions of b and x cannot

be a block. Hence, there exists a point in the region denoted by B21. (We will say such a point

splits the potential block [π−1(b), π−1(x)].) Choose the point of greatest value in B21 and call

this value y. Then we obtain the graph shown in Figure 4.3(b). Notice now that [π−1(b), π−1(x)]

must be a block, since there cannot be any points directly above, below, to the right or to the

left of the region [π−1(b), π−1(x)]× [x, y]. Therefore, π is not simple, a contradiction.

Referring back to Figure 4.2, since A is preserved by reverse complement, we can rotate

our previous argument by 180◦ to show there are no points in the region B13.

33

b

y

x

d

a

c

B21

b

z

y

x

d

a

c

(a) (b)

Figure 4.4.: Partial graphs of π with the assumption of having a decreasing sub-segment in [π−1(b), π−1(d)].

Now, we show that values corresponding to positions in [π−1(b), π−1(d)] are increasing.

We again show this by contradiction using the graph of π. Suppose the values corresponding

to the segment [π−1(b), π−1(d)] are not strictly increasing. This means that there is at least

one sub-segment in [π−1(b), π−1(d)] whose values are decreasing. Let [π−1(y), π−1(x)] be the

decreasing sub-segment with the greatest possible y and the least possible x given y. This pro-

vides the graph shown in Figure 4.4(a). Since the segment [π−1(y), π−1(x)] cannot be a block,

we have a point in the region B21 of Figure 4.4(a). By choosing the left-most such point and

denoting by z the value of this point, we obtain the graph in Figure 4.4(b). Since we have a

block [π−1(z), π−1(x)] which cannot be split, we achieve a contradiction.

The reverse complement of this argument shows values corresponding to positions in

[π−1(a), π−1(c)] are strictly increasing.

Finally, values corresponding to the segment [π−1(d), π−1(a)] must be decreasing because,

otherwise, π would contain 4231 with d and a corresponding to the 4 and 1 respectively. This

completes the proof. �

If we apply the inverse symmetry to the previous proof, we obtain the following result for

a simple permutation of extreme pattern 3142.

Proposition 4.2 Given a simple permutation π in A with extreme pattern 3142. Let c, a, d

and b be the first, the least, the greatest and the last values of π respectively. Then the graph of

π is S-shaped, that is, values from the range [a, b] are increasing, values from the range [b, c] are

34

decreasing and values from the range [c, d] are increasing.

Lastly, we prove the following proposition.

Proposition 4.3 No simple permutation in A has extreme pattern 3412.

Proof. Suppose the statement is false, and let π be a simple permutation in A whose extreme

pattern is 3412. Just as in the proof of Proposition 4.1, we start with the graph of extreme

pattern 3412 with c, d, a and b representing the first, the greatest, the least and the last values

respectively. As shown in Figure 4.5, the segment [π−1(c), π−1(d)] would form a block without

the presence of a point in either B21 or B12.

c

d

a

b
B21

B12

Figure 4.5.: Partial graph of π of extreme pattern 3412.

Assume there is a point in B21, and let x denote the minimum value of any point in B21.

This is shown in Figure 4.6(a). Now, we must have a point in B11 in Figure 4.6(a) to prevent the

segment [π−1(c), π−1(x)] from being a block. Let y be the greatest value of any point in B11, we

obtain the graph in Figure 4.6(b). Now [π−1(c), π−1(x)] must be a block, which is a contradiction.

c

x

d

a

b

B11
c

y

x

d

a

b

(a) (b)

Figure 4.6.: Partial graphs of π with the assumption of having a value in B21.

35

If we assume the existence of a point in B12 in Figure 4.5, we end up with the same result,

since A and the pattern 3412 are preserved by the inverse operation followed by the reverse

complement operation. Hence, there is no simple permutation of extreme pattern 3412 in A.�

4.3. General simple permutations in A.

4.3.1. Structure theorem

We have characterized the structure of simple permutations having extreme patterns 2413, 3142

and 3412. The remaining extreme pattern is 2143. Instead of immediately examining this case,

we first discuss the structure of simple permutations π where |π| ≥ 4 and π(2) 6= 1. Later, we

show that the condition π(2) 6= 1 is equivalent to the condition π(1) = 2. Thus, every simple per-

mutation in A has either the value 2 in the first position or the value 1 in the second position, but

not both, since a permutation with both is not simple. Observing that any simple permutation

of extreme pattern 2413 has 2 in the first position and any permutation of extreme pattern 3142

has 1 in the second position, we can provide the classification of simple permutations as shown

in Table 4.1. For the remainder of this chapter, let H = {π ∈ Si(A) : |π| ≥ 4 and π(2) 6= 1}.

Simple permutation π in A with |π| ≥ 4

π(1) = 2 π(2) = 1

Extreme pattern 2413 Extreme pattern 2143 Extreme pattern 3142

Table 4.1.: Classification of simple permutations in A.

In order to describe the structure of π in H, we need to define four special sum-like op-

erations which we call glue sums that combine two permutations satisfying certain conditions

into a longer permutation. They are called the type 1-0 NW glue sum, the type 1-1 NW glue

sum, the type 1-0 SE glue sum and the type 1-1 SE glue sum. In Chapter 5, we will define more

operations that are similar to these four, and type numbering will be explained there.

We first define the type 1-0 NW glue sum. Let σ and τ be simple permutations in A of

length m and n respectively. Let i = σ−1(m) and j = τ(1). Furthermore, suppose i ≤ m − 2,

σ(m) = m− 1, j ≥ 3 and τ(2) = 1. For σ and τ satisfying these conditions, we define the type

1-0 NW glue sum, denoted by σ 0
1 τ , as the following permutation.

σ 0
1 τ = σ′(1)σ′(2) · · · σ′(m− 1)τ ′(3)τ ′(4) · · · τ ′(n),

36

where σ′(i) = m + (j − 3) and σ′(k) = σ(k) for k 6= i, and τ ′(k) = τ(k) + (m − 3) for k with

3 ≤ k ≤ n.

The type 1-0 NW glue sum identifies the greatest value m in σ and the first value j in

τ . These two points are combined into one with the position σ−1(m) and the value j +m− 3,

which is the value j shifted up by m− 3 as all other points of τ are shifted up by m+ 3. The

type 1-0 NW glue sum also eliminates σ(m) = m − 1 and τ(2) = 1. The remaining values in

τ are attached just as in the usual sum ⊕ except they are shifted up by m − 3. Notice that

|σ 0
1 τ | = m+ n− 3, since one pair of values is combined and two values are eliminated.

Any simple permutations in A of extreme pattern 2413 and simple permutations in A of

extreme pattern 3142 respectively satisfy the conditions for σ and τ required in the definition

of 0
1. Figure 4.7 illustrates the type 1-0 NW glue sum with σ1 = 2753146 and τ1 = 5162473.

Next, we define the type 1-1 NW glue sum. Let σ and τ be simple permutations in A
satisfying the same conditions as in the definition of the type 1-0 NW glue sum. The type 1-1

NW glue sum denoted by σ 1
1 τ is defined as the following.

σ 1
1 τ = σ′(1)σ′(2) · · · σ′(m)τ ′(3)τ ′(4) · · · τ ′(n)

where σ′(i) = m + (j − 2) and σ′(k) = σ(k) for k 6= i, and τ ′(k) = τ(k) + (m − 2) for k with

3 ≤ k ≤ n. The only differences between σ 1
1 τ and σ 0

1 τ are that σ 1
1 τ has an extra value

σ1 = 2753146

τ1 = 5162473

→

σ1
0
1 τ1 = 2 9 5 3 1 4 10 6 8 11 7

Figure 4.7.: Illustration of σ1
0
1 τ1.

37

σ(m) = m− 1 between the subsequences coming from σ and τ (as m− 1 is not deleted), so σ(i)

and τ(k) (3 ≤ k ≤ n) are shifted up by m− 2 instead of m− 3. Therefore, |σ 1
1 τ | = m+n− 2.

For σ = 2753146 and τ = 5162473, we obtain

σ 1
1 τ = 2 10 5 3 1 4 6 11 7 9 12 8.

Note that, if we restrict to sum simple permutations of extreme pattern 2413 and 3142

together, both NW glue sums are injective operations. To show this for 0
1, let σ1 and σ2 be

simple permutations of extreme pattern 2413 and τ1 and τ2 be simple permutations of extreme

pattern 3142. Let π1 = σ1
1
0 τ1 and π2 = σ2

1
0 τ2. Suppose π1 = π2. If |σ1| = |σ2|, then

it is obvious that σ1 = σ2 and τ1 = τ2 by definition. So suppose |σ1| < |σ2|. Let |σ1| = m

and |σ2| = m + 1. Then π1(m) = τ ′1(3) = σ′2(m) = π2(m). Because τ1(2) = 1 by Proposi-

tion 4.2, τ1(3) must be greater than τ1(n) (n = |τ1|), because, otherwise, due to Proposition

4.2, we must have τ1(3) = 2, which is a contradiction to τ1 being simple. Hence, we obtain

σ′2(m) > π2(m+ n− 3). This is impossible, while σ′2(m) = σ2(m) < m− 1 and π2(m+ n− 3) is

at least m− 1 by definition of 0
1. We have the same contradiction for the case |σ2| > m+1, so

|σ1| = |σ2|, implying the type 1-0 NW glue sum is injective. The same argument can be applied

for the type 1-1 NW glue sum as well.

The type 1-0 and type 1-1 NW glue sums both combine the greatest value in σ and the

first value in τ . Next, we define the inverse notions of these two sums, called the type 1-0 and

type 1-1 SE glue sums, denoted by 0
1 and 1

1, respectively, with the property that

(σ 0
1 τ)

−1 = σ−1 0
1 τ

−1 and (σ 1
1 τ)

−1 = σ−1 0
1 τ

−1.

Specifically, let σ and τ be simple permutations in A of length m and n respectively. Let

i = σ(m) and j = τ−1(1). We require that i ≤ m− 2, m = σ(m − 1), j ≥ 3 and 2 = τ(1). For

σ and τ satisfying these conditions, we define the type 1-0 SE glue sum as the following.

σ 0
1 τ = σ(1)σ(2) · · · σ(m− 2)τ ′(2)τ ′(3) · · · τ ′(n)

where τ ′(j) = i and τ ′(k) = τ(k) + (m − 3) for k 6= j. Similarly, the type 1-1 SE glue sum is

defined as

σ 1
1 τ = σ(1)σ(2) · · · σ(m− 1)τ ′(2)τ ′(3) · · · τ ′(n)

where τ ′(j) = i and τ ′(k) = τ(k) + (m− 2) for k 6= j. Both SE glue sums are injective when we

sum simple permutations of extreme pattern 3142 and 2413.

Figure 4.8 shows σ2
0
1 τ2 where σ2 = 5146372 and τ2 = 2475136. Notice that σ−1

2 = σ1

and τ−1
2 = τ1 from the previous example. Indeed, σ2

0
1 τ2 = 5 1 4 6 3 8 11 9 2 7 10, which is

38

σ2 = 5146372

τ2 = 2475136

→

σ2
0
1 τ2 = 5 1 4 6 3 8 11 9 2 7 10

Figure 4.8.: Illustration of σ2
0
1 τ2.

the inverse of σ1
0
1 τ1 = 2 9 5 3 1 4 10 6 8 11 7.

Note that glue sums we have defined so far are associative operations only if the lengths

of all summands are at least 4. For our purpose, we set the convention that when we sum

permutations with multiple glue sums, we always ensure to operate from left to right.

We are now ready to state the theorem for the simple permutations in H.

Theorem 4.4 Let π be a permutation in H. Then there exist simple permutations in A of

extreme pattern 2413 σi (i odd) and simple permutations in A of extreme pattern 3142 τi (i

even) such that

π =

σ1
k1
1 τ2

k2
1 σ3

k3
1 τ4

k4
1 · · · km−1

1 σm if m is odd (a)

σ1
k1
1 τ2

k2
1 σ3

k3
1 τ4

k4
1 · · · km−1

1 τm if m is even (b)

(4.1)

where m is a positive integer and kℓ ∈ {0, 1} (1 ≤ ℓ ≤ m−1). Hence, π has one of the structures

illustrated in Figure 4.9. Moreover, every simple permutation of these forms is in H.

In both Equation 4.1(a) and 4.1(b), we always make sure to sum permutations from left

to right. As glue sums are injective operations when we sum simple permutations of 2413 and

39

d1
d2

d3
d4

d5
dm+1

dm+2

dm+3

d1
d2

d3
d4

d5

dm+2 dm+3

dm+4

(a) (b)

Figure 4.9.: Structure of π with |π| ≥ 4 and π(2) 6= 1.

3142, every glue sum in Equation 4.1(a) and 4.1(b) are also injective.

We give the description of Figure 4.9. Each point of π is either one of the isolated points

denoted by di or located on one of the sequences of lines. These isolated points are the ones

identified by NW and SE glue sums except the first, the least, the greatest and the last ones.

The precise identification of each di is given in the proof. We call the sequence of diagonal

lines shown in Figure 4.9 a crenellation according to its suggested shape. This structure can be

arbitrarily long depending on the length of π. Each line segment of the crenellation can contain

any number of points or be empty, but points must be placed so that π avoids having blocks.

Unlike the lines of the crenellation, the isolated points must be present so long as the structure

continues.

Figure 4.10 shows the graph of a simple permutation π of length 21 in A. In particular,

π = 2573146 0
1 514263

1
1 246135

0
1 6152473

0
1 2475316.

In order to actually place each point on the crenellation, we usually have to adjust the spacing

between points. Thus, the points may not be located at (i, π(i)) any longer, but this does not

change which permutation the graph represents.

Note that every permutation of extreme pattern 2413 is in H. Indeed, an N -shaped

structure is a special case of a crenellation, namely one with only 4 isolated points. Thus,

40

simple permutations of extreme pattern 2413 follow the structure described in Figure 4.9(a)

with m = 1.

4.3.2. Proof of Theorem 4.4 (Part 1)

The proof of Theorem 4.4 is much longer than those of the propositions we discussed earlier, so

we break this proof into two propositions.

Proposition 4.5 If π is a simple permutation in H, then π has one of the structures illustrated

in Figure 4.9.

Proof. Suppose π is a simple permutation in A with |π| = n ≥ 4 and π(2) 6= 1. We define a

sequence d1, . . . , dm+3 of values of π. Let d1 = π(1) and

di =

{

π(max{s : π(s) < π(di−1)}) if i is even

max{t : π−1(t) < π−1(di−1)} if i is odd

for i with 1 ≤ i ≤ m+ 3. In other words, di is the right-most value that is less than di−1 if i is

even or the greatest value located to the left of di−1 if i is odd. Note that by definition, d2 = 1

for any π ∈ H. We will soon show that di 6= dj for i 6= j. Therefore, since π has a finite length,

we eventually obtain either dm+2 = π(n) and dm+3 = n for some even integer m or dm+2 = n

and dm+3 = π(n) for some odd integer m. We let m denote this integer in the remainder of this

section.

First, we show di 6= dj for i 6= j. By the definition of di, it is clear that di ≤ di+2 ≤
di+4 ≤ · · · for odd i and π−1(di) ≤ π−1(di+2) ≤ π−1(di+4) ≤ · · · for even i. We claim that, in

addition, di ≤ di+2 ≤ di+4 ≤ · · · for even i and π−1(di) ≤ π−1(di+2) ≤ π−1(di+4) ≤ · · · for odd

Figure 4.10.: Graph of π = 2 5 9 3 1 4 8 6 10 12 17 7 11 16 13 15 19 22 20 18 14 21.

41

i. Suppose di > dj for positive even integers i and j where i < j. Then dj < di−1, but by defi-

nition, di is the right-most value that is less than di−1, so we achieve a contradiction. Similarly,

if π−1(di) > π−1(dj) for odd i, j where i < j, then π−1(dj) < π−1(di−1), which contradicts the

fact that di is the greatest value located to the left of di−1. Therefore, di ≤ di+2 ≤ di+4 ≤ · · ·
and π−1(di) ≤ π−1(di+2) ≤ π−1(di+4) ≤ · · · for any positive integer i.

Next, we show di 6= dj where i is odd and j is even. It is immediate by definition that

di 6= di+1 for any i. For the case |i− j| > 1, assume for contradiction that we have di = dj and

i < j. Then by definition, dj−1 must be located to the right of dj = di, which cannot be true

since π−1(di) ≤ π−1(dj). Likewise, if i > j, then di−1 < di = dj , which is also a contradiction.

We now claim that, if di 6= n for odd i, then di 6= di+2. Suppose to the contrary that

di = di+2. Note that di+1 6= π(n) since di+1 = π(n) implies di+2 = di = n. By definition, di+1 is

the right-most value which is less than di, and di is the greatest whose position is in [1, π−1(di+1)].

These imply that any position corresponding to a value less than di is in [1, π−1(di+1)] and any

value corresponding to a position less than di+1 is in [i, di]. Hence, [1, π
−1(di+1)] is a block with

di+1 6= π(n), which is a contradiction.

To show di 6= dj for two distinct odd i and j where |i−j| > 2, we assume di = dj . Without

loss of generality, say i < j. With di ≤ di+2 ≤ di+4 ≤ · · · ≤ dj, we have di = di+2, which cannot

be true. Thus, di 6= dj for any two distinct odd integers i and j, so long as di 6= n. By the

inverse argument, di 6= dj for even i and j so long as di 6= π(n).

Hence, we have shown that di 6= dj for i 6= j.

Note that d2 6= π(n) since d2 = 1 and π is simple. Hence, every simple permutation in H

has at least 4 values denoted by di for some i ≥ 1. For a given π, suppose π has m+3 values de-

noted by di (1 ≤ i ≤ m+3). We show that π satisfies one of Equations 4.1 by induction onm ≥ 1.

For the base case, suppose m = 1. Then d4 is the last value of π. Notice that each di

(1 ≤ i ≤ 4) is an extreme point of π, and since the flattening of d1d3d2d4 is 2413, π has extreme

pattern 2413, so we are done.

Now, suppose that every π ∈ H with m+3 values denoted by di (1 ≤ i ≤ m+3) satisfies

Equation 4.1(a) for some positive odd integer m. We first need to show that an arbitrary π ∈ H

of length n with m+ 4 values denoted by di (1 ≤ i ≤ m+ 4) satisfies Equation 4.1(b). Let π be

a permutation in H of length n with m + 4 values denoted by di. In this case, dm+4 = n. Let

42

pm be the following.

pm = π(min{π−1(s) : s > dm+3, π
−1(s) > π−1(dm+1)}).

In other words, pm is the left-most value greater than dm+3 and located to the right of dm+1.

Since dm+4 > dm+3 and dm+4 is located to the right of dm+1, π
−1(pm) ≤ π−1(dm+4).

Next, we define qm and rm by

qm = π(π−1(pm)− 1) and rm = max{π(s) < dm+3 : s ∈ [1, π−1(qm)]}

i.e. qm is the value immediately to the left of pm, and rm is greatest value less than dm+3 whose

position is in the segment [1, π−1(qm)]. It is possible that qm = dm+1 or qm = rm, but not both,

since rm ≥ dm > dm+1. Note that qm < dm+3 because, qm ≥ dm+3 contradicts the definition of

pm as qm is located to the left of pm and greater than dm+3.

We provide Figure 4.11 to show the relations among pm, qm, rm and di. The value pm is

the left-most value in the region denoted by R1. It is possible to have pm < dm+2. The value

qm is immediately to the left of qm, and as noted previously, it has to be less than dm+3. The

position of rm can also be to the left of dm+2.

We claim that there is no value z with dm+3 < z < dm+2 whose position is in the segment

[1, π−1(qm)]. In other words, there is no point in the shaded region denoted by R2 in 4.11. First,

there is no value in the intersected region of R1 and R2, because pm is the left-most value in

the region R1. Suppose we have a value in the region R2 \ R1. That is, there exists a value z

in B21 or B22 of the graph in Figure 4.12(a). If z is in B22, then we have the graph shown in

Figure 4.12(b). The segment [π−1(dm+2), π
−1(x)] of Figure 4.12(b) is an unsplittable block, so

dm+2

dm+1

qm

pm

rm

dm+3

R1

R2

Figure 4.11.: Illustration of relations among pm, qm, rm and di.

43

dm

dm+2

dm+1

dm+4

dm+3

B21 B22

dm

dm+2

z

dm+1

dm+4

dm+3

(a) (b)

dm

z

dm+2

dm+1

dm+4

dm+3

B32

(c)

dm

z

x

dm+2

dm+1

dm+4

dm+3

B31

dm

y

z

x

dm+2

dm+1

dm+4

dm+3

(d) (e)

Figure 4.12.: Partial graphs of π to show that there exists no value in R2.

44

we achieve an immediate contradiction.

Next, assume z is in the region B21 of Figure 4.12(a). Consequently, we have the graph

shown in Figure 4.12(c) with the block [π−1(z), π−1(dm+2)] that needs to be split. The only way

to do this is by assuming the existence of a point in the region B32. Choose a point with the least

value, say x, so we have the graph shown in Figure 4.12(d). To split the block [π−1(z), π−1(x)]

in Figure 4.12(d), choose the left-most value y in the region B31, so we finally have the graph

as in Figure 4.12(e). The segment [π−1(y), π−1(x)] is a block that cannot be split, so we have

a contradiction. Therefore, there is no value z with dm+3 < z < dm+2 and π
−1(z) ∈ [1, π−1(qm)].

Denote by π2 the flattening of the subsequence of π obtained by removing every value

except dm+2 and dm+1 corresponding to a position in [1, π−1(qm)]. We claim that π2 is a simple

permutation in A with |π2| ≥ 4 and π2(2) = 1. From here, we use the hat notation on a variable,

such as x̂, to refer to the value of π2 corresponding to the value of π denoted by x. It is obvious

that π2 is still in A since π2 � π and π ∈ A. Also, since d̂m+1, d̂m+2, d̂m+3 and d̂m+4 are distinct

values of π2 of π2, |π2| ≥ 4. Notice that π2(1) = d̂m+2 and π2(2) = d̂m+1 = 1. Hence, the only

thing we need to show is that π2 is simple.

Suppose π2 is not simple. This implies that we have a proper non-singleton segment I of

π2 which is a block. There are three cases to consider. First, assume I = [π−1
2 (x̂), π−1

2 (ŷ)] for

some values x̂ and ŷ where π−1
2 (x̂) > π−1

2 (d̂m+1). Because every point with a position less than

π−1(qm) was removed, we must have π−1(qm) < π−1(x), so [π−1(x), π−1(y)] is also a block in π.

Since π is simple, π having a block is a contradiction. Next, suppose I = [π−1
2 (d̂m+1), π

−1
2 (ŷ)]

for some ŷ. In this case, the value immediately to the right of d̂m+1 must be in π(I). By con-

struction, this value is p̂m. Because d̂m+1 < d̂m+3 < p̂m, d̂m+3 ∈ π(I), implying π−1
2 (d̂m+3) ∈ I.

However, since π−1
2 (d̂m+1) < π−1

2 (d̂m+4) < π−1
2 (d̂m+3), we have π−1

2 (d̂m+4) ∈ I, which implies

d̂m+4 ∈ π(I). Since d̂m+4 is the greatest value in π2, π(I) = [d̂m+1, d̂m+4], so I is all of π2,

contradiction. Finally, assume I = [π−1
2 (d̂m+2), π

−1
2 (ŷ)] for some value ŷ. Since d̂m+1 ∈ π2(I)

and d̂m+3 < d̂m+2, d̂m+3 also has to be in π2(I), so π
−1
2 (d̂m+3) ∈ I. However, since d̂m+3 is the

last value of π2, this implies ŷ = d̂m+3, which means I is all of π2. Consequently, we conclude

that π2 is simple. Moreover, π2 has extreme pattern 3142.

Next, let π1 be the flattening of the subsequence π(1)π(2) · · · π(π−1(qm)− 1)dm+3 of π if

qm = rm. In other words, if qm is the second greatest value whose position is in the segment

[1, π−1(qm)], then π1 is the flattening of the sequence containing all values up to the one im-

mediately to the left of qm, and dm+3. Otherwise, let π1 be the flattening of the subsequence

π(1)π(2) · · · qmdm+3 of π. We again use the hat notation to refer to the value of π1 corresponding

45

to the value of π. We claim that π1 is simple.

First, we show that every value we removed to construct π1 is greater than or equal to rm.

Suppose to the contrary that there exists a value z < rm that was removed. Since pm > dm+3 by

definition and dm+3 > rm, we have pm > rm, so z cannot be pm. Also, if z = qm, then qm = rm

as well, so we have a contradiction. Therefore, we must have π−1(z) > π−1(pm). There are four

subcases to consider. If π−1(rm) > π−1(dm+2) and pm < dm+2, then π contains 4231 pattern

with dm+2rmpmz. If π
−1(rm) > π−1(dm+2) and pm > dm+2, then π contains 42513 pattern with

dm+2rmpmzdm+3. If π
−1(rm) < π−1(dm+2) and pm < dm+2, then π contains 35142 pattern with

rmdm+2dm+1pmz, and finally, if π−1(rm) < π−1(dm+2) and pm > dm+2, then π contains 351624

pattern with rmdm+2dm+1pmzdm+3. Hence, every value we removed to construct π1 must be

greater than or equal to rm.

Now, assume π1 is not simple. Let I be a proper non-singleton block of π1. Suppose

π1(I) = [x̂, ŷ] for some values x̂ and ŷ where ŷ < d̂m+3. Note that ŷ < d̂m+3 implies ŷ ≤ q̂m − 1

if qm = rm and ŷ ≤ q̂m if qm 6= rm. In either case, for all ẑ ∈ [x̂, ŷ], ẑ = z since every

point we removed had a value greater than or equal to rm. Hence, the block I in π1 is also

a block in π, so we achieve a contradiction. Next, assume π1(I) = [x̂, d̂m+3]. Since I is a

block, d̂m+3 − 1 must be in [x̂, d̂m+3]. By the way we constructed π1, the position of d̂m+3 − 1

must be either to the left of d̂m+2 or in between of d̂m+2 and d̂m+1. In either case, it im-

plies that π−1
1 (d̂m+1) ∈ I, so d̂m ∈ π1(I) as d̂m+1 < d̂m < d̂m+3. Hence, π−1((̂d)m) ∈ I, so

π−1((̂d)m+2) ∈ I, which means d̂m+2 ∈ π1(I). However, d̂m+2 > d̂m+3, so we have a contradic-

tion. Finally, suppose π1(I) = [x̂, d̂m+2]. Because rm < dm+3 < dm+2, we have d̂m+3 = d̂m+2−1.

Thus, d̂m+3 ∈ [x̂, d̂m+2]. Because the position of d̂m+1 is in between d̂m+2 and d̂m+3, we must

have d̂m+1 in [x̂, d̂m+2]. Now, since d̂m+1 < d̂m < d̂m+2, d̂m must be also in [x̂, d̂m+2], but this

again implies d̂m−1 ∈ [x̂, d̂m+2], because π
−1
1 (d̂m) < π−1

1 (d̂m−1) < π−1
1 (d̂m+1). Continuing in

this way, we must have d̂1 = 1 in [x̂, d̂m+2], but then I is all of π1. Since I is a proper block,

this is a contradiction. Consequently, π1 is simple.

Since π1 is a simple permutation of length 4 or more with π(2) 6= 1, π1 is in H with m+3

values denoted by di (1 ≤ i ≤ m+3), π1 has the form expressed in Equation 4.1(a) by the induc-

tion hypothesis. Let n1 = |π1| and n2 = |π2|. If qm = rm, then we apply 1
1. The greatest value

n1 of π1 is shifted upward by π2(1)− 2, which is how much dm+2 was shifted down to construct

π1 by flattening. The value π1(n1) is n1 − 1 in π1, and it is the second greatest value up to the

position of itself in π. By definition, this is rm = qm in π. Finally, to construct π2, we removed

n1 − 2 values from π, so shifting up each value of π2, except π2(1) and π2(2), by n1 − 2 will

recover the values of π corresponding to π2. Hence, π1
1
1 π2 = π1(1) · · · dm+2 · · · qmpm · · · dm+3.

46

Similarly, if qm 6= rm, then π = π1(1) · · · dm+2 · · · qmpm · · · dm+3. In either case, π ∈ H with

m+ 4 values denoted by di has the form expressed in Equation 4.1(b), so we are done.

For our purpose, in the process of combining π1 and π2 with 0
1, it is more appropriate

to think that π1(n1) and π2(1) are combined into dm+3 and dm+1 respectively, as these are the

values corresponding to them in π1 and π2 after the flattening. For 1
1, even though it appears

as if π1(n1) stays where it is, it is still proper to think that π1(n1) is merged into the right-most

value of π2 to become dm+3, and leaving a copy of itself at where it used to be as the value qm.

Next, assume m is even, that is, π in H with m+ 3 values denoted by di (1 ≤ i ≤ m+ 3)

satisfies Equation 4.1(b) for some positive even integer m. Then again, we need to show that for

π ∈ H of length n with m + 4 values denoted by di (1 ≤ i ≤ m+ 4) satisfies Equation 4.1(a).

This time, let pm, qm and rm denote the following.

pm = min{s : π−1(s) > π−1(dm+3), s > dm+1}, qi = pm − 1,

rm = π(max{π−1(t) < π−1(dm+3) : t ∈ [1, qm]}).
The rest of the proof is the the same argument applied to the inverses of all permutations

involved. At the end, we acquire Equation 4.1(a) for π, and this completes the proof. �

Because, for any π ∈ H, π is simple and the values corresponding to the segment

[1, π−1(d3)] are increasing, we conclude d1 = 2.

The crenellation can be viewed as a repetition of N and S structures. Each N -shape cor-

responds to a simple permutation σi (i odd) of extreme pattern 2413 in Equations 4.1, whereas

each S-shape corresponds to a simple permutation τi (i even) of extreme pattern 3142. No-

tice that m in the previous proof indicates the total number of N and S structures. With the

condition π(2) 6= 1, the structure always starts with an N -shape. Therefore, π with m + 3

values denoted by di (1 ≤ i ≤ m+ 3) has (m+ 1)/2 N -shapes and (m− 1)/2 S-shapes if m is

odd or m/2 N -shapes and m/2 S-shapes if m is even. We call m the number of components of π.

4.3.3. Proof of Theorem 4.4 (Part 2)

We now prove that any simple permutation of the structure described in Figure 4.9 is in H.

Before we start, we introduce some new terminology. A value of a permutation π(i) is called a

left-to-right maximum if for all j with 1 ≤ j ≤ i, π(j) ≤ π(i). In other words, π(i) is a left-to-

right maximum if it is greater than every value on its left. We define a right-to-left minimum

analogously. For example, with the permutation

47

π = 2 5 9 3 1 4 8 6 10 12 17 7 11 16 13 15 19 22 20 18 14 21

which was provided in Figure 4.10, the subsequence of left-to-right maxima is 2 5 9 10 12 17 19

22 and the subsequence of right-to-left minima is 1 4 6 7 11 13 14 21. We denote by LRmax(π)

and RLmin(π) the set of left-to-right maxima values of π and the set of right-to-minima values

of π respectively.

Proposition 4.6 Let π be a simple permutation whose structure is described in Figure 4.9.

Then π is in H.

Proof. Suppose π is a simple permutation of length n whose structure is as described in Figure

4.9 with m components that was explained previously. We show π avoids each permutation in

the basis {4231, 35142, 42513, 351624}. First, we break down the crenellation and set notation

for the sets of values in different parts of the crenellation.

Define each di (1 ≤ i ≤ m+3) in the same way as in the previous section. Let Ni (i odd)

be the set of values corresponding to the permutation σi of extreme pattern 2413 inπ. Similarly,

let Si (i even) denote the set of values corresponding to the permutation τi of extreme pattern

31422 in π. Let ui be the first value of Ni if i is odd or the least value of Si if i is even. If i is odd,

Ni

Si+1

Ai

Bi

Ci

Ai

Bi

Ci

di

di+1

di+2

di+3

Figure 4.13.: Notations for sets of values in the crenellation.

48

let Ai, Bi and Ci be the set of values corresponding to positions in [π−1(ui), π
−1(di+2)), the set of

values corresponding to positions in (π−1(di+2), π
−1(di+1)) and the set of values corresponding

to positions in (π−1(di+1), π
−1(qi)] respectively. If i is even, let Ai = [ui, di+2), Bi = (di+2, di+1)

and Ci = (di+2, qi] respectively. Figure 4.13 illustrates the definitions of each set of values.

Furthermore, let

D =
m+3⋃

i=1

{di}, Aodd =
⋃

i odd

Ai and Aeven =
⋃

i even

Ai,

and define Bodd, Beven, Codd, Ceven analogously. Hence, for i with 1 ≤ i ≤ m, Ai ∪Bi ∪Ci = Ni

if i is odd, Ai ∪Bi ∪ Ci = Si if i is even and

D ∪
(
⋃

i odd

Ni

)

∪
(
⋃

i even

Si

)

= {1, . . . , n}.

Now we are ready to show that π avoids 4231. Note that

LRmax(π) =

(
m+3⋃

i odd

{di}
)

∪Aodd ∪Ceven and RLmin(π) =

(
m+3⋃

i even

{di}
)

∪Aeven ∪ Codd

Hence, if any two values from these two sets play the role of 2 or 3, we cannot find a value

corresponding to either 4 or 1. This implies that role of 2 and 3 must be played by two values

from Bodd ∪Beven. Moreover, since values in each Bi are decreasing, a value playing the role of

2 and a value for 3 must come from distinct Bi and Bj where i < j. If j = i+ 1, we are able to

assign di+2 to play the role of either 4 or 1 (depending on whether i is even or odd), but then

we cannot find another value for the other. Consequently, we are unable to find a subsequence

whose flattening is 4231, so 4231 6� π.

For 35142, a value corresponding to 4 must come from the set B for the same reason as

for the 2 and 3 in 4231. If it is from Bodd, say Bi for some odd i, then a value playing the

role of 5 must either also come from Ai, from Bi or be di+2, but there is no value that can be

assigned to 1 in between. Similarly, if a value for 4 of 35142 is from Bi for some even i, a value

for 2 must be from Ai, from Bi or be di+2, but then we cannot choose a value for 3. Thus,

35142 6� π. We can apply the reverse complement argument to show that π avoids 42513 as well.

Lastly, suppose π contains 351624. Suppose a value for 3 comes from Bi for some odd i.

Then a value for 1 must be in Bi ∪Ci ∪{dm+1}. Whichever it is, a value for 2 must be from Ci,

but this prevents us from assigning a value to 6. Next, assume a value from Bi for some even i

plays the role of 3. If di+2 is for 1, then there is no value for 2, so a value for 1 must come from

Ai or Bi. This forces a value corresponding to 5 to come from Ci, but then there is no possible

49

value for 4. Hence, a value for 3 must be from LRmax(π) or RLmin(π). Carrying out similar

arguments, we can show that every value comes from LRmax(π) or RLmin(π). Since values in

RLmin(π) are right-to-left minima, a value for 3 must be from LRmax(π). So suppose it is from

Ai where i is odd. Then a value playing the role of 1 must belong to Bi or it is di+1. Either

way, we are able to assign a value from Ci to the role of 2, but then not for 6. If a value for 3 is

from Ci where i is even, then a value for 1 cannot be di+2 as this leaves no choice for 2. Hence,

a value playing the role of 1 must be from either Ai or Bi, forcing a value for 5 to be from Ci.

However, we now don’t have a value for 4, which is a contradiction. Thus, di for some odd i

must play the role of 3. A value for 5 may come from either Ci−1 or Ai, or it is di+2. If it’s

di+2 or from Ai, a value for 1 must be di+1, but as before, we cannot find a value for 2. Thus,

a value for 5 must be from Ci−1, but again, we cannot assign a value for 4, which is another

contradiction. Therefore, we achieve a contradiction in every case, implying π avoids 351624.

Since π avoids every permutation in the basis, we have the desired result. �

Consequently, with Proposition 4.5 and 4.6, we have Theorem 4.4.

4.4. Enumeration

We are now ready to enumerate the class A. As briefly mentioned in Section 4.1, we first find

the generating function for the set H = {π ∈ Si(A) : |π| ≥ 4 and π(2) 6= 1}. Since the inverses

of these permutations give us all the permutations whose second value is 1, doubling the gen-

erating function for H gives us the generating function for all simple permutations of length

greater than or equal to 4.

4.4.1. Enumeration of simple permutations in A

Let us first state the result.

Theorem 4.7 Let fSi(A)\S2
be the generating function for the set of simple permutations in A

excluding S2 = {12, 21}. Then

fSi(A)\S2
=

2x4

(1− 3x)(1 + x)
.

Once we prove Theorem 4.7, it is trivial to find fSi(A), the generating function for all

simple permutations in A; simply, we add 2x2 to the result to include the permutations 12 and

50

21.

Let Σ = {a, b, c, d, dℓ}. We take the following six steps to accomplish the proof of Theorem

4.7.

1. Define an encoding function φ from H to Σ∗.

2. Define a language L ⊆ Σ∗.

3. Prove φ is a bijection between H and L.

4. Define another language L ⊆ Σ∗ which is related to L.

5. Define an automaton M such that L(M) = L.

6. Apply the transfer matrix method to M to enumerate |L(M)| = |L| = |L| = |H|.

We start by defining φ which maps an arbitrary simple permutation π in H to Σ∗. Let

π ∈ H and suppose the number of components of π is m. By looking at the structure of π, we

can find which of Ai, Bi, Ci (1 ≤ i ≤ m) or D each value of π belongs to. The encoding function

φ reads each value of π in certain order and writes out a unique word w consisting of letters in

Σ. Lay out each set of values in the following order.

{d1, d2} → N1 → {d3} → S2 → {d4} → N3 → {d5} → S4 → · · ·

This ends as

· · · → {dm+1} → Nm → {dm+2, dm+3} if m is odd

or

· · · → {dm+1} → Sm → {dm+2, dm+3} if m is even.

Simply, φ writes a, b, c and d for any value in Ai, Bi, Ci and D respectively, except that

it writes dℓ for dm+2. For Ni (1 ≤ i ≤ m and i odd), φ encodes values from bottom to top, i.e.

φ first writes the smallest value, then the second smallest value, and so on. On the other hand,

φ encodes values of Si (1 ≤ i ≤ m and i even) from left to right.

The order of encoding for {d1, d2} and {dm+2, dm+3} actually does not matter, however,

when we establish a similar encoding function for the case of A′ in Chapter 6, it becomes im-

portant to set a convention. For this reason, φ shall decode d2 first and then d1 next, both into

the letter d. Similarly, φ encodes dm+3 with d and finally dm+2 with dℓ.

As an example, we encode π described in Figure 4.10 using the encoding function φ. First,

φ recognizes d2 = 1 and d1 = 2, and encodes both as d’s. Moving onto N1 = {3, 4, 5}, φ encodes

51

3 as b, 4 as c and 5 as a in this order, since 3 ∈ B1, 4 ∈ C1 and 5 ∈ A1. Next, d3 = 9 is encoded

as d, and φ continues to S2 = {6, 8, 10}. Since φ encodes values of S2 from left to right, it reads

values in the order 10, 6, 8. Again, based on where they are placed, 10, 6 and 8 are encoded

as c, a and b respectively. Continuing this process up to d7 = 22, the encoded word w = φ(π)

comes out as

w = d d b c a d b a c d c a d b a b d b a b d dℓ

Arrows in Figure 4.14 shows the order of encoding by φ. First arrow reads d2, d1, then

values in N1 from bottom to top, and ends with d3. Once we hit intermediate d’s, we move to

the next arrow. The last one encodes N5, then finally d8 and d7.

Next, we define a language L ⊆ Σ∗ with the following conditions for every w ∈ L.

• w must begin with dd and end with ddℓ.

• w must not contain aa, bb or cc.

• dℓ is only allowed at the very end.

• w cannot begin with dda or end with cddℓ.

• w must not contain da.

We will show φ is a bijection between H and L, but before we do so, we define a decoding

function ψ from L to A. Suppose w is a word in L. Let wi (1 ≤ i ≤ m) be the sub-word of w

N1

S2

N3

S4

N5

d1

d2

d3

d4

d5

d6

d7

d8

Figure 4.14.: Encoding of π = 2 5 9 3 1 4 8 6 10 12 17 7 11 16 13 15 19 22 20 18 14 21.

52

defined as the following.

w = · · · d
︸︷︷︸

(i+1)-th d

· · · · · ·
︸ ︷︷ ︸

wi

d
︸︷︷︸

(i+2)-th d

· · ·

In particular, wi is the consecutive letters of w from the letter immediately after the (i + 1)-th

d up to the letter immediately before the (i+2)-th d. Note that wi can be empty. Let us divide

w as below.

w = dd → w1 → d → w2 → · · · → d → wm → ddℓ

The decoding function ψ reads w from left to right. As ψ reads the k-th letter, it draws a point

at the fixed location (xk, yk) (1 ≤ k ≤ n). At the end, ψ constructs the graph of a permutation

by drawing points iteratively. We define the decoding function ψ by the following algorithm

called DECODE.

Algorithm DECODE

INPUT: A word w in L.

OUTPUT: A permutation π in H.

Initialize: Draw first two points and initialize variables.

Draw points at (2, 1) and (1, 2). Let Pa = (2, 1) and Pb = Pc = (1, 2). Let t = 2. Let

α be the third letter in w.

C1se 1: Draw points for wi (i odd) which corresponds to the set Ni.

If α is in wi (i odd), then BEGIN

a. If α = a, then draw a point at (x, y) where P
(x)
a < x < P

(x)
b and t < y. Set Pa to

be this new point and t = P
(y)
a . GOTO STEP 1 with setting α to be the next letter.

b. If α = b, then draw a point at (x, y) where P
(x)
a < x < P

(x)
b and t < y. Set Pb to be

this new point and t = P
(y)
b . GOTO STEP 1 with setting α to be the next letter.

c. If α = c, then draw a point at (x, y) where P
(x)
c < x and t < y. Set Pc to be this

new point and t = P
(y)
c . GOTO STEP 1 with setting α to be the next letter.

Otherwise, GOTO STEP 2.

C2se 2: Draw points for wi (i even) which corresponds to the set Si.

If α is in wi (i even), then BEGIN

a. If α = a, then draw a point at (x, y) where t < x and P
(y)
a < y < P

(y)
b . Set Pa to be

this new point and t = P
(x)
a . GOTO STEP 2 with setting α to be the next letter.

b. If α = b, then draw a point at (x, y) where t < x and P
(y)
a < y < P

(y)
b . Set Pb to be

this new point and t = P
(x)
b . GOTO STEP 2 with setting α to be the next letter.

53

c. If α = c, then draw a point at (x, y) where t < x and P
(y)
c < y. Set Pc to be this

new point and t = P
(x)
c . GOTO STEP 2 with setting α to be the next letter.

Otherwise, GOTO STEP 3.

C3se 3: Draw points for d’s which correspond to points di (1 ≤ i ≤ m+ 3).

If α = d, then BEGIN

a. If it is the last d (i.e. second letter from the last in w), then BEGIN

i. If it is immediately after wi with i odd (possibly empty), then draw a point at

(x, y) where P
(x)
c < x and t < y. Set Pc to be this new point and t = P

(y)
c .

GOTO STEP 4 with setting α to be the next letter.

ii. If it is immediately after wi with i even (possibly empty), then draw a point

at (x, y) where t < x and P
(y)
c < y. Set Pc to be this new point and t = P

(x)
c .

GOTO STEP 4 with setting α to be the next letter.

b. Otherwise, BEGIN

i. If it is immediately after wi with i odd (possibly empty), then draw a point at

(x, y) where P
(x)
a < x < P

(x)
b and t < y. Set Pa = (P

(x)
c , t), Pb and Pc to be this

new point and t = P
(x)
a . GOTO STEP 2 with setting α to be the next letter.

ii. If it is immediately after wi with i even (possibly empty), then draw a point at

(x, y) where t < x and P
(x)
y < y < P

(y)
b . Set Pa = (t, P

(y)
c), Pb and Pc to be this

new point and t = P
(y)
a . GOTO STEP 1 with setting α to be the next letter.

C4se 4: Draw a point for dℓ which correspond to points dm+3.

If α = dℓ, then BEGIN

a. If m is odd (i.e. the last sub-word wm corresponds to Nm), then draw a point at

(x, y) where P
(x)
a < x < P

(x)
b and t < y. GOTO STEP 5.

b. If m is even (i.e. the last sub-word wm corresponds to Sm), then draw a point at

(x, y) where t < x and P
(y)
a < y < P

(y)
b . GOTO STEP 5.

C5se 5: Let π be a permutation obtained by flattening the constructed graph. OUTPUT π.

We visualize how ψ decodes a word w into a permutation. After ψ draws points on (2, 1)

and (1, 2) for the first and second d’s, it draws points from bottom to top in intervals I1 = (1, 2)

and I2 = (2,∞) for each letter up to the next d. For a’s and c’s, ψ draws points from the left

side of I1 and I2 respectively towards right and from the right side of I1 towards left for b’s.

Additionally, the point for the proceeding d is drawn as if it is for another b, i.e. immediately

left of the last b. Figure 4.15(a) describes how points are drawn until the third d.

54

N1

a b c

(1, 2)
(2, 1)

I1 I2

→ S2 a

b

c

I3

I4

(a) (b)

Figure 4.15.: Illustration of the decoding function ψ.

Drawing points for w2 and the fourth d is shown in Figure 4.15(b). The point with the

greatest x-coordinate value (i.e. the left-most point) in the section denoted by N1 in Figure

4.15(a) determines the x-coordinate of the point corresponding to the first letter in w2. Also, the

point with the greatest y-coordinate in N1 and the point corresponding to the third d together

determines the next two intervals I3 and I4. Points are drawn from left to right. For a’s and

c’s, ψ draws points upward from the bottom of I3 and I4 respectively, whereas points for b’s

are drawn downward from the top of I3. Again, ψ draws a point for the fourth d as if it is for

b. Thus, points for letters in w2 and proceeding d are drawn as shown in Figure 4.15(b). We

continue decoding by repeating this process. The last d and dℓ are drawn as if they are cb, both

belonging to the last N i or Si section. At the end, we obtain the structure shown in Figure

4.9. Hence, m, the number of sub-words in w is the number of total N and S sets described in

the second part of the proof of Theorem 4.4. Each d in w corresponds to di (1 ≤ i ≤ m + 3)

in the proof of Theorem 4.4, and a, b and c are placed to be values in the set Ai, Bi and Ci

(1 ≤ i ≤ m) respectively.

Lemma 4.8 The encoding function φ is a bijection between H and L.

Proof. We first show the image of φ is in L. Let π be in H. Our goal is to show that φ(π) = w

satisfies the conditions of L. It is clear that w begins with dd and end with ddℓ, since the first

two values and last two values that are encoded by φ are d2, d1, dm+3 and dm+2.

Now, suppose w contains aa. Two values corresponding to these two a’s must come from

the same Ai, because, otherwise, they would be separated by at least one d. For i odd, the

55

positions of all values of Ai are consecutive. Therefore, since π is simple, the values of two

points in Ai cannot be consecutive, as otherwise, those two points would form a block. Hence,

as φ encodes Ni from bottom to top, it cannot write aa. On the other hand, for i even, the

values of Ai are consecutive, so positions cannot be consecutive. Thus, φ also cannot write aa

while encoding Si. Applying the same argument, we see that w does not contain bb and cc either.

If w begins with dda, then the first value encoded in N1 belongs to A1. Since φ encodes

N1 from bottom to top, this value is 3. However, this forms a block [1, 2] with π([1, 2]) = [2, 3].

We can show w does not end with cddℓ in the same way.

Finally, suppose w contains da. Further, suppose a comes from Ai+1 for odd i (so Ai+1

belongs to Si). By the definition of pi from the proof of Proposition 4.5, the first value being

encoded by φ is pi so long as Si+1 is nonempty. Thus, the letter a of da corresponds to pi.

However, pi cannot be less than di+3 by definition, so w cannot contain da. If i is odd, we use

the same argument with the inverse symmetry applied.

Next, we need to show that the image of ψ is in H. Theorem 4.4 states every simple

permutation of the form described in Figure 4.9 is in A. Since the graph of π follows one of the

structures in 4.9 by construction, all we need to show is for any w ∈ L, ψ(w) is simple. Suppose

π = ψ(w) is not simple for some w ∈ L. Hence, there exists a proper non-singleton segment I

of π which is a block.

Suppose our non-singleton proper block I contains at least two positions s and t corre-

sponding to di and dj (1 ≤ i, j ≤ m+ 3). Notice that I cannot contain positions corresponding

to both d1 and dm+3 because, in that case, I = [1, n]. Suppose I does not contain 1, which is

the position corresponding to d1. Choose the least s ∈ I such that π(s) = di for some i with

1 ≤ i ≤ m+3. First, assume i is even. If i = m+1, then I must contain t (t = n in particular)

such that π(t) = di+2 = dm+3 as well, because dm+3 is the only one located to the left of dm+1

decoded from a letter d in w. However, this implies that I contains a position u such that

π(u) = di−1, since di < di−1 < di+2. Since u < s, this contradicts our assumption. On the other

hand, if i ≤ m, we know there exists t ∈ I such that π(t) = di+3, but then this implies that I

contains u such that π(u) = di−1 again, and we achieve a contradiction. Now, suppose i is odd.

Then there exists t in I such that π(t) = di−1, and this means that there exists a position u in

I corresponding to di−2. Since u < s, we again have a contradiction. We can apply a similar

argument for the case where I does not contain the position corresponding to dm+3, so I cannot

contain two or more positions corresponding to isolated points.

56

Now, assume I contains only one position s such that π(s) = di for some i with 1 ≤ i ≤
m+3. However, this is only possible if i = 1 or i = m+3. Otherwise, if i is odd, then I contains

a value r which is either immediately to the left of di or immediately to the right of di. Since the

algorithm DECODE forces r < di+1 < di, I must contain t such that π(t) = di+1. We achieve a

similar result for the case of i being even. So suppose I contains s = 1 so that π(1) = d1. Since

I does not contain a position t such that π(t) = d3, I must only contain 1 and any positions

whose corresponding points are placed in A1. However, because dda is not allowed in w, this

cannot be the case. Similarly, if I contains s such that π(s) = dm+3, then other positions in I

had to be decoded from c, but since cddℓ is not allowed, we again achieve a contradiction.

Finally, suppose I contains no points in D. This implies that π(I) is a subset of Bi or

Ci ∪Ai+1 for some i (1 ≤ i ≤ m). Because aa, bb and cc are not in w, the only case I can form

a block is I = [s, s + 1] where the points (s, π(s)) and (s + 1, π(s + 1)) correspond to the last

c in wi and the first a in wi+1 respectively. Moreover, they are the last and the first letters in

wi and wi+1. However, this would mean da occurs in w, which is not allowed, so we achieve a

contradiction.

Consequently, ψ(w) = π cannot have a proper non-singleton segment I forming a block,

so π is simple. Therefore, the image of ψ is in H. Due to how we construct φ and ψ, it is obvious

that ψ(φ(π)) = π and φ(ψ(w)) = w for any π ∈ H and w ∈ L, so φ is a bijection. �

Next, we define another language L ⊆ Σ∗. We let L be the set of words that can be

constructed by removing the first two d’s of an arbitrary w in L. Hence, L = {w ∈ Σ∗ : ddw ∈ L}.
There is an obvious bijection from L to L, namely the one erases the first two d’s of w in L.

The conditions of L ⊆ Σ∗ are:

• w must end with ddℓ.

• w must contain no aa, bb or cc.

• dℓ is only allowed at the very end.

• w cannot begin with a or end with cddℓ.

• w must contain no da.

Now, we define an automaton M = (Q,Σ, δ, A, {Dℓ}) where Q = {A,B,C,CD,D,Dℓ},
Σ = {a, b, c, d, dℓ}, and δ is described in Table 4.2. Jail states and transitions to them are

omitted. Our last task to complete before the enumeration is to show L(M), the set of words

57

accepted by M is equal to L.

a b c d dℓ

A B C D

B A C D

C A B CD

CD B C D

D B C D Dℓ

Dℓ

Table 4.2.: Transitions of M .

Lemma 4.9 L(M) = L.

Proof. We first show L(M) ⊆ L. Let w ∈ L(M). We need to show that w does not violate any

condition of L. From the initial state A, transitions that are allowed are b, c and d. Similarly,

in order to reach the only accept state Dℓ, we have to pass through the state D. Since the

transition to arrive at D is d, we have

D Dl

dℓd

This implies w must begin with b, c or d and end with ddℓ. Furthermore, if w ends with cddℓ,

then the third transition from the last had to be c. This takes to the state C, and the next

transition d takes to the state CD. However, there is no transition to the accept state Dℓ from

CD, so ending with cddℓ is impossible.

Any instance of the letter a in w sends us into state A. Since there is no transition using

the letter a from A, w cannot contain aa. By applying similar argument, we can easily show

that w does not contain bb, cc or da. Hence, w ∈ L.

Next, we show L ⊆ L(M). Suppose w is not in L(M), that is, w is not accepted by the

automaton M . The only ways w cannot be accepted byM are either the run ofM on w contains

the jail state or the last state is not Dℓ. The latter implies that the last letter of w is not dℓ, so

this violates the first condition of L, and hence, w /∈ L. For the case the run of M on w contains

the jail state, we show that every transition to the jail state is due to a failure of w to meet one

of the conditions of L.

58

Cases (A, a), (B, b) and (C, c): To get to states A, B and C, the previous transitions must

be a, b and c respectively. Hence, having these transitions implies that w contains aa, bb and cc

respectively, so w violates the second condition.

Cases (CD, a) and (D, a): Since the previous transition is d for both cases, having a next

means that w contains da, so w fails to meet the fourth condition.

Cases (A, dℓ), (B, dℓ), (C, dℓ) and (CD, dℓ): These transitions imply that w ends with adℓ,

bdℓ, cdℓ and cddℓ respectively. Since w must end with ddℓ, but not with cddℓ, none of them are

allowed.

Cases (Dℓ, a), (Dℓ, b), (Dℓ, c), (Dℓ, d) and (Dℓ, dℓ): This causes dℓ to appear in the middle

of w, so the third condition is not met.

Therefore, any run of M containing the jail state implies w that violates at least one

condition of L. We now have proved L ⊆ L(M), and this completes the proof of L(M) = L. �

Finally, with Lemma 4.8 and 4.9 together, we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. We apply the transfer matrix method to L(M). With the weight function

giving x for all transitions to non-jail states, the adjacency matrix is

P =

A B C CD D Dℓ

A 0 x x 0 x 0

B x 0 x 0 x 0

C x x 0 x 0 0

CD 0 x x 0 x 0

D 0 x x 0 x x

Dℓ 0 0 0 0 0 0

By observing the (A,Dℓ)-entry of (I − P)−1, we obtain1

x2

(1− 3x)(1 + x)
.

This is the generating function for n-letter words in L(M). By Lemma 4.9, this is also the

generating function for n-letter words in L. Since the number of (n − 2)-letter words in L is

1The computation of (I − P)−1 is done by using Mathematica.

59

equal to the number of n-letter words in L, the generating function for n-letter words in L is

x2 · x2

(1− 3x)(1 + x)
=

x4

(1− 3x)(1 + x)
,

which is, by Lemma 4.8, also the generating function for permutations of length n in the set H.

As it was explained previously, doubling the generating function gives us

fSi(A)\S2
=

2x4

(1− 3x)(1 + x)
.

�

4.4.2. Enumeration of the whole class of A

We are close to completing the enumeration of the whole class. From here, we show that every

simple permutation in A satisfies the hypothesis of Proposition 2.5, then apply both Proposition

2.5 and 2.6. Let K = Si(A) − H − {12, 21}. If we show that for all π ∈ Si(A), π satisfies the

hypothesis of Proposition 2.5, we have the equation of generating functions as the following.

fA = 1 + x+
∑

π∈Si(A)

fifl(π) = 1 + x+ fifl(12) + fifl(21) +
∑

π∈H

fifl(π) +
∑

π∈K

fifl(π).

First, using what we have established, we want to acquire the generating function for

length n permutations in A which can be obtained by inflation of simple permutations in H.

By the inverse argument, we get the exact same result for inflation of simple permutations in

K, so we will simply multiply 2 as before.

Let π ∈ H. As it is explained in the second part of the proof of Theorem 4.4, any value of

π belongs to either the set LRmax(π), the set RLmin(π) or the set B := Bodd ∪Beven. In order

to apply Proposition 2.5, we prove the following lemma.

Lemma 4.10 The condition α = π[σ1, . . . , σn] ∈ A is equivalent to the condition stating that

for all i with 1 ≤ i ≤ n,

• if π(i) ∈ LRmax(π), then σi ∈ Av(312),

• if π(i) ∈ RLmin(π), then σi ∈ Av(231), and

• if π(i) ∈ B, then σi ∈ Av(12).

60

Proof. Suppose the latter condition is false. That is, at least one of the above three conditions is

not met. Assume it is the first one. Then there exists i (1 ≤ i ≤ n) such that π(i) ∈ LRmax(π)

and σi contains 312. Now, whichever point (i, π(i)) is, there is at least one point (j, π(j)) where

i < j and π(i) > π(j). Namely, this point has value dk if σi ∈ Ck−2 ∪Ak−1 ∪ {dk−1, dk+1}. Any
point within the block corresponding to σj together with the subsequence 312 of α within the

block corresponding to σi, α contains 4231, so α /∈ A. If the second condition is not met, we

can apply the reverse complement argument of the previous one to show α contains 4231. If

the third condition is false, say 12 � σi for some i and the value π(i) is in Bk for some k, then

dk+1 and dk+2 along with σi cause α to contain 4231, so again, α /∈ A. By the contrapositive

argument, α = π[σ1, . . . , σn] ∈ A implies the latter condition.

Next, assume a permutation α = π[σ1, . . . , σn] where π ∈ H is not in A. Thus, α contains

at least one permutation β in the basis. Since π avoids every permutation in the basis, it means

there exist σi1 , . . . , σik (for all j ∈ {1, . . . , k}, 1 ≤ ij ≤ n) such that α contains β within the

union of subintervals corresponding to σi1 , . . . , σik .

Since every permutation in {35142, 42513, 351624} is simple, so we only need to consider

the case β = 4231. If there exist σi1 , σi2 , σi3 , σi4 such that each point of β is contained in in-

tervals corresponding to σi1 , σi2 , σi3 , σi4 respectively, then again, β � π which cannot be true.

Also, with the same reason as the previous one, if there exists a single σi such that β � σi, then

the latter conditions are false. Hence, there exist two or three subintervals of α such that the

containment of β is involved in. So suppose there exist σi1 and σi2 which involve β together in

α. Then it has to be either 312 � σi1 or 231 � σi2 . Assume 312 � σi1 is true. Then notice that

π(i1) cannot be in RLmin(π), because there is no point which can play the role of 1. This implies

π(i1) ∈ LRmax(π) and 312 � σi1 or π(i1) ∈ B and 12 � 312 � σi1 , so the second condition is

not met. With the reverse complement argument, we conclude the same for the case of 231 ∈ σi2 .

Finally, suppose the containment of β is shared by three subintervals of α, say the ones

of σi1 , σi2 and σi3 . Then this must imply 12 ∈ σi2 . π(i2) can be in neither LRmax(π) nor

RLmin(π). Hence, π(i2) ∈ B, so again, the latter condition is false. With every observation

we made and contrapositive argument, the second condition implies α = π[σ1, . . . , σn] ∈ A, so

those two statements are equivalent. �

Consequently, every simple permutation in H satisfies the hypothesis of Proposition 2.5.

Both Av(312) and Av(231) are counted by the Catalan numbers, as explained in Theorem 2.3.

Hence, excluding the empty permutation, we have

61

f̄Av(312) = f̄Av(231) = f̄cat =
1−

√
1− 4x

2x
− 1 =

1− 2x−
√
1− 4x

2x
.

For Av(12) \ {ε} = {1, 21, 321, 4321, . . .}, the generating function is the geometric power series

minus 1, so

f̄Av(12) = f̄geom =
1

1− x
− 1 =

x

1− x
.

Now, we go back to L(M). Using the transfer matrix method again, we want to find

fifl(H) =
∑

π∈H fifl(π) where ifl(H) =
⋃

π∈H ifl(π). Because each transition embeds the informa-

tion that which set of A = Aodd ∪ Aeven, B, C = Codd ∪ Ceven, or D the point corresponding

to the letter belongs to, we can effectively define the weight function so that we can obtain the

desired generating function fifl(H). Define w(t) = f̄cat if t = a, c, d or dℓ, and w(t) = f̄geom if

t = b. The adjacency matrix P̂ with this weight function w is

P̂ =

A B C CD D Dℓ

A 0 f̄geom f̄cat 0 f̄cat 0

B f̄cat 0 f̄cat 0 f̄cat 0

C f̄cat f̄geom 0 f̄cat 0 0

CD 0 f̄geom f̄cat 0 f̄cat 0

D 0 f̄geom f̄cat 0 f̄cat f̄cat

Dℓ 0 0 0 0 0 0

By computing the (A,Dℓ)-entry of (I − P̂)−1 and multiplying by (f̄cat)
2 to include the

initial two d’s, we obtain the generating function for ifl(H) by Proposition 2.5 and 2.6. Since

ifl(K) can be obtained by inverting every permutation in ifl(H), we can multiply 2 to the gen-

erating function fifl(H) to include this result. By doing so, we arrive at

fifl(Si(A)\S2) =

(
−2x−

√
1− 4x+ 1

)4

8x2
(
x2 −

√
1− 4xx+ 3x+

√
1− 4x− 1

) .

We now move onto the case where the skeleton is π = 21. Recall that, to ensure σ1 and

σ2 are uniquely determined by α when α = 21[σ1, σ2], we must require that σ1 to be skew-

indecomposable. We claim that α = 21[σ1, σ2] ∈ A with skew-indecomposable σ1 is equivalent

to the condition that σ1 ∈ Av(312) and σ1 is skew-indecomposable, and σ2 ∈ Av(231). The

condition of σ1 being skew-indecomposable cannot be dropped to enforce the uniqueness of infla-

tion. It is clear that either of 312 � σ1 or 231 � σ2 implies α /∈ A. So assume that α /∈ A. Then

62

β ∈ α for some β ∈ {4231, 35142, 42513, 351624}. As before, since 35142, 42513 and 351624

are simple, if β ∈ {35142, 42513, 351624}, then β � σ1 or β � σ2. In either case, 312 � σ1 or

231 � σ2, so the second condition is not met. If β = 4231, then it is immediate that 312 � σ1 or

231 � σ2, so the condition α = 21[σ1, σ2] ∈ A with skew-indecomposable σ1 and the condition

σ1 ∈ Av(312) where σ1 is skew-indecomposable are equivalent.

By Proposition 2.5, f̄ifl(21) = f̄⊖Av(312) · f̄Av(231). We need to derive f̄⊖Av(312), the gen-

erating function for skew-indecomposable permutation in Av(312). Notice that every skew-

decomposable permutation π in Av(312) can be written as σ ⊖ 1 where σ is a nonempty per-

mutation avoiding 312. To show this, suppose it is not true. Then π = σ ⊖ τ where |τ | ≥ 2. If

12 � τ , then π contains 312. So assume τ avoids 12. Then τ must be strictly decreasing, but

then, it is possible to write π as σ′ ⊖ 1 for some σ′, so if π is skew-decomposable in Av(312),

it can be always written as σ ⊖ 1. To find f̄⊖Av(312), we need to exclude skew-decomposable

permutations. Since the generating function for skew-decomposable permutations is xf̄Av(312),

we obtain f̄⊖Av(312) = f̄Av(312) − xf̄Av(312). Consequently,

fifl(21) = f⊖Av(312) · fAv(231) = (f̄cat − xf̄cat) · f̄cat =
(
1− 2x−

√
1− 4x

)2
(1− x)

4x2
.

Lastly, for the case π = 12, it is possible to inflate both 1 and 2 by any permutations σ1

and σ2 of A itself, provided that σ1 is a sum-indecomposable permutation in A. Three cases

for σ1 being sum-indecomposable are σ1 = 1, σ1 is skew-decomposable, or σ1 is an inflated

permutation of π in H ∪K (possibly with 1, . . . , 1). Generating functions for each case are x,

fifl(21) and fifl(Si(A)\S2) respectively. Thus,

fifl(12) = (x+ fifl(21) + fifl(Si(A)\S2)) · f̄A.

Consequently, the generating function for A satisfies the functional equation

fA = 1 + x+ fifl(12) + fifl(21) + fifl(Si(A)\S2)

= 1 + x+ (x+ fifl(21) + fifl(Si(A)\S2)) · f̄A + fifl(21) + fifl(Si(A)\S2).

With f̄A = fA − 1, we solve for fA. Then, we obtain

fA =
1

1− x− fifl(21) − fifl(Si(A)\S2)
=

2(1− x2 − 3x− (1− x)
√
1− 4x)

1− 3x−
√
1− 4x (2x2 − x+ 1)

= 1 + x+ 2x2 + 6x3 + 23x4 + 101x5 + 477x6 + 2343x7 + 11762x8 + · · ·

63

Chapter 5.

Structure of general simple permutations in A′

Recall A′ = Av(52341, 53241, 52431, 35142, 42513, 351624). In this chapter, we establish the

theorem analogous to Theorem 4.4. Note that the class A′ is also preserved by the inverse

operation and the reverse complement operation.

5.1. Extreme patterns 2413, 3142 and 3412

5.1.1. Structural propositions

We first prove the following.

Proposition 5.1 No simple permutation in A′ has extreme pattern 3412.

Proof. Suppose the statement is false. Let π be a simple permutation in A′ of extreme pattern

3412. We start with the graph of extreme pattern of π, which is shown in Figure 5.1(a). As

before, dark grey indicates a point in the region would create a forbidden pattern, and light grey

indicates we have made specific assumptions that there does not exist a point in the region.

There must exist a point in B21 or B12 to avoid [π−1(c), π−1(d)] being a block. Just like

the proof for Proposition 4.3, one of these two cases can be obtained by the inverse operation

followed by the reverse complement operation, so we only give a proof for the case of B21. Let-

ting x be the least value of all possible points in B21, we obtain the graph shown in Figure 5.1(b).

c

d

a

b
B21

B12

c

x

d

a

b

B13

B23

(a) (b)

Figure 5.1.: Partial graphs of π of extreme pattern 3412.

64

c

x

d

y

a

b

B14
c

x

d

y

z

a

b

(a) (b)

Figure 5.2.: Partial graphs of π with the assumption of having a value in B23 in Figure 5.1.

In order to split the block [π−1(c), π−1(d)], we need to have a point in either B13 or B23.

Suppose there is a point with some value y in B23. Then we obtain the graph in Figure 5.2(a),

forcing it to have a point in B14 due to the block [π−1(c), π−1(y)]. However, having a point

with a value z in B14 results in the graph in Figure 5.2(b), which contains the unsplittable block

[π−1(c), π−1(z)].

Now, assume there exists a point in B13 of Figure 5.1(b), and none in B23. Calling the

value of left-most point y, we have the graph shown in Figure 5.3(a). The regions indicated by

B33 and B34 are shaded in light grey since having a point in either of these regions is equivalent

to having a point in B23 of Figure 5.1(b). We must have a point in B43 of Figure 5.3(a) to split

c

x

d

y

a

b

B33 B34

B43

c

x

d

z

y

a

b

(a) (b)

Figure 5.3.: Partial graphs of π with the assumption of having a value in B13 in Figure 5.1.

65

the block [π−1(c), π−1(y)], but this results in the block [π−1(c), π−1(y)] shown in Figure 5.3(b)

which we cannot split any longer.

Consequently, it is impossible to have a simple permutation in A′ of extreme pattern 3412.

�

Next, we describe the structure of simple permutations in A′ of extreme pattern 2413. Let

b, d, a and c be the first, the greatest, the least and the last values of π respectively. We denote

by A, B and C each segment [π−1(b), π−1(d)), [π−1(d), π−1(a)] and (π−1(a), π−1(c)] respectively.

First, we prove the following lemma for values corresponding to positions in B.

Lemma 5.2 Let π be a simple permutation in A′ of extreme pattern 2413. Then values corre-

sponding to positions in B have a pattern of the form

k

⊖
i=1

σi, (5.1)

where each σi is either 1 or 12.

For Equation 5.1, Note k = 0 is possible, in which case B consists of only d and a.

The proof is an immediate consequence of 52341, 53241 and 52431 avoidance conditions

with the observation we made with Lemma 3.1. Therefore, values corresponding to positions in

B form the structure described in Figure 5.4. Except for d and a, every point corresponding to

1 and pair of points corresponding to 12 in Equation 5.1 can be empty.

d

a

Figure 5.4.: Structure of values corresponding positions in B.

66

Next, we establish the lemma describing the structure of points whose positions are in the

segment A. In order to do this, we need to define a special sum of two permutations. Given

σ ∈ Sm and τ ∈ Sn, the value-interchange sum of σ and τ with 1 shift is the permutation defined

by

σ ⊕1 τ = σ′(1)σ′(2) · · · σ′(m)τ ′(1)τ ′(2) · · · τ ′(n)

where

σ′(i) =

{

σ(i) if σ(i) ≤ m− 1

m+ 1 if σ(i) = m
for each i (1 ≤ i ≤ m)

and

τ ′(j) =

{

m if τ(j) = 1

τ(j) + (m+ 1) if τ(j) ≥ 2
for each j (1 ≤ j ≤ n)

In other words, σ ⊕1 τ is just like σ ⊕ τ except we interchange the positions of the values

corresponding the greatest value of σ and the least value of τ . So, algebraically, σ ⊕1 τ =

(m m + 1)(σ ⊕ τ), the product of (σ ⊕ τ) with the adjacent transposition (m m + 1). For

example, with σ = 1342 and τ = 312, σ ⊕1 τ = 1352746 whereas σ ⊕ τ = 1342756. Note that

⊕1 is not associative if one of the summands is length 1.

Let us now describe a 231-value chain using the sum we discussed above. A 231-value

chain is a sequence of values of the form

k⊕

i=1
1
σi

where each σi is in {21, 231}. The structure of a 231-value chain is shown in Figure 5.5. The

underlined points are optional; if they do not exist, we have added 21 rather than 231. All other

points in the figure are required. We will state the lemma describing the structure of points

whose positions are in A, but in order to prove it, we first establish a few lemmas.

Figure 5.5.: Structure of a 231-value chain.

67

Lemma 5.3 Let π be a simple permutation in A′ of extreme pattern 2413. Then values corre-

sponding to positions in A avoid 321 pattern and 23451 pattern.

Proof. We first prove that values of π corresponding to positions in A avoid 321 pattern. Sup-

pose to the contrary that values corresponding to positions in A contain 321. Furthermore,

assume b corresponds to the 3 of 321. Let z be the least possible value that can play the role of

1 for b and y0 be the least possible value that can play the role of 2 for given b and z. Hence,

the graph of π is as shown in Figure 5.6(a).

b
y0

z

d

a

c
B21

B32

b

y0

y1

z

d

a

c
B22

(a) (b)

b

y0

x1

y1

z

d

a

c

B34

b

y0

x1

y1

y2

z

d

a

c
B24

(c) (d)

Figure 5.6.: Partial graphs of π with the assumption of b corresponding to the 3 in 321 and having a value in B32.

68

Since π is simple, we cannot have a block in π. Hence, there exists a point in either B21

or B32 of Figure 5.6(a) to prevent [π−1(b), π−1(y0)] from being a block. Suppose there is a point

in the region B32 and call its value y1. Now, we have a block [π−1(y0), π
−1(y1)] as shown in

Figure 5.6(b), so there must exist a point in B22 of 5.6(b). Choose the point of greatest value

in B22 of 5.6(b) and let x1 be the value of this point. Then we have the graph shown in Figure

5.6(c). The block defined by the positions of b and y1 still needs to be split. The only way to

do so is by assuming the existence of a point in the region B34 of Figure 5.6(c), say y2. Having

y2 results in the graph shown in Figure 5.6(d).

From here on, attempting to split the block [π−1(b), π−1(yi)] can only be done by assuming

the existence of points with values xi and yi+1 alternatively. In particular, xi is the greatest pos-

sible value such that π−1(yi−1) < π−1(xi) < π−1(yi) and xi−1 < xi < c, and yi is the value such

that π−1(yi) < π−1(yi+1) < π−1(z) and xi−1 < yi+1 < xi. However, splitting [π−1(b), π−1(yi)]

by assuming there exists xi still results in [π−1(b), π−1(yi)] being a block. Similarly, splitting it

by assuming there exists yi+1 constructs another block [π−1(b), π−1(yi+1)]. Hence, attempting

to split blocks constructs an infinite strict chain of permutations contained in π, but this is

impossible since the length of π is finite.

Referring back to Figure 5.6(a), assume there is a point in the region B21 this time. Let

x0 be the greatest value possible of all points in B21. We then have a graph shown in Figure

5.7(a). In order to avoid the segment [π−1(b), π−1(y0)] being a block, we must have a point in

B33 shown in Figure 5.7(a). Note that B34 is shaded in light grey because having a point here

b

x0

y0

z

d

a

c

B33

B34

b

x0

y0

y1

z

d

a

c

(a) (b)

Figure 5.7.: Partial graphs of π with the assumption of b corresponding to the 3 in 321 and having a value in B21.

69

is equivalent to having a point in B32 of Figure 5.6(a), which we have discussed previously. If

we have a point y1 in B33, we have a block [π−1(b), π−1(y1)] shown in 5.7(b). The rest of the

argument is identical to the one for the previous case. Again, trying to split blocks constructs

an infinite strict chain of permutations contained in π, so we achieve a contradiction. Therefore,

b cannot correspond to the 3 in 321.

Next, let b̂ be the left-most value which can play the role of 3 in 321. Furthermore, let z

be the least possible value that can play the role of 1 for b̂ and y0 be the least possible value

that can play the role of 2 for given b̂ and z. Depending on weather b̂ < c or c < b̂, we have

one of the graphs shown in Figure 5.8. For both cases, achieving a contradiction from here is

identical to the case of b playing the role of 3 in 321.

b

b̂

y0

z

d

a

c

b

b̂

y0

z

d

a

c

(a) (b)

Figure 5.8.: Partial graphs of π with b̂ corresponding to the 3 in 321.

Consequently, values corresponding to positions in A avoid 321.

Now, we show that values corresponding to positions in A avoid 23451 pattern as well.

Suppose to the contrary that values whose positions are in A contain 23451. Since these values

must avoid 321, we obtain Figure 5.9. Since [π−1(x2), π
−1(x3)] is a block, we must assume an

existence of a point in either B73, B83, B46 or B47. However, if there is a point in either B73

or B83, then [π−1(x1), π
−1(x2)] becomes an unsplittable block. Similarly, assuming a point in

either B46 or B47 implies [π−1(x3), π
−1(x4)] is an unsplittable block, so values whose positions

are in A cannot form 23451 pattern. We obtain the exact same result even if a = π(1) is a part

of 23451 pattern.

70

b

x1

x2

x3

x4

y

d

a

c

B73

B83

B46 B47

Figure 5.9.: Partial graphs of π with the assumption of values corresponding to positions in A contain 23451.

Hence, we have shown that values corresponding to positions in A of π cannot contain

both 321 pattern and 23451 pattern, so we are done. �

Before we proceed to the next lemma, let us introduce some new terminologies. First,

we call a pair of values forming a 21 pattern with consecutive positions a descent. Next, for a

permutation π, the expression

π =

k⊕

i=1

σi

where k is the greatest value possible is called the sum-decomposition of π. Note that if k ≥ 2,

then π is sum-decomposable. Furthermore, let π′ be the flattening of values of π whose positions

are in a segment [a, b]. Then the above expression for π′ is called the sum-decomposition within

[a, b]. In both cases, we call the consecutive positions of values corresponding to each σi a sum

block. Notice that a sum block within the whole segment [1, n] is equivalent to a block, but this

is in general not true for a sum block within a proper segment [a, b].

We now state and prove the following lemmas.

Lemma 5.4 Let π be a simple permutation in A′ of extreme pattern 2413. Then a sum block

within the segment A with a descent must end on a descent.

Proof. Consider a sum block I within the segment A with at least one descent. Let x and y

(x > y) be the last descent in I. Suppose to the contrary that there is a value located to the

71

b

x

y

z

d

a

c
B23

B41

Figure 5.10.: Partial graph of π for Lemma 5.4.

right of y within I. For any such value z, z < x because, otherwise, π−1(z) /∈ I. Also, y < z

because 321 pattern is forbidden. Thus, we obtain the graph shown in Figure 5.10. Attempting

to split the block [π−1(y), π−1(z)] by having a value in B41 will cause a construction of an infinite

strict chain as observed in the proof of Lemma 5.3. Therefore, the only way to split the block

[π−1(y), π−1(z)] is by having a point in B23. However, this implies z is a part of a descent

located to the right of x and y, which is a contradiction. Thus, I must end on a descent. �

Lemma 5.5 Let π be a simple permutation in A′ of extreme pattern 2413. Let [s, t] be a sum

block within the segment A. If the values of positions in the segment [s, t′] (t′ ≤ t) ends with a

descent, then these values form a 231-value chain.

Proof. We prove the statement by induction on the number of descents in [s, t′]. First, assume

that values of positions in the segment [s, t′] has only one descent x and y (x > y), i.e. π(t′) = y.

By Lemma 5.3, values with consecutive positions from s up to π−1(y) must form a 21, 231 or

2341 pattern. Suppose to the contrary that we have a 2341 pattern. The graph shown in Figure

5.11 shows this case. As observed, the block formed by the four values for the pattern can

only be split by having a value to the right. However, attempting to split this way will imme-

diately cause another block to appear, which is unsplittable. Hence, only a 21 or 231 pattern

is permitted in the case which we have a single descent. In either case, we have a 231-value chain.

This time, suppose [s, t′] has k descents. Let x and y be the ending descent. Also, let x′

be the smallest value with x′ > y located to the left of x. At this point, we have a graph as

shown in Figure 5.12. Notice that it is possible to have one value in B32, but no more due to

321 and 23451 avoiding conditions. If we don’t have a value in B52 or B62, then we only have

one descent in [s, t′], and this is our base case. So suppose we have a value y′ in B52 or B62.

Then by inductive hypothesis, values of positions in the segment [s, π−1(y′)] form a 231-value

72

b

π(s)

x

y

d

a

c

B36

B46

B56

Figure 5.11.: Partial graphs of π with a 2341 pattern and one descent.

chain. With x, y and potentially another value in B32 of Figure 5.12, we have a 231-value chain

with values whose positions are in [s, t′], so we are done.

b

x′

x

y

d

a

c

B52

B62

Figure 5.12.: Partial graphs of π for the inductive case.

�

By applying Lemma 5.4 and 5.5, we have the following lemma, which is the description of

the structure of points whose positions are in A.

Lemma 5.6 Let π be a simple permutation in A′ of extreme pattern 2413. Then values corre-

73

sponding to positions in A can be expressed as

k⊕

i=1

σi, (5.2)

where each σi is 1 or a 231-value chain.

Proof. By Lemma 5.4, each sum block in A is either a singleton segment or a segment ending

on a descent. Also, by Lemma 5.5, every segment ending on a descent is a 231-value chain, so

we have the desired result. �

Next, define a 312-value chain to be the reverse complement of a 231-value chain, i.e. it

is a sequence of values of the form
k⊕

i=1
1
σi

where each σi is in {21, 312}. Hence, the structure of a 312-value chain is as shown in Figure

5.13. As before, underlined points can be empty, but no others can be so long as the chain

continues.

Figure 5.13.: Structure of a 312-value chain.

With the reverse complement property, we obtain the following lemma.

Lemma 5.7 Let π be a simple permutation in A′ of extreme pattern 2413. Then values corre-

sponding to positions in C can be expressed as

k⊕

i=1

σi, (5.3)

where each σi is 1 or a 312-value chain.

Finally, we summarize the structure of a simple permutation π in A′ of extreme pattern

2413. By Lemma 5.2, 5.6 and 5.7, we have the following proposition.

74

Proposition 5.8 Let π be a simple permutation in A′ of extreme pattern 2413. Let b, d, a and

c be the first, the greatest, the least and the last values of π respectively. Then values corre-

sponding to positions in [π−1(b), π−1(d)) can be expressed as Equation 5.2, values corresponding

to positions in [π−1(d), π−1(a)] can be expressed as Equation 5.1, and values corresponding to

positions in (π−1(a), π−1(c)] can be expressed as Equation 5.3.

We can state the structure of a simple permutation π in A′ of extreme pattern 3142 with

the inverse property, but in order to do so, we need to define the position-interchange sum, which

is the inverted value-interchange sum. Given σ ∈ Sm and τ ∈ Sn, The position-interchange sum

of σ and π with 1 shift is the permutation defined by

σ ⊕1 τ = σ(1)σ(2) · · · σ(m− 1)τ ′(1)σ(m)τ ′(2) · · · τ ′(n)

where τ ′(i) = τ(i) +m for each i with 1 ≤ i ≤ n. We then define the 231-position chain and

the 312-position chain as

k⊕

i=1

1 σi where each σi is in {21,231}

and
k⊕

i=1

1 σi where each σi is in {21,312}

respectively. By using these, the following proposition is the structure of a simple permutation

π in A′ of extreme pattern 3142.

Proposition 5.9 Let π be a simple permutation in A′ of extreme pattern 3142. Let c, a, d and

b be the first, the least, the greatest and the last values of π respectively. Then values from the

range [b, c] can be expressed as Equation 5.1, and values from the range [a, b) and values from

the range (c, d] can be expressed as

k⊕

i=1

σi where each σi is 1 or a 312-position chain (5.4)

and
k⊕

i=1

σi where each σi is 1 or a 231-position chain (5.5)

respectively.

5.1.2. Detailed structures

Here, we discuss more details of how values of a simple permutation in A′ of extreme 2413 can

be placed. We state Proposition 5.10 for simple permutations of extreme pattern 2413, and

75

divide into four lemmas to prove the statement. As before, we apply the inverse symmetry

to state the analogous proposition for a permutation of extreme pattern 3142. Afterwards, we

state propositions that are converses of Proposition 5.10 and 5.16, which will be important in

Chapter 6. At the end, we observe how first and last few values of a simple permutation of

extreme pattern 2413 can be placed, and what first and last few values of a simple permutation

of extreme pattern 3142 can be, so we can establish all the glue sum operations we need to prove

the main theorem in the next section.

Consider a simple permutation π in A′ of extreme pattern 2413. For the following propo-

sition and four lemmas, let b, d, a and c be the first, the greatest, the least and the last values of

π respectively, and denote by A, B and C each segment [π−1(b), π−1(d)), [π−1(d), π−1(a)] and

(π−1(a), π−1(c)] respectively.

Proposition 5.10 Let π be a simple permutation in A′ of extreme pattern 2413. Then:

1. in between two values for 1⊕ 1 in Equation 5.2, there exists a value x such that π−1(x) ∈ B
or π−1(x) ∈ C.

2. in between two values for 1⊖ 1 in Equation 5.1, there exists a value x such that π−1(x) ∈ A

or π−1(x) ∈ C.

3. in between two values for 1⊕ 1 in Equation 5.3, there exists a value x such that π−1(x) ∈ A

or π−1(x) ∈ B.

4. for a 231-value chain α in the segment A, let m and M be the minimum and maximum

values of α respectively. Then so long as the chain continues, π−1(x) ∈ A for all x ∈
[m,M] \ {M − 1}, and π−1(M − 1) ∈ B.

5. for a 312-value chain β in the segment C, let m and M be the minimum and maximum values

of β respectively. Then so long as the chain continues, π−1(x) ∈ C for all x ∈ [m,M]\{m+1},

and π−1(m+ 1) ∈ B.

6. in between two values s and t playing roles of 1 and 2 of 12 in Equation 5.1, there exists a

value whose position is either in A or C. Further, there can be at most four such values x1,

x2, y1 and y2 with x1 < x2 < y1 < y2 where π−1(x1), π
−1(x2) ∈ A and π−1(y1), π

−1(y2) ∈ C.

7. the positions of the value a + 1 must be in A or B and the position of the value d − 1 must

be in B or C.

Note that, unlike 1⊕1, in between σ1⊕1, 1⊕σ1 and σ1⊕σ2 in Equation 5.2 with 231-value

chains σ1 and σ2, there can be a value x such that π−1(x) ∈ B or π−1(x) ∈ C, but there does

76

not have to be such a value. Similarly, in between 12 ⊖ 1, 1 ⊖ 12 and 12 ⊖ 12 in Equation 5.1,

there can be an optional value x such that π−1(x) ∈ A or π−1(x) ∈ C, and in between σ1 ⊕ 1,

1 ⊕ σ1 and σ1 ⊕ σ2 in Equation 5.3 with 312-value chains σ1 and σ2, there can be an optional

value x such that π−1(x) ∈ A or π−1(x) ∈ B.

We now prove the following lemma, which is for the first three statements of Proposition

5.10.

Lemma 5.11 Let π be a simple permutation in A′ of extreme pattern 2413. Then:

• in between two values for 1⊕1 in Equation 5.2, there exists a value x such that π−1(x) ∈ B
or π−1(x) ∈ C.

• in between two values for 1⊖1 in Equation 5.1, there exists a value x such that π−1(x) ∈ A

or π−1(x) ∈ C.

• in between two values for 1⊕1 in Equation 5.3, there exists a value x such that π−1(x) ∈ A

or π−1(x) ∈ B.

Proof. Since the proof for each statement is similar, we only prove the first statement. Let s

and t be the values for the first 1 and the second 1 of a 1⊕ 1 respectively. Since their positions

are both in A and consecutive, we cannot have t = s+1. Let x = s+1. Suppose to the contrary

that π−1(x) ∈ A. Now, due to the structure described in Lemma 5.6, if π−1(x) < π−1(s), then

s and x would be parts of a 231-value chain, so s would not be playing the role of the first

1 of a 1 ⊕ 1. On the other hand, if π−1(x) > π−1(t), then t and x would be a part of a 231-

value chain, so we have a contradiction again. Thus, the position of x must be either in B or C.�

Next, we prove the following.

Lemma 5.12 Let π be a simple permutation in A′ of extreme pattern 2413. Then for a 231-

value chain α in the segment A, let m and M be the minimum and maximum values of α

respectively. Then so long as the chain continues, π−1(x) ∈ A for all x ∈ [m,M] \{M − 1}, and

π−1(M − 1) ∈ B.

Proof. We first show π−1(M − 1) ∈ B. If the position of M − 1 is in A, then it must be a

part of α due to the structure of π. Further, if π−1(M − 1) > π−1(M), then as discussed in

the proof of Lemma 5.6, M − 1 must have its descent pair, but the value of this point would

be greater than M , so the position of M − 1 must be to the left of M . However, this implies

the segment corresponding to α forms a block, so π−1(M − 1) /∈ A. If π−1(M − 1) ∈ C, then

M(M − 2)da(M − 1) or M(M − 3)da(M − 1) gives us 42513 pattern, so the position of M − 1

77

b

d

M − 1
M

m

a

R1 R2 R3

an arbitrary

231-value chain

Figure 5.14.: Forbidden regions with a 231-value chain.

must be in B.

Next, we explain why other values in [m,M] must be involved in the chain by using Figure

5.14. We cannot have any point in the region R1 by 5.6. If we have a point in R2, then its

value, say w, must be between values corresponding to 2 and 1 of a descent 21 or 3 and 1 of

231 in 231-value chain. So suppose w is between values x and y which correspond to 2 and 1

respectively of αi = 21 for some positive integer i. Along with the value corresponding to 1 of

αi+1, say z, π contains 52341 or 52431 due to the subsequence xyzwa. Thus, we cannot have a

point in R2. We can apply the same argument if w is between values 3 and 1 of 231 in 231-value

chain. Finally, assume we have a point w in R3. Again, w must be between values corresponding

to 2 and 1 of 21 or 3 and 1 of 231 in 231-value chain. Letting x and y denote the same as before,

xydaw gives 42513 pattern, so we cannot have a point in R3. �

With the reverse complement symmetry, the following lemma is an immediate consequence

of Lemma 5.12.

Lemma 5.13 Let π be a simple permutation in A′ of extreme pattern 2413. Then for a 312-

value chain β in the segment C, let m and M be the minimum and maximum values of β

respectively. Then so long as the chain continues, π−1(x) ∈ C for all x ∈ [m,M] \ {m+1}, and

π−1(m+ 1) ∈ B.

Thus, for a 231-value chain with values of positions in A and a 312-value chain with values

of positions in C have one value with its position in B. We refer to this value multiple times

78

in later discussion, so it is worth naming this value. For a 231-value chain α in the segment A

with the minimum value m and the maximum value M , we call the value M − 1 the scissor of

a 231-value chain. Similarly, for a 312-value chain β in the segment C with the minimum value

m and the maximum value M , we call the value m+ 1 the scissor of a 312-value chain.

We move onto the next lemma describing the positions of values that are in between 1

and 2 of 12 in Equation 5.1.

Lemma 5.14 Let π be a simple permutation in A′ of extreme pattern 2413. Then in between

two values s and t playing roles of 1 and 2 of 12 in Equation 5.1, there exists a value whose

position is either in A or C. Further, there can be at most four such values x1, x2, y1 and y2

with x1 < x2 < y1 < y2 where π−1(x1), π
−1(x2) ∈ A and π−1(y1), π

−1(y2) ∈ C.

Proof. Given an arbitrary values corresponding to 12 in Equation 5.1, call values playing the

roles of 1 and 2 of 12 s and t respectively. It is necessary to have at least one value in [s, t]

whose position is in A or C due to the simplicity of π. If we have one value, say x in A and

another value, say y in C that are in [s, t], then y > x, because, otherwise, 35142 is contained

due to xdsty. Because each 231-value chain needs the position of its scissor to be in B, it is

not possible to have all values of an entire 231-value chain to be in between 1 and 2 of 12 as it

requires for B to involve 123, 213 or 132 with the scissor, s and t, resulting in 52341, 53241 or

52431 pattern containment.

Now, suppose we have two values x1, x2 in [s, t] with x1 < x2 whose positions are in A.

As we can see in Figure 5.15, splitting the block [π−1(x1), π
−1(x2)] is only possible by having

b

d

x1

x2

s

t

a

c

Figure 5.15.: Partial graph of π with the assumption of having two values in [s, t] whose positions are in A.

79

a point with the value less than s and the position in [π−1(x1), π
−1(x2)]. This makes x1 a part

of a 231-value chain with M = x1. Since this is the only way to split [π−1(x1), π
−1(x2)], it is

impossible to have a 1⊕ 1 in Equation 5.2 in between s and t. Hence, on the side of A, we can

have at most two values x1 and x2 with x1 being the maximum of a 231-value chain. Applying

the reverse complement symmetry, we also have at most two values y1 and y2 (y1 < y2) on the

side of C with y2 begin the minimum of a 312-value chain in C. �

Finally, we prove the lemma for the last statement of Proposition 5.10.

Lemma 5.15 Let π be a simple permutation in A′ of extreme pattern 2413. Then the positions

of the value a+ 1 must be in A or B and the position of the value d− 1 must be in B or C.

Proof. Suppose to the contrary that π−1(a + 1) ∈ C. Then a + 1 cannot play the role of 1

in Equation 5.3 because, otherwise, [π−1(a), π−1(a + 1)] would be an unsplittable block. So

a + 1 must be playing the role of the minimum value of a 312-value chain. In either case, the

position of a+2 must be in B due to Lemma 5.13. However, now we have an unsplittable block

[π−1(a+2), π−1(ℓ)] where ℓ is the last value of the 312-value chain that a+1 is a part of. Hence,

the position of the value a + 1 cannot be in C. Proving π−1(d − 1) /∈ A can be done by the

reverse complement argument. �

With Lemma 5.11, 5.12, 5.13, 5.14 and 5.15, we have Proposition 5.10.

In Proposition 5.10, we observed the necessary conditions of simple permutations in A′ of

extreme pattern 2413. Proposition 5.16 summarize the inverse statement of these propositions

for simple permutations in A′ of extreme pattern 3142. Consider a simple permutation π in A′

of extreme pattern 3142. This time, let c, a, d and b be the first, the least, the greatest and the

last values of π respectively.

Proposition 5.16 Let π be a simple permutation in A′ of extreme pattern 3142. Then:

1. in between two positions of values for 1 ⊕ 1 in Equation 5.4, there exists a value x in (b, c)

or in (c, d] such that π−1(s) ≤ π−1(x) ≤ π−1(t).

2. in between two positions of values for 1 ⊖ 1 in Equation 5.1, there exists a value x in [a, b)

or in (c, d] such that π−1(s) ≤ π−1(x) ≤ π−1(t).

3. in between two positions of values for 1 ⊕ 1 in Equation 5.5, there exists a value x in [a, b)

or in (b, c) such that π−1(s) ≤ π−1(x) ≤ π−1(t).

80

4. for a 312-value chain α in the range [a, b), let m and M be the values of α whose positions

are the first and the last in α respectively. Then so long as the chain continues, x ∈ [a, b) for

all x with π−1(x) ∈ [π−1(m), π−1(M)] \ {π−1(M)− 1} and π(π−1(M)− 1) ∈ (b, c).

5. for a 231-value chain β in the range (c, d], let m and M be the values of β whose positions

are the first and the last in β respectively. Then so long as the chain continues, x ∈ (c, d] for

all x with π−1(x) ∈ [π−1(m), π−1(M)] \ {π−1(m) + 1} and π(π−1(m) + 1) ∈ (b, c).

6. there exists a value in [a, b) or (c, d] whose position is in between π−1(s) and π−1(t) where s

and t are values playing roles of 1 and 2 of 12 in Equation 5.1. Further, there could be at

most four such values x1, x2, y1 and y2 with π−1(x1) < π−1(x2) < π−1(y1) < π−1(y2) where

x1, x2 ∈ [a, b) and y1, y2 ∈ (c, d].

7. the value of the position π−1(c) + 1 must be in [a, b) or [b, c] and the value of the position

π−1(b)− 1 must be in [b, c] or (c, d].

So far, we have proven that if a permutation π of extreme pattern 2413 is in Si(A′), then π

satisfies every condition listed in Proposition 5.10 as well as the structural conditions described

in Proposition 5.8. Proposition 5.19 states that if an arbitrary permutation π of extreme pattern

2413 having a structure described in Proposition 5.8 and 5.10, then π ∈ Si(A′). In order to prove

this statement, we need the following lemma. As usual, let b, d, a and c be the first, the greatest,

the least and the last values of π.

Lemma 5.17 There is no value x less than b such that π−1(x) ∈ C.

Proof. Suppose to the contrary that there exists a value less than b whose position is in C. Let

x be the greatest such value. First, assume x is not a part of a 312-value chain, so we have the

graph shown in Figure 5.16(a). The only way to split the block [π−1(a), π−1(x)] is by having

a point in the region denoted by R42. Denoting by y the value of the right-most point in R42

of 5.16(a), we obtain the graph in 5.16(b). We attempt to split the block [π−1(y), π−1(x)] by

having a point in R33, but the consequential graph has an unsplittable block [π−1(y), π−1(x)] as

shown in 5.16(c).

Next, suppose x is a part of a 312-value chain. If x plays the role of 2 of 21 in the chain,

we have a point with the value z playing the role of 1 of 21 in the region R44 of Figure 5.16,

resulting in the graph shown in Figure 5.17(a). Note that if x played the role of 3 of 312 in the

chain, then z shown in Figure 5.17(a) would be for 1 of 312, and we would have another value

for 2 of 312 in the region R45. The rest of the proof is the same for the case of x playing the

81

b

d

a

x

c

R42 R44

b

d

y

a

x

c

R33

b

d

y

a

x

c

(a) (b) (c)

Figure 5.16.: Partial graphs of π with the assumption of having a value x that is not a part of a 312-value chain.

role of 2 of 21, so we only show the case of x for 2 of 21.

Suppose z is the minimum value in the 312-value chain. Then as discussed before, the

position of z + 1 must be in B. Thus, we have the graph shown in Figure 5.17(b). Splitting

the block [π−1(y1), π
−1(z)] can be only done by having another value y in the region R62, but

then we have an unsplittable block [π−1(y), π−1(z)] as shown in Figure 5.17(c), so we have a

contradiction. Now, suppose z is not the minimum value in the 312-value chain. That means we

have the minimum value m of the 312-value chain in R53 in Figure 5.17(a). With the value m+1

whose position is in B, we have the graph as in Figure 5.17(d). The segment [π−1(m+1), π−1(z)]

is a block, and the only way to split it is by having a point with the value y in R82. Consequently,

we obtain the graph shown in Figure 5.17(e), but [π−1(y), π−1(z)] is an unsplittable box. This

completes the proof of the lemma. �

With the reverse complement property of Lemma 5.15, we have the following lemma. With

these lemmas, we are ready to prove Proposition 5.19.

Lemma 5.18 There is no value x greater than a such that π−1(x) ∈ A.

Proposition 5.19 Let π be a permutation of extreme pattern 2413 where |π| = n. If π obeys

all the conditions of Proposition 5.8 and 5.10, then π ∈ Si(A′).

Proof. First, we prove π is simple. Suppose π is not simple, and let I be a non-singleton

proper block of π. Let b, d, a and c be the first, the greatest, the least and the last values of

82

b

d

a

x

z

c

R45

R53

b

d

z + 1

a

x

z

c

R62

(a) (b)

b

d

y

z + 1

a

x

z

c

(c)

b

d

m+ 1

a

m

x

z

c

R82

b

d

y

m+ 1

a

m

x

z

c

(d) (e)

Figure 5.17.: Partial graphs of π with the assumption of having a value x that is a part of a 312-value chain.

83

π respectively. Additionally, let A, B and C be segments [π−1(b), π−1(d)), [π−1(d), π−1(a)] and

(π−1(a), π−1(c)] respectively. Obviously, I cannot contain both the positions of b and c because

this implies I = [π−1(b), π−1(c)] = [1, n]. The same result can be quickly obtained if I contains

any two positions of b, d, a and c. For example, assume I contains the positions of b and d.

Since b < c < d, we must have π−1(c) ∈ I, so again, I = [1, n]. Same can be done for any other

two of b, d, a and c.

Assume I contains only one position of b, d, a or c. We first assume π−1(d) ∈ I. Then

π−1(d− 1) also has to be in I. By the seventh condition listed in Proposition 5.10, we have the

assumption π−1(d − 1) /∈ A. If π−1(d − 1) ∈ C, then π−1(a) has to be in I, which is a contra-

diction. So suppose π−1(d− 1) ∈ B. Note that d and d− 1 cannot be forming 1⊖ 1 due to the

second condition listed in Proposition 5.10. Hence, d and d− 1 are 1 of the initial 1 and 2 of the

12 in the expression 1⊖ 12⊖ · · · . However, by the sixth condition of Proposition 5.10, we must

have a value in between 1 and 2 of 12 whose position is either in A or C, i.e. π−1(d−2) must be

in A or C. Moreover, by Lemma 5.17, every value whose position is in A must be less than c, so

π−1(d− 2) ∈ C. This implies π−1(a) ∈ I, which is a contradiction. Hence, I cannot contain the

position of d. We have the same result for the position of a by the reverse complement argument.

Thus, suppose I contains 1 = π−1(b). Because I does not contain the position of d, we

have I ⊆ A. Now, if b is a part of a 231-value chain, then [m,M] ⊆ π(I) where m and M are

the minimum and maximum values of the 231-value chain that b is a part of. However, since

we know π−1(M − 1) ∈ B by the fourth condition of Proposition 5.10, this implies π−1(d) ∈ I.

So assume b is playing the role of the first 1 in Equation 5.2. If π(2) is also playing the role of

another 1 in Equation 5.2, then there must be a value x such that b < x < π(2) where π−1(x)

is in B or in C, so again, we have a contradiction of π−1(d) ∈ I. Hence, π(2) is a part of a

231-value chain, but this implies [m,M] ⊆ π(I) wherem andM are the minimum and maximum

values of the 231-value chain that π(2) is a part of, resulting in π−1(d) ∈ I again. Similar result

can be obtained for the case of I containing n = π−1(c). Consequently, I cannot contain any of

π−1(b), π−1(d), π−1(a) or π−1(c).

So suppose I does not contain any position of b, d, a or c. This implies I ⊆ A, I ⊆ B or

I ⊆ C. Assume I ⊆ A. Then π(I) must contain at least two values s and t whose positions are

consecutive in A (π−1(s) < π−1(t)). If s and t are playing roles of a 1⊕ 1 in Equation 5.2, then

there exists a value x such that s < x < t where π−1(x) is in B or in C. As before, this implies

π−1(d) ∈ I, which is a contradiction. If s and t are both parts of the same 231-value chain,

then [m,M] ⊆ π(I) where m and M are the minimum and maximum values of the 231-value

chain that s and t are parts of. Since π−1(M − 1) ∈ B, this implies π−1(d) ∈ I again, so we

84

have a contradiction. Similar result can be shown if s is playing a role of 1 in Equation 5.2 and

t is a part of a 231-value chain, or vice versa. Thus, we cannot have I ⊆ A. By the reverse

complement argument, I ⊆ C also cannot be true.

Finally, suppose I ⊆ B. Then π(I) must contain at least two values s and t whose posi-

tions are consecutive in B (π−1(s) < π−1(t)). If s and t are playing roles of a 1⊖ 1 in Equation

5.1, then there exists a value x whose position is in A or C. Hence, x ∈ π(I), so π−1(x) ∈ I. If

π−1(x) ∈ A, then the position of d would be in I. On the other hand, if π−1(x) ∈ C, then the

position of a would be in I. Thus, in either way, we achieve a contradiction. Similarly, if s and

t are playing roles of 1 and 2 of a 12 in Equation 5.1, then there exists a value x whose position

is in A or C. Again either the position of d or a would be in I, which is a contradiction. Similar

result can be shown for the case if s is playing a role of 2 of a 12 and t is playing a role of 1 of

a 1 in Equation 5.1, and for the case if s is playing a role of 1 of a 1 and t is playing a role of 1

of a 12 in Equation 5.1.

Consequently, we have considered every case of where a non-singleton proper block I can

belong to, and we achieved a contradiction in each case. Hence, π is simple.

Next, we prove π avoids every β in {52341, 53241, 52431, 35142, 42513, 351624}. Sup-

pose to the contrary that β � π for some β ∈ {52341, 53241, 52431, 35142, 42513, 351624}. We

first let β ∈ {52341, 53241, 52431}. Notice that LRmax(π) = {x : π−1(x) ∈ A and x plays

the role of 2 or 3 of a 231-value chain, or 1 of 1 in Equation 5.2} ∪ {d} and RLmin(π) = {x :

π−1(x) ∈ C and x plays the role of 1 or 2 of a 312-value chain, or 1 of 1 in Equation 5.3}∪{a}.
If any two values from these two sets play the role of 2, 3 or 4, we cannot find a value corre-

sponding to either 5 or 1. Thus, each value playing the role of 2, 3 and 4 must be in one of the

following three sets.

• S1 = {x : π−1(x) ∈ A, x corresponds to 1 of 21 or 231 in a 231-value chain}

• S2 = {x : π−1(x) ∈ B, x 6= 1, n}

• S3 = {x : π−1(x) ∈ C, x corresponds to 2 of 21 or 3 of 312 in a 312 value chain}

Let x ∈ S1. Furthermore, suppose x is a value corresponding to 1 of 231 in some 231-value

chain. We show that x cannot play the role of any of 2, 3 and 4. Suppose to the contrary that

x plays the role of one of the values of β(2), β(3) or β(4). There are three values y1, y2 and y3

that are greater than x located to the left of x in increasing order, as shown in Figure 5.18, so

one of them has to play the role of β(1) = 5. As we choose one of them to be playing the role of

5, other two cannot be assigned to any other values of β, as these two values are either located

85

u

v

y0

y1

z

y2

y3

x

w

Figure 5.18.: Partial graph of π to show that 52341, 53241, 52431 6� π.

to the left of, or greater than the value for β(1) = 5.

Suppose x plays the role of β(4). If β = 52341 or 53241, then β(4) = 4, but then we need

two values less than x whose positions are in between π−1(yi) and π
−1(x) which we don’t have

for each of y1, y2 and y3. If β = 52431, then we assign y1 and its descent pair z to play the roles

of 5 and 2 respectively, but we do not have any value for 4. Hence, x cannot correspond to β(4).

This time, assume x plays the role of β(3). For β = 53241, we don’t have any value

corresponding to 3. For β = 52341, we assign y1 and z to 5 and 2 respectively as this is the

only way to have a value for 2, but since y1 = x + 1, we do not have a value corresponding to

4. Lastly, for β = 52431, we again assign y1 and z to 5 and 2 respectively. However, if y1 and

z correspond to 3 and 1 of 231 in the 231-value chain respectively as in Figure 5.18, then the

only values greater than z and less than x is y0 and u shown in Figure 5.18, which are located

to the left of x, so we don’t have a value for 3. On the other hand, if y1 and z correspond to

2 and 1 of 21 in the 231-value chain, then the only value in between z and x is u. It is also

possible that u and v do not exist, as y1 and z correspond to the first summand of the 231-

value chain expression. In this case, there is no value greater than z and less than x, because

x = z+1, so we do not have a value for 3 in either way. Therefore, x cannot play the role of β(3).

The last case is x playing the role of β(2). If y3 plays the role of β(1) = 5, then there is

one value w that is greater than x and less than y3 whose position is to the right of x. Note

that w can be a value in S1, i.e. a part of the next summand in the 231-value chain expression,

or π−1(w) ∈ B, if the 231 that y3 and x are parts of is the last summand in the expression. If

β = 52341 or 52431, we do not have enough values to assign to 3 and 4. If β = 53241, then

w must play the role of 4, but since there is no value less than x whose position is in between

86

π−1(x) and π−1(w), we do not have a value corresponding to 2 of β.

Consequently, we achieve a contradiction in every case. If x is a value corresponding to 1

of 21 in a 231-value chain, then we obtain the same result, since the only difference is the ab-

sence of y2 in Figure 5.18. So x cannot play the role of any value of β(2), β(3) and β(4). Since

these three values correspond to 2, 3 and 4 for every β, x cannot play the role of any of 2, 3 and 4.

We can apply the reverse complement argument of the above to show that any value in S3

cannot play the role of any of 2, 3 and 4. Therefore, values playing roles of 2, 3 and 4 must be

in S2, implying their positions are in B. However, since values whose positions are in B must

be expressed by Equation 5.1, these values avoid 123, 213 and 231 patterns. If the positions of

the values corresponding to 2, 3 and 4 of β are in B, then these values must form either 123,

213 or 231 pattern. Hence, π avoids every β ∈ {52341, 53241, 52431}.

Now, let β = 35142. For the same reason that the roles of 2, 3 and 4 of 52341 cannot be

played by any value in LRmax(π) and RLmin(π), the role of 4 cannot be taken by any value

in LRmax(π) and RLmin(π). Let x be the value playing the role of 4. We first let x ∈ S1.

As before, we may assume x corresponds to 1 of 231 in a 231-value chain, since the case of x

corresponding to 1 of 21 in a chain gives the same result. Let us refer to Figure 5.18 again. The

only value we can assign to 5 is y1, as this is the only way to have a value for 1, which is z.

Either u or y0 must play the role of 3. If u plays the role of 3, then we do not have a value for

2 because u = z + 1. On the other hand, if y0 plays the role of 3, then u is the only value in

between z and y0, if u and v exist. Since it is located to the left of y0, it cannot take the role of

2. Therefore, a value in S1 cannot be assigned to 4 of β.

Next, assume x ∈ S3. Thus, we have Figure 5.19. The only way to assign values to both 3

and 2 are by setting w and y3 to take roles of them respectively, but we now don’t have a value

w

x

y3

y2

z

y1

Figure 5.19.: Partial graph of π to show that 35142 6� π.

87

corresponding to 5. Consequently, a value in S3 cannot play the role of 4 of β.

Finally, suppose x ∈ S2. In this case, the position of a value y playing the role of 5 must

be in A or B with π−1(y) < π−1(x). In order to assign a value to 1, x must correspond to

2 of 12 in Equation 5.1 or the scissor of some 231-value chain. In the former case, the paired

value z corresponding to 1 of 12 being assigned to 1 of β. Due to the structure of values whose

positions are in B, the position of the value v corresponding to 3 must come from C and the

position of the value w corresponding to 2 must come from A. However, with the sixth condition

of Proposition 5.10, we ensure that v < w, so these assignments are not possible. In case of x

corresponding to the scissor of some 231-value chain with the minimum value m and maximum

value M , M and its descent paired value must be assigned to 3 and 1 of β respectively. Then

we do not have a value corresponding to 2, because except x, the positions of the values in the

range [m,M] must be in A. Hence, no value in S3 can play the role of 4 of β.

Consequently, we have β = 35142 6� π. We can show that π does not contain β = 42513

by applying the reverse complement of the argument for 35142. Thus, the remained case is

β = 351624.

Let x be the value playing the role of 6. Note that x cannot be in RLmin(π), since this

leaves no values to be assigned to 2 and 4. So assume x ∈ S3. Referring to Figure 5.19, the

value playing the role of 2 must be y1 or y2 while the value for 4 must be y2 or y3. Therefore,

Suppose y1 plays the role of 2. Then the values for 3 and 5 must come from LRmax(π), S1 or

S2. However, since x and y1 are parts of a 312-value chain, the only value that is allowed to have

a position outside of C is the splitter, so we don’t have enough values to assign for both 3 and

5. We obtain the same result if y2 plays the roles of 2. Note that, by the reverse complement

argument, the value playing the role of 1 cannot be in LRmax(π) or S1.

Now, suppose x ∈ S2. Because we cannot assign any value in LRmax(π) or S1 to 1 of β,

we also have to have a value z in S2 which plays the role of 1. Due to the structure of values with

positions in B, the only way to assign values to both 1 and 6 is by setting z and x to correspond

to 1 and 2 of the same 12 in Equation 5.1 respectively. Then the values for 3 and 5 must come

from LRmax(π) or S1 and the values for 2 and 4 must come from S2 or RLmin(π). This is,

however, a contradiction, because four values in between of values corresponding to 1 and 2 of

12 in Equation 5.1 must be in increasing order from left to right due to the sixth condition of

Proposition 5.10. So this concludes that x cannot be in S2.

The remained two cases are x ∈ S1 and x ∈ LRmax(π). In either case, the value z playing

88

the role of 1 must be in S1 or LRmax(π) as well, but as discussed previously, the role of 1 cannot

be played by a value in S1 or LRmax(π). Hence, β = 351624 6� π.

Consequently, π avoids every permutation in {52341, 53241, 52431, 35142, 42513, 351624},
so π is in A′. With the simplicity we proved earlier, this completes the proof. �

We state the analogous proposition for permutations of extreme pattern 3142. Proposition

5.19 and 5.20 will be referred in Chapter 6.

Proposition 5.20 Let π be a permutation of extreme pattern 3142 where |π| = n. If π has a

structure described in Proposition 5.9 and 5.16, then π ∈ Si(A′).

For the reminder of this section, we discuss how first few values of a simple permutation

π of extreme pattern 2413 can be placed. In particular, we divide the arrangement of the values

in {x : 1 ≤ x ≤ π(1)} into six distinct cases. We will use these six cases in the encoding rule,

which we define in Chapter 6. Then we apply the reverse complement property and the inverse

property to establish analogous six distinct cases for each of:

• where the values x with π(n) ≤ x ≤ n are located for a simple permutation π of extreme

pattern 2413,

• what values x with 1 ≤ π−1(x) ≤ π−1(1) can be for a simple permutation π of extreme

pattern 3142 and

• what values x with π−1(n) ≤ π−1(x) ≤ n can be for a simple permutation π of extreme

pattern 3142.

As before, let b = π(1), d = n, a = 1 and c = π(n) where π is a simple permutation in A′

of extreme pattern 2413. Six distinct starting cases are shown in Figure 5.20. The dashed line

in each case indicates the position of d.

In every case, a = 1 plays the role of the last 1 in Equation 5.1. The difference is what

each value x with 2 ≤ x ≤ b is playing the role of. In Case 1, simply, b = 2 and it is playing the

role of the first 1 in segment A, when the values in segment A are expressed as 1⊕ · · · . Also, in
this case, the values of positions in the segment B are written as · · · ⊖ 1⊖ 1. In this case,

π = 2 . . . d . . . 1 . . . c.

In Case 2, b again plays the role of the first 1 when the values of positions in the segment

A are formed as 1 ⊕ · · · . However, the values of positions in the segment B are expressed as

89

b = 2
a = 1

b = 3
2

1

b = 3
2

1

Case 1 Case 2 Case 3

b = 4

2

3

1

b = 4

2

3

1

Case 4 and 5 Case 6

Figure 5.20.: Positions of values x with 1 ≤ x ≤ π(1) for π with extreme pattern 2413.

· · · ⊖ 12⊖ 1, and b is in between the two values taking the roles of 1 and 2 of the last 12. Thus,

the value 2 is playing the role of 1 of the 12 here, which makes b = 3. By Proposition 5.10, there

are possibly two more values with positions in segment C which are between the values playing

the roles of 1 and 2 of 12, so π should be written as

π = 3 . . . d . . . 2 z 1 . . . c

where z = 4, 5 or 6.

Case 3 may appear similar to Case 2, but the role b is taking is completely different. In

this case, segment A looks like α1 ⊕ · · · where α1 is the first 231-value chain which starts with

231 pattern, i.e. α1 = 231 ⊕1 · · · . The values b = 3 and 2 are playing the roles of 2 and 1 of

this 231 respectively. Moreover, the value 5 is playing the role of 3 of this 231, so we have

π = 352 . . . d . . . 1 . . . c.

If we simply have α1 = 231, then the position of the value 4 must be in the segment B. If the

231-value chain α1 continues, then π−1(4) must be in A.

In Case 4, 5 and 6, segment A starts as α1⊕· · · where α1 is the first 231-value chain where

α1 = 21 ⊕1 · · · . The values b = 4 and 2 are playing the roles of 2 and 1 of the first 21 in α1

respectively. In Case 4 and Case 5, α1 = 21, so the position of the value 3 is in the segment B.

90

If the values of positions in B is expressed as · · · ⊖ 1⊖ 1, then the value 3 is playing the role of

the second 1 from the last. In contrast, if the values of positions in B is written as · · · ⊖ 12⊖ 1,

the value 3 is playing the role of 1 of the last 12. Hence, in Case 4 and Case 5, respectively, we

have

π = 42 . . . d . . . 3 1 . . . c and π = 42 . . . d . . . 3 z 1 . . . c

with 5 ≤ z ≤ 8. On the other hand, in Case 6, the 231-value chain α1 continues after the initial

21, resulting in π−1(3) ∈ A. Thus,

π = 42 . . . 3 . . . d . . . 1 . . . c.

Based on the structure we discussed in Proposition 5.8 and 5.10, these six cases the only

possible ways that first several values of simple permutations of extreme pattern 2413 can be

placed. By applying the reverse complement, we obtain the possible behaviors of points with

the values x with π(n) ≤ x ≤ n, where π is a simple permutation of extreme pattern 2413.

Analogous cases are shown in Figure 5.21. Also, for a simple permutation π of extreme pattern

3142, the first and the last few values of π are obtained by the inverse property, shown in Figure

5.22 and 5.23 respectively. In Figure 5.21, 5.22 and 5.23, dashed lines indicate π−1(a), c and b

respectively.

d = n
c = n− 1

n

n− 1

c = n− 2

n

n− 1

c = n− 2

Case 1 Case 2 Case 3

n

n− 1

n− 2

c = n− 3

n

n− 1

n− 2

c = n− 3

Case 4 and 5 Case 6

Figure 5.21.: Positions of values x with π(n) ≤ x ≤ n for π with extreme pattern 2413.

91

c = π(1)

a = π(2)

π(1)

π(2)

a = π(3)

π(1)

π(2)

a = π(3)

π(1)

π(2)

π(3)

a = π(4)

π(1)

π(2)

π(3)

a = π(4)

Case 1 Case 2 Case 3 Case 4 and 5 Case 6

Figure 5.22.: Values of positions s with 1 ≤ s ≤ π−1(1) for π with extreme pattern 3142.

d = π(n− 1)

b = π(n)

d = π(n− 2)

π(n− 1)

π(n)

d = π(n − 2)

π(n− 1)

π(n)

d = π(n − 3)

π(n− 2)

π(n− 1)

π(n)

d = π(n− 3)

π(n− 2)

π(n− 1)

π(n)

Case 1 Case 2 Case 3 Case 4 and 5 Case 6

Figure 5.23.: Values of positions s with 1 ≤ π−1(n) ≤ n for π with extreme pattern 3142.

5.2. General simple permutations in A′

In the previous section, we looked at the structures of simple permutations of extreme pattern

2413 and the structures of simple permutations of extreme pattern 3142 in great detail. We

are ready to discuss the structure of general simple permutations in A′. Recall that in A, we

established Theorem 4.4, which states that the half of simple permutations can be written as

alternated NW and SE glue sums of simple permutations of extreme pattern 2413 and 3142,

starting with one of extreme pattern 2413. In this section, we extend Theorem 4.4 to describe

the structure of the half of simple permutations in A′. In order to state the theorem extending

Theorem 4.4, we need to define several more glue sums.

92

5.2.1. Glue sums and the structure theorem

We carry the same definitions for type 1-0 NW glue sum, type 1-0 SE glue sum, type 1-1 NW glue

sum and type 1-1 SE glue sum for simple permutations in A′. Recall that, in the definition of

σ 0
1 τ and σ 1

1 τ , σ (|σ| = m) and τ (|τ | = n) must satisfy the conditions that σ−1(m) ≤ m−2,

σ(m) = m − 1, τ(1) ≥ 3 and τ(2) = 1. In the language of the previous section, σ must have

the positions of the last two values m− 1 and m as Case 1 of Figure 5.21 and τ must have the

values of the first two positions τ(1) and τ(2) as Case 1 of Figure 5.22.

Similarly, for σ 0
1 τ and σ 1

1 τ , two simple permutations σ (|σ| = m) and τ (|τ | = n)

must satisfy the conditions of σ(m) ≤ m− 2, m = σ(m− 1), τ−1(1) ≥ 3 and 2 = τ(1). Thus, σ

must have the values of the last two positions σ(m− 1) and σ(m) as Case 1 of Figure 5.23 and

τ must have the positions of the first two values 1 and 2 as Case 1 of Figure 5.20.

For every glue sums that we define to combine simple permutations σ and τ in this section,

σ and τ have to satisfy specific conditions similar to the ones for type 1-0 and 1-1 glue sums.

In particular, σ, the left permutation of the sum, must follow a particular structure described

in Figure 5.21 for NW glue sums and 5.23 for SE glue sums. As noted, Type 1-0 and 1-1 are

for Case 1 structure. Type 2-0 and 2-1 are for Case 2, type 3-0 is for Case 3, and type 4-0 is for

Case 4 and Case 5. According to which structure σ has, τ also has to have a certain structure.

The second number indicates whether the last value of σ is left as a copy or not in the process

of glue summing. If the second number is 1, the glue sum leaves a copy of the last point of σ

when it is merged into the last point of τ , just as it was explained with type 1-1 at the end of

the proof of Proposition 4.5.

We now introduce all types of NW glue sums in Table 5.1. Note that every simple per-

mutation of extreme pattern 2413 satisfies the conditions of σ, which is the left side of each

sum, and similarly, every simple permutation of extreme pattern 3142 satisfies the conditions

of τ , the right side of each sum. Let σ and τ be simple permutations in A′ of length m and n

respectively, i = σ−1(m) and j = τ(1). For each NW glue sum, it is still proper to think the

last value of σ and the least value of τ are merged into the last value of τ and the least value of

σ respectively. Just like type 1-0 and 1-1, each sum combines the point of σ whose value is m

and the point of τ whose value is j into one point. This point keeps the position i, and its value

is m shifted upward by certain amount. In addition, for type 2-0, 2-1 and 3-0, the point whose

value is m − 1 is also shifted up by the same amount m is shifted. Likewise, for type 4-0, the

point whose value is m− 2 is shifted up together with m by the same amount.

9
3

Type Conditions of σ Conditions of τ Notation and Definition

1-0 i ≤ m− 2,

σ(m) = m− 1.

(Case 1 of Figure 5.21)

j ≥ 3, τ (2) = 1.

(Case 1 of Figure 5.22)

σ 0
1 τ = σ′(1)σ′(2) · · · σ′(m− 1)τ ′(3)τ ′(4) · · · τ ′(n) where σ′(i) = m+ (j − 3) and

σ′(k) = σ(k) for k 6= i, and τ ′(k) = τ (k) + (m− 3) for k with 3 ≤ k ≤ n.

1-1
σ 1

1 τ = σ′(1)σ′(2) · · ·σ′(m)τ ′(3)τ ′(4) · · · τ ′(n) where σ′(i) = m+ (j − 2) and

σ′(k) = σ(k) for k 6= i, and τ ′(k) = τ (k) + (m− 2) for k with 3 ≤ k ≤ n.

2-0 i ≤ m− 4,

σ(i+ 2) = m− 1,

σ(m) = m− 2.

(Case 2 of Figure 5.21)

σ 0
2 τ = σ′(1)σ′(2) · · · σ′(m− 1)τ ′(3)τ ′(4) · · · τ ′(n) where σ′(i) = m+ (j − 3),

σ′(i+ 2) = (m− 1) + (j − 3) and σ′(k) = σ(k) for k 6= i, i+ 2, and

τ ′(k) = τ (k) + (m− 3) for k with 3 ≤ k ≤ n.

2-1

σ 1
2 τ = σ′(1)σ′(2) · · ·σ′(m)τ ′(3)τ ′(4) · · · τ ′(n) where σ′(i) = m+ (j − 2),

σ′(i+ 2) = (m− 1) + (j − 2) and σ′(k) = σ(k) for k 6= i, i+ 2, and

τ ′(k) = τ (k) + (m− 2) for k with 3 ≤ k ≤ n.

3-0

i ≤ m− 5,

σ(m− 2) = m− 1,

σ(m) = m− 2 and σ(m)

is a part of the last

312-value chain α.

(Case 3 of Figure 5.21)

j ≥ 6, τ (2) = 3,

τ (3) = 1 and 1 is a part

of the least 312-position

chain β.

(Case 3 of Figure 5.22)

σ 0
3 τ = σ′(1)σ′(2) · · ·σ′(m− 1)τ ′(ℓ+ 3)τ ′(ℓ+ 4) · · · τ ′(n)

where ℓ is the number of values in the 312-position chain β,

σ′(i) = m+ (j − ℓ− 3), σ′(m− 2) = (m− 1) + (h− ℓ− 2) where h = τ (ℓ+ 1) and

σ′(k) = σ(k) for k 6= i,m− 2, and τ ′(k) = τ (k) + (m− ℓ− 3) for k with ℓ+ 3 ≤ k ≤ n.

Additionally, α must be similar to β.

4-0

i ≤ m− 4,

σ(m− 1) = m− 1,

σ(m) = m− 3.

(Case 4 or 5 of

Figure 5.21)

j ≥ 5, τ (2) = j − 2,

τ (3) = 1.

(Case 2 of Figure 5.22)

σ 0
4 τ = σ′(1)σ′(2) · · · σ′(m− 2)τ ′(4)τ ′(5) · · · τ ′(n) where σ′(i) = m+ (j − 3),

σ′(s) = (m− 2) + (j − 3) (s position of the value m− 2) and σ′(k) = σ(k) for

k 6= i, s, and τ ′(k) = τ (k) + (m− 3) for k with 4 ≤ k ≤ n.

Table 5.1.: Definitions of NW glue sums (i = σ−1(m) and j = τ (1)).

94

The only differences between type 1-0 and type 2-0 are the conditions of σ and whether

m− 1 is shifted up or not. Same can be said for type 1-1 and 2-1.

Before we discuss type 3-0 NW glue sum, we define another terminology. Let α and β be a

312-value chain and a 312-position chain respectively. We say α and β are similar if the flatten-

ing of 21⊕1 α and the flattening of β⊕1 21 are equal to each other. For instance, α = 21⊕1 312

is similar to β = 312 ⊕1 21 since 21 ⊕1 α = β ⊕1 21 = 3152746. Likewise, we say a 231-value

chain α and a 231-position chain β are similar if the flattening 21 ⊕1 α and the flattening of

β ⊕1 21 are equal to each other.

As indicated in Table 5.1, for type 3-0 NW glue sum, σ and τ must have a 312-value chain

with ℓ values involving σ(m) and a 312-position chain with ℓ values involving 1 respectively that

are similar to each other. For now, let σ and τ be simple permutations of extreme pattern 2413

and 3142 respectively. We visualize σ ⊕0
3 τ in Figure 5.24. In σ, we must have a scissor s as

indicated in Figure 5.24 because of the fifth condition of Proposition 5.10. Similarly, we have a

scissor h as shown in Figure 5.24. Note that the position of h is ℓ + 1, so h = τ(ℓ + 1). The

312-value chain of σ together with 1 and s has the same pattern as the pattern of 312-position

chain of τ with h and τ(n). Type 3-0 NW glue sum identifies each boxed point of σ shown

in Figure 5.24, and combines them into boxed points of τ from left to right. In this process,

ℓ+ 2 values of τ that are less than j are combined, so the amount we shift σ(i) = m upward is

(j − 1) − (ℓ + 2) = j − ℓ− 3. Similarly, ℓ + 1 values of τ below h are combined so the amount

we shift σ(m − 2) = m− 1 upward is (h − 1) − (ℓ + 1) = h − ℓ− 2. Since τ(k) (1 ≤ k ≤ ℓ+ 2)

are combined into corresponding values of σ, the glue sum starts referring to values of τ from

τ(ℓ+3). We need to shift τ(k) (ℓ+3 ≤ k ≤ n) upward by m− (ℓ+3) because this is the number

of values in σ that are not merged with values of τ . As a result, type 3-0 NW glue sum creates

a chain containing both a 312-value chain and a 231-position chain, as indicated in the box in

Figure 5.26. Note that this chain has both a scissor s with respect to its 312-value chain aspect

and a scissor (m− 2) + (h− ℓ− 2) with respect to its 231-value chain aspect.

Type 4-0 is rather similar to type 1-0, 1-1, 2-0 and 2-1. It is appropriate to visualize

that σ(m − 1) is merged into either (4, τ(4)) or (5, τ(5)), depending on whether τ(4) < j or

not. If τ(4) < j, then (m − 1,m − 1) is merged into (4, τ(4)), otherwise, (m − 1,m − 1) is

merged into (5, τ(5)). In addition to the combined point of (i,m) and (1, j), type 4-0 also

combines (s,m − 2) and (2, τ(2)). The resulting point keeps the position s, and the value is

m − 2 + (j − 3). Since three starting values of τ are merged into certain points of σ, values of

τ are reserved from the fourth position instead of the third one. Note that s = i + 1 if σ has

the structure of Case 4 in Figure 5.21, and s = i+2 if σ has the structure of Case 5 in Figure 5.22.

95

s

1

m− 1

m− 2

m

τ(n)

h

3

1

j

σ τ

↓

(m− 1) + (h− ℓ− 2)

s

1

m+ (j − ℓ− 3)

τ(n) + (m− (ℓ+ 3))

Figure 5.24.: Illustration of σ 0
3 τ .

9
6

Type Conditions of σ Conditions of τ Notation and Definition

1-0 i ≤ m− 2,

m = σ(m− 1).

(Case 1 of Figure 5.23)

j ≥ 3, 2 = τ (1).

(Case 1 of Figure 5.20)

σ 0
1 τ = σ(1)σ(2) · · ·σ(m− 2)τ ′(2)τ ′(3) · · · τ ′(n) where τ ′(j) = i and

τ ′(k) = τ (k) + (m− 3) for k 6= j.

1-1
σ 1

1 τ = σ(1)σ(2) · · ·σ(m− 1)τ ′(2)τ ′(3) · · · τ ′(n) where τ ′(j) = i and

τ ′(k) = τ (k) + (m− 2) for k 6= j.

2-0 i ≤ m− 4,

i+ 2 = σ(m− 1),

m = σ(m− 2).

(Case 2 of Figure 5.23)

σ 0
2 τ = σ(1)σ(2) · · ·σ(m− 3)τ ′(2)τ ′(3) · · · τ ′(n+ 1) where τ ′(j) = i+ 2,

τ ′(j + 1) = i, and τ ′(k) = τ (k) + (m− 3) for k ≤ j − 1 and

τ ′(k) = τ (k − 1) + (m− 3) for j + 2 ≤ k ≤ n.

2-1

σ 1
2 τ = σ(1)σ(2) · · ·σ(m− 3)σ(m− 2)τ ′(2)τ ′(3) · · · τ ′(n+ 1) where τ ′(j) = i+ 2,

τ ′(j + 1) = i, and τ ′(k) = τ (k) + (m− 3) for k ≤ j − 1

and τ ′(k) = τ (k − 1) + (m− 3) for j + 2 ≤ k ≤ n.

3-0

i ≤ m− 5,

m− 2 = σ(m− 1),

m = σ(m− 2) and m is

a part of the greatest

231-position chain α.

(Case 3 of Figure 5.23)

j ≥ 6, 2 = τ (3),

3 = τ (1) and τ (1) is a

part of the first

231-value chain β.

(Case 3 of Figure 5.20)

σ 0
3 τ = σ(1)σ(2) · · · σ(m− 3)τ ′(ℓ+ 1)τ ′(ℓ+ 2) · · · τ ′(n)

where ℓ is the number of values in the 231-value chain β,

and τ (j − 1) = σ(m− 1), τ (j) = i, and τ ′(k) = τ (k) + (m− ℓ− 3)

for k with ℓ+ 1 ≤ k ≤ n and k 6= j − 1, j.

Additionally, α must be similar to β.

4-0

i ≤ m− 4,

m− 1 = σ(m− 1),

m = σ(m− 3).

(Case 4 or 5 of

Figure 5.23)

j ≥ 5, 2 = τ (j − 2),

3 = τ (1).

(Case 2 of Figure 5.20)

σ 0
4 τ = σ(1)σ(2) · · ·σ(m− 4)τ ′(2)τ ′(3) · · · τ ′(n) where τ ′(j − 2) = σ(m− 2),

τ ′(j) = i, and τ ′(k) = τ (k) + (m− 3) for k with 2 ≤ k ≤ n and k 6= j − 2, j.

Table 5.2.: Definitions of SE glue sums (i = σ(m) and j = τ−1(1)).

97

As before, we define every SE glue sum precisely, so that

(σ y
x τ)

−1 = σ−1 y
x τ

−1

for each of (x, y) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)}. Thus, each type of SW glue sum

is defined as in Table 5.2. Here, σ and τ are simple permutations in A′ of length m and n

respectively, i = σ(m) and j = τ−1.

As we discussed in Chapter 4, type 1-0 and 1-1 glue sums are injective operations. It is

not difficult to show that all other glue sums are also injective. Also, we note that all glues

sums are associative only under certain conditions. In particular, both the left and the right

summands must have certain lengths for each glue sum to be associative. We set the convention

that when we sum multiple permutations with sequence of glue sums, we always sum from left

to right.

By using all of the glue sums we defined, we describe the structure of half of the simple

permutations in A′, just as we did in Chapter 4. In particular, we find the generating function

for the set H ′ = {π ∈ Si(A′) : |π| ≥ 4, 2 ≤ π(1) ≤ 4 and π(2) 6= 1}. Notice that this set is the

complement of the set of simple permutation π in A′ of length 4 or more such that π(1) ≥ 5 or

π(2) = 2. Later, we will show that the condition of H ′ is equivalent to π−1(1) ≥ 5 or π(1) = 2.

With what we observed for simple permutations of extreme pattern 2413, we can verify the set

of extreme pattern 2413 simple permutations are a subset of H ′. Hence, in summary, simple

permutations in A′ of length 4 or more can be classified as shown in Table 5.3.

Simple permutation π in A′ with |π| ≥ 4

π−1(1) ≥ 5 or π(1) = 2 π(1) ≥ 5 or π(2) = 1

Extreme pattern 2413 Extreme pattern 2143 Extreme pattern 3142

Table 5.3.: Classification of simple permutations in A′.

The theorem describing the structure of simple permutations in H ′ is the following.

Theorem 5.21 Let π be a permutation in H ′. Then there uniquely exist simple permutations

σi (i odd) in A′ of extreme pattern 2413 and simple permutations τi (i even) in A′ of extreme

98

pattern 3142 such that

π =

σ1
y1
x1 τ2

y2
x2 σ3

y3
x3 τ4

y4
x4 · · · ym−1

xm−1 σm if m is odd (a)

σ1
y1
x1 τ2

y2
x2 σ3

y3
x3 τ4

y4
x4 · · · ym−1

xm−1 τm if m is even (b)

(5.6)

where m is a positive integer and (xℓ, yℓ) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)} (1 ≤ ℓ ≤
m− 1). Moreover, every permutation written as Equation 5.1(a) or 5.1(b) is in H ′.

5.2.2. Proof of Theorem 5.21 (Part 1)

As we did in Chapter 4, we break the proof of Theorem 5.21 into two propositions and prove

each one separately.

Proposition 5.22 If π is a simple permutation in H ′, then there uniquely exist simple per-

mutations in A′ of extreme pattern 2413 σi (i odd) and simple permutations in A′ of extreme

pattern 3142 τi (i even) such that

π =

σ1
y1
x1 τ2

y2
x2 σ3

y3
x3 τ4

y4
x4 · · · ym−1

xm−1 σm if m is odd

σ1
y1
x1 τ2

y2
x2 σ3

y3
x3 τ4

y4
x4 · · · ym−1

xm−1 τm if m is even

where m is a positive integer and (xℓ, yℓ) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)} (1 ≤ ℓ ≤
m− 1).

Proof. Note that uniqueness of this decomposition follows from injectivity of the glue sums.

Suppose π is a simple permutation in A′ with |π| ≥ 4 which satisfies either π−1(1) ≥ 5 or

π(1) = 2. We define a sequence of values of π, d1, . . . , dm+3 in the exact same way as we did in

Chapter 4. Therefore, d1 = π(1) and

di =

{

π(max{s : π(s) < π(di−1)}) if i is even

max{t : π−1(t) < π−1(di−1)} if i is odd

for i with 1 ≤ i ≤ m + 3. Thus, di is the right-most value that is less than di−1 if i is even or

the greatest value located to the left of di−1 if i is odd. As before, we have dm+2 = π(n) and

dm+3 = n for some even integer m or dm+2 = n and dm+3 = π(n) for some odd integer m.

We omit the proof of di 6= dj for i 6= j, since it is exactly the same as we did in Chapter

4. Since d2 = 1, we know d2 6= π(n), so every permutation in H has at least four values denoted

by di for some i ≥ 1. As before, we use mathematical induction on m ≥ 1 to show that π with

99

m+ 1 values denoted by di satisfies either Equation 5.6(a) or 5.6(b).

The base case is identical to the one in Chapter 4. That is, if m = 1, then there are four

values d1, d2, d3 and d4 where d4 = π(n). This implies π is a simple permutation of extreme

pattern 2413, so we are done.

Suppose every π ∈ H ′ with m+3 values denoted by di (1 ≤ i ≤ m+3) satisfies Equation

5.6(a) for some positive odd integer m. We show that a permutation π ∈ H ′ of length n with

m+4 values di (1 ≤ i ≤ m+4) satisfies Equation 5.6(b). Let π be a permutation in H ′ of length

n with m+ 4 values denoted by di. Thus, dm+4 = n.

Before we define the values pm, qm and rm, we claim that there is at most one value r′m

besides dm+2 such that r′m > dm+3 and π−1(r′m) < π−1(dm+1). Moreover, if such a point r′m

exists, then the value r′m must satisfy r′m = dm+2−1 or r′m = dm+2−2, and the position π−1(r′m)

dm

dm+2

dm+1

dm+4

dm+3

B21 B22

(a)

dm

x

dm+2

dm+1

dm+4

dm+3

B32

dm

rm

x

dm+2

dm+1

dm+4

dm+3

B31

(b) (c)

Figure 5.25.: Partial graphs of π to show that there exists no value in B21.

100

must satisfy π−1(r′m) = π−1(dm+2) + 1 or π−1(r′m) = π−1(dm+2) + 2. So let us start from the

graph shown in Figure 5.25(a). We first show that we cannot have a point in the region B21.

As usual, proceed by assuming there is a value in B21, and let x be the greatest such

value, so we obtain the graph in Figure 5.25(b). In order to split the block [π−1(x), π−1(dm+2)],

we must have a point in the region B32, so let y be the least value there. We achieve the graph

shown in Figure 5.25(c), requiring to having a point in either B31 or B34. However, having a

point in either region implies the infinite chain contradiction that we have observed in previous

proofs, such as the one for Lemma 5.3. Therefore, having a point in the region B21 of Figure

5.25(a) is prohibited, and we must have the structure of Figure 5.26(a).

Now, let r′m be the point with the greatest value in the region B22 of Figure 5.26(a), so we

have the graph as in Figure 5.26(b). Suppose to the contrary there is another point with the value

dm

dm+2

dm+1

dm+4

dm+3

B22

dm

dm+2

r′m

dm+1

dm+4

dm+3

B32 B33

B42

B52

B24 B25

(a) (b)

dm

dm+2

x

r′m

dm+1

dm+4

dm+3

dm

dm+2

r′m

x

dm+1

dm+4

dm+3

(c) (d)

Figure 5.26.: Partial graphs of π to show the possible existence of r′m.

101

x such that x > dm+3 and π
−1(x) < π−1(dm+1). If x is in B32 of Figure 5.26(b), then we have the

graph shown in Figure 5.26(c) as a result, which has an unsplittable block [π−1(dm+2, π
−1(r′m)].

So we prohibit the region B32 of Figure 5.26(b), and assume x is in B33 instead. Then we obtain

the graph as in Figure 5.26(d), which also has a block [π−1(dm+2, π
−1(r′m)] that cannot be split.

Hence, we can only have one point, besides dm+2 that has a value greater than dm+3 and is

located to the left of dm+1.

When we have r′m as shown in Figure 5.26(b), having at least one point in either B24, B25,

B42 or B52 is necessary to ensure π is simple. However, due to 52341, 53241 and 52431 patterns

avoidance, we can have only one point whose position is in [π−1(dm+2, π
−1(r′m)] and only one

point whose value is in [r′m, dm+2]. It is possible to have both of these two points. Thus, there

are three cases, which are

1. π−1(r′m) = π−1(dm+2) + 1 and r′m = dm+2 − 2,

2. π−1(r′m) = π−1(dm+2) + 2 and r′m = dm+2 − 1 and

3. π−1(r′m) = π−1(dm+2) + 2 and r′m = dm+2 − 2.

We are now ready to define the values pm, qm and rm. We define pm in the same way as

before, that is,

pm = π(min{π−1(s) : s > dm+3, π
−1(s) > π−1(dm+1)}).

The definition of qm is much more complex than the one of Chapter 4. We define qm by

the following algorithm called TRACE.

Algorithm TRACE

INPUT: A simple permutation π in H ′.

OUTPUT: Value qm. In addition, value q′m for Step 3a.

Step 1: Define the value T1 = um and T2.

Let T1 = um = π(π−1(pm) + 1), i.e. the value immediately to the right of pm. Let

T2 = um + 1.

Step 2: Determine if the algorithm continues.

If T1 < pm < dm+2 and π−1(T2) < π−1(T1), then GOTO STEP 3. Otherwise, OUTPUT

qm = π(π−1(pm)− 1).

Step 3: Find the beginning of the 312-position chain.

WHILE π(π−1(T2) + 1) < T1 − 1 AND π−1(T2) > π−1(dm+1):

Newly define T1 = π(π−1(T2) + 1) and T2 = T1 + 1.

102

Step 4: Determine which condition of Loop was violated.

BEGIN

a. If π(π−1(T2) + 1) ≥ T1 − 1, then OUTPUT qm = π(π−1(T2)− 1).

b. If π−1(T2) < π−1(dm+1), then OUTPUT qm = um and q′m = T2.

Finally, we let rm = max{π(s) < dm+3 : s ∈ [1, π−1(qm)]}. Hence, rm is the greatest value

less than dm+3, whose position is in [1, π−1(qm)].

Before we move on, we explain what the roles of pm, qm, q′m and rm are. For each NW glue

sum, the value qm is the last value of the left hand side of (σ1
y1
x1 τ2

y2
x2 · · · ym−1

xm−1 σm) ym
xm τm+1.

Hence, in Table 5.1, qm is σ′(m− 1) for 0
1,

0
2 and 0

3, σ
′(m) for 1

1 and 1
2, and σ

′(m − 2)

for 0
4. Informally, we may consider that qm is where the left permutation and the right per-

mutation are connected. The value pm is merely used to locate qm. Except for the case of type

3-0 and some special cases of type 1-0 and type 1-1, qm is immediately to the left of pm, so pm

can be viewed as the first value to be glued. The other exceptional cases are explained with

more details next. The value rm is to distinguish the type 1-1 and 2-1 from the type 1-0 and

2-0 respectively.

For a permutation in H ′, the right-most summand of its glue sum decomposition can

either begin with a value greater dm+3 or a 312-position chain. The loop in TRACE finds the

beginning of this chain. The two exit conditions of this loop correspond to the cases where the

312-position chain ends on its own, or with a scissor on its left, as in the following examples.

Suppose we have µ1 = 264135, µ2 = 2 10 5 1 3 7 4 9 6 8, ν1 = 71426385 and ν2 = 831527496.

Notice that these are simple permutations in A′, and furthermore, µ1 and µ2 are of extreme

pattern 2413 and ν1 and ν2 are of extreme pattern 3142. We obtain

µ1
0
1 ν1 = 2 10 4 1 3 7 5 9 6 11 8 and µ2

0
3 ν2 = 2 10 5 1 3 7 4 9 6 11 8

The graphs of µ1
0
1 ν1 and µ2

0
3 ν2 are shown in Figure 5.27. What we have in common

in these two sums is that the value corresponding to p1 is a scissor of a 312-position chain be-

fore the sum. In case of µ1
0
1 ν1, the values in [1, 5) of ν1 are of the form 1 ⊕ 312. Since 312

alone is a 312-position chain, we have the value 6 as the scissor, and this value corresponds to

p1 in µ1
0
1 ν1. When the right summand does not begin with a 312-position chain, the value

immediately to the left of pm is qm, but when it does as in this example, trace follows this chain

to find q1 = m′
1(5) = 3 in Step 4a.

103

q1

T1

p1

T2
q′1 = T2

T1

p1

q1

µ1
0
1 ν1 µ2

0
3 ν2

Figure 5.27.: Graphs of µ1
0
1 ν1 and µ2

0
3 ν2.

On the other hand, the values in [1, 6) of ν2 are of the form α = 312⊕1 21, a 312-position

chain. The value 7 corresponding to p1 in µ2
0
3 ν2 is still a scissor, so we again find the begin-

ning of the 312-position chain using TRACE. However, in this case, we end with T2 to the left

of 1 = d2 = dm+1, which means the 312-position chain also has a scissor on its left. We define

this scissor to be q′1, and the value immediately to the right of p1 to be q1, according to Step

4b. Hence, the value 4 corresponding to q′1 is the scissor of 312-value chain of µ2 that is similar

to the 312-position chain of ν2. Thus, this whole procedure is done to determine whether two

permutations are glued by type 1-0 (or type 1-1) with the values of the right summand starting

with 1⊕ α where α is a 312-position chain or they are glued by type 3-0.

In summary, pm is used to located qm, qm is the last value of the left summand, q′m is the

scissor of the last 312-value chain in the left summand, and rm is used to distinguish the type

1-1 and 2-1 from the type 1-0 and 2-0 respectively.

From here, we divide into four cases based on the existence of r′m, the value greater than

dm+3 that is located to the left of dm+1, and how qm is determined by TRACE. These four cases

are namely the following, and they correspond to the type of the glue sum used.

Case A: There does not exist r′m and qm is output by STEP 2 or STEP 4a.

Case B: There exists r′m = dm+2 − 1.

Case C: There does not exist r′m and qm is output by STEP 4b.

Case D: There exists r′m = dm+2 − 2.

In each case, we slice π into π1 and π2 according to the position of qm. Then we show π1

is a permutation in H ′ with m+ 3 values denoted by di, and π2 is a simple permutation in A′

104

of extreme pattern 3142. Then by using the appropriate NW glue sum, we show π = π1
y
x π2

((x, y) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)}) to complete the proof.

Case A: Denote by π2 the flattening of the subsequence of π obtained by removing every value

whose position is in [1, π−1(qm)], expect dm+2 and dm+1. Showing π2 is a simple permutation

in A′ of extreme pattern 3142 is exactly the same as we did in Chapter 4, so we omit it.

Next, let π1 be the flattening of the subsequence π(1)π(2) · · · π(π−1(qm)− 1)dm+3 of π if

qm = rm, and π(1)π(2) · · · qmdm+3 of π if qm 6= rm. We claim that π1 is simple.

As we did in Chapter 4, we first show that every value we removed to construct π1 is

greater than or equal to rm. Suppose qm = rm. Then the positions of values that are removed

are in [π−1(qm), π−1(dm+3) − 1]. Assume to the contrary that there exists z < rm such that

π−1(z) ∈ [π−1(qm), π−1(dm+3) − 1]. Note that z 6= pm since pm > rm. If pm > dm+2, then

dm+2rmpmzdm+3 forms a 42513 pattern. So suppose pm < dm+2. Let w be the value whose

position is immediately to the right of the position of pm. For now, assume w > rm. Now,

if w > dm+2, then π contains a 42513 pattern with dm+2rmwzdm+3. On the other hand, if

w < dm+2, then π contains either a 52341 pattern or a 52431 pattern with dm+2qmpmwz. Thus,

we have w < rm, which is impossible since dm+2qm(w + 1)pmw forms a 53241 pattern.

Now, assume qm 6= rm. Then the positions of values that are removed are in [π−1(pm),

π−1(dm+3) − 1]. Suppose there exists z < rm such that π−1(z) ∈ [π−1(pm), π−1(dm+3) − 1].

Again, z 6= pm, so we must have π−1(z) > π−1(pm). If we assume π−1(rm) > π−1(dm+2) and

pm < dm+3, we achieve a similar contradiction as before. Also, the rest of the proof is identical

to the argument in Chapter 4. That is, if π−1(rm) > π−1(dm+2) and pm > dm+2, then π contains

42513 pattern with dm+2rmpmzdm+3. If π
−1(rm) < π−1(dm+2) and pm < dm+2, then π contains

35142 pattern with rmdm+2dm+1pmz, and finally, if π−1(rm) < π−1(dm+2) and pm > dm+2, then

π contains 351624 pattern with rmdm+2dm+1pmzdm+3.

Hence, every value we removed to construct π1 must be greater than or equal to rm. With

this, we can show π1 is simple in the exact same way as in Chapter 4. Therefore, π1 ∈ H ′

with m + 3 values denoted by di. Moreover, by the way we constructed π1 and π2, π1 and π2

respectively have structures of Case 1 in Figure 5.21 and Case 1 in Figure 5.22. If qm = rm,

then π = π1
1
1 π2. Otherwise, π = π1

0
1 π2, so we are done with Case A.

Case B: As before, denote by π2 the flattening of the subsequence of π obtained by removing

every value whose position is in [1, π−1(qm)], except dm+2 and dm+1. We can show π2 is a simple

105

permutation inA′ of extreme pattern 3142 in the same way as Chapter 4. We also define π1 in the

same way as Case A, so it is the flattening of the subsequence π(1)π(2) · · · π(π−1(qm)− 1)dm+3

of π if qm = rm, and π(1)π(2) · · · qmdm+3 of π if qm 6= rm. Showing every value we removed to

construct π1 is greater than or equal to rm is identical to Case A.

Suppose to the contrary π1 is not simple. Let us use the hat notation as we did in

Chapter 4 to refer to the value of π1 corresponding to a value of π. Let I be a proper non-

singleton block of π1. We have three cases to consider. First, if π1(I) = [x̂, ŷ] for some val-

ues x̂ and ŷ where ŷ ≤ d̂m+3, we use the same argument as Chapter 4. Second, suppose

π1(I) = [x̂, r̂′m]. Because rm < dm+3 < r′m, we have d̂m+3 = r̂′m − 1. Thus, d̂m+3 ∈ [x̂, r̂′m].

Since π1−1(r̂′m) < π−1
1 (d̂m+1) < π−1

1 (d̂m+3), we have d̂m+1 ∈ [x̂, r̂′m]. We can then argue that

d̂m, and hence d̂m+2, are also in [x̂, r̂′m], which is a contradiction, since d̂m+2 > r̂′m. Finally,

if π1(I) = [x̂, d̂m+2], then we use the same argument as Chapter 4. (It is impossible to have

x̂ = r̂′m because the point in the region B42 or B52 as shown in Figure 5.19(b) is included in π1.)

Consequently, π1 is simple.

With r′m = d̂m+2−1 in π1, the structure of π1 is Case 2 in Figure 5.22, whereas π2 still has

the structure of Case 2 in Figure 5.23. By definitions of 0
2 and 1

2, π = π1
0
2 π2 if qm = rm,

and π = π1
1
2 π2 otherwise.

Case C: This time, we let π2 be the flattening of the subsequence of π obtained by remov-

ing every value whose position is in [1, π−1(q′m − 1) − 2], except dm+2, q
′
m and dm+1. We show

π2 is a simple permutation in A′ of extreme pattern 3142.

Suppose π2 is not simple, so there exists a proper non-singleton block I. If I = [π−1
2 (x̂),

π−1
2 (ŷ)] for some values x̂ and ŷ where π−1

2 (x̂) > π−1
2 (d̂m+1), then [π−1(x̂), π−1(ŷ)] is also a block

in π. Next, suppose I = [π−1
2 (d̂m+1), π

−1
2 (ŷ)] for some ŷ. By the way q′m is defined, the value

immediately to the right of the value d̂m+1 must be greater than q̂′m. Hence, π−1
2 (q̂′m) ∈ I, so

we have a contradiction. So suppose I = [π−1
2 (q̂′m), π−1

2 (ŷ)] for some ŷ. Let T ′
1 = q′m − 1 and

T ′
2 = π2(π

−1
2 (T ′

1) − 1). Then π−1
2 (T ′

1), π
−1
2 (T ′

2) ∈ I. Next, if T ′
2 6= p̂m, we let T ′

3 = T ′
2 − 1 and

T ′
4 = π2(π

−1
2 (T ′

3) − 1), so we have π−1
2 (T ′

3), π
−1
2 (T ′

4) ∈ I. So long as T ′
i (i even) is not equal to

p̂m, we continue definition T ′
i in the same way, so

T ′
i =

{

T ′
i−1 − 1 if i is odd

π2(π
−1
2 (T ′

i−1)− 1) if i is even

The way q′m is defined guarantees that there exists an even integer j such that T ′
j = p̂m (and

thus, T ′
j−1 = q̂m), so π−1

2 (p̂m) ∈ [π−1
2 (q̂′m), π−1

2 (ŷ)]. Since p̂m > d̂m+3, π
−1
2 (d̂m+3) ∈ I, how-

106

dm+2

qm + 1

pm

qm

y

x

dm+4

dm+3

B86

B77

Figure 5.28.: Partial graph of π with the assumption of π−1(x) > π−1(qm).

ever, this implies π−1
2 (d̂m+4) ∈ I, and therefore, π−1

2 (d̂m+2) ∈ I as well. Since π−1
2 (d̂m+2) <

π−1
2 (q̂′m), we have a contradiction. Lastly, assume I = [π−1

2 (d̂m+2), π
−1
2 (ŷ)] for some ŷ. Be-

cause π−1
2 (q̂′m) = π−1

2 (d̂m+2) + 1, we must have π−1
2 (q̂′m) ∈ I. Since, q̂′m < d̂m+3, we obtain

I = [π−1
2 (q̂′m), π−1

2 (d̂m+3)], but then I is all of π.

In every case, we achieve a contradiction, so π2 is simple. In particular, π2 has extreme

pattern 3142 and has the structure of Case 3 in Figure 5.22. By Proposition 5.9, q̂′m and d̂m+1

are involved in the same 312-position chain. In fact, by Proposition 5.16, every value whose

position is in [π−1
2 (q̂′m), π−1

2 (q̂m)], except p̂m together forms this 312-position chain.

Next, let π1 be the flattening of π(1)π(2) · · · qmdm+3. We first show that every value z

removed to construct π1 is greater than qm. In order to show this, we first claim that the value

x = qm − 1 is located to the left of qm. Suppose to the contrary that π−1(x) > π−1(qm). We

divide into two cases. Let y be the value immediately to the right of qm. Suppose y > qm.

Then π contains 42513 due to dm+2qmyxdm+3 if dm+2 < y, or 53241 due to dm+2(qm + 1)qmyx

if y < dm+2. So assume y < qm. Note that x 6= y because x = y implies that π contains

an unsplittable block [π−1(qm), π−1(x)]. Hence, we obtain the graph shown in Figure 5.28.

Splitting the block [π−1(qm), π−1(y)] can be only done by having a point in B77 or B86. In

either case, we obtain an unsplittable block, so we achieve a contradiction. Thus, we must have

π−1(x) < π−1(qm).

107

We now show that every value located to the right of qm is greater than qm. Suppose to the

contrary that there exists a value z < qm such that π−1(z) > π−1(qm). If π−1(x) < π−1(dm+2),

then π contains 35142 due to xdm+2dm+1pmz. If π−1(dm+2) < π−1(x) < π−1(qm + 1), then π

contains 52341 due to dm+2x(qm + 1)pmz. Finally, if π−1(qm + 1) < π−1(x), then π contains

53241 due to dm+2(qm + 1)xpmz. Consequently, every value we removed to construct π1 is

greater than qm.

Showing π1 is simple is essentially the argument of inverse followed by reverse complement

symmetry of π2. Suppose π1 is not simple, so there exists a proper non-singleton block I of π1.

If π1(I) = [x̂, ŷ] where x̂ < ŷ ≤ d̂m+3−1, then I would be also a block in π. If π1(I) = [x̂, d̂m+3],

then d̂m+3− 1 = q̂m+1 must be in π1(I). However, since π
−1
1 (q̂m+1) < π−1

1 (p̂m) < π−1
1 (d̂m+3),

p̂m also has to be in πi(I). Because p̂m > d̂m+3, we achieve a contradiction. So assume

π1(I) = [x̂, p̂m]. Due to the way q′m in π was assigned, q̂′m must be in π1(I). However, this im-

plies d̂m+1 is also in π1(I), causing d̂m ∈ π1(I), and therefore, d̂m+2 ∈ π1(I). Since d̂m+2 > p̂m,

this is a contradiction. Finally, suppose π1(I) = [x̂, d̂m+2]. Then p̂m ∈ π1(I), which results in

x̂ = d̂m+1. Since I is all of π1, we again have a contradiction.

Therefore, π1 is a simple permutation in H ′ with m+ 3 values denoted by di. Note that

the points π1 and π2 both contain as results of removal are dm+2, q
′
m, dm+1, every value whose

position is in [π−1(q′m − 1)− 1, π−1(qm)] (including pm), and dm+3. Hence, π1 ends with a 312-

value chain α involving qm, pm and dm+3. Also, π2 begins with a 312-position chain β involving

q′m, dm+1 and q′m− 1. Then 21⊕1 α = β⊕1 21, so α and β are similar. Since π has the structure

of Case 3 in Figure 5.21, we have π = π1
0
3 π2, so we are done with Case C.

Case D: Finally, let π2 be the flattening of the subsequence of π obtained by removing ev-

ery value whose position is in [1, π−1(qm)], expect dm+2, r
′
m and dm+1. We start by showing

π2 is simple. Assume it is not simple. Let I be a proper non-singleton block of π2. As usual,

if I = [π−1
2 (x), π−1

2 (y)] for some values x̂ and ŷ where π−1
2 (x) > π−1

2 (d̂m+1), then I would

be a block in π as well. Next, suppose I = [π−1
2 (d̂m+1), π

−1
2 (ŷ)]. Then π−1

2 (p̂m) ∈ I, re-

sulting in π−1
2 (d̂m+3) ∈ I. Hence, π−1

2 (d̂m+4) is in I, and therefore, so is π−1
2 (d̂m+2). Since

π−1
2 (d̂m+2) < π−1

2 (d̂m+1), we have a contradiction. This time, let I = [π−1
2 (r̂′m), π−1

2 (ŷ)]. Since

π−1
2 (r̂′m) + 1 = π−1

2 (d̂m+1), we know π−1
2 (d̂m+1) ∈ I. The rest is the same as the previous

case, I = [π−1
2 (d̂m+1), π

−1
2 (ŷ)]. We achieve a contradiction of π−1

2 (d̂m+2) ∈ I. Lastly, suppose

I = [π−1
2 (d̂m+2), π

−1
2 (ŷ)]. Then π−1

2 (r̂′m) is in I. Since r̂′m < p̂m < d̂m+2, we know π−1
2 (p̂m) ∈ I,

implying π−1
2 (d̂m+1) ∈ I. Hence, π−1

2 (d̂m+3) is also in I, but then now I is all of π2. Altogether,

π2 is simple.

108

Next, let π1 be the flattening of π(1)π(2) · · · qmp′mdm+3 where p′m = dm+2− 1. Suppose to

the contrary that there exists a value z < rm located to the right of qm. If π−1(z) < π−1(p′m),

then p′m 6= pm, and r′mpmzp
′
mdm+3 forms a 35142 pattern. So assume π−1(z) > π−1(p′m). Then

we have a 53241, 52341 or 35142 pattern depending the position of rm. So every value we removed

to construct π1 must be greater than rm. Now, we prove π1 is simple. Assume it is not simple,

so we have a proper non-singleton block I. If π1(I) = [x̂, ŷ] for some x̂, ŷ with x̂ < ŷ < d̂m+3,

then I would be a block in π. Suppose π1(I) = [x̂, d̂m+3]. Since π−1
1 (p̂′m) = π−1

1 (d̂m+3) − 1, we

must have p̂′m ∈ π1(I). Since p̂′m > d̂m+3, we have a contradiction. So assume π1(I) = [x̂, r̂′m].

Since d̂m+3 = r̂′m−1, we have d̂m+3 ∈ π1(I). With π−1
1 (r̂′m) < π−1

1 (p̂′m) < π−1
1 (d̂m+3), we obtain

p̂′m ∈ π1(I), but since p̂
′
m > r̂′m, we again have a contradiction. Suppose π1(I) = [x̂, p̂′m]. Because

r̂′m = p̂′m − 1, r̂′m ∈ π1(I). With π−1
1 (r̂′m) < π−1

1 (d̂m+1) < π−1
1 (p̂′m), we know π−1

1 (d̂m+1) ∈ I,

and this implies d̂m ∈ π1(I). Because π−1
1 (d̂m) < π−1

1 (d̂m+2) < π−1
1 (p̂′m), d̂m+2 must be in

π1(I), but since d̂m+2 > p̂′m, we achieve a contradiction. Finally, let π1(I) = [x̂, d̂m+2]. Since

p̂′m = d̂m+2 − 1, we must have p̂′m ∈ π1(I), but this implies d̂m+1 ∈ π1(I) due to the fact

π−1
1 (d̂m+2) < π−1

1 (d̂m+1) < π−1
1 (p̂′m). The block I is now all of π1, so this is a contradiction.

Hence, π1 must be simple.

With d̂m+2, r̂
′
m, p̂′m and d̂m+3, π1 has the structure described in Case 4 or 5 of Figure

5.21. On the other hand, with d̂m+2, r̂
′
m and d̂m+1, π2 has the structure described in Case 2 of

Figure 5.22. Together, we can recover π by π1
0
4 π2.

Consequently, in every case, we can express π as π1
y
x π2 for appropriate π1 and π2 where

(x, y) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)}, if m is odd. So suppose m is even. Hence,

π ∈ H ′ with m + 3 values denoted by di satisfies Equation 5.6(b). We need to show that for

π ∈ H ′ of length n with m+4 values denoted by di satisfies Equation 5.6(a). The proof can be

done by the inverse argument of the proof for the case that m is odd. This completes the proof

of Proposition 5.22. �

5.2.3. Proof of Theorem 5.21 (Part 2)

We now prove the converse direction of Theorem 5.21 as Proposition 5.24, which states that an

arbitrary permutation which has the form of either Equation 5.6(a) or 5.6(b) must be in H ′.

Before we start, we discuss a few differences between this proposition and Proposition 4.6, the

analogous proposition in Chapter 4. Then we state and prove Lemma 5.23, which is necessary

for the proof of Proposition 5.24.

109

In Proposition 4.6, we assume a priori that the permutation π with the structure in Figure

4.9 is simple. Here, we will not make that assumption. This is because in Chapter 6, we will not

show that this assumption holds for a permutation decoded from a word in our language. Hence,

we need to explicitly prove that π of the form in Equation 5.6(a) or 5.6(b) is simple in addition

to showing that π avoids every permutation in {52341, 53241, 52431, 35142, 42513, 351624}.

Furthermore, we proved Proposition 4.6 using a graphical representation of permutations

in H. In A′, however, providing a graphical representation of π in H ′ is extremely complicated.

Hence, we show Proposition 5.24 by induction on the number of glue sums.

We now establish the following lemma, which says that if π has the form of Equation

5.6(a) or 5.6(b), then π has exactly m+ 3 values denoted by di where each di is defined in the

same way as in the proof of 5.22.

Lemma 5.23 Let π be an arbitrary permutation of length n. If there exist simple permutations

σi (i odd) in A′ of extreme pattern 2413 and simple permutations τi (i even) in A′ of extreme

pattern 3142 such that

π = σ1
y1
x1
τ2

y2
x2
σ3

y3
x3
τ4

y4
x4

· · · ym−1
xm−1

σm for some odd integer m

or

π = σ1
y1
x1
τ2

y2
x2
σ3

y3
x3
τ4

y4
x4

· · · ym−1
xm−1

τm for some even integer m

where (xℓ, yℓ) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)} (1 ≤ ℓ ≤ m−1), then π has m+3 distinct

values denoted by di where d1 = π(1) and

di =

{

π(max{s : π(s) < π(di−1)}) if i is even

max{t : π−1(t) < π−1(di−1)} if i is odd

for i with 2 ≤ i ≤ m+ 3.

Proof. We use mathematical induction to prove the statement. As the base case of m = 1,

suppose π = σ where σ is a simple permutation in A′ of extreme pattern 2413 whose length is

n. Then d1 = π(1), d2 = 1, d3 = n and d4 = π(n). By definition, we obtain di = d3 if i ≥ 5 is

odd, and di = d4 if i ≥ 6 is even. Thus, we have 4 = m+3 distinct values denoted by di, so the

statement holds for the base case.

Suppose the statement holds for some odd integer m. Consider

π = σ1
y1
x1
τ2

y2
x2

· · · ym−1
xm−1

σm

110

of length n for some σi (1 ≤ i ≤ m, i odd) and τi (2 ≤ i ≤ m − 1, i even) where (xℓ, yℓ) ∈
{(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)} (1 ≤ ℓ ≤ m− 1). Assume σm has the structure of Case 1

of Figure 5.21. Let τm+1 be a simple permutation (|τm+1| = k) in A′ of extreme pattern 3142

which has the structure described in Case 1 of Figure 5.22. We let di (1 ≤ i ≤ m + 3) for π

and d′i for π
0
1 τm+1 as defined by di in the statement of Lemma 5.23. Note that dm+2 = n and

dm+3 = π(n) by definition. We need to show there are m+4 distinct values denoted by d′i. The

only values of π that are modified to construct π 0
1 τm+1 are dm+2 = π(n) and dm+3 = π(n).

The value in π 0
1 τm+1 corresponding to dm+2 is adjusted upward by (τm+1(1) − 3), and the

value dm+3 is eliminated. Moreover, every value in π 0
1 τm+1 corresponding to τm+1 is greater

than or equal to dm+3. Hence, d′i = di for 1 ≤ i ≤ m + 1. Also, the value in π 0
1 τm+1 corre-

sponding to dm+2 is still the greatest value whose position is to the left of d′m+1, so it is denoted

by d′m+2, though it is not equal to dm+2. Since τm+1(k) < τm+1(1), π
0
1 τm+1(n+ k− 3), which

is the value corresponding to τm+1(k), is denoted by d′m+3, and the one corresponding to k is

denoted by d′m+4. We then have d′i = dm+4 if i ≥ m+ 6 is odd, and d′i = dm+3 if i ≥ m+ 5 is

even. Consequently, we have m+ 4 distinct values denoted by d′i.

Proofs for for the cases that σm and τm+1 having different structures, and thus, different

types of NW glue sums, are very similar. We can also show that the statement is true for m+1

when we assume m is even by applying the inverse argument. Altogether, we have the desired

result. �

We are now ready to state and prove Proposition 5.24.

Proposition 5.24 Let π be an arbitrary permutation of length n. If there exist simple permu-

tations σi (i odd) in A′ of extreme pattern 2413 and simple permutations τi (i even) in A′ of

extreme pattern 3142 such that

π = σ1
y1
x1
τ2

y2
x2
σ3

y3
x3
τ4

y4
x4

· · · ym−1
xm−1

σm for some odd integer m

or

π = σ1
y1
x1
τ2

y2
x2
σ3

y3
x3
τ4

y4
x4

· · · ym−1
xm−1

τm for some even integer m

where (xℓ, yℓ) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)} (1 ≤ ℓ ≤ m− 1), then π is in H ′.

Proof. If a permutation is expressed as in Equation 5.6(a) or 5.6(b), then it satisfies the condition

of π−1(1) ≥ 5 or π(1) = 2 because the first summand is σ1 which is a simple permutation of

extreme pattern 2413. So we have to show that a permutation expressed as in Equation 5.6(a)

or 5.6(b) is simple and avoids every permutation in {52341, 53241, 52431, 35142, 42513, 351624}.
We use mathematical induction on m to complete the proof. As the base case, suppose π = σ

111

where σ is a simple permutation in A′ of extreme pattern 2413. Then we have the desired result.

Now, assume that the statement holds for some odd integer m. Let

π = σ1
y1
x1
τ2

y2
x2

· · · ym−1
xm−1

σm

of length n for some σi (1 ≤ i ≤ m, i odd) and τi (2 ≤ i ≤ m − 1, i even) where (xℓ, yℓ) ∈
{(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)} (1 ≤ ℓ ≤ m− 1). We need to show that, for every appro-

priate τm+1 of length k and σm with ym
xm ((xm, ym) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)}),

π ym
xm τm+1 is simple, and avoids permutations in {52341, 53241, 52431, 35142, 42513, 351624}.

Let ρ = π ym
xm τm+1. We first show that ρ is simple.

Define values dj of ρ for positive integers i as before. By Lemma 5.23, there are m + 4

values denoted by di of ρ. Suppose to the contrary that ρ is not simple, so we have a proper

non-singleton block I. Assume I contains at least two positions corresponding to dj and dk for

some j, k with 1 ≤ j, k ≤ m + 4. Note that I cannot contain both positions of d1 and dm+3

because this results in I = [1, n]. So suppose I does not contain 1 = ρ−1(d1). Let s be the least

position in I such that ρ(s) = dj for some j with 2 ≤ j ≤ m+4. Suppose j is even. If j = m+3,

then there is no more value to the right of dm+3, so j ≤ m + 1. Hence, assume j ≤ m + 1.

Then the position of dj+3 must be in I, but with dj < dj−1 < dj+3, we must have ρ−1(dj−1) ∈ I

while ρ−1(dj−1) < s, so we have a contradiction. Now, assume j is odd. Then I contains the

position of dj−1. Because dj−1 < dj−2 < dj, we have ρ−1(dj−2) ∈ I, but ρ−1(dj−2) < s, so we

again achieve a contradiction. We can apply a similar argument for the case of I not containing

n = ρ−1(dm+3), so I cannot contain two or more positions corresponding to values denoted by di.

This time, suppose I does not contain a position corresponding to any of dj of ρ. For

every (xm, ym) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)}, positions of all values of π that are

modified by ym
xm to construct ρ are greater than or equal to ρ−1(dm+2). Thus, if I is a

subset of [1, ρ−1(dm+2) − 1], then I is also a proper non-singleton block of π. Since π is a

simple permutation by induction hypothesis, this is a contradiction. Similarly, if I is a sub-

set of [ρ−1(dm+4) + 1, ρ−1(dm+3) − 1], then I is a proper non-singleton block of τm+1. Hence,

we have either I ⊆ [ρ−1(dm+2) + 1, ρ−1(dm+1) − 1] or I ⊆ [ρ−1(dm+1) + 1, ρ−1(dm+4) − 1].

Suppose I ⊆ [ρ−1(dm+2) + 1, ρ−1(dm+1) − 1]. Then I must contain at least one value in

[ρ−1(dm+2) + 1, ρ−1(dm+1) − 1] corresponding to the value of π that was modified by ym
xm ,

because, otherwise, I would also a proper non-singleton block of π. In cases of 0
1,

1
1 and 0

3,

there is no such value. If ym
xm = 0

2,
1
2 or 0

4, either dm+2 − 1 or dm+2 − 2 is the only such

value, but in either case, dm+3 is less than this value, implying that I contains ρ−1(dm+3), so

we achieve a contradiction for every type of NW glue sum.

112

So assume I ⊆ [ρ−1(dm+1)+1, ρ−1(dm+4)−1]. We first consider the case where (xm, ym) ∈
{(1, 0), (1, 1), (2, 0), (2, 1)}. If I only contains values corresponding to τm+1, then I would be

a proper non-singleton block of τm+1 as well, because for every (xm, ym) ∈ {(1, 0), (1, 1), (2, 0),
(2, 1)}, ym

xm only shifts values of τm+1 upward by the same amount to construct ρ. For a

similar reason, if I only contains values corresponding to π, then I would be a proper non-

singleton block of π. Thus, I must contain values corresponding to both π and τm+1. Because

I contains values from both π and τm+1, the position of τ ′m+1(3), the left-most point of τm+1

in [ρ−1(dm+1) + 1, ρ−1(dm+4) − 1], must be in I since every value to its right comes from τ .

If τ ′m+1(3) > dm+3, then ρ−1(dm+3) would be in I since every value of ρ coming from π in

[ρ−1(dm+1) + 1, ρ−1(dm+4)− 1] is less than dm+3, so we must have τ ′m+1(3) < dm+3. By Propo-

sition 5.16, this implies that τm+1(3) is a part of a 312-position chain. Due to the structure

of 312-position chain, every value of ρ corresponding to some value in this 312-position chain

must be in I. Denote by M the position of the right-most value involved in the 312-position

chain containing τm+1(3). Then τm+1(M − 1) > dm+3, since τm+1(M − 1) is the scissor of this

312-position chain. Hence, ρ−1(dm+3) ∈ I, which is a contradiction.

For the case of 0
4, I must also contain values from both π and τm+1. The position of

τ ′m+1(4), the left-most point of τm+1 in [ρ−1(dm+1) + 1, ρ−1(dm+4) − 1], must be in I since ev-

ery value to its right comes from τ . However, by proposition 5.16, τ ′m+1(4) > dm+3. Hence,

ρ−1(dm+3) would be in I since every value of ρ coming from π in [ρ−1(dm+1)+1, ρ−1(dm+4)− 1]

is less than dm+3.

Finally, consider the case of 0
3. The block I cannot contain only values corresponding to

τm+1 due to the same reason as other NW glue sums. Now, if I only contains values correspond-

ing to π, then it must contain π′(n−2), because it is the only value in [ρ−1(dm+1)+1, ρ−1(dm+4)−
1] that is shifted upward by 0

3 to construct ρ. However, since π′(n − 2) > dm+3, we end up

with ρ−1(dm+3) ∈ I as usual, so I cannot contain only values corresponding to π. Thus, I must

contain values corresponding to both π and τm+1. Furthermore, ρ−1(π′(n − 2)) /∈ I, because,

otherwise, we again obtain ρ−1(dm+3) ∈ I. So the only possibility is I = [ρ−1(π′(n − 1)), z]

for some position z whose value corresponds to a value of τm+1. Note that, however, π has

the structure shown in Case 3 of Figure 5.21. Thus, π(n − 2) = n − 1, π(n) = n − 2 and

π(n − 1) = n − 4 are all parts of the same 312-value chain, which implies that π(n − 1) + 1

is located to the left of π(n − 1). Consequently, π′(n − 1) + 1 ∈ ρ(I) has a position less than

ρ−1(π′(n− 1)), so we achieve a contradiction. Altogether, we have a contradiction for the case

of I not containing a position corresponding to any of dj of ρ.

113

Lastly, we assume I contains exactly one position corresponding to dj for some j with

1 ≤ j ≤ m + 3. For every (xm, ym) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)}, values of π that

are modified by ym
xm to construct ρ are all located to the right of dm+2. Thus, if j ≤ m, then

I would be a proper non-singleton block in π. Similarly, if j = m + 3 or m + 4, then I would

be a proper non-singleton block in τm+1. So j must be either m + 1 or m + 2. For the case

j = m + 1, the arguments of previous paragraphs apply. So suppose j = m + 2. If I contains

ρ−1(dm+2)− 1, then I also has to contain ρ−1(dm+3) because ρ(ρ
−1(dm+2)− 1) < dm+3. Thus,

I = [ρ−1(dm+2), z] for some position z. The value immediately to the right of dm+2, however,

is less than dm+3, except when it is dm+2 − 2 and ym
xm = 0

4. In this case, τ ′m+1(4), the left-

most value from τm+1 is dm+2 − 1, so ρ−1(dm+2 − 1) ∈ I. Since ρ−1(dm+2 − 1) > ρ−1(dm+1),

ρ−1(dm+1) ∈ I, which is a contradiction.

Consequently, ρ cannot have a proper non-singleton block I, so ρ is simple. Next, we

prove that ρ avoids every permutation in {52341, 53241, 52431, 35142, 42513, 351624}.

Suppose ρ contains some permutation β in {52341, 53241, 52431, 35142, 42513, 351624}.
Note that π, τm+1 ∈ A′, and modifications of every value of π and τm+1 by each ym

xm to

construct ρ are either upward shift of certain values by the same amount or removal. Thus,

whichever permutation β in the basis that ρ contains, the containment must involve both values

corresponding to π and values corresponding to τm+1, because, otherwise, β � π or β � τm+1.

Hence, involving both values from π and values from τm+1 for a containment of β is a necessary

condition of β � ρ, but it is not a sufficient condition.

We first discuss the case β ∈ {52341, 53241, 52431}. Note that, every value corresponding

to τm+1 is greater than any value corresponding to π, except for the shifted ones. Thus, for

every β ∈ {52341, 53241, 52431}, we must assign one of the shifted values to β(1) = 5 in order to

assign some value τ ′m+1(i) to β(5) = 1. Hence, the only values which can play the role of 5 are

dm+2 for every (xm, ym) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)}, dm+2−1 for (xm, ym) = (2, 0)

and (2, 1), ρ(n− 2) = π′(n− 2) for (xm, ym) = (3, 0), and dm+2 − 2 for (xm, ym) = (4, 0).

Consider the cases of (xm, ym) ∈ {(1, 0), (1, 1)}. Then dm+2 is playing the role of β(1) = 5.

In addition, the values playing the roles of β(2), β(3) and β(4) are all from τm+1, since we have

to assign a value corresponding to τm+1 to β(5) = 1. However, note that the flattening of

dm+2τ
′
m+1(3)τ

′
m+1(4) · · · τ ′m+1(k), call it γ, is contained in τm+1. Hence, no matter which values

of ρ corresponding to τm+1 plays the role of β(2), β(3) and β(4), β � γ implies β � τm+1. Since

τm+1 ∈ A′, this is a contradiction.

114

Next, consider (xm, ym) ∈ {(2, 0), (2, 1)}. As explained, at least one shifted value must be

playing the role of 5, so in this case, it is either dm+2 or dm+2−1. Suppose only one of them is in-

volved for a containment of β, say dm+2. Then again, γ, the flattening of dm+2τ
′
m+1(3)τ

′
m+1(4) · · ·

τ ′m+1(k) is contained in τm+1, and all four values playing the roles of β(2), β(3), β(4) and

β(5) = 1 respectively must correspond to τm+1, so β � τm+1, a contradiction. We achieve the

exact same result if dm+2 − 1 plays the role of 5. Thus, suppose both dm+2 and dm+2 − 1 are

involved for a containment of β. Since dm+2 is located to the left of dm+2 − 1, dm+2 must play

the role of β(1) = 5. In addition, we cannot assign dm+2 − 1 to either 2 or 3, because there

is no integer value between dm+2 − 1 and dm+2, so we don’t have a value for 4. Since every

β in {52341, 53241, 52431} has either β(2) = 2 or β(2) = 3, we cannot involve both dm+2 and

dm+2−1 to have β � ρ. Consequently, ρ = π 0
2 τm+1 cannot contain β ∈ {52341, 53241, 52431}.

We move onto the case (xm, ym) = (3, 0). Let s be the value corresponding to the scissor

of the last 312-value chain of π which is merged with the first 312-position chain of τ by the type

3-0 NW glue sum. In addition, let t be the position of the value corresponding to the left-most

value of the last 312-value chain of π. Note that t = ρ−1(s − 1) − 1. Due to the construction

of ρ by 0
3, the flattening of dm+2sdm+1ρ(t)ρ(t + 1) · · · ρ(n + k − (ℓ + 3)) is exactly τm+1. Let

τm+1 be this sequence of values. A containment of β must involve some value other than the

values in τm+1, because, otherwise, β � τm+1. Whether dm+2 or ρ(n − 2) plays the role of 5,

some value z corresponding to τm+1 must be assigned to 1. Since every value greater than z is

in the sequence τm+1, we cannot assign any value to β(2), β(3) and β(4) that are not in τm+1.

Hence, β 6� ρ.

Lastly, the case (xm, ym) = (4, 0) is similar to the case of (xm, ym) ∈ {(2, 0), (2, 1)}. If dm+2

is involved in a containment of β as 5, but not dm+2−1, then again, we are forced to assign some

values of τm+1 to β(2), β(3) and β(4). Because the flattening of dm+2τ
′
m+1(4)τ

′
m+1(5) · · · τ ′m+1(k)

is contained in τm+1, we obtain β � τm+1, which is a contradiction. We achieve the same result

for the case of dm+2−2 playing the role of 5. So suppose both dm+2 and dm+2−2 are involved in

a containment of β. Hence, dm+2 and dm+2 − 2 play the role of β(1) = 5 and β(2) respectively.

Note that we only have one value, dm+2 − 1, that is in between dm+2 − 2 and dm+2. Thus,

if β = 52341 or 52431, we do not have a value for either β(2) or β(3). Therefore, suppose

β = 53241. Since the value assigned to β(3) = 2 is less than dm+2 − 2 and its is in between

ρ−1(dm+2 − 2) and ρ−1(dm+2 − 1), this value must correspond to π. However, this value is less

than the value corresponding to τm+1 that is assigned to 1, so we cannot form 53241 pattern.

Hence, 53241 6� ρ.

Altogether, we conclude that for every β ∈ {52341, 53241, 52431}, ρ avoids β. We now

115

look at the case of β = 35142.

First, consider (xm, ym) ∈ {(1, 0), (1, 1)}. If we assign a value of ρ from π to β(4) = 4, then

we are forced to choose another value from π to play the role of β(5) = 2. Since we don’t have

a value from τm+1 corresponding to some value of β, we have β � π, which is a contradiction.

Hence, suppose some value corresponding to τm+1 plays the role of 4. If a value corresponding to

τm+1 plays the role of β(2) = 5, then β(3) = 1 is automatically played by a value corresponding

to τm+1 as well. We need to assign a value from π to b(1) = 3, but the only value available is

dm+2. Since γ, the flattening of dm+2τ
′
m+1(3)τ

′
m+1(4) · · · τ ′m+1(k) is contained in τm+1, we now

have β � τm+1, a contradiction. Thus, suppose some value corresponding to π plays the role of

5. Then again, dm+2 is the only value which can play the role of 5. We are forced to assign a

value z corresponding to π and located to the left of dm+2 to 3. However, there is no value from

τm+1 that is less than z, so we do not have a value for 2. Hence, 35142 cannot be contained in

ρ in the case of (xm, ym) ∈ {(1, 0), (1, 1)}.

For (xm, ym) ∈ {(2, 0), (2, 1), (4, 0)}, it is possible to assign dm+2 − 1 (when xm = 2) or

dm+2 − 2 (when xm = 4) to 4, and assign some value z from τm+1 to 2. Since the only value

located to the left of and greater than the one assigned to 4 is dm+2, it has to play the role of 5,

forcing the position of the value playing the role of 3 to be to the left of dm+2. However, there is

no value located there that is greater than z, so β cannot be contained in ρ this way. The rest of

the proof and the case (xm, ym) = (3, 0) is very similar to the case of (xm, ym) ∈ {(1, 0), (1, 1)}.
Essentially, 5 must be played by either dm+2 or the other shifted value. Then the value playing

the role of 3 is located to the left of the value for 5, but this value cannot be greater than

any value corresponding to τm+1, so we don’t have a value to assign to 2. Thus, in every case,

35142 6� ρ.

We now let β = 42513. Again, since both values corresponding to π and values corre-

sponding to τm+1 must be involved in a containment of β, we know the value for β(1) = 4 is

from π and the value for β(5) = 3 is from τm+1. For each NW glue sum, there are at most two

values corresponding to π that are greater than some value corresponding to τ , but they are in

decreasing order from left to right. Hence, the value playing the role of 4 must be one of the two

shifted values, and the value playing the role of β(3) = 5 must be from τm+1 for each case of

NW glue sum. This implies the value for β(4) = 1 is also corresponding to τm+1. If the value for

β(2) = 2 is from τm+1, then again, the flattening of values assigned to a value of β is contained

in τm+1. Thus, the value assigned to 2 must be from π. Furthermore, this value has to be the

other shifted value to assign, and particularly dm+2 − 2. Otherwise, we do not have values from

τm+1 that we can assign to each of 1 and 3. Therefore, (xm, ym) ∈ {(3, 0), (4, 0)}, and we assign

116

dm+2 to 4, dm+2 − 2 to 2 and three values from τm+1 to each of 5, 1 and 3. However, because

the flattening of values dm+2, dm+2 − 2 and all the values corresponding to τm+1 is contained in

τm+1, we must have β � τm+1. This is a contradiction, so we conclude that 42513 6� ρ.

The final case is β = 351624. For the same reason as the case of 42513, the value β(2) = 5

must be played by one of the shifted values, and the value β(4) = 6 must be from τm+1 for each

NW glue sum. Thus, the value playing the role of β(1) = 3 is a value corresponding to π, and

this value is not shifted by ym
xm. Because the value playing the role of 6 is from τm+1, so is the

value playing the role of β(5) = 2, but we do not have a value corresponding to τm+1 that is less

than the value playing the role of 3. Consequently, 351624 6� ρ.

Therefore, when the statement of the proposition holds for odd m, it is also true for m+1.

Showing the case of even m is the same argument applied to the inverses of all permutations

involved. Altogether, we have the desired result. �

117

Chapter 6.

Enumeration of the class A′

6.1. Enumeration of simple permutations in A′

With the structure we discussed in Chapter 5, we are finally ready to enumerate the class A′.

How we are going to accomplish this is somewhat similar to the method we used in Chapter

4 for A, but we need to break down the whole procedure into small steps. We first give an

alphabet Σ′ and define an encoding function φ′ from H ′ to Σ′∗. Then we define a language

L′ ⊆ Σ′∗ and show φ′ is a bijection between H ′ and L′. Afterwards, we construct ten languages

L
′
i (1 ≤ i ≤ 10) associated with L′. Frankly, there are ten distinct kinds of prefixes a word w in

L can have. Thus, each L
′
i is prepared to generate the number of words having different prefixes.

We then define ten deterministic finite-state automatons M ′
i (1 ≤ i ≤ 10) and show L

′
i = L(Mi)

for each i with 1 ≤ i ≤ 10. Once we obtain ten distinct generating functions, we combine them

to obtain the following result.

Theorem 6.1 Let fSi(A′)\S2
be the generating function for the set of simple permutations in A′

excluding S2 = {12, 21}. Then

fSi(A′)\S2
=

2x4
(
x10 + 7x9 + 18x8 + 23x7 + 16x6 + 10x5 + 12x4 + 9x3 + 2x2 + 1

)

(x+ 1) (2x9 + 12x8 + 16x7 + 3x6 − 11x5 − 5x4 − 3x2 − 3x+ 1)
.

In this section, let N and S be the set of simple permutations of extreme pattern 2413 and

3142 respectively. Let m be the total number of simple permutations in N and S together to

construct π ∈ H ′ with glue sums. Furthermore, let di, pi, qi, q
′
i and ri be defined as in the proof

of Proposition 5.22. Note that each of pi, qi, q
′
i and ri is defined differently based on whether i

is odd or even.

6.1.1. Defining the encoding function φ′ and the language L′

Let

Σ′ = {a, a′, a′′, b, bs, b′, b′′, b, b, c, c′, c′′, d, d′a, d′′a, d′c, d′′c , d, d, d, dℓ, x, x′, x′′, x, y, y′, y′′, y, z}.

Now, we define an encoding function φ′ fromH ′ to Σ′∗. Comparing to the encoding function φ for

H, the description of φ′ is far more complicated, so we divide into several algorithms to define φ′.

118

First, by Theorem 5.21, given π ∈ H ′, π can be uniquely expressed as Equation 5.6 where

σi (i odd) is in N and τi (i even) is in S.

Next, we define two encoding algorithms. One is to encode a simple permutation in N ,

called N-ENCODE, and the other one is for a simple permutation in S, called S-ENCODE. Both

algorithms encode simple permutations in A′ into a word in {a, a′, a′′, b, bs, b′, b′′, c, c′, c′′}∗. So

let Σ1 = {a, a′, a′′, b, bs, b′, b′′, c, c′, c′′} which is a subset of Σ′.

We first define N-ENCODE. The algorithm N-ENCODE assigns each value of σ a letter in

Σ1, then reads the letters assigned to each value from 1 to n in increasing order. Letters are

assigned as follows.

First, suppose the position of the value t is in [1, π−1(n)). Then, if t plays the role of 1 of

21 or 1 of 231 of a 231-value chain, it is encoded as a′, if t plays the role of 2 of 21 or 3 of 231

of a 231-value chain, it is encoded as a′′, and if t plays the role of 2 of 231 of a 231-value chain

or 1 of 1 in Equation 5.2, then it is encoded as a. Next, assume the position of the value t is in

[π−1(n), π−1(1)]. Then, if t plays the role of 1 of 12 in Equation 5.1, it is encoded as b′, if t plays

the role of 2 of 12 in Equation 5.1, it is encoded as b′′, if t is a scissor of a 231-value chain or a

312-value chain (and it is not already b′ or b′′), it is encoded as bs, and otherwise, it is encoded

as b. Finally, suppose the position of the value t is in (π−1(1), n]. Then, if t plays the role of 1

of 21 or 1 of 312 of a 312-value chain, it is encoded as c′, if t plays the role of 2 of 21 or 3 of 312

of a 312-value chain, it is encoded as c′′, and if t plays the role of 2 of 312 of a 312-value chain

or 1 of 1 in Equation 5.2, then it is encoded as c.

Now, let us define the language K1 ⊆ Σ∗
1 to have the following conditions, which will turn

out to be the image of N-ENCODE.

1. Prefix condition.

A word w must begin with ba, bb′a, ba′a, ba′bsa
′′, ba′b′a′′ or ba′a′a′′.

2. Suffix condition.

A word w must end with cb, cb′′b, cc′′b, c′bsc
′′b, c′b′′c′′b or c′c′′c′′b.

3. Conditions on a′ and a′′.

Every a′ and a′′ in w is a part of a subword in {a′, a′a}{a′a′′, a′a′′a}∗{bsa′′, b′a′′}. Note the

number of a′ and the number of a′′ are equal in each sequence, and thus, in w.

4. Conditions on c′ and c′′.

Every c′ and c′′ in w is a part of a subword in {c′bs, c′b′′}{c′c′′, cc′c′′}∗{c′′, cc′′}. Note the

119

number of c′ and the number of c′′ are equal in each sequence, and thus, in w.

5. Conditions on bs.

The letter bs is only allowed in the third condition and the fourth condition, i.e. as a part

of a subword of a′ and a′′ or a subword of c′ and c′′.

6. Conditions on b′ and b′′.

Every b′ and b′′ in w is a part of a subword in {b′}{a′′, λ}{a, λ}{c, λ}{c′ , λ}{b′′} with at

least one of a′′, a, c or c′ being present. Note the number of b′ and the number of b′′ are

equal in each sequence, and thus, in w.

7. Repetition restrictions.

w must not contain aa, bb or cc.

We define N-DECODE on K1, the inverse algorithm of N-ENCODE, and show that N and

K1 are bijective due to these two algorithms. The algorithm N-DECODE takes w ∈ K1 as an

input and outputs a permutation as the following.

Algorithm N-DECODE

INPUT: A word w in K1.

OUTPUT: A permutation π.

Initialize: Draw a point for the first b and locate coordinates for Pa, Pb and Pc.

Draw a point at (1, 1). Let Pa = (0, 1) and Pb = Pc = (1, 1). Let t = 1. Let α be the

second letter in w.

Identify: Determine the case due to what letter α is.

a. If α = a′, then GOTO Case 1.

b. If α = b′, then GOTO Case 2.

c. If α = c′, then GOTO Case 3.

d. If α is none of the above, then GOTO Case 4.

Case 1: Construct and draw a 231-value chain in the following manner.

Take the subword of w starting from α up to a′′ which equalizes the numbers of a′

and a′′. Hence, this subword is in {a′, a′a}{a′a′′, a′a′′a}∗{bsa′′, b′a′′}. Remove the first

a′ and the first a′′. Additionally, if there exists a in between these a′ and a′′, remove

it as well. Iteratively remove a′, a′′ and a until bs or b′ is the only letter left. Every

time we remove a′ and a′′ together, sum 21 with ⊕1, and every time we remove a′,

120

a′′ and a together, sum 231 with ⊕1. Draw the 231-value chain that we obtain from

this procedure so that the chain is horizontally in between Pa and Pb, and vertically

greater than t. Set t to be the greatest y coordinate of all points in the chain and Pa

to be the right-most point in the chain.

For bs or b′, draw a point located horizontally in between Pa and Pb, and vertically in

between the point with the second greatest y coordinate and the point with the greatest

y coordinate in the chain. Set α to be the letter immediately after the subword.

a. If bs is a part of the subword, then set Pb to be the point drawn for bs. Then GOTO

Identify.

b. If b′ is a part of the subword, then set Pℓ to be the point drawn for b′ and identify

what letter α is. If α = a, then GOTO a of Case 2. If α = c, then GOTO b of Case

2. If α = b′′, then GOTO c of Case 2. If α = c′, then GOTO Case 3.

Case 2: Draw points for b′ and letters up to b′′.

Draw a point at (x, y) where P
(x)
a < x < P

(x)
b and t < y. Set Pℓ to be this new point

and t = P
(y)
ℓ . Set α to be the next letter. If α = a, then GOTO a. If α = c, then

GOTO b. If α = b′′, then GOTO c. If α = c′, then GOTO Case 3.

a. Draw a point at (x, y) where P
(x)
a < x < P

(x)
ℓ and t < y. Set Pa to be this new

point and t = P
(y)
a . Set α to be the next letter. If α = c, then GOTO b. If α = b′′,

then GOTO c. If α = c′, then GOTO Case 3.

b. Draw a point at (x, y) where P
(x)
c < x and t < y. Set Pc to be this new point and

t = P
(y)
c . Set α to be the next letter. If α = b′′, then GOTO c. If α = c′, then

GOTO Case 3.

c. Draw a point at (x, y) where P
(x)
ℓ < x < P

(x)
b and t < y. Set Pb = Pℓ and t to be

the y coordinate of the point just drawn. Set α to be the next letter. Then GOTO

Identify.

Case 3: Construct and draw a 312-value chain in the following manner.

Take the subword of w starting from α up to c′′ which equalizes the numbers of c′

and c′′. Hence, this subword is in {c′bs, c′b′′}{c′c′′, cc′c′′}∗{c′′, cc′′}. Remove the first

c′ and the first c′′. Additionally, if there exists c in between these c′ and c′′, remove

it as well. Iteratively remove c′, c′′ and c until bs or b′′ is the only letter left. Every

time we remove c′ and c′′ together, sum 21 with ⊕1, and every time we remove c′, c′′

and c together, sum 312 with ⊕1. Draw the 312-value chain that we obtain from this

procedure so that the chain is horizontally located to the right of Pc, and vertically

greater than t. Set t to be the greatest y coordinate of all points in the chain and Pc

to be the right-most point in the chain.

121

a. If bs is a part of the subword, then draw a point located horizontally in between

Pa and Pb, and vertically in between the point with the least y coordinate and the

point with the second least y coordinate in the chain. Set Pb to be the point drawn

for bs. Set α to be the letter immediately after the subword. Then GOTO Identify.

b. If b′′ is a part of the subword, then draw a point located horizontally in between

Pℓ and Pb, and vertically in between the point with the least y coordinate and the

point with the second least y coordinate in the chain. Set Pb = Pℓ. Set α to be the

letter immediately after the subword. Then GOTO Identify.

Case 4: Draw a point due to which letter α is.

a. If α = a or α = b, then draw a point at (x, y) where P
(x)
a < x < P

(x)
b and t < y.

Set Pa to be this new point and t = P
(y)
a .

i. If α = b is the last letter in w, then GOTO Flatten.

ii. Otherwise, set α to be the next letter. Then GOTO Identify.

b. If α = c, then draw a point at (x, y) where P
(x)
c < x and t < y. Set Pc to be this

new point and t = P
(y)
c . Set α to be the next letter. Then GOTO Identify.

Flatten: Finalize the permutation by flattening.

Let π be a permutation obtained by flattening the constructed graph. OUTPUT π.

We define the function φN on N that φN (σ) is a word obtained by applying N-ENCODE

to σ, and the function ψN on K1 that ψN (w) is a permutation obtained by applying N-DECODE

to w. We then have the following lemma.

Lemma 6.2 The function φN is a bijection between N and K1.

Proof. We first show that the image of φN is in K1. Let σ be in N and w = φN (σ). It is

clear that w is in Σ∗
1, so we need to show that w satisfies all conditions of K1. We can easily

verify that each case of Case 1 through Case 6 in Figure 5.20 corresponds to each prefix of ba,

bb′a, ba′a, ba′bsa
′′, ba′b′a′′ and ba′a′a′′ respectively. Similarly, each case of Case 1 through Case 6

in Figure 5.21 respectively corresponds to each suffix of cb, cb′′b, cc′′b, c′bsc
′′b, c′b′′c′′b and c′c′′c′′b.

For the condition on a′ and a′′, notice that a 231-value chain of the form 21⊕121⊕1 · · ·⊕121

together with the scissor of the chain is encoded as a′a′a′′a′a′′ · · · a′a′′bsa′′ (or b′ instead of bs).

Suppose there exists a summand 231 instead of 21, so the value playing the role of 2 is encoded

as a. If the first summand is 231, then a appears immediately after a′, corresponding to 1 of the

same 231. Otherwise, due to the structure of a 231-value chain, a appears immediately after a′′,

corresponding to 2 of 21 or 3 of 231 of the previous summand. Since 231-value chains are the

122

only ways for w to have a′ and a′′, the third condition is satisfied. Proving the fourth condition

is satisfied is almost identical. The fifth condition is also immediate, since N-ENCODE is defined

so that bs is only used for scissors of 231-value chains and 312-value chains.

The condition on b′ and b′′ is tied with the sixth condition of Proposition 5.10, which states

there are at most four values in between two values playing the roles of 1 and 2 of 12 in Equation

5.1. The positions of two values x1 and x2 (x1 < x2) are in [1, σ−1(n)) and the positions of

the other two values y1 and y2 (y1 < y2) are in (σ−1(1), n]. Moreover, in the proof of Lemma

5.14, we showed that x1 and y2 respectively must be the maximum value of a 231-value chain

and the minimum value of a 312-chain. Altogether, these values are encoded into a subword

in {b′}{a′′, λ}{a, λ}{c, λ}{c′ , λ}{β′′}. Also, since there must be at least one value in between

two values playing the roles of 1 and 2 of 12 in Equation 5.1, one of a′′, a, c and c′ must be in

between b′ and b′′. Thus, w satisfies the sixth condition of K1.

Finally, for the seventh condition, suppose w contains aa. This implies two values for

1 ⊕ 1 in Equation 5.2 are consecutive, so it violates the first condition of Proposition 5.8. We

can apply the same arguments for bb and cc with the second and third conditions of Proposi-

tion 5.8 respectively, so w does not contain aa, bb and cc. Consequently, the image of φN is inK1.

To show that the image of ψN is in N , notice that together with how N-DECODE is defined

and conditions of K1, ψN (w) is a permutation of extreme pattern 2413 and obeys all conditions

of Proposition 5.8 and 5.10. Therefore, by Proposition 5.19, ψN (w) is in N , so the image of ψN

is in N .

Due to the constructions of φN and ψN , they are inverse to each other, so this completes

the proof. �

Next, we define S-ENCODE and S-DECODE, the algorithm to encode simple permutations

in S, and vice versa. To make things less complicated, we simply define these algorithms as

N-ENCODE and N-DECODE applied to the inverse permutations. To be precise, To S-ENCODE

τ in S, we N-ENCODE τ−1, and to S-DECODE a word w in K1, we N-DECODE to obtain a

permutation σ in N , then output σ−1.

We define φS and ψS that φS(τ) is a word obtained by applying S-ENCODE to a permu-

tation τ in S, and ψS(w) is a permutation obtained by applying S-DECODE to a word w in

K1. Thus, φN (σ) and φS(τ) are equal if and only if σ and τ are inverse to each other. It is

straightforward to prove the following lemma by definition of φS and Lemma 6.2.

123

Lemma 6.3 The function φS is a bijection between S and K1.

Later with φ′, we first decompose a permutation π in H ′ into the sum of m simple permu-

tations in N and S, and apply N-ENCODE and S-ENCODE to each of these simple permutations

alternatively. We abuse the notations of glue sums, and obtain w = w1
y1
x1 w2

y2
x2 w3

y3
x3 · · ·wm

to retain which glue sums were used in the expression of π. Thus, we obtain total m words in

K1 connected by glue sums. In particular, wi for odd i is obtained by using N-ENCODE to each

σi and wi for even i is obtained by using S-ENCODE to each τi. To make it simpler, we define

φ1 on H ′ such that

φ1(π) =

{

φN (σ1)
y1
x1 φS(τ2)

y2
x2 · · · ym−1

xm−1 φN (σm) if m is odd

φN (σ1)
y1
x1 φS(τ2)

y2
x2 · · · ym−1

xm−1 φS(τm) if m is even

Let Ij = {w1
y1
x1 w2

y2
x2 · · ·wj : wj ∈ K1 for all i with 1 ≤ i ≤ j} and K2 be the image of φ1.

We discuss that K2 is a subset of
⋃m

j=1 Ij, but not equal.

Recall that each glue sum requires summands to satisfy specific conditions. For example,

type 1-0 and 1-1 require the left summand and the right summand to have Case 1 in Figure 5.21

and Case 1 in Figure 5.22 respectively. These restrictions coming from each glue sum force wi

and wi+1 to have specific suffix and prefix for all i (1 ≤ i ≤ m − 1). In particular, for every w

in K2, if the i-th glue sum is type 1-0 or 1-1, then wi ends with cb and wi+1 begins with ba. If

it is type 2-0 or 2-1, then wi ends with cb
′′b and wi+1 begins with ba. If it is type 3-0, then wi

ends with cc′′b and wi+1 begins with ba′a, and finally, if it is type 4-0, then wi ends with c
′bsc

′′b

or c′b′′c′′b and wi+1 begins with bb′a.

Now, we define Σ2 = Σ′ \ {d′a, d′′a, d′c, d′′c , dℓ}. The next algorithm, called W-COMBINE

iteratively connects these words to construct one word w in Σ∗
2. So let us define W-COMBINE

as the following.

Algorithm W-COMBINE

INPUT: A sequence of words connected by glue sums as w = w1
y1
x1 w2

y2
x2 · · ·wm in K2.

OUTPUT: A word w in Σ∗
2.

Initialize: Let w = w1 and write w as w y1
x1 w2

y2
x2 · · ·wm.

Identify: If w = w, then OUTPUT w. Otherwise, let i+ 1 be the least index of wk in w.

a. If (xi, yi) = (1, 0) or (xi, yi) = (1, 1), then GOTO Case 1.

b. If (xi, yi) = (2, 0) or (xi, yi) = (2, 1), then GOTO Case 2.

124

c. If (xi, yi) = (3, 0), then GOTO Case 3.

d. If (xi, yi) = (4, 0), then GOTO Case 4.

Case 1: A suffix of w is cb and a prefix of wi+1 is ba.

a. If (xi, yi) = (1, 0), replace the suffix cb of w with d and erase the prefix ba of wi+1.

Then concatenate w with wi+1. Redefine w to be the resultant word. Then GOTO

Identify.

b. If (xi, yi) = (1, 1), replace the suffix b of w with d and erase the prefix ba of wi+1.

Then concatenate w with wi+1. Redefine w to be the resultant word. Then GOTO

Identify.

Case 2: A suffix of w is cb′′b, cbb or cy′′b, and a prefix of wi+1 is ba.

a. Suppose a suffix of w is cb′′b.

i. If (xi, yi) = (2, 0), replace the suffix cb′′b of w with dd and erase the prefix ba of

wi+1. Replace the last b′ in w with b. Then concatenate w with wi+1. Redefine

w to be the resultant word. Then GOTO Identify.

ii. If (xi, yi) = (2, 1), replace the suffix b′′b of w with dd and erase the prefix ba of

wi+1. Replace the last b′ in w with b. Then concatenate w with wi+1. Redefine

w to be the resultant word. Then GOTO Identify.

b. Suppose a suffix of w is cbb.

i. If (xi, yi) = (2, 0), replace the suffix cbb of w with dd and erase the prefix ba

of wi+1. Then concatenate w with wi+1. Redefine w to be the resultant word.

Then GOTO Identify.

ii. If (xi, yi) = (2, 1), replace the suffix bb of w with dd and erase the prefix ba of

wi+1. Then concatenate w with wi+1. Redefine w to be the resultant word.

Then GOTO Identify.

c. Suppose a suffix of w is cy′′b.

i. If (xi, yi) = (2, 0), replace the suffix cy′′b of w with dd and erase the prefix ba of

wi+1. Replace the last y
′ in w with y. Then concatenate w with wi+1. Redefine

w to be the resultant word. Then GOTO Identify.

ii. If (xi, yi) = (2, 1), replace the suffix y′′b of w with dd and erase the prefix ba of

wi+1. Replace the last y
′ in w with y. Then concatenate w with wi+1. Redefine

w to be the resultant word. Then GOTO Identify.

125

Case 3: A suffix of w is c′bscc
′′b, c′b′′cc′′b, c′bcc′′b, c′c′′cc′′b or c′y′′cc′′b, and a prefix of wi+1 is

ba′avbsa
′′ or ba′avb′a′′ where v is a word in {a′a′′, a′a′′a}∗.

For a suffix of w,

a. if it is c′bscc
′′b, then replace it with zxd.

b. if it is c′b′′cc′′b, then replace it with zx′′d and the last b′ in w with x′.

c. if it is c′bcc′′b, then replace it with zxd.

d. if it is c′c′′cc′′b, then replace it with zc′′d.

e. if it is c′y′′cc′′b, then replace it with zy′′d.

For a prefix of wi+1,

a. if it is ba′avbsa
′′ (v ∈ {a′a′′, a′a′′a}∗), then replace the whole prefix ba′avbsa

′′ with

y.

b. if it is ba′avb′a′′, then replace the whole prefix ba′avb′a′′ with y′. Additionally,

replace the first b′′ in wi+1 with y′′.

Concatenate w with wi+1. Redefine w to be the resultant word. Then GOTO Identify.

Case 4: A suffix of w is c′bsc
′′b, c′b′′c′′b, c′bc′′b or c′y′′c′′b, and a prefix of wi+1 is bb′a.

a. If the suffix of w is c′bsc
′′b, then replace the suffix c′bsc

′′b of w with dd and erase

the prefix bb′a of wi+1. Replace the first b′′ in wi+1 with b. Then concatenate w

with wi+1. Redefine w to be the resultant word. Then GOTO Identify.

b. If the suffix of w is c′b′′c′′b, then replace the suffix c′b′′c′′b of w with dd and erase

the prefix bb′a of wi+1. Replace the first b′′ in wi+1 with b. Replace the last b′ in w

with b. Then concatenate w with wi+1. Redefine w to be the resultant word. Then

GOTO Identify.

c. If the suffix of w is c′bc′′b, then replace the suffix c′bc′′b of w with dd and erase the

prefix bb′a of wi+1. Replace the first b′′ in wi+1 with b. Then concatenate w with

wi+1. Redefine w to be the resultant word. Then GOTO Identify.

d. If the suffix of w is c′y′′c′′b, then replace the suffix c′y′′c′′b of w with dd and erase

the prefix bb′a of wi+1. Replace the last y′ in w with y and the first b′′ in wi+1

with b. Then concatenate w with wi+1. Redefine w to be the resultant word. Then

GOTO Identify.

Let K3 be the language over Σ2 with the following conditions. We claim that K3 is in

bijection with K2.

126

1. Prefix condition.

A word w must begin with ba, bb′a, ba′a, ba′bsa
′′, ba′b′a′′, ba′a′a′′, bba, ba′ba′′, bx′a or

ba′x′a′′.

2. Suffix condition.

A word w must end with cb, cb′′b, cc′′b, c′bsc
′′b, c′b′′c′′b, c′c′′c′′b, cbb, c′bc′′b, cy′′b or c′y′′c′′b.

3. Conditions on a′ and a′′.

Every a′ and a′′ in w is a part of a subword in {a′, a′a}{a′a′′, a′a′′a}∗{bsa′′, b′a′′, ba′′, x′a′′}.
Note the number of a′ and the number of a′′ are equal in each sequence, and thus, in w.

4. Conditions on c′ and c′′.

Every c′ and c′′ in w is a part of a subword in {c′bs, c′b′′, c′b, c′y′′}{c′c′′, cc′c′′}∗{c′′, cc′′, zc′′,
czc′′}. Note the number of c′ and the number of c′′ are equal in each sequence, and thus,

in w.

5. Conditions on bs.

The letter bs is only allowed in the third condition and the fourth condition, i.e. as a part

of a subword of a′ and a′′ or a subword of c′ and c′′.

6. Conditions on b′ and b′′.

Every b′ and b′′ in w is a part of a subword in {b′}{a′′, λ}{a, λ}{c, λ}{c′ , λ}{b′′} with at

least one of a′′, a, c or c′ being present. Note the number of b′ and the number of b′′ are

equal in each sequence, and thus, in w.

7. Conditions on letters with overlines and underlines.

For every letter with an overline, there is a corresponding letter with an underline.

• Every b in w is a part of a subword in {b}{a′′, λ}{a, λ}{c, λ}{dd, dd}.

• Every y in w is a part of a subword in {y}{a, λ}{c, λ}{dd, dd}.

• Every d and d in w is a part of a subword in one of the following.

– {dd, dd}{c, λ}{c′, λ}{b}.

– {dd, dd}{c, λ}{zx}.

– {dd, dd}{c, λ}{dd, dd}.

8. Conditions on x, y, z and other related letters.

Every x, x′, x′′, x, y, y′, y′′, y and z is a part of a subword v1dv2 where v1 is in

• {zx, zx, zc′′, zy′′} or

• {x′}{a′′, λ}{a, λ}{c, λ}{zx′′}, and

127

v2 is in

• {y, y}, or

• {y′}{a, λ}{c, λ}{y′′ , c′y′′, zy′′}.

9. Repetition restrictions.

w must not contain aa, bb, cc or da.

Before we move onto the next algorithm W-DECOMPOSE, let us take a closer look at

which letter is replaced by each of letters in {b, b, d, d, d, d, x, x′, x′′, x, y, y′, y′′, y, z} when words

are connected by W-COMBINE. For this observation, we examine the simplest case, which is

applying W-COMBINE to wσ
y
x wτ where σ and τ be simple permutations of extreme pattern

2413 and 3142 respectively with |σ| = m and |τ | = n, and wσ = φN (σ), wτ = φS(τ).

When σ and τ are operated with 0
1 or 1

1, wσ ends with cb which corresponds to values

σ(m) and m, and wτ starts with ba which corresponds to τ(1) and 1. Recall that, for the case

of 0
1, it eliminates the last value of σ and 1 of τ , and combines m and τ(1) as it shifts up

accordingly. Thus, c of cb and a of ba are these eliminated values, and d takes the role of com-

bined m and τ(1). If 1
1 is used instead, then c of cb stays there, as 1

1 does not erase the last

value of σ. Therefore, the letter d is the only replacement happened in both cases. Technically,

d represents m of σ and τ(1) of τ , but to refer back what the previous letter was, we set the

convention to look at wσ, not wτ . Thus, d was originally encoded as b in wσ.

If σ and τ are operated with 0
2 or 1

2, wσ ends with cb′′b, corresponding to values

σ(m) = m − 2, m − 1 and m respectively, and wτ starts with ba corresponding to τ(1) and 1.

For 0
2, there are two things W-COMBINE does in the process of concatenation of wσ and wτ .

First, where wσ and wτ are concatenated, we would have cb′′bba, but W-COMBINE replace this

with dd. We may think that c and a are simply deleted, since the last value of σ and the first

value of τ are eliminated. The first b is combined with the second b which results in d, and b′′ is

replaced with d. Second, W-COMBINE replaces the letter b′ that is matched up with b′′ of cb′′b

with b. The only difference for 1
2 is that it does not erase c of cb′′b as σ 1

2 τ keeps the last

value of σ. Hence, in wσ, d was originally encoded as b, d was encoded as b′′, and b was encoded

as b′.

Next, we look at the case of 0
3. Recall that σ and τ must have a 312-value chain involving

σ(m) and a 312-position chain involving 1 respectively that are similar to each other. Thus, the

last three greatest values of σ are placed as shown in Case 3 of 5.21 where σ(m) = m− 2, m− 1

and m are encoded by N-ENCODE as c, c′′ and b respectively. For m− 3, there are three cases.

128

If the 312-value chain is simply α = 312, then m− 3 would be the scissor of this chain. As the

first case, if this scissor is 1 of 1 in Equation 5.1, then it is encoded as bs. Alternatively, if it is 2

of 12 in Equation 5.1, then it is b′′. The last case is α 6= 312. Then m− 3 is a part of the chain,

and it is encoded as c′′. In either case, m− 4 must be 1 of the last 312 in the 312-value chain,

so it is c′. Altogether, the five greatest values of σ are encoded as c′bscc
′′b, c′b′′cc′′b or c′c′′cc′′b.

On the other hand, τ having the similar 312-position chain to start with, encoding of values of τ

by S-ENCODE up to the end of the chain is either ba′avbsa
′′ or ba′avb′a′′ where v ∈ {a′a′′, a′a′′a}∗.

Now, for each case of wσ having c′bscc
′′b, c′b′′cc′′b and c′c′′cc′′b, W-COMBINE replaces it

with zxd, zx′′d and zc′′d respectively. In particular, we consider as follows.

• The first letter c′ is replaced with z.

• The second letter is replaced with x, x′′ and c′′ accordingly (thus, in the case of c′′, it

remains unchanged). In case of replacing b′′ with x′′, W-COMBINE additionally replaces

the paired b′ with x′.

• The third letter c is erased as σ 0
3 τ eliminates σ(m).

• The fourth letter c′′ is merged into the scissor bs of ba′avbsa
′′ or b′ of ba′avb′a′′ in wτ ,

which will be encoded latter.

• The last letter b is replaced with d.

Since the whole 312-position chain of τ is merged into the 312-value chain of σ by computing

σ 0
3 τ , every letter in ba′avbsa

′′ or ba′avb′a′′ of wτ are erased, except the letter bs or b′ which

corresponds to the scissor value. As this value gets combined with the value m − 1 of σ, we

replace it with the knew letter y or y′ respectively. In case of replacing b′ with y′, we also

replaces the paired b′′ with y′′. Hence, to summarize this case, previously in wσ, z, x, x
′′, d, y

and y′ were all encoded as c′, bs, b
′′, b, bs and b′ respectively.

Finally, for 0
4, for the four greatest values of σ, wσ can either have c′bsc

′′b or c′b′′c′′b,

whereas wτ must start with bb′a. Since 0
4 eliminates σ(m− 1) = m− 1 and σ(m) = m− 3 of

σ, c′ and c′′ of both suffixes of wσ are erased. Also, 0
4 erases τ(1), so a of the prefix bb′a of wτ

is deleted. The combination of m and τ(1), corresponding to b of wσ and b of wτ respectively, is

replaced with d, just like in every other glue sum. If m− 2 of σ is bs, then it is replaced with d

together with b′ of wτ . The value τ(2) corresponding to b′ of bb′a is 1 of 12 in Equation 5.1, and

its paired 2 of 12 encoded as b′′ is also replaced with b. If m − 2 of σ is b′′, then it is replaced

with d instead. The letter b′′ of wτ that is paired with b′ in the prefix is again replaced with b,

and in addition, b′ that is paired with b′′ in the suffix of wσ is also replaced with b. Therefore,

129

in wσ, b, d, d and d were encoded as b′, bs, b
′′ and b respectively, and b in wτ was encoded as b′′.

The above observations are just for the case of wσ
y
xwτ . As W-COMBINE recursively

concatenates words, two consecutive glue sums sometimes result in the necessities of x and y. For

each, if we examine W-COMBINE closely, we find that they were originally b′′ and b′ respectively.

Next, let us define the inverse algorithm called W-DECOMPOSE on K3, and we will prove

K2 and K3 are in bijection due to these algorithms.

Algorithm W-DECOMPOSE

INPUT: A word w in K3.

OUTPUT: A sequence of words connected by glue sums as w = w1
y1
x1 w2

y2
x2 · · ·wm in

⋃m
j=1 Ij .

Initialize: Let m be the number of d in w. Let w′
m = w Also, write w = w′

m.

Identify: Let i be the index such that

w =

{

w′
i

yi
xi wi+1

yi+1
xi+1 · · ·wm if i is odd

w′
i

yi
xi wi+1

yi+1
xi+1 · · ·wm if i is even

If i = 1, then OUTPUT w. Otherwise, locate the last d in w′
i.

a. If it is not a part of a subword dd, zsd (s ∈ {x, x′′, x, c′′, y′}), dd or dd, then GOTO

Case 1.

b. If it is a part of a subword dd, then GOTO Case 2.

c. If it is a part of a subword zsd where s ∈ {x, x′′, x, c′′, y′′}, then GOTO Case 3.

d. If it is a part of a subword dd or dd, then GOTO Case 4.

Case 1: Split w′
i into w

′
i−1 and wi by type 1-0 or 1-1 glue sum.

Decatenate the suffix of w′
i starting from the letter immediately after the last d. Con-

catenate ba with this suffix of w′
i and call it wi. Let w′

i−1 be the remaining subword

of w′
i.

a. If the letter immediately before the last d in w′
i−1 is not c, then replace the last d

in w′
i−1 with cb.

i. If i is odd, then replace w′
i in w with w′

i−1
0
1 wi. GOTO Identify.

ii. If i is even, then replace w′
i in w with w′

i−1
0
1wi. GOTO Identify.

b. If the letter immediately before the last d in w′
i−1 is c, then replace the last d in

w′
i−1 with b.

130

i. If i is odd, then replace w′
i in w with w′

i−1
1
1 wi. GOTO Identify.

ii. If i is even, then replace w′
i in w with w′

i−1
1
1wi. GOTO Identify.

Case 2: Split w′
i into w

′
i−1 and wi by type 2-0 or 2-1 glue sum.

Decatenate the suffix of w′
i starting from the letter immediately after the last d. Con-

catenate ba with this suffix of w′
i and call it wi. Let w′

i−1 be the remaining subword

of w′
i.

a. Suppose the last letter with an overline in w′
i−1 is b. Replace this b with b′.

i. If the letter immediately before the last d in w′
i−1 is not c, then replace the

suffix dd in w′
i−1 with cb′′b.

A. If i is odd, then replace w′
i in w with w′

i−1
0
2 wi. GOTO Identify.

B. If i is even, then replace w′
i in w with w′

i−1
0
2 wi. GOTO Identify.

ii. If the letter immediately before the last d in w′
i−1 is c, then replace the suffix

dd in w′
i−1 with b′′b.

A. If i is odd, then replace w′
i in w with w′

i−1
1
2 wi. GOTO Identify.

B. If i is even, then replace w′
i in w with w′

i−1
1
2 wi. GOTO Identify.

b. Suppose the last letter with an overline in w′
i−1 is d or d.

i. If the letter immediately before the last d in w′
i−1 is not c, then replace the

suffix dd in w′
i−1 with cbb.

A. If i is odd, then replace w′
i in w with w′

i−1
0
2 wi. GOTO Identify.

B. If i is even, then replace w′
i in w with w′

i−1
0
2 wi. GOTO Identify.

ii. If the letter immediately before the last d in w′
i−1 is c, then replace the suffix

dd in w′
i−1 with bb.

A. If i is odd, then replace w′
i in w with w′

i−1
1
2 wi. GOTO Identify.

B. If i is even, then replace w′
i in w with w′

i−1
1
2 wi. GOTO Identify.

c. Suppose the last letter with an overline in w′
i−1 is y. Replace this y with y′.

i. If the letter immediately before the last d in w′
i−1 is not c, then replace the

suffix dd in w′
i−1 with cy′′b.

A. If i is odd, then replace w′
i in w with w′

i−1
0
2 wi. GOTO Identify.

B. If i is even, then replace w′
i in w with w′

i−1
0
2 wi. GOTO Identify.

ii. If the letter immediately before the last d in w′
i−1 is c, then replace the suffix

dd in w′
i−1 with y′′b.

131

A. If i is odd, then replace w′
i in w with w′

i−1
1
2 wi. GOTO Identify.

B. If i is even, then replace w′
i in w with w′

i−1
1
2 wi. GOTO Identify.

Case 3: Split w′
i into w

′
i−1 and wi by type 3-0 glue sum.

Decatenate the suffix of w′
i starting from the letter immediately after the last d and

call it v. Let w′
i−1 be the remaining subword of w′

i.

• If v starts with y, replace this y with bsa
′′.

• If v starts with y′, replace this y′ with b′a′′. Additionally, replace y′′ in v with b′′.

To construct wi,

a. if w′
i−1 has a suffix zxd, zx′′d, zxd or zy′′d, concatenate ba′a with v, and call it wi.

b. if w′
i−1 has a suffix zc′′d, take the whole sequence of c′ and c′′ which zc′′ of zc′′d is a

part of, and call it t. Thus, t is a subword of w′
i−1 in {c′bs, c′b′′, c′b, c′y′′}{c′c′′, cc′c′′}∗

{zc′′, czc′′}. Let u = ba′a. After the prefix c′bs, c
′b′′, c′b or c′y′′ in t, for every c′c′′

and zc′′, concatenate u with a′a′′, and for every cc′c′′ and czc′′, concatenate u with

a′a′′a. Once this procedure is completed, concatenate u with v, and call it wi.

To complete w′
i−1,

a. if w′
i−1 has a suffix zxd, then replace it with c′bscc

′′b.

b. if w′
i−1 has a suffix zx′′d, then replace it with c′b′′cc′′b and the last x′ in w′

i−1 with

b′.

c. if w′
i−1 has a suffix zxd, then replace it with c′bcc′′b.

d. if w′
i−1 has a suffix zc′′d, then replace it with c′c′′cc′′b.

e. if w′
i−1 has a suffix zy′′d, then replace it with c′y′′cc′′b.

Then, finally,

• if i is odd, then replace w′
i in w with w′

i−1
0
3 wi. GOTO Identify.

• if i is even, then replace w′
i in w with w′

i−1
0
3wi. GOTO Identify.

Case 4: Split w′
i into w

′
i−1 and wi by type 4-0 glue sum.

Decatenate the suffix of w′
i starting from the letter immediately after the last d. Con-

catenate bb′a with this suffix of w′
i and call it wi. Replace b with b

′′. Let w′
i−1 be the

remaining subword of w′
i. For w

′
i−1,

a. if its suffix is dd, then replace it with c′bsc
′′b.

b. if its suffix is dd, observe the last letter with an overline in w′
i−1.

i. If the last letter with an overline in w′
i−1 is b, then replace it with b′ and the

suffix dd of w′
i−1 with c′b′′c′′b.

132

ii. If the last letter with an overline in w′
i−1 is d or d, then replace the suffix dd of

w′
i−1 with c′dc′′b.

iii. If the last letter with an overline in w′
i−1 is y, then replace it with y′ and the

suffix dd of w′
i−1 with c′y′′c′′b.

Then,

• if i is odd, then replace w′
i in w with w′

i−1
0
4 wi. GOTO Identify.

• if i is even, then replace w′
i in w with w′

i−1
0
4 wi. GOTO Identify.

We define φ2 on K2 that φ2(w) = w is obtained by applying N-COMBINE to an arbitrary

w ∈ K2, and ψ2 on K3 that ψ2(w) = w is obtained by applying W-DECOMPOSE to an arbitrary

w ∈ K3. By using these two functions, we prove the following.

Lemma 6.4 The function φ2 is a bijection between K2 and K3.

Proof. We first claim that the image of φ2 is in K3. In each wi of w = w1
y1
x1 w2

y2
x2 · · ·wm,

there are no aa, bb and cc by definition of K1. Thus, if w contains any of aa, bb, cc or da, then

this is caused by the process of W-COMBINE.

For wi and wi+1 in w to be combined, a certain suffix of wi is modified to a sequence of

letters ending with d first in each case of W-COMBINE. After that, a certain prefix of wi+1 is

either erased (Case 1, Case 2 and Case 4) or replaced (Case 3), and then connected to wi. Erased

prefixes are either ba or bb′a, so the letter after these prefixes cannot be a. Also, in the case of

replacement, it is always with y or y′. Thus, in all cases, da is not contained in w.

In some cases, such as Case 2,a.i, b′, b′′ or y′ is replaced with another letter. However,

none of these is replaced with a, b, c or d, so it is impossible for this arrangement to cause w

containing aa, bb, cc or da. Hence, φ2(w) satisfies the ninth condition of K3.

The other conditions of K3 can be verified by observing each case of W-COMBINE. Thus,

the image of φ2 is in K3.

Next, we show that the image of ψ2 is in K2. Frankly, the algorithm W-DECOMPOSE

reads a word w from right to left and splits w every time d occurs. Based on the conditions of

K3, all possible cases of subwords that d can be a part of are dd, zsd where s ∈ {x, x′′, x, c′′, y′′},
dd, dd and sd where s ∈ {a, a′′, b, b′′, c, c′′}. In each case, W-DECOMPOSE decatenates wi as all

letters in Σ2 \Σ1 are replaced with letters in Σ1. We can observe that the word decatenated by

W-DECOMPOSE is in K1 for every case, implying the whole w is in K2. Thus, the image of ψ2

133

is in K2.

Due to the constructions of φ2 and ψ2, they are inverse to each other, so φ2 is a bijection

from K2 to K1. �

We are only one step away to the regular language L′ which is bijective to H ′. Our final

algorithm is to modify a prefix and a suffix of w in K3, which is the following.

Algorithm AFFIX-CONVERT

INPUT: A word w in K3.

OUTPUT: A word in Σ′∗.

GOTO Prefix.

Prefix: Convert the prefix of w.

• If it is ba, then replace it with dd. GOTO Suffix.

• If it is bb′a, then replace it with db′d. GOTO Suffix.

• If it is ba′a, then replace it with da′d. GOTO Suffix.

• If it is ba′bsa
′′, then replace it with dd′absd

′′
a. GOTO Suffix.

• If it is ba′b′a′′, then replace it with dd′ab
′d′′a. GOTO Suffix.

• If it is ba′a′a′′, then replace it with dd′aa
′d′′a. GOTO Suffix.

• If it is bba, then replace it with dbd. GOTO Suffix.

• If it is ba′ba′′, then replace it with dd′abd
′′
a. GOTO Suffix.

• If it is bx′a, then replace it with dx′d. GOTO Suffix.

• If it is ba′x′a′′, then replace it with dd′ax
′d′′a. GOTO Suffix.

Suffix: Convert the suffix of w.

• If it is cb, then replace it with ddℓ. OUTPUT w.

• If it is cb′′b, then replace it with db′′dℓ. OUTPUT w.

• If it is cc′′b, then replace it with dc′′dℓ. OUTPUT w.

• If it is c′bsc
′′b, then replace it with d′cbsd

′′
cdℓ. OUTPUT w.

• If it is c′b′′c′′b, then replace it with d′cb
′′d′′cdℓ. OUTPUT w.

• If it is c′c′′c′′b, then replace it with d′cc
′′d′′cdℓ. OUTPUT w.

• If it is cbb, then replace it with dbdℓ. OUTPUT w.

134

• If it is c′bc′′b, then replace it with d′cbd
′′
cdℓ. OUTPUT w.

• If it is cy′′b, then replace it with dy′′dℓ. OUTPUT w.

• If it is c′y′′c′′b, then replace it with d′cy
′′d′′cdℓ. OUTPUT w.

Define φ3 be a function on K3 induced by AFFIX-CONVERT. By how AFFIX-CONVERT

is defined, it is not difficult to verify that the image of φ3 is equal to the language L′ over Σ′

with following conditions.

1. Prefix condition.

A word w must begin with dd, db′d, da′d, dd′absd
′′
a, dd

′
ab

′d′′a, dd
′
aa

′d′′a, dbd, dd
′
abd

′′
a, dx

′d or

dd′ax
′d′′a. Therefore,

(a) da′d is followed by a subword in {a′a′′, a′a′′a}∗{bsa′′, b′a′′, ba′′, x′a′′}.

(b) dd′aa
′d′′a is followed by a subword in {a, λ}{a′a′′, a′a′′a}∗{bsa′′, b′a′′, ba′′, x′a′′}.

(c) db′d is followed by a subword in {c, λ}{c′, λ}{b′′} or the suffix db′′dℓ, d
′
cb

′′d′′cdℓ.

(d) dd′ab
′d′′a is followed by a subword in {a, λ}{c, λ}{c′ , λ}{b′′} or the suffix db′′dℓ, d

′
cb

′′d′′cdℓ.

(e) dbd is followed by a subword in {c, λ}{dd, dd}.

(f) dd′abd
′′
a is followed by a subword in {a, λ}{c, λ}{dd, dd}.

(g) dx′d is followed by a subword v1dv2 where v1 is in {c, λ}{zx′′} and v2 is in {y, y} or

{y′}{a, λ}{c, λ}{y′′ , c′y′′, zy′′}.

(h) dd′ax
′d′′a is followed by a subword v1dv2 where v1 is in {a, λ}{c, λ}{zx′′} and v2 is in

{y, y} or {y′}{a, λ}{c, λ}{y′′ , c′y′′, zy′′}.

Letters d′a and d′′a are only permitted in the above listed prefixes.

2. Suffix condition.

A word w must end with ddℓ, db
′′dℓ, dc

′′dℓ, d
′
cbsd

′′
cdℓ, d

′
cb

′′d′′cdℓ, d
′
cc

′′d′′cdℓ, dbdℓ, d
′
cbd

′′
cdℓ,

dy′′dℓ or d
′
cy

′′d′′cdℓ. Therefore,

(a) dc′′dℓ is preceded by a subword in {c′bs, c′b′′, c′b, c′y′′}{c′c′′, cc′c′′}∗.

(b) d′cc
′′d′′cdℓ is preceded by a subword in {c′bs, c′b′′, c′b, c′y′′}{c′c′′, cc′c′′}∗{c, λ}.

(c) db′′dℓ is preceded by a subword in {b′}{a′′, λ}{a, λ} or the prefix db′d, dd′ab
′d′′a.

(d) d′cb
′′d′′cdℓ is preceded by a subword in {b′}{a′′, λ}{a, λ}{c, λ} or the prefix db′d, dd′ab

′d′′a.

(e) dbdℓ is preceded by dd or dd.

(f) d′cbd
′′
cdℓ is preceded by a subword in {dd, dd}{c, λ}.

(g) dy′′dℓ is preceded by a subword v1dv2 where v1 is in {zx, zx, zc′′, zy′′} or {x′}{a′′, λ}
{a, λ}{c, λ}{zx′′} and v2 is y′ or y′a.

135

(h) d′cy
′′d′′cdℓ is preceded by a subword v1dv2 where v1 is in {zx, zx, zc′′, zy′′} or {x′}{a′′, λ}

{a, λ}{c, λ}{zx′′} and v2 is in {y′}{a, λ}{c, λ}.

Letters d′c, d
′′
c and dℓ are only permitted in the above listed suffixes. In particular, every

w must end with dℓ.

3. Conditions on a′ and a′′.

Every a′ and a′′ in w is a part of a prefix described in (a) or (b) in the prefix condition,

or a part of a subword in {a′, a′a}{a′a′′, a′a′′a}∗{bsa′′, b′a′′, ba′′, x′a′′}. Note the numbers

of a′ and a′′ are the same in each sequence, and thus, in the entire w.

4. Conditions on c′ and c′′.

Every c′ and c′′ in w is a part of a suffix described in (a) or (b) in the suffix condition, or a

part of a subword in {c′bs, c′b′′, c′b, c′y′′}{c′c′′, cc′c′′}∗{c′′, cc′′, zc′′, czc′′}. Note the numbers

of c′ and c′′ are the same in each sequence, and thus, in the entire w.

5. Conditions on bs.

The letter bs is only allowed in the prefix dd′absd
′′
a, in the suffix d′cbsd

′′
cdℓ, as a part of a

subword of a′ and a′′ listed in the third condition, or as a part of a subword of c′ and c′′,

listed in the fourth condition.

6. Conditions on b′ and b′′.

Every b′ and b′′ in w is a part of a prefix described in (c) or (d) in the prefix condition,

a part of a suffix described in (c) or (d) in the suffix condition, or a part of a subword in

{b′}{a′′, λ}{a, λ}{c, λ}{c′ , λ}{b′′} with at least one of a′′, a, c or c′ being present. Note the

numbers of b′ and b′′ are the same in each sequence, and thus, in the entire w.

7. Conditions on letters with overlines and underlines.

For every letter with an overline, there is a corresponding letter with an underline.

• Every b in w is a part of a prefix described in (e) or (f) in the prefix condition, or a

part of a subword in {b}{a′′, λ}{a, λ}{c, λ}{dd, dd}.

• Every y in w is a part of a subword in {y}{a, λ}{c, λ}{dd, dd}.

• Every d and d in w is a part of a subword in one of the following.

– {dd, dd}{dbdℓ}.

– {dd, dd}{c, λ}{d′cbd′′cdℓ}.

– {dd, dd}{c, λ}{c′, λ}{b}.

– {dd, dd}{c, λ}{zx}.

– {dd, dd}{c, λ}{dd, dd}.

136

8. Conditions on x, y, z and other related letters.

In addition to (g), (h) in the prefix condition and (g), (h) in the suffix condition, every x,

x′, x′′, x, y, y′, y′′, y and z is a part of a subword v1dv2 where v1 is in

• {zx, zx, zc′′, zy′′} or

• {x′}{a′′, λ}{a, λ}{c, λ}{zx′′}, and

v2 is in

• {y, y}, or

• {y′}{a, λ}{c, λ}{y′′ , c′y′′, zy′′}.

9. Other restrictions.

w must not contain aa, bb, cc, da and cddℓ.

Finally, with every bijection we defined, let us define φ′ on H ′ as φ′ = φ3 ◦ φ2 ◦ φ1. Then,
we have the following proposition. The proof is immediate with the lemmas we established.

Proposition 6.5 The encoding function φ′ is a bijection between H ′ and L′.

To visualize the encoding of a permutation in H ′ to L′, we refer to the Python code

provided in Appendix B.

6.1.2. Defining the automaton M ′

Recall that we defined the language L associated with L in Chapter 4. While every word in L

must begin with dd, we defined L to be the set of words in L without the prefix dd, and showed

L is regular.

For L′, words have 10 distinct prefixes as described. We prepare associated 10 languages

Li (1 ≤ i ≤ 10), one for each prefix, and construct an automaton for each of these languages

to show that they are all regular languages. For each i with 1 ≤ i ≤ 10, we define Li as the

following.

L1 = {w ∈ Σ′∗ : ddw ∈ L′}, L2 = {w ∈ Σ′∗ : dd′absd
′′
aw ∈ L′},

L3 = {w ∈ Σ′∗ : da′dw ∈ L′}, L4 = {w ∈ Σ′∗ : dd′aa
′d′′aw ∈ L′},

L5 = {w ∈ Σ′∗ : db′dw ∈ L′}, L6 = {w ∈ Σ′∗ : dd′ab
′d′′aw ∈ L′},

L7 = {w ∈ Σ′∗ : dx′dw ∈ L′}, L8 = {w ∈ Σ′∗ : dd′ax
′d′′aw ∈ L′},

L9 = {w ∈ Σ′∗ : dbdw ∈ L′}, L10 = {w ∈ Σ′∗ : dd′abd
′′
aw ∈ L′}.

Each Li is a language over Σ = Σ′ \ {d′a, d′′a} that shares all conditions of L′, except for the

prefix condition. Since an arbitrary w in each Li is a word in L′ without the certain prefix, the

137

prefix condition for each Li shall be stated with what the new prefix has to be. Thus, the prefix

condition for Li (1 ≤ i ≤ 10) is as the following.

L1: The first letter must be in {a′, b, b′, b, c, c′, d, d′c, d, x′, z}.

L2: The first letter must be in {a, a′, b, b′, b, c, c′, d, d′c, d, x′, z}.

L3: A word w must begin with a subword in {a′a′′, a′a′′a}∗{bsa′′, b′a′′, ba′′, x′a′′}.

L4: A word w must begin with a subword in {a, λ}{a′a′′, a′a′′a}∗{bsa′′, b′a′′, ba′′, x′a′′}.

L5: A word w must begin with a subword in {c, λ}{c′, λ}{b′′} or w = db′′dℓ, d
′
cb

′′d′′cdℓ.

L6: A word w must begin with a subword in {a, λ}{c, λ}{c′ , λ}{b′′} or w = db′′dℓ, d
′
cb

′′d′′cdℓ.

L7: A word w must begin with a subword v1dv2 where v1 is in {c, λ}{zx′′} and v2 is in {y, y}
or {y′}{a, λ}{c, λ}{y′′ , c′y′′, zy′′}.

L8: A word w must begin with a subword v1dv2 where v1 is in {a, λ}{c, λ}{zx′′} and v2 is in

{y, y} or {y′}{a, λ}{c, λ}{y′′ , c′y′′, zy′′}.

L9: A word w must begin with a subword in {c, λ}{dd, dd}.

L10 A word w must begin with a subword in {a, λ}{c, λ}{dd, dd}.

Next, we define 10 deterministic finite-state automatons M ′
i (1 ≤ i ≤ 10), and show that

L(M ′
i) = Li for each i. Before we do so, we note that the only difference among each M ′

i is the

initial state. Each automaton runs over Σ′ and shares the same set of states, transition function

and accept state. The set of states Q′ for each M ′
i contains 83 distinct states. For this reason, it

is unarguably not reasonable to present their transition function as a diagram. The description

of the transition function is given in Table A.1 in Appendix A. We ask readers to refer to the

same table to see each of 83 states in as well.

Let us now introduce M ′
i for each i with 1 ≤ i ≤ 10. For every i (1 ≤ i ≤ 10), we define

an automaton M ′
i = (Q′,Σ′, δ′, qi, {Dℓ}) where Q contains all states presented in Table A.1, δ′

is the transition function described in Table A.1 in Appendix A, and qi is the initial state such

that
q1 = A q2 = A′′ q3 = A[A] q4 = A′′[A] q5 = A[B]

q6 = A′′[B] q7 = A[X] q8 = A′′[X] q9 = BA q10 = BA′′

Before we show L(M ′
i) = Li for each i, we give a general description of each state in Q.

Frankly, every state is denoted based on which letter in Σ′ is previously used to obtain the state.

138

A state in

{A,A′′, B,B′′, B,B,C,C ′′,D,D′′
c ,D,D,D,Dℓ,X,X

′′,X, Y, Y ′′, Y , Z}

is denoted by a single capital letter, which indicates the transition that was used to arrive at

the state. For instance, D = δ(q, d) for some state q ∈ Q.

Many states come with square brackets with one or two capital letters inside, such as

A′[A] and A′[A,A]. The letter outside of the brackets indicates that the associated lower case

letter in Σ′ that was just used for transition to arrive at the state. Each letter in the brackets,

on the other hand, states that there must eventually be a transition using the associated lower

case letter with a double prime. The appearance of a letter in square brackets is initially caused

by a transition with a prime sign in Σ′ such as a′ and b′. For example, from a state with no

brackets, say A, we have δ′(A, b′) = B′[B] as described in Table A.1. Until its paired b′′ is used

for transition, the letter B is shown in brackets of the states following B′[B]. Indeed, from

B′[B], we eventually arrive at B′′, B′′[C], DB′′ or B′′[D] by b′′ from a previous state as shown

in Figure 6.1. Note that labels of transitions are omitted in Figure 6.1.

Notice that, as we see in δ′(B′[B], c′) = C ′[B,C], it is possible to have another transition

with a prime sign until we reach a state with B′′ involved. In this case, we also must have the

transition c′′ eventually, so we include C in the square brackets as well.

Next, we give a description for states denoted by two consecutive upper case letters.

Namely, the list of these states are given as follows.

{BA,BA′′, BC,CD,DB′′,DB,DC ′′,DD,DD,DY ′′,XD,ZC ′′, ZY ′′}

A[B]

B′[B]

C[B]

C′[B,C]

D[B]

D′
c[B,D]

B′′

B′′ [C]

DB′′

B′′ [D]

Figure 6.1.: Partial state diagram of M ′.

139

The transition to a state q in the above set is the lower case of the second letter in the expression

of q. For instance, to arrive at ZC ′′, we use c′′ from some appropriate state. On the other hand,

the first letter does not indicate anything relevant about a transition. One may think that the

first letter informs which letter was used to obtain the state immediately before the current

state, but this is only true for some cases. For example, the only way to arrive at BA′′ is from

B[A] with the transition a′′. From here, it is possible to go to BA with the transition a. As we

can see, the previous transition a′′ is not recorded in the notation BA.

Finally, we explain the states with arrows involved, that is, the states in the set

{C → {B,D,D,X}, C ′[C] → B[C],D → B,D′
c[D] → B[D], Z → X}.

Each state in this set is denoted based on which transition with an underline is used in the future.

In order to arrive at a state in the above set, we must first obtain DD. Once the transitions d

or d occur, we obtain D or D respectively, and as a result, we arrive at DD. From here, we are

required to have either b, d, d or x in the near future. Hence, we arrive at B, B[C], B[D], D, D

or X. These states with arrows are necessary to distinguish them from other states, which do

not require future transitions to underlined sates.

In each expression of a state with an arrow, the letter at the tail of the arrow indicates

the associated transition to reach there. To reach C → {B,D,D,X}, for example, we must

have c from DD. The state, or the set of states at the head of the arrow shows which tran-

sition with an underline will be possibly used. This transition with an underline, however,

does not have to occur immediately from the state with an arrow, as we can observe with

δ′(C → {B,D,D,X}, c′) = C ′[C] → B[C]. Square brackets are used for the same purpose as

before.

We are now ready to prove the following proposition.

Proposition 6.6 For every i with 1 ≤ i ≤ 10, L(M ′
i) = Li.

Proof. We first show that L(M ′
i) ⊆ Li for each i with 1 ≤ i ≤ 10. We define the set of letters Γ

as

Γ = {a, a′, b, b′, b, c, c′, d, d′c, d, x′, z}.

We also let P ′ be a subset of Q′ defined as P ′ = {A,A′′, B,B′′, B,C,C ′′, CD,D,DD, Y, Y ′′}.

Let i be arbitrary with 1 ≤ i ≤ 10. In M ′
i , we verify that every sequence of transitions

from a state to a non-jail state constructs a subword obeying the conditions of Li. As we go on,

140

we also make sure that the initial state for each M ′
i is the appropriate one.

Let w be in L(M ′
i). Due to certain conditions of Li, for the letters in

Σ \ Γ = {a′′, b′′, bs, b, c′′, d′′c , d, d, dℓ, x, x, y, y′, y′′, y}

to appear in w, it requires some specific letters to be previously appearing in w. For instance,

b′′ is not allowed to appear in w unless there is an unmatched b′ previously showing up in w.

Hence, the letters in Γ are the ones which do not require any particular preceding letters in w.

On the other hand, the letters in the set

∆ = {a, a′, b, b′, bs, b, c, c′, d, d′c, d′′c , d, d, d, x, x′, x′′, x, y′, y, z}

restricts what the next letter or the next few letters can be. For instance, a cannot occur af-

ter a, a sequence of letters following b′ must be in {a′′, λ}{a, λ}{c, λ}{c′ , λ}{b′′}, and so forth.

Therefore, when there is no restriction coming from other letters, we are allowed to have any

letter in Γ from a letter in ∆c \ {dℓ} = {a′′, b′′, b, c′′, y, y′′}. Achieving each letter in ∆c \ {dℓ}
when there is no restriction corresponds to the states A′′, B′′, B, C ′′, Y and Y ′′ respectively. In

Table A.1, we can see that from each one of these states, we have every transition of letters in

Γ transiting to a non-jail states. For L(M ′
2), since w in L2 must begin with a letter in Γ, it is

appropriate to have A′′ as its initial state.

In addition to letters in ∆c \ {dℓ}, the only restriction what a letter after a can be is that

it cannot be a due to the ninth condition of L′. Indeed, every letter in Γ{a} is a transition

from A to a non-jail state. This also verifies that the initial state of L(M ′
1) being A is valid.

Similarly, we can confirm transitions from B, C, D and DD are all valid as well. From D, we

can transit to Dℓ with dℓ, ending w with ddℓ which satisfies the suffix condition of Li. The state

CD = δ′(C, d) is to avoid having dℓ after having cd, as cddℓ is forbidden in L′. Except that

we cannot have the transition dℓ from CD, other transitions are identical to the ones from D,

verifying the row of CD.

From any of the states we have discussed so far, having d′c will take us to D′
c[D]. From

here, the only path is to Bs[D], D′′
c , and then Dℓ, which gives us the suffix d′cbsd

′′
cdℓ. This is one

of the acceptable suffixes of Li, so the transitions from D′
c[D] and Bs[D] are confirmed.

Next, we examine transitions involving states having [A] in their expressions. Except for

the initial states of L(M ′
3) and L(M ′

4), in order to enter states with [A], we always must go to

A′[A] first, since [A] indicates that a′ has been mentioned and currently unmatched. On the

141

other hand, to exit out of states with [A], we must have a′′ from either Bs[A], B[A], B′[A,B] or

X ′[A,X] to transit to B′′, BA′′, A′′[B] or A′′[X] respectively. Before we arrive at any of Bs[A],

B[A], B′[A,B] and X ′[A,X], we can bypass through states A[A], A′[A,A], A′′[A] in this order

finite number of times with A[A] being optional. In this case, we can transit out to Bs[A], B[A],

B′[A,B] or X ′[A,X] from A[A] or A′′[A], but not A′[A,A]. Observing these cases, the set of the

sequence of letters allowed by these transitions is

{a′}{aa′a′′, a′a′′}∗{a, λ}{bsa′′, b′a′′, ba′′, x′a′′} = {a′, a′a}{a′a′′, a′a′′a}∗{bsa′′, b′a′′, ba′′, x′a′′},

which is the set of subwords of a word in L′ containing a′ and a′′ as it is listed in Condition

3 in the definition of L′. We can also verify that the initial states of L(M ′
3) and L(M ′

4) are

appropriate with the prefix conditions of L3 and L4.

We now look at transitions from states with [B]. Besides the initial states of L(M ′
5) and

L(M ′
6), two ways to enter states with [B] are either by transiting to B′[A,B] from A[A], A′[A]

or A′′[A], or by transiting to B′[B] from any other states that allows the transition b′. As

previously observed, from B′[A,B], we only have one transition available, which is a′′ to move

to A′′[B]. Now, whether from A′′[B] or B′[B], we must arrive at B′′, B′′[C], B′′[D] or DB′′ to

exit out of states with [B]. Until we arrive at B′′, we can bypass through A[B] and C[B] in that

order. From A′[B], going through A[B] and C[B] are unnecessary. On the other hand, if we are

coming from B′[B], stopping at one of them is necessary, since we do not have the transition

b′′ from B′[B]. Similarly, we can observe the possibilities to arrive at each one of B′′[C], B′′[D]

and DB′′ from A′′[B] and B′[B] to see all possible subwords induced by the transitions after b′

up to b′′ are in one of the following sets.

{a′′, λ}{a, λ}{c, λ}{c′ , λ}{b′′}, {a′′, λ}{a, λ}{db′′}, {a′′, λ}{a, λ}{c, λ}{d′cb′′}.

Having the initial states of L(M ′
5) and L(M ′

6) as A[B] and A′′[B] respectively, we can confirm

that w in L(M ′
5) satisfies the prefix condition of L5 and w in L(M ′

6) satisfies the prefix condition

of L6. Also, obtaining db
′′ takes us from D[B] to DB′′, and the only transition from there is dℓ

to go to Dℓ, which meets one of the suffix condition of Li. Similarly, d′cb
′′ corresponds to the

transition from D′
c[B,D] to B′′[D], and this continues with D′′

c and then Dℓ. Hence, we have

d′cb
′′d′′cdℓ, an acceptable suffix of w in Li.

We move onto the transitions with overlines and underlines. From any state in P ′, we

arrive at B with b from which, we transit to either D or D with optional paths through BA and

BC in that order. If we come from A[A], A′[A] or A′′[A], we transit to B[A], and then BA′′ with

a′′. Again, having optional states BA and BC, we arrive at D or D. The only transition from

D and D is d to DD and DD respectively. Thus, a sequence of letters constructed by these

142

paths is in

{b}{a′′, λ}{a, λ}{c, λ}{dd, dd}

which satisfies the seventh condition of Li. For L(M ′
9) and L(M ′

10), the initial states are BA and

BA′′ respectively. Thus, a word in L(M ′
9) has a prefix in {c, λ}{dd, dd}, and a word in L(M ′

10)

has a prefix in {a, λ}{c, λ}{dd, dd}.

Instead of b, we can also use d, d or y to enter states with overlines, and arrive at states

with underlines later. For now, we examine the cases of d and d to have D and D respectively,

and we will discuss the case of y later. When we have a transition d or d from a certain state, we

arrive at D or D respectively, which are both followed by DD. From DD, there are several ways

to achieve a state with an underline. First, going to D → B, DB and then Dℓ gives us either

dddbdℓ or dddbdℓ, which are appropriate suffixes of a word in Li. Similarly, after the optional

C → {B,D,D,X}, we can transit through D′
c[D] → B[D], B[D], D′′

c and then Dℓ to have a

suffix in {dd, dd}{c, λ}{d′cbd′′cdℓ}, which is also a valid suffix in Li. Additionally, there are five

more cases. In each case, C → {B,D,D,X} is available after DD as an optional state. Thus,

these five cases are:

• B to obtain {dd, dd}{c, λ}{b}.

• C ′[C] → B[C] and B[C] to obtain {dd, dd}{c, λ}{c′b}.

• D and DD to obtain {dd, dd}{c, λ}{dd}.

• D and DD to obtain {dd, dd}{c, λ}{dd}.

• Z → X, X and XD to obtain {dd, dd}{c, λ}{zxd}.

All of them are acceptable under the seventh condition of Li.

Let us now look at transitions from states with [C]. Entering these states can be done in

multiple ways. Namely, from A[B], A′′[B], B′[B] and C[B] to C ′[B,C] while b′ is unmatched,

from A[Y], C[Y] and Y ′[Y] to C ′[Y,C] while y′ is unmatched, from DD and C → {B,D,D,X}
to C ′[C] → B[C] while d is unmatched, and simply from a state in P ′ to C ′[C]. The states

immediately after each case are B′′[C], Y ′′[C], B[C] and Bs[C] respectively, and they share the

same transitions to the same states afterwards. Similar to the case of [A], we can transit through

C[C], C ′[C,C] and C ′′[C] in this order finite number of times with C[C] being optional. We

can exit out of these states from C[C] by having c′′ to C ′′, d′c to D
′
c[C,D] or z to Z[C], or from

B′′[C], Y ′′[C], B[C], Bs[C] and C ′′[C] by having d to D[C], d′c to D′
c[C,D] or z to Z[C]. Since

Z[C] is followed by ZC ′′, if we arrive at C ′′ or Z[C], the sequence of letters constructed by these

143

paths are in

{c′bs, c′b′′, c′b, c′y′′}{c′c′′, cc′c′′}∗{c′′, cc′′, zc′′, czc′′},

which obeys the fifth condition of Li. Similarly, if we arrive at D[C] or D′
c[C,D], the rest of the

run of M ′
i are DC

′′ then Dℓ and C
′′[D], D′′

c then Dℓ respectively. Suffixes constructed by paths

are respectively in {c′bs, c′b′′, c′b, c′y′′}{c′c′′, cc′c′′}∗{dc′′dℓ} and {c′bs, c′b′′, c′b, c′y′′}{c′c′′, cc′c′′}∗

{c, λ}{d′cc′′d′′cdℓ}, which satisfy the suffix condition of Li.

Finally, we observe transitions from the rest of the states, which are related to X, Y and

Z. We first describe four ways to arrive at XD first, and any sequence of letters up to XD

obeys the eighth condition of Li. Frankly, these four cases are recognized by which state of Z,

Z[X], Z → X and Z[C] we obtain by the transition z. There is one more state that we can

arrive at with z, which is Z[Y], but we will look at this case later.

The transition x′ can occur if and only if b′ can happen. From A[A], A′[A] or A′′[A], we

arrive at X ′[A,X], and from any other states that allow the transition x′, we transit to X ′[X].

From X ′[A,X], a′′ is the only transition available to A′′[X]. Whether from A′′[X] or X ′[X], we

have the optional states A[X] and C[X] in this order. Afterwards, we must arrive at Z[X] which

is followed by X ′′, and then XD. Therefore, words constructed by these sequences of transitions

starting from x′ are in {x′}{a′′, λ}{a, λ}{c, λ}{zx′′}, which is listed under the eighth condition

of Li. For L(M ′
7) and L(M ′

8), a word begins with a prefix in {c, λ}{zx′′} and {a, λ}{c, λ}{zx′′}
respectively, and it is followed by d afterwards.

From any state in P ′, we have the transition z to Z followed by X and XD, so this path

produces zxd. Also, as explained before, having d or d previously allows us to transit to Z → X ,

X and XD to obtain zxd. The last case, Z[C] can be obtained whenever C ′[C,C] is available.

Once we arrive at Z[C], we transit to ZC ′′ with c′′ instead of x, then XD, giving us zc′′d. Hence,

in all four cases of passing through Z, Z[X], Z → X or Z[C], a sequence of letters up to XD

obeys the eighth condition of Li.

We note that primarily, x after z is a necessary transition, but this x is replaceable with

x′′, x or c′′. In the case x′ or c′ is unmatched, we have x′′ or c′′ respectively instead of x.

Similarly, if d or d is unmatched with a transition with an underline, then we have x.

From XD, there are three transitions available. Having y takes us to Y , which com-

pletes the sequence of transitions related to x, y and z. On the other hand, if we transit to

Y with y, we have optional BA and BC before we get to D or D, constructing a word in

144

{y}{a, λ}{c, λ}{dd, dd}. Finally, if we go to Y ′[Y] with y′, there are a few different ways to

achieve y′′. With optional A[Y], C[Y] and C ′[Y,C] in this order, we can arrive at either Y ′′

or Y ′′[C], giving us {y′}{a, λ}{c, λ}{y′′ , c′y′′}. Now, after optional A[Y] and C[Y], it is also

possible to have Z[Y] followed by ZY ′′ to have {y′}{a, λ}{c, λ}{zy′′}. In this case, y′′ is taking

the primary role of x, so it goes to XD afterwards, creating another sequence of letters starting

with z. The other two states after Y ′ are D[Y], DY ′′ and then Dℓ, or D
′
c[Y,D], Y ′′[D], D′′

c and

then Dℓ, resulting in suffixes dy′′dℓ or d
′
cy

′′d′′cdℓ respectively.

With any sequence of transitions up to XD combined with a sequence of transitions from

XD, the constructed subword satisfies the conditions of Li.

We have examined every sequence of transitions recursively occurring to form a word obeys

all conditions of Li. Consequently, a word in L(M
′
i) is in Li, completing the proof of L(M ′

i) ⊆ Li.

To show that Li ⊆ L(M ′
i), we take the same approach as we did in Chapter 4 for L and

L(M). That is, suppose w is not in L(M ′
i). The only ways w cannot be accepted by Mi are

either the run of Mi on w contains the jail state or the last state is not Dℓ. The latter violates

the suffix condition of Li, so w is not in Li. For the case the run of M on w contains the jail

state, we need to show that every transition to the jail state is due to a failure of w to meet one

of the conditions of Li.

For some cases such as w containing the jail state due to (A, a) or (B, b), w must contain

a subword that is prohibited in the ninth condition of Li. In other cases, which are the majority

of the transitions to the jail state, w must disobey at least one of the second to the eighth

conditions of Li. For instance, having a′′ with any state q without the notation of [A] implies

that there is no a′ previously. Thus, this violates the third condition of Li. As we can see, it is

a straightforward exercise (but long and tedious one) to verify that every transition to the jail

state violates some conditions of Li.

Consequently, this completes the proof of L(M ′
i) = Li. �

With Proposition 6.5 and 6.6, we are finally at the place to derive the generating function

for all simple permutations of length 4 or more in A′.

Proof of Theorem 6.1. Let us apply the transfer matrix method to each L(M ′
i) (1 ≤ i ≤ 10).

Since each M ′
i shares the same transitions with different initial states, we only need to provide

one adjacency matrix. The adjacency matrix for each M ′
i is extremely large, so it is given in

145

Appendix A.

In this matrix, there are three weights, x, F̄ and Ḡ. These weights are used for inflation

in the next section. In order to we replace all weights F̄ and Ḡ with x. Let P ′ be such adjacency

matrix. We denote by (I − P)−1
q1,q2

the (q1, q2)-entry of (I − P)−1. For each L(M ′
i), we examine

(I − P)−1
qi,Dℓ

where qi is the initial state for M ′
i . Each one gives the generating function for

n-letter words in L(M ′
i), and hence, for n-letter words in Li. A word in each Li, is missing a

certain prefix, so we need to multiply either x2, x3 or x4 accordingly to count all associated

words in L′. We then add all of these generating functions to obtain the generating function for

L′, which enumerates all permutations in H ′. Thus,

fH′ = x2 · (I − P)−1
A,Dℓ

+ x4 · (I − P)−1
A′′,Dℓ

+ x3 · (I − P)−1
A[A],Dℓ

+ x4 · (I − P)−1
A′′[A],Dℓ

+ x3 · (I − P)−1
A[B],Dℓ

+ x4 · (I − P)−1
A′′[B],Dℓ

+ x3 · (I − P)−1
A[X],Dℓ

+ x4 · (I − P)−1
A′′[X],Dℓ

+ x3 · (I − P)−1
BA,Dℓ

+ x4 · (I − P)−1
BA′′,Dℓ

=
x4
(
x10 + 7x9 + 18x8 + 23x7 + 16x6 + 10x5 + 12x4 + 9x3 + 2x2 + 1

)

(x+ 1) (2x9 + 12x8 + 16x7 + 3x6 − 11x5 − 5x4 − 3x2 − 3x+ 1)
.

By doubling this result, we obtain the desired generation function fSi(A′)\S2
. �

6.2. Enumeration of the whole class A′

In order to finish the enumeration of the whole class, we show that every simple permutation in

A′ satisfies the hypothesis of Proposition 2.5, just as we did in Chapter 4.

Before we state and prove the statement, we make a few important notes. For π ∈ N ,

values in LRmax(π) have positions in [1, π−1(n)]. In particular, except the value n, a value of

π is in LRmax(π) if and only if it is 1 of 1, 2 of 21 in 231-value chains, or 2 or 3 of 231 in

231-value chains in Equation 5.2. This implies that LRmax(π) \{n} is the set of values that are

encoded as a or a′′ by N-ENCODE. By the reverse complement symmetry, we also know that

RLmin(π) \ {1} is the set of values that are encoded as c or c′ by N-ENCODE. Hence, values

π(i) that are covered in the fourth condition of the latter four must be playing the roles of 1 of

21 or 231 in 231-value chains in Equation 5.2, 1 of 21 or 312 in 312-value chains in Equation

5.3, 1 of 1 in Equation 5.1 which is a scissor of a value chain, or 1 or 2 of 12 in Equation 5.1.

Respectively, these are the values encoded as a′, c′′, bs, b
′ and b′′ by N-ENCODE.

We are now ready to prove the following lemma.

146

Lemma 6.7 Let π be a simple permutation of extreme pattern 2413 or 3142 whose length is n.

The condition α = σ[σ1, . . . , σn] ∈ A′ is equivalent to the condition stating that for all i with

1 ≤ i ≤ n,

• if π(i) ∈ LRmax(π), then σi ∈ Av(4123, 4213, 4132),

• if π(i) ∈ RLmin(π), then σi ∈ Av(2341, 3241, 2431),

• if π(i) is 1 of 1 in Equation 5.1 and it is not a scissor of either value chain, then σi ∈
Av(123, 213, 132), and

• otherwise, σi ∈ Av(12, 21).

Proof. We only consider the case of π is of extreme pattern 2413, since we can apply the inverse

symmetry to prove the case of extreme pattern 3142.

First, we show that the first condition implies the latter four conditions. Suppose the

latter condition is false. That is, at least one of the above four conditions is not met. Assume it

is the first one. Then there exists i (1 ≤ i ≤ n) such that π(i) ∈ LRmax(π) and σi contains at

least one of 4123, 4213 and 4132. Now, whichever point (i, π(i)) is, the point with the value 1

is located to the right. Thus, the value 1 of α together with the subsequence corresponding to

4123, 4213 or 4132 of α within the inflation σi, α contains 52341, 53241 or 52431 respectively, so

α /∈ A′. If the second condition is not met, we can apply the reverse complement argument of the

previous one to show α contains one of 52341, 53241 and 52431. If the third condition is false,

say at least one of 123, 213 and 132 is contained in σi for some i, then with the values |α| and
1, α contains 52341, 53241 or 52431, α /∈ A′. Finally, for the last condition, each of these values

is either 2 or 3 of 4231 pattern in π. Hence, inflating with σi which contains 12 or 21 will cause

α to contain 52341, 53241 or 52431, so again, α /∈ A′. Consequently, α = π[σ1, . . . , σn] ∈ A′

implies the latter condition.

Next, assume a permutation α = π[σ1, . . . , σn] where π ∈ H ′ is not in A′. Thus, α contains

at least one permutation β in the basis. Since π avoids every permutation in the basis, it means

there exist σi1 , . . . , σik (for all j ∈ {1, . . . , k}, 1 ≤ ij ≤ n) such that α contains β within the

union of subintervals corresponding to σi1 , . . . , σik .

Because every permutation in {35142, 42513, 351624} is simple, so we only need to consider

β ∈ {52341, 53241, 52431}. For now, suppose β = 52341. If there exist σi1 , σi2 , σi3 , σi4 , σi5 such

that each point of β is contained in intervals corresponding to σi1 , σi2 , σi3 , σi4 , σi5 respectively,

then β � π which cannot be true. On the other hand, if there exists a single σi such that β � σi,

then one of the latter conditions is false, since β contains whatever σi cannot contain. Hence,

147

there exist two, three or four subintervals of α such that the containment of β is involved in.

We first assume that a containment of β occurs among four subintervals of α. Let

σi1 , σi2 , σi3 , σi4 with i1 < i2 < i3 < i4 be the permutations from the expression α = π[σ1, . . . , σn]

which correspond to each subinterval. By the pigeonhole principle, there is one subinterval

containing two values of β which have consecutive positions. Due to inflation, these two values

cannot be 52 and 41 of β. Hence, it is either 23 or 34, and each case implies 12 � σi2 or 12 � σi3

respectively. Suppose the case of 23 contained in one subinterval, so we have 12 � σi2 . Note

that π(i2) cannot be in LRmax(π) because then we do not have any value for π(i1) to the left

of π(i2). Similarly, π(i2) /∈ RLmin(π). Also, if π(i2) plays the role of 1 of 21 or 231 in 231-value

chains in Equation 5.2 or 1 of 21 or 312 in 312-value chains in Equation 5.3, then the fourth

condition is not met. Therefore, suppose i2 ∈ (π−1(n), π−1(1)). If π(i2) plays the role of 1 or

2 of 12 in Equation 5.1 or 1 of 1 in Equation 5.1 that is a scissor of some value chain, then

again, the fourth condition is not satisfied. Thus, π(i2) plays the roles of 1 of 1 in Equation

5.1 that is not a scissor of a value chain. Then i3, i4 ∈ [π−1(1), n] with π(i4) < π(i2) < π(i3),

but this means π(i2) is a scissor of a 312-value chain, so we have a contradiction. We achieve

same results by assuming 34 is contained in one subinterval. Consequently, if a containment of

β occurs among four subintervals of α, then the latter conditions are false.

Next, suppose a containment of β involves three subintervals of α. Let σi1 , σi2 , σi3 with

i1 < i2 < i3 be the permutations from the expression α = π[σ1, . . . , σn] which correspond to

each subinterval. In this case, the only possibility is that the middle interval corresponding to

σi2 contains the positions of 234, and each of the other two interval contains the positions of

5 and 1. Hence, we have 123 � σi2 . As before, π(i2) cannot be in LRmax(π) and RLmin(π).

Now, if π(i2) corresponds to 1 of 1 in Equation 5.1 that is not a scissor of a value chain, then

the third condition is disobeyed. Otherwise, the fourth condition is false, since 12 � 123 � σi2 .

Finally, suppose the containment of β is shared by two subintervals of α, say the ones of

σi1 and σi2 with i1 < i2. Then this must imply 4123 ∈ σi1 or 2341 ∈ σi2 . Suppose 4123 ∈ σi1 .

Then π(i1) /∈ RLmin(π) since there is no value for π(i2) to the right of π(i1). However, because

12 and 123 are contained in 4123, this implies σ1 disobeys one of the latter conditions. We

obtain the same result for 2341 ∈ σi2 . So once again, the latter conditions are false.

Proving for the cases of β = 53241 and β = 52431 are very similar. With every obser-

vation we made, the latter conditions imply α = π[σ1, . . . , σn] ∈ A′. Consequently, those two

statements are equivalent. �

148

By using Lemma 6.7, we claim that every simple permutation in H ′ also satisfies the hy-

pothesis of Proposition 2.5. Let σ, τ be simple permutations of extreme pattern 2413 and 3142

respectively where |σ| = m and |τ | = n. We examine σ 1
1 as an example. Let i be the position

of m in σ. In σ 0
1 τ , for every position k except for i, σ′(k) = σ(k). Because all values coming

from τ are greater than σ′(k), subclasses of inflation for each σ′(k) are exactly the same for σ(k)

of σ. Similarly, for τ ′(k) with 3 ≤ k ≤ n, as σ′(i) taking the place of τ(1), subclasses of inflation

for each τ ′(k) are exactly the same for τ(k) of τ . For σ′(i), since it is now in LRmax(σ 0
1 τ), its

subclass of inflation is Av(4123, 4213, 4132), which is the same as the one for σ(i) in σ. Hence,

for every value of σ 0
1 τ , its subclass of inflation remains the same. We obtain the same result

for σ 0
1 τ .

For (x, y) ∈ {(2, 0), (2, 1), (3, 0), (4, 0)}, there is another value of σ that is shifted upward

in σ y
x τ . In particular, for (x, y) = (2, 0) and (x, y) = (2, 1), it is σ(i + 2), for (x, y) = (3, 0),

it is σ(m − 2), and for (x, y) = (4, 0), it is σ(s) where s is the position of the value m− 2. All

of these values correspond to either 2 or 3 of 4231 pattern in σ, so their subclass of inflation

is Av(12, 21). After they are shifted by y
x, they are still playing the roles of 2 or 3, so their

subclass of inflation do not change. In addition, just like the case of 1
1, other values of σ and

values of τ keep their subclasses of inflation when σ and τ are operated by y
x.

We can establish the same result for SE glue sums. Thus looking at how W-COMBINE

and AFFIX-CONVERT replaces letters, we have the following proposition as a consequence of

Lemma 6.7.

Proposition 6.8 Let π be a simple permutation in H ′. The condition α = π[σ1, . . . , σn] ∈ A′

is equivalent to the condition stating that for all i with 1 ≤ i ≤ n,

• if π(i) is encoded by φ′ as a letter in {a, a′′, c, c′, d, d′′a, d′c, dℓ, z}, then σi ∈ Av(4123, 4213, 4132)

or σi ∈ Av(2341, 3241, 2431) (depending on the specific letter and whether π(i) originally

belonged to N or S),

• if π(i) is encoded as b, then σi ∈ Av(123, 213, 132), and

• if π(i) is encoded as a letter in {a′, bs, b′, b′′, b, b, c′′, d, d, d, x, x′, x′′, x, y, y′, y′′, y}, then σi ∈
Av(12, 21).

The generating functions for Av(4123, 4213, 4132) and σi ∈ Av(2341, 3241, 2431) are ex-

actly the same by reverse complement, as stated in Lemma 3.2. For their inflation, we need

the generating function Ḡ. The generating function for Av(123, 213, 132) was also previously

explained in Chapter 3 as Lemma 3.1. We denote by F the generating function for this class,

149

and use F̄ for inflation. Finally, Av(12, 21) = {ε, 1}, so fAv(12,21) = 1+x, implying f̄Av(12,21) = x.

We now revisit the adjacency matrix P ′. By replacing weights of transitions in {a, a′′, c, c′,
d, d′′a, d

′
c, dℓ, z} with Ḡ and the transition b with F̄ , we obtain the adjacency matrix P̂ ′ shown

in Table A.2. The generating function for permutations in A′ that are obtained by inflation of

simple permutations in H ′ is

fifl(H′) = Ḡ2 · (I − P̂)−1
A,Dℓ

+ x2 · Ḡ2 · (I − P̂)−1
A′′,Dℓ

+ x · Ḡ2 · (I − P̂)−1
A[A],Dℓ

+ x2 · Ḡ2 · (I − P̂)−1
A′′[A],Dℓ

+ x · Ḡ2 · (I − P̂)−1
A[B],Dℓ

+ x2 · Ḡ2 · (I − P̂)−1
A′′[B],Dℓ

+ x · Ḡ2 · (I − P̂)−1
A[X],Dℓ

+ x2 · Ḡ2 · (I − P̂)−1
A′′[X],Dℓ

+ x · Ḡ2 · (I − P̂)−1
BA,Dℓ

+ x2 · Ḡ2 · (I − P̂)−1
BA′′,Dℓ

. (6.1)

As usual, we multiply 2 to include the inverse case, so we have fifl(Si(A′)\S2) = 2fifl(H’).

For the inflation of π = 21, we need to inflate π(1) = 2 with a skew-indecomposable

permutation σ1. We claim that α = 21[σ1, σ2] ∈ A′ with skew-indecomposable σ1 is equiv-

alent to the condition that σ1 ∈ Av(4123, 4213, 4132) and σ1 is skew-indecomposable, and

σ2 ∈ Av(2341, 3241, 2431). The condition of σ1 being skew-indecomposable cannot be dropped to

enforce the uniqueness of inflation. It is clear that either of β1 � σ1 for any β1{4123, 4213, 4132}
or β2 � σ2 for any β2{2341, 3241, 2431} implies α /∈ A′. Suppose that α /∈ A′. Then β ∈ α

for some β ∈ {52341, 53241, 52431, 35142, 42513, 351624}. Since 35142, 42513 and 351624 are

simple, if β ∈ {35142, 42513, 351624}, then β � σ1 or β � σ2. In either case, either one of 4123,

4213, 4132 is contained in σ1 or either one of 2341, 3241, 2431 is contained in σ2, so the second

condition is not met. If β = 52341, then it is immediate that 4123 � σ1 or 2341 � σ2. We

obtain the similar results for β = 53241 and β = 52431. Thus, the condition α = 21[σ1, σ2] ∈ A′

with skew decomposable σ1 and the condition σ1 ∈ Av(4123, 4213, 4132) where σ1 is skew-

indecomposable are equivalent.

By Proposition 2.5,

f̄ifl(21) = f̄⊖Av(4123,4213,4132) · f̄Av(2341,3241,2431) .

By Lemma 3.3, we know f̄⊖Av(4123,4213,4132) = (1 − x − x2)Ḡ. With f̄Av(2341,3241,2431) = Ḡ, we

obtain

fifl(21) = (1− x− x2)Ḡ2.

The last case we need to consider is π = 12. We can inflate both 1 and 2 by any per-

mutations σ1 and σ2 of A′ itself, provided that σ1 is a sum-indecomposable permutation in A′.

150

Three cases for σ1 being sum-indecomposable are σ1 = 1, σ1 is skew-decomposable, or σ1 is an

inflated permutation of π ∈ Si(A′) \ S2. Generating functions for each case are x, fifl(21) and

fifl(Si(A′)\S2) respectively. Thus,

fifl(12) = (x+ fifl(21) + fifl(Si(A)\S2)) · f̄A′ .

Consequently, the generating function for A′ satisfies the functional equation

fA′ = 1 + x+ fifl(12) + fifl(21) + fifl(Si(A′)\S2)

= 1 + x+ (x+ fifl(21) + fifl(Si(A′)\S2)) · f̄ ′A + fifl(21) + fifl(Si(A′)\S2).

Finally, with f̄A′ = fA′ − 1, we solve for fA′ . Then, we obtain

fA′ =
1

1− x− fifl(21) − fifl(Si(A′)\S2)
.

We substitute fifl(21) with (1− x− x2)Ḡ2 and fifl(Si(A′)\S2) = 2finf(H′) with Equation 6.1. After

we simplify the whole expression of fA′ as well as Equation 6.1, we obtain the final desired result

as the following.

Theorem 6.9 The generating function for the class A′ is defined by

fA′ =

∑5
i=0 aiḠ

i

∑6
i=0 biḠ

i

where Ḡ = G− 1 and G is the generating function satisfying the equation

G = 1 +
xG

1− xG2
,

and

a0 = −1 + 14x− 39x2 + 28x3 + 9x4 − 11x5 + x6,

a1 = −12 + 81x− 100x2 + 15x3 + 46x4 − 19x5,

a2 = −8 + 35x− 20x2 − 25x3 + 31x4 − 6x5 − x6,

a3 = 7, a4 = 1, a5 = −2.

b0 = −1 + 57x− 125x2 + 143x3 − 48x4 − 64x5 + 51x6 − 2x8,

b1 = −54 + 260x − 386x2 + 250x3 + 81x4 − 226x5 + 74x6 + 15x7 − 3x8,

b2 = −18 + 114x − 104x2 − 22x3 + 148x4 − 123x5 + 11x6 + 14x7 − x8,

b3 = 24, b4 = −2, b5 = −5, b6 = 1.

The first several terms in power series expression are

fA′ = 1 + x+ 2x2 + 6x3 + 24x4 + 115x5 + 607x6 + 3370x7 + 19235x8 + 111571x9 + · · ·

151

6.3. Conclusions

As authors noted in [7], the technique they used to enumerate A was indeed applicable to

enumerate the permutations indexing local complete intersection Schubert varieties. Although

the whole process turned out to be extremely complicated, as of now, examining the geometric

structures and constructing an encoding to apply the transfer matrix method is the only known

way to enumerate this class. There may be a much more efficient method by closely learning

the class A′ and observing Rothe diagrams of permutations described in [38].

Lastly, this dissertation owes huge thanks to PermLab [1] and its author, Michael Albert.

Without this extremely efficient program, viewing structures of permutations in A′ would have

been impossible.

152

Appendices

A. Transitions of M ′

i
(1 ≤ i ≤ 10) and adjacency matrix associated with M ′

i

Two large tables which are referred in Chapter 6 are placed in this section. Table A.1 shows the

description of δ′, the transition function for the automaton M ′
i for each i with 1 ≤ i ≤ 10. Note

that Jail states and transitions to them are omitted.

Table A.2 shows the associated adjacency matrix P̂ ′ with weights x, F̄ and Ḡ. Since the

matrix is extremely large, it is presented by dividing into eight sub-matrices A through H in

alphabetical order, where

P̂ ′ =

[

A B C D

E F G H

]

.

As it was described in Chapter 6, in order to obtain P ′, the adjacency matrix for each

M ′
i , we need replace all weights F̄ and Ḡ with x. Let P ′ be such adjacency matrix.

1
5
3

a a′ a′′ b b′ b′′ bs

A A′[A] B B′[B]

A′′ A A′[A] B B′[B]

A[A] A′[A,A] B′[A,B] Bs[A]

A′[A] A[A] A′[A,A] B′[A,B] Bs[A]

A′′[A] A[A] A′[A,A] B′[A,B] Bs[A]

b b c c′ c′′ d d′c

A B C C′[C] D D′
c[D]

A′′ B C C′[C] D D′
c[D]

A[A] B[A]

A′[A] B[A]

A′′[A] B[A]

d′′c d d d dℓ x x′

A D X ′[X]

A′′ D X ′[X]

A[A] X ′[A,X]

A′[A] X ′[A,X]

A′′[A] X ′[A,X]

x′′ x y y′ y′′ y z

A Z

A′′ Z

A[A]

A′[A]

A′′[A]

Table A.1.: Partial state diagram of M ′.

1
5
4

a a′ a′′ b b′ b′′ bs

A[B] B′′

A′′[B] A[B] B′′

A[X]

A′′[X]

A[Y]

b b c c′ c′′ d d′c

A[B] C[B] C′[B,C] D[B] D′
c[B,D]

A′′[B] C[B] C′[B,C] D[B] D′
c[B,D]

A[X] C[X]

A′′[X] C[X]

A[Y] C[Y] C′[Y, C] D[Y] D′
c[Y,D]

d′′c d d d dℓ x x′

A[B]

A′′[B]

A[X]

A′′[X]

A[Y]

x′′ x y y′ y′′ y z

A[B]

A′′[B]

A[X] Z[X]

A′′[X] Z[X]

A[Y] Y ′′ Z[Y]

1
5
5

a a′ a′′ b b′ b′′ bs

A′[A,A] A′′[A]

B A A′[A] B′[B]

B′′ A A′[A] B B′[B]

B A A′[A] B B′[B]

B BA

b b c c′ c′′ d d′c

A′[A,A]

B B C C′[C] D D′
c[D]

B′′ B C C′[C] D D′
c[D]

B B C C′[C] D D′
c[D]

B BC

d′′c d d d dℓ x x′

A′[A,A]

B D X ′[X]

B′′ D X ′[X]

B D X ′[X]

B D D

x′′ x y y′ y′′ y z

A′[A,A]

B Z

B′′ Z

B Z

B

1
5
6

a a′ a′′ b b′ b′′ bs

BA

BA′′ BA

BC

Bs[A] A′′

B[A] BA′′

b b c c′ c′′ d d′c

BA BC

BA′′ BC

BC

Bs[A]

B[A]

d′′c d d d dℓ x x′

BA D D

BA′′ D D

BC D D

Bs[A]

B[A]

x′′ x y y′ y′′ y z

BA

BA′′

BC

Bs[A]

B[A]

1
5
7

a a′ a′′ b b′ b′′ bs

B′[B] A[B]

Bs[C]

B′′[C]

B[C]

Bs[D]

b b c c′ c′′ d d′c

B′[B] C[B] C′[B,C] D[B] D′
c[B,D]

Bs[C] C[C] C′[C,C] C′′ D[C] D′
c[C,D]

B′′[C] C[C] C′[C,C] C′′ D[C] D′
c[C,D]

B[C] C[C] C′[C,C] C′′ D[C] D′
c[C,D]

Bs[D]

d′′c d d d dℓ x x′

B′[B]

Bs[C]

B′′[C]

B[C]

Bs[D] D′′
c

x′′ x y y′ y′′ y z

B′[B]

Bs[C] Z[C]

B′′[C] Z[C]

B[C] Z[C]

Bs[D]

1
5
8

a a′ a′′ b b′ b′′ bs

B′′[D]

B[D]

B′[A,B] A′′[B]

C A A′[A] B B′[B]

C′′ A A′[A] B B′[B]

b b c c′ c′′ d d′c

B′′[D]

B[D]

B′[A,B]

C B C′[C] CD D′
c[D]

C′′ B C C′[C] D D′
c[D]

d′′c d d d dℓ x x′

B′′[D] D′′
c

B[D] D′′
c

B′[A,B]

C D X ′[X]

C′′ D X ′[X]

x′′ x y y′ y′′ y z

B′′[D]

B[D]

B′[A,B]

C Z

C′′ Z

1
5
9

a a′ a′′ b b′ b′′ bs

C→{B,D,D,X}

CD A′[A] B B′[B]

C[B] B′′

C[C]

C′[C] Bs[C]

b b c c′ c′′ d d′c

C→{B,D,D,X} B C′[C] → B[C] D′
c[D] → B[D]

CD B C C′[C] D D′
c[D]

C[B] C′[B,C] D′
c[C,D]

C[C] C′[C,C] C′′ D′
c[C,D]

C′[C]

d′′c d d d dℓ x x′

C→{B,D,D,X} D D

CD D X ′[X]

C[B]

C[C]

C′[C]

x′′ x y y′ y′′ y z

C→{B,D,D,X} Z → X

CD Z

C[B]

C[C] Z[C]

C′[C]

1
6
0

a a′ a′′ b b′ b′′ bs

C′[C] → B[C]

C′′[C]

C′′[D]

C[X]

C[Y]

b b c c′ c′′ d d′c

C′[C] → B[C] B[C]

C′′[C] C[C] C′[C,C] C′′ D[C] D′
c[C,D]

C′′[D]

C[X]

C[Y] C′[Y, C] D′
c[Y,D]

d′′c d d d dℓ x x′

C′[C] → B[C]

C′′[C]

C′′[D] D′′
c

C[X]

C[Y]

x′′ x y y′ y′′ y z

C′[C] → B[C]

C′′[C] Z[C]

C′′[D]

C[X] Z[X]

C[Y] Y ′′ Z[Y]

1
6
1

a a′ a′′ b b′ b′′ bs

C′[B,C] B′′[C]

C′[C,C]

C′[Y,C]

D A′[A] B B′[B]

D′′
c

b b c c′ c′′ d d′c

C′[B,C]

C′[C,C] C′′[C]

C′[Y,C]

D B C C′[C] D D′
c[D]

D′′
c

d′′c d d d dℓ x x′

C′[B,C]

C′[C,C]

C′[Y,C]

D D Dℓ X ′[X]

D′′
c Dℓ

x′′ x y y′ y′′ y z

C′[B,C]

C′[C,C]

C′[Y,C] Y ′′[C]

D Z

D′′
c

1
6
2

a a′ a′′ b b′ b′′ bs

D

D

D

Dℓ

DB′′

b b c c′ c′′ d d′c

D DD

D DD

D DD

Dℓ

DB′′

d′′c d d d dℓ x x′

D

D

D

Dℓ

DB′′ Dℓ

x′′ x y y′ y′′ y z

D

D

D

Dℓ

DB′′

1
6
3

a a′ a′′ b b′ b′′ bs

DB

D → B

DC′′

DD A′[A] B B′[B]

DD

b b c c′ c′′ d d′c

DB

D → B DB

DC′′

DD B C C′[C] D D′
c[D]

DD B C→{B,D,D,X} C′[C] → B[C] D → B D′
c[D] → B[D]

d′′c d d d dℓ x x′

DB Dℓ

D → B

DC′′ Dℓ

DD D X ′[X]

DD D D

x′′ x y y′ y′′ y z

DB

D → B

DC′′

DD Z

DD Z → X

1
6
4

a a′ a′′ b b′ b′′ bs

DY ′′

D[B] DB′′

D[C]

D′
c[D] Bs[D]

D′
c[D] → B[D]

b b c c′ c′′ d d′c

DY ′′

D[B]

D[C] DC′′

D′
c[D]

D′
c[D] → B[D] B[D]

d′′c d d d dℓ x x′

DY ′′ Dℓ

D[B]

D[C]

D′
c[D]

D′
c[D] → B[D]

x′′ x y y′ y′′ y z

DY ′′

D[B]

D[C]

D′
c[D]

D′
c[D] → B[D]

1
6
5

a a′ a′′ b b′ b′′ bs

D[Y]

D′
c[B,D] B′′[D]

D′
c[C,D]

D′
c[Y,D]

X

b b c c′ c′′ d d′c

D[Y]

D′
c[B,D]

D′
c[C,D] C′′[D]

D′
c[Y,D]

X XD

d′′c d d d dℓ x x′

D[Y]

D′
c[B,D]

D′
c[C,D]

D′
c[Y,D]

X

x′′ x y y′ y′′ y z

D[Y] DY ′′

D′
c[B,D]

D′
c[C,D]

D′
c[Y,D] Y ′′[D]

X

1
6
6

a a′ a′′ b b′ b′′ bs

X ′′

X

XD

X ′[X] A[X]

X ′[A,X] A′′[X]

b b c c′ c′′ d d′c

X ′′ XD

X XD

XD

X ′[X] C[X]

X ′[A,X]

d′′c d d d dℓ x x′

X ′′

X

XD

X ′[X]

X ′[A,X]

x′′ x y y′ y′′ y z

X ′′

X

XD Y Y ′[Y] Y

X ′[X] Z[X]

X ′[A,X]

1
6
7

a a′ a′′ b b′ b′′ bs

Y A A′[A] B B′[B]

Y ′′ A A′[A] B B′[B]

Y BA

Y ′′[C]

Y ′′[D]

b b c c′ c′′ d d′c

Y B C C′[C] D D′
c[D]

Y ′′ B C C′[C] D D′
c[D]

Y BC

Y ′′[C] C[C] C′[C,C] C′′ D[C] D′
c[C,D]

Y ′′[D]

d′′c d d d dℓ x x′

Y D X ′[X]

Y ′′ D X ′[X]

Y D D

Y ′′[C]

Y ′′[D] D′′
c

x′′ x y y′ y′′ y z

Y Z

Y ′′ Z

Y

Y ′′[C] Z[C]

Y ′′[D]

1
6
8

a a′ a′′ b b′ b′′ bs

Y ′[Y] A[Y]

Z

ZC′′

Z → X

b b c c′ c′′ d d′c

Y ′[Y] C[Y] C′[Y, C] D[Y] D′
c[Y,D]

Z

ZC′′ XD

Z → X

d′′c d d d dℓ x x′

Y ′[Y]

Z X

ZC′′

Z → X

x′′ x y y′ y′′ y z

Y ′[Y] Y ′′ Z[Y]

Z

ZC′′

Z → X X

1
6
9

a a′ a′′ b b′ b′′ bs

ZY ′′

Z[C]

Z[X]

Z[Y]

b b c c′ c′′ d d′c

ZY ′′ XD

Z[C] ZC′′

Z[X]

Z[Y]

d′′c d d d dℓ x x′

ZY ′′

Z[C]

Z[X]

Z[Y]

x′′ x y y′ y′′ y z

ZY ′′

Z[C]

Z[X] X ′′

Z[Y] ZY ′′

1
7
0

A A” A[A] A′[A] A”[A] A[B] A”[B] A[X] A”[X] A[Y] A′[A,A] B B” B B BA BA” BC Bs[A] B[A] B′[B]

A 0 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

A” Ḡ 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

A[A] 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x x 0

A′[A] 0 0 Ḡ 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x x 0

A”[A] 0 0 Ḡ 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x x 0

A[B] 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0

A”[B] 0 0 0 0 0 Ḡ 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0

A[X] 0

A”[X] 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0

A[Y] 0

A′[A,A] 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 x

B” Ḡ 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

B Ḡ 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 Ḡ 0 0 0

BA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0

BA” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 Ḡ 0 0 0

BC 0

Bs[A] 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B[A] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0

B′[B] 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bs[C] 0

B”[C] 0

B[C] 0

Bs[D] 0

B”[D] 0

B[D] 0

B′[A,B] 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C Ḡ 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

C” Ḡ 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

C → {B,D,D,X} 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0

CD 0 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

C[B] 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0

C[C] 0

C′[C] 0

C′[C] → B[C] 0

C”[C] 0

C”[D] 0

C[X] 0

C[Y] 0

C′[B,C] 0

C′[C,C] 0

Table A.2.: Adjacency matrix associated with M ′
i .

1
7
1

Bs[C] B”[C] B[C] Bs[D] B”[D] B[D] B′[A,B] C C” C → {B,D,D,X} CD C[B] C[C] C′[C] C′[C] → B[C] C”[C] C”[D] C[X] C[Y]

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0

x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0

1
7
2

C′[B,C] C′[C,C] C′[Y,C] D D” D D D Dℓ DB” DB D → B DC” DD DD DY ” D[B] D[C] D′
c[D] D′

c[D] → B[D] D[Y]

0 0 0 Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0 0 Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0

0 0

0 0

Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0

Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0

0 0

0 0

0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ

0 0

0 0 0 Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0 0 Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0 0 Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0 0 0 0 x 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0

0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0 0 Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0 0 0 0 x 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0

0 0 0 Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

Ḡ 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0

0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

1
7
3

D′
c[B,D] D′

c[C,D] D′
c[Y,D] X X” X XD X′[X] X′[A,X] Y Y ” Y Y ”[C] Y ”[D] Y ′[Y] Z ZC” Z → X ZY ” Z[C] Z[X] Z[Y]

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0

Ḡ 0

Ḡ 0

0 Ḡ 0

0 Ḡ 0

0 0 Ḡ 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 Ḡ

0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

Ḡ 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

Ḡ 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0

0 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0

0 Ḡ 0

0 0 Ḡ 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 Ḡ

0 0

0 0

1
7
4

A A” A[A] A′[A] A”[A] A[B] A”[B] A[X] A”[X] A[Y] A′[A,A] B B” B B BA BA” BC Bs[A] B[A] B′[B]

C′[Y,C] 0

D 0 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

D” 0

D 0

D 0

D 0

Dℓ 0

DB” 0

DB 0

D → B 0

DC” 0

DD 0 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

DD 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0

DY ” 0

D[B] 0

D[C] 0

D′
c[D] 0

D′
c [D] → B[D] 0

D[Y] 0

D′
c[B,D] 0

D′
c[C,D] 0

D′
c[Y,D] 0

X 0

X” 0

X 0

XD 0

X′[X] 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0

X′[A,X] 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0

Y Ḡ 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

Y ” Ḡ 0 0 x 0 0 0 0 0 0 0 F̄ 0 0 x 0 0 0 0 0 x

Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 Ḡ 0 0 0

Y ”[C] 0

Y ”[D] 0

Y ′[Y] 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0

Z 0

ZC” 0

Z → X 0

ZY ” 0

Z[C] 0

Z[X] 0

Z[Y] 0

1
7
5

Bs[C] B”[C] B[C] Bs[D] B”[D] B[D] B′[A,B] C C” C → {B,D,D,X} CD C[B] C[C] C′[C] C′[C] → B[C] C”[C] C”[D] C[X] C[Y]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 Ḡ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
7
6

C′[B,C] C′[C,C] C′[Y,C] D D” D D D Dℓ DB” DB D → B DC” DD DD DY ” D[B] D[C] D′
c[D] D′

c[D] → B[D] D[Y]

0 0

0 0 0 Ḡ 0 0 x 0 Ḡ 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0 0 0 0 x 0 x 0 0 0 Ḡ 0 0 0 0 0 0 0 Ḡ 0

0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0 0 Ḡ 0 0 x 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0 0 0 0 x 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0

0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1
7
7

D′
c[B,D] D′

c[C,D] D′
c[Y,D] X X” X XD X′[X] X′[A,X] Y Y ” Y Y ”[C] Y ”[D] Y ′[Y] Z ZC” Z → X ZY ” Z[C] Z[X] Z[Y]

0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 x 0 x 0 0 x 0 0 0 0 0 0 0

0 Ḡ 0

0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0 0

0 0

0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0

0 0

0 0 Ḡ 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 Ḡ

0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Ḡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ḡ 0 0 0 0 0

0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0

178

B. Python code

In this section, we provide Python programming code which demonstrate the encoding of a

simple permutation in H ′ of length n into a n-letter word word in L′. Together with PermLab

[1] and all Python files provided in this section, we are able to construct a list of all n-letter

words in L′ as a text file where n is a reasonable length.

Note that the code was written first, and was used greatly to discover the encoding rules

stated in Chapter 6. What we provide here is kept as original, and was not modified even after

proofs in Chapter 6 were established. For this reason, there may be a slight difference in the

process of encoding between Python code and the sequence of encoding defined in Chapter 6, but

the obtained result is the same. For instance, prefixConverter.py and suffixConverter.py

take the places of W-COMBINE and AFFIX-CONVERT.

makeList.py

def r e adF i l e (fname) :

”””

reads the l i s t o f permutat ions from t x t f i l e l i n e by l i n e .

”””

with open (fname) as f :

permList = f . read () . s p l i t l i n e s ()

return permList

def convLis t1 (permList) :

”””

c on v e r t s the l i s t o f s t r i n g type permutat ions in permList

to i n t type , s p e c i f i c a l l y l e n g t h <10.

”””

l i s t o f p e rm =[]

for i in range (l en (permList)) :

temp=[]

for k in range (l en (permList [i])) :

temp . append (i n t (permList [i] [k]))

l i s t o f p e rm . append (temp)

return l i s t o f p e rm

def convLis t2 (permList) :

179

”””

c on v e r t s the l i s t o f s t r i n g type permutat ions in permList

to i n t type , s p e c i f i c a l l y l e n g t h >=10.

”””

l i s t o f p e rm =[]

for i in range (l en (permList)) :

temp = permList [i] . s p l i t ()

for k in range (l en (temp)) :

temp [k]= in t (temp [k])

l i s t o f p e rm . append (temp)

return l i s t o f p e rm

list2str.py

”””

The f o l l o w i n g f u n c t i on c on v e r t s a l i s t to a s t r i n g .

”””

def l i s t 2 S t r (word) :

s t r i n g = ’ ’ . j o i n (word)

return s t r i n g

def t e s t (blah) :

word = []

while l en (blah) > 0 :

i = 0

while blah [i] != ’ ’ :

i += 1

temp = ’ ’ . j o i n (blah [0 : i])

word . append(temp)

temp2 = temp2 [i +1: l en (temp2)]

return word

invert.py

”””

The f o l l o w i n g f u n c t i on s imply i n v e r t s a permutat ion .

”””

180

def invPerm(perm) :

i n v e r s e = []

for i in range (1 ,max(perm)+1):

i f i in perm :

i n v e r s e . append(perm . index (i)+1)

else :

pass

return i n v e r s e

ep.py

def ep2413 (perm) :

”””

keeps permutat ions o f extreme pat t e r n 2413 , and d i s c ar d o t he r s .

”””

i f perm[0]<perm [l en (perm)−1] and invPerm(perm)[0] >

invPerm(perm) [l en (invPerm(perm)) −1] :

return perm

else :

pass

def ep3142 (perm) :

”””

keeps permutat ions o f extreme pat t e r n 3142 , and d i s c ar d o t he r s .

”””

i f perm[0]>perm [l en (perm)−1] and invPerm(perm)[0] <

invPerm(perm) [l en (invPerm(perm)) −1] :

return perm

else :

pass

def Nstart (perm) :

”””

This f u n c t i on e l i m i n a t e s a s imple adb i permutat ion which s t a r t s

wi th S s e t .

”””

181

i f (perm [0] == 2 or perm [0] == 3 or perm [0] == 4) and

perm [1] != 1 :

return perm

else :

pass

createFile.py

”””

The f o l l o w i n g f u n c t i on c r e a t e s a t e x t f i l e l i s t i n g a l l the d e s i r e d

words .

”””

from os import path

def c r e a t eF i l e (dest , words) :

i f not (path . i s f i l e (des t)) :

f = open (dest , ’w ’)

for i in words :

f . w r i t e (i+’ \n ’)

f . c l o s e

counter.py

”””

The f o l l o w i n g f u n c t i on w i l l count how many N’ s and S ’ s are embedded

in a permutat ion .

”””

def counter (perm) :

d1 = perm [0] #The f i r s t number . I t i s e i t h e r 2 , 3 or 4.#

d2 = 1 #This i s always 1.#

temp1 = perm [perm . index (d1) : perm . index (d2)+1]

#Get the i n t e r v a l from d1 to d2”

d3 = max(temp1) #The maximum number o f temp 1 i s d3.#

temp2 = perm [0 : l en (perm)] #Get a copy o f a permutat ion .#

for x in range (d3+1,max(temp2)+1):

temp2 . remove (x) #Erase e v e r y t h i n g > d3.#

182

d4 = temp2 [−1] #The l a s t number o f temp 2 i s d4.#

count = 1

while d2 != d4 :

d1 = d3

d2 = d4 #Move up d1 and d2.#

temp1 = perm [perm . index (d1) : perm . index (d2)+1]

d3 = max(temp1) #Determine the new d3.#

count += 1 #Count goes up.#

i f d1 != d3 : #Checking i f d1 and d3 are the same.#

#I f not , determine the new d4.#

temp2 = perm [0 : l en (perm)]

for x in range (d3+1,max(temp2)+1):

temp2 . remove (x)

d4 = temp2 [−1]

count += 1

else : #I f d1 and d3 become the same , we end i t here .#

break

return count

”””

The number n = ’ count ’ t e l l s us how many N’ s and S ’ s we have .

I f n i s odd , then t he r e are (n−1)/2 N’ s and (n−1)/2 S ’ s in a

permutat ion . I f n i s even , then t he r e are n/2 N’ s and (n/2)−1

S ’ s in a permutat ion .

”””

Nsplit.py

”””

We d e f i n e two f u n c t i o n s . The f i r s t one determines where the f i r s t

N shape ends . I t r e t u r n s the s p l i t N segment and some e x t r a s . The

second one t a k e s the N s e t away from the whole permutat ion . I t

r e t u r n s the r e s t .

”””

def Nsp l i t (perm) :

”””

183

Firs t , we d e t e c t d1 , the g r e a t e s t e lement between the f i r s t

and the l e a s t numbers .

”””

temp1 = perm [0 : perm . index (1)+1]

d1 = max(temp1)

”””

For convenience , we determine d2 as w e l l . Remove e v e r y t h i n g

g r e a t e r than d1 . Let the l a s t number be d2 .

”””

temp2 = perm [0 : l en (perm)]

for x in range (d1+1,max(temp2)+1):

temp2 . remove (x)

d2 = temp2 [−1]

”””

F i n a l l y , we i d e n t i f y the s p l i t t e r number . This i s necessary

on ly when d1 i s s c i s s o r e d v e r t i c a l l y by a number t h a t i s not

e q u a l to d2 .

”””

s p l i t t e r = d1−1

”””

We determine i f d1 i s the max o f the whole permutat ion . I f so ,

d2 i s the l a s t number in N−C. I f not , we see which one o f d1−2,

d1−1 and d1+1 appears f i r s t a f t e r d1 .

”””

i f d1 == max(perm) :

CLast = d2

”””

I f d1−2 appears f i r s t , one o f the f o l l o w i n g t hr e e i s

happening .

Case 1 : The f o l l o w i n g S s e t i s e i t h e r empty , or j u s t one

number in C segment .

Case 2 : d1 i s s c i s s o r e d v e r t i c a l l y by d1−1.

Case 3 : d1−1 and d1−2 are a s c i s s i o n pair , or d1−1 and d2

are a s c i s s i o n pa i r wi th d1−2 be ing a s c i s s o r .

”””

e l i f perm . index (d1−2) < perm . index (d1+1) and perm . index (d1−2)

< perm . index (d1−1):

184

temp3 = temp1 [0 : l en (perm)]

temp3 . remove (d1)

#Case 1a : d1−2 comes from A or B segment.#

i f max(temp3) == d1−2:

#D e t e c t i n g i f d1−2 b e l on g s to e i t h e r A or B segment.#

#In order to d i s t i n g u i s h from Case 2 , we need to f i n d#

#what s e p a r a t e s d1 and d1−2.#

#I f d1−1 i s not d2 , then i t i s Case 2 . Otherwise , i t i s#

#Case 1a.#

i f d2 != d1−1: #Case 2#

i f perm [perm . index (d1−1)+1] == d2 or

perm [perm . index (d1−1)+2] == d2 :

#One o f s c i s s i o n pa i r o f d2 i s be ing a s c i s s o r .#

temp4 = perm [perm . index (1) : perm . index (d2)+1]

temp5 = []

for x in temp4 :

i f x < d2 :

temp5 . append(x)

else :

pass

CLast = temp5 [−1]

e l i f perm [perm . index (d1−1)−2]>d1−1:

#Case o f d dˆ c c ’ b . . . #

CLast = perm [perm . index (d1−1)−3]

e l i f perm [perm . index (d1−1)−1]>d1−1:

#Case o f d dˆ c ’ b . . . or d dˆ c b . . . #

CLast = perm [perm . index (d1−1)−2]

else :

CLast = perm [perm . index (d1−1)−1]

else :

temp4 = [] #REVISED (3/4/15)#

for i in perm :

i f i < d1−2:

temp4 . append (i)

else :

pass

CLast = temp4 [−1]

185

#Case 1b : d1−2 comes from C segment.#

e l i f d1−2 < d2 :

i f perm [perm . index (d1−2)+1]<d1−2:

#D e t e c t i n g i f d1−2 i s a part o f s c i s s i o n .#

i f perm . index (d1−2)<perm . index (d1−3):

#D e t e c t i n g i f d1−2 s c i s s i o n p a i r s are not the l a s t#

#numbers in C.#

CLast = d1−3

else :

#d1−2 s c i s s i o n p a i r s are the l a s t numbers in C.#

CLast = perm [perm . index (d1−2)+1]

else : #d1−2 i s not a part o f s c i s s i o n .#

CLast = d1−2

#The l a s t one i s Case 3 : d1−1 and d1−2 are a s c i s s i o n pa i r#

#in B segment o f S shape , or d1−1 and d2 are s c i s s i o n p a i r s#

#with d1−2 be ing a s c i s s o r .#

#Note t h a t f o r the former case , d1−1 and d1−2 can be y ’ and#

#y ’ ’ , and f o r the l a t t e r case , d1−2 can be yˆ.#

else :

i f perm [perm . index (d1−2)+1] > d1−2:

#No s c i s s o r in A segment.#

CLast = perm [perm . index (d1−2)−1]

else :

s1 = perm [perm . index (d1−2)+1]

s2 = s1+1

temp6 = perm [perm . index (1) : perm . index (s1)+1]

while s2 in temp6 and perm [perm . index (s2)+1] < s2 :

s1 = perm [perm . index (s2)+1]

s2 = s1+1

i f perm . index (s2) < perm . index (s1) and s2 in temp6 :

#Case o f S−A segment s e l f −s c i s s i o n chain . 2nd one#

#i s a s c i s s i o n .#

CLast = perm [perm . index (s2)−1]

e l i f perm . index (s2) > perm . index (s1) :

#Case o f S−A segment s e l f −s c i s s i o n chain . 2nd one#

#i s not a s c i s s i o n .#

CLast = perm [perm . index (s1)−2]

186

e l i f perm . index (s2) < perm . index (s1) and s2

not in temp6 :

#Case o f N−C segment s e l f −s c i s s i o n chain wi th the#

#l a s t one be ing z .#

CLast = perm [perm . index (d1−2)+1]

”””

In the case d1+1 appears f i r s t , the number immediate ly

l e f t o f d1+1 i s the l a s t number in C segment .

”””

e l i f perm . index (d1+1) < perm . index (d1−1) and perm . index (d1+1)

< perm . index (d1−2):

CLast = perm [perm . index (d1+1)−1]

”””

F i n a l l y , in the case d1−1 shows up f i r s t , t he r e are

f o l l o w i n g s i x cases .

Case 1 : d1 and d1−1 are a s c i s s i o n pa i r .

Case 2 : d1−1 i s encoded as y .

Case 3 : d1−1 s c i s s o r s a chain o f S−A s e l f −s c i s s i o n s or

one o f N−C s e l f −s c i s s i o n s as d1−1 i s be ing y .

Case 4 : d1−1 and d2 are a s c i s s i o n pa i r .

Case 5 : d1−1 s c i s s o r s c ’ and c ’ ’ in S s e t .

Case 6 : Nothing s p e c i a l . Encoding goes d b , or d b ’ .

”””

e l i f perm . index (d1−1) < perm . index (d1+1) and perm . index (d1−1)

< perm . index (d1−2):

i f d1−1 == perm [perm . index (d1)+2] and perm [perm . index (d1)+1]

!= 1 : #Case 1 , d1 and d1−1 are a s c i s s i o n pa i r .#

temp7 = perm [0 : l en (perm)]

for x in range (1 , temp7 [temp7 . index (d1)+1]) :

temp7 . remove (x)

i f temp7 [temp7 . index (d1−1)+1]

== temp7 [temp7 . index (d1)+1]+1:

CLast = temp7 [temp7 . index (d1)+1]+1

e l i f temp7 [temp7 . index (d1−1)+1]

== temp7 [temp7 . index (d1)+1]+2 and

temp7 . index (temp7 [temp7 . index (d1)+1]+1)

< temp7 . index (temp7 [temp7 . index (d1)+1]+2):

187

CLast = temp7 [temp7 . index (d1)+1]+2

else :

temp7 = perm [0 : l en (perm)]

for x in

range (temp7 [temp7 . index (d1)+1] ,max(temp7)+1):

temp7 . remove (x)

CLast = temp7 [−1]

e l i f perm [perm . index (d1−1)+1] < d1−1 and

perm [perm . index (d1−1)+1]+1 in

perm [0 : perm . index (perm [perm . index (d1−1)+1])+1]:

#Case 2 and 3.#

s1 = perm [perm . index (d1−1)+1]

s2 = s1+1

temp8 = perm [perm . index (1) : perm . index (s1)+1]

while s2 in temp8 and perm [perm . index (s2)+1] < s2 :

s1 = perm [perm . index (s2)+1]

s2 = s1+1

i f perm . index (s2) < perm . index (s1) and s2 in temp8 :

#Case 3 , S−A segment s e l f −s c i s s i o n chain . 2nd one i s#

#a s c i s s i o n .#

CLast = perm [perm . index (s2)−1]

e l i f perm . index (s2) > perm . index (s1) :

#Case 3 , S−A segment s e l f −s c i s s i o n chain . 2nd one i s#

#not a s c i s s i o n .#

CLast = perm [perm . index (s1)−2]

e l i f perm . index (s2) < perm . index (s1) and s2 not in

temp8 : #Case 2 , d1−1 i s encoded as y . There cou ld be#

#an N−C segment s e l f −s c i s s i o n chain .#

CLast = perm [perm . index (d1−1)+1]

e l i f d1−2 == d2 and perm [perm . index (d1−1)−1] > d1 and

perm . index (d2)−2 == perm . index (d1−1): #Case 4 , d1−1 and d2#

#are a s c i s s i o n pa i r .# #REVISED (3/5/15)#

temp9 = perm [0 : l en (perm)]

for x in range (d2 ,max(temp9)+1):

temp9 . remove (x)

CLast = temp9 [−1]

188

e l i f perm [perm . index (d1−1)−1] == d1+2: #Case 5 , d1−1#

#s c i s s o r s c ’ and c ’ ’ in S s e t .#

CLast = perm [perm . index (d1−1)−2]

else : #Case 6 , Nothing s p e c i a l i s pr e s e n t .#

CLast = perm [perm . index (d1−1)−1]

subperm = [] #This i s the s p l i t subpermutat ion .#

for i in range (0 , perm . index (CLast)+1):

subperm . append(perm [i]) #subperm now i s the#

#subpermutat ion up to the l a s t number in C segment t h a t#

#we i d e n t i f i e d .#

#∗∗∗ Refer t h i s l i s t as (1) in the l a t t e r f u n c t i on .#

i f perm [perm . index (d1)+1] == d1−2 or perm [perm . index (d1)+2]

== d1−2: #Determine i f d1 i s s c i s s o r e d .#

i f perm . index (d1−2) > perm . index (1) : #REVISED (3/4/15)#

pass

else :

i f s p l i t t e r not in subperm and s p l i t t e r != d2 :

subperm . append(s p l i t t e r) #We add the s p l i t t e r number#

#in case i t b e l on g s to S−B or the s c i s s i o n o f d2.#

else :

pass

else :

pass

i f CLast != d2 :

subperm . append(d2)

#F i n a l l y , add d2 to the subperm l i s t , and we are done .#

return subperm , CLast

def setMinus (perm , CLast , subword) :

”””

perm i s the whole permutation , CLast i s the l a s t number in N−C

ob t a i n e d by N s p l i t f u n c t i on . subword i s the encoded

word a f t e r the m odi f i c a t i on o f both p r e f i x / s u f f i x c on v e r t e r s .

What we do wi th t h i s f u n c t i on are the f o l l o w i n g :

1 . We f i r s t t ak e away e v e r y t h i n g from perm up to CLast number

(i n c l u d i n g i t s e l f) .

2 . By l o o k i n g at the s u f f i x o f subword , we add back the necessary

189

numbers .

”””

subperm = [] #This i s the s p l i t subpermutat ion .#

for i in perm [0 : perm . index (CLast)+1] :

subperm . append(i) #∗∗∗ Same l i s t as (1)#

#from the above f u n c t i on .#

for i in perm [0 : perm . index (CLast)+1] :

perm . remove (i)

o r i g = subperm + perm #We need to r e f e r back in some cases .#

d0 = min (subperm) #i . e . , 1 . We always need to add t h i s one back .#

d1 = max(subperm) #S i m i l ar l y , we need to add t h i s back .#

i f subword [−2: l en (subword)] == [’dˆ ’ , ’ d ’] : #In t h i s case ,#

#d = d1 . We need to add back dˆ as w e l l . dˆ i s s imply d1−2.#

r ecover = [d1 , d1−2, d0]

e l i f subword [−2: l en (subword)] == [’ d ˆ ’ , ’ d ’] : #S i m i l ar to the#

#above case . d ˆ i s d1−2.#

r ecover = [d1 , d1−2, d0]

e l i f subword [−3: l en (subword)] == [’ z ’ , ’ x ’ , ’ d ’] or

subword [−3: l en (subword)] == [’ z ’ , ’ x” ’ , ’ d ’] or

subword [−3: l en (subword)] == [’ z ’ , ’ x ’ , ’ d ’] or

subword [−3: l en (subword)] == [’ z ’ , ’ c” ’ , ’ d ’] or

subword [−3: l en (subword)] == [’ z ’ , ’ y” ’ , ’ d ’] :

for i in subperm [0 : subperm . index (d1)+1] :

subperm . remove (i) #Get r i d o f A segment , i n c l u d i n g d1.#

for i in

subperm [subperm . index (d0)+1: subperm . index (subperm [−1])+1] :

subperm . remove (i) #Get r i d o f C segment ,#

#NOT i n c l u d i n g d0.#

x = max(subperm) #This i s the max o f B segment , i . e . , x , x”,#

#x , y” or b (b ”) which i s#

#a s s o c i a t e d wi th z d y encoding . We need to add t h i s#

#back to the next perm.#

i f x−1 == CLast : #A l l the cases e x c e p t x be ing b or b”,#

#caus ing the C−chain s c i s s i o n s . (Need r e v i s i o n here ???)#

#In t h e s e cases , s imply CLast i s z . A l l we need to add back#

#i s d1 , x , d0 , y and z .#

y = or i g [o r i g . index (CLast)−1]

190

r ecover = [d1 , x , d0 , y , CLast]

else : #In t h i s case , we must add back the whole C chain#

#i n c l u d i n g x which i n i t i a t e s the chain .#

f i r s t cP r ime = x−1

f i r s tcDPr ime = or i g [o r i g . index (f i r s t cP r ime)−1]

CChain =

or i g [o r i g . index (f i r s tcDPr ime) : o r i g . index (CLast)+1]

r ecover = [d1 , x , d0] + CChain

else :

r e cover = [d1 , d0]

perm = recover + perm

return perm

encodeNS.py

import counter

import ep

from os import path

import i n v e r t

import Nsp l i t

”””

Looking at a permutation , or subsequence embedded in a permutat ion

which has the extreme pat t e r n 2413 (N shape) , the f o l l o w i n g f u n c t i on

encodes i t i n t o a word under c e r t a i n r u l e s . The Alphabet i s the s e t

c on t a i n i n g f o l l o w i n g 30 l e t t e r s .

a , a ’ , a ” , b , b ’ , b ” , bs , b , b ˆ , c , c ’ , c ” , d , da ’ , da ” ,

dc ’ , dc ” , d , d ˆ , d ˆ , dl , x , x ’ , x ” , x , y , y ’ , y ” , y ˆ , z

’ perm ’ i s an a r b i t r a r y permutat ion o f extreme pat t e r n 2413.

’ l o c a t o r ’ t e l l s us where the subsequence i s in a main permutat ion .

’ t r a n s i t 1 ’ i s the in format ion about the pr e v i ou s S shape .

’ t r a n s i t 2 ’ i s the in format ion about the next S shape .

”””

def encodeS (perm) :

191

”””

encodes a permutat ion o f extreme pat t e r n 3142 i n t o a word .

”””

i f perm[0]>perm [l en (perm)−1] and perm . index (l en (perm)) >

perm . index (1) :

word = []

for i in range (l en (perm)) :

i f i == 0 or i == len (perm)−1:

word . append(’d ’) #F i r s t and l a s t l e t t e r s must be d.#

##=====P r e f i x coding=====##

e l i f i == 1 and (perm [i] == 1 or perm [i] == 2) :

i f perm [i] == 1 :

word . append(’ d ’)

else :

word . append(’ da\ ’ ’)
e l i f i == 2 and perm [i] == 1 :

word . append(’d ’)

e l i f i == 3 and perm [i] == 1 :

word . append(’ da\” ’)

##=====S u r f f i x coding=====##

e l i f i == len (perm)−2 and (perm [i] == len (perm) or

perm [i] == len (perm)−1):

i f perm [i] == len (perm) :

word . append(’ d ’)

else :

word . append(’ dc\” ’)

e l i f i == len (perm)−3 and perm [i] == len (perm) :

word . append(’d ’)

e l i f i == len (perm)−4 and perm [i] == len (perm) :

word . append(’ dc \ ’ ’)
##=====I n f i x coding=====##

e l i f perm [i] > perm [0] :

i f perm . index (perm [i]−1) > i :

word . append(’ c \ ’ ’)
e l i f perm . index (perm [i]+1) < i :

word . append(’ c\” ’)

else :

192

word . append(’ c ’)

e l i f perm [i] < perm [0] and perm [i] > perm [l en (perm)−1] :

i f perm . index (perm [i]+1) > i :

word . append(’ b\ ’ ’)
e l i f perm . index (perm [i]−1) < i :

word . append(’ b\” ’)

else :

word . append(’ b ’)

else :

i f perm . index (perm [i]−1) > i :

word . append(’ a \ ’ ’)
e l i f perm . index (perm [i]+1) < i :

word . append(’ a\” ’)

else :

word . append(’ a ’)

for i in range (l en (word)) :

i f word [i] == ’b ’ :

i f word [i −1] == ’ c \ ’ ’ or word [i +1] == ’ a\” ’ or

word [i −1] == ’ dc \ ’ ’ or word [i +1] == ’ da\” ’ :

word [i] = ’ bs ’

else :

pass

else :

pass

return word

else :

print (”Error . The entered permutation does not have extreme

pattern 3142. ”)

def encodeN (perm) :

”””

encodes a permutat ion o f extreme pat t e r n 2413 i n t o a word .

”””

i n v e r s e = inv e r t . invPerm(perm)

word = encodeS (i n v e r s e)

return word

193

prefixConverter.py

”””

Taking an a r b i t r a r y N or S s e t out o f a s imple adb i permutat ion o f

extreme pat t e r n 2143 , the p r e f i x & s u f f i x o f i t must be modi f i ed

according to :

1 . where i t comes from , and

2 . how i t connec ts to the pr e v i ou s / next N & S s e t s .

The f o l l o w i n g f u n c t i o n s w i l l modify the p r e f i x o f the N or S s e t t h a t

we are c u r r e n t l y encoding .

”””

import Nsp l i t

import encodeNS

def i n i t i a l P r e f i x (word) :

”””

This f u n c t i on i s p a r t i c u l a r l y a p p l i e d i f the N s e t we are

encoding i s the i n i t i a l s e t o f a whole permutation , bu t not the

f i n a l s e t . In a d d i t i o n to the e x i s t i n g 6 ways to s t a r t the

encoded word , t he r e are 4 more p o s s i b i l i t i e s a s s o c i a t e d wi th

x ’ and b ˆ .

”””

codedWord = word [0 : l en (word)]

i f codedWord . count (”b ’ ”) == 1 :

#This l i n e ensures t h a t the f i r s t b ’ showing up needs to be#

#modi f i ed to x ’ or bˆ.#

i f codedWord [0 : 3] == [’d ’ , ”b ’ ” , ’d ’] and

codedWord [−5: l en (codedWord)] == [”c ’ ” , ’b” ’ , ’ d ’ , ’ c” ’ , ’ d ’] :

codedWord [1] = ”x ’ ”

#This i s the m odi f i c a t i on f o r Case 9 : d x ’ d . . . #

e l i f codedWord [0 : 4] == [’ d ’ , ”da ’ ” , ”b ’ ” , ’ da” ’] and

codedWord [−5: l en (codedWord)] == [”c ’ ” , ’b” ’ , ’ d ’ , ’ c” ’ , ’ d ’] :

codedWord [2] = ”x ’ ”

#This i s the m odi f i c a t i on f o r Case 10: d da ’ x ’ da ” . . .#

e l i f codedWord [0 : 3] == [’ d ’ , ”b ’ ” , ’ d ’] and

(codedWord [−3: l en (codedWord)] == [’d ’ , ’ b” ’ , ’ d ’] or

194

codedWord [−4: l en (codedWord)] == [”dc ’ ” , ’b” ’ , ’ dc” ’ , ’ d ’]) :

codedWord [1] = ’bˆ ’

#This i s the m odi f i c a t i on f o r Case 18: d bˆ d . . . #

e l i f codedWord [0 : 4] == [’ d ’ , ”da ’ ” , ”b ’ ” , ’ da” ’] and

(codedWord [−3: l en (codedWord)] == [’d ’ , ’ b” ’ , ’ d ’] or

codedWord [−4: l en (codedWord)] == [”dc ’ ” , ’b” ’ , ’ dc” ’ , ’ d ’]) :

codedWord [2] = ’bˆ ’

#This i s the m odi f i c a t i on f o r Case 19: d da ’ bˆ da ” . . .#

else :

pass

else :

pass

return codedWord

def n on i n i t i a l P r e f i x (word ,m, n) :

”””

This f u n c t i on i s a p p l i e d i f the N s e t we are encoding i s not the

i n i t i a l s e t o f a whole permutat ion . word i s the encoded word by

encodeN (word) func t ion , m i s the current s e t number

(3 l e q m l e q n) , and n i s the f i n a l s e t (found by counter (perm)

f u n c t i on) .

”””

codedWord = word [0 : l en (word)]

i f codedWord [0 : 2] == [’d ’ , ’ d ’] :

#This may happen i f the pr e v i ou s s e t ended wi th :#

#1. Simply wi th d d.#

#2. d d . We do not carry d to the f o l l o w i n g s e t .#

#We simply erase d d , s i n c e they are p r e v i o u s l y encoded .#

codedWord = codedWord [2 :]

e l i f codedWord [0 : 3] == [’d ’ , ”a ’ ” , ’d ’] :

#This i s a s s o c i a t e d wi th z x d y i n t e r a c t i o n .#

#a ’ cou ld be v ar i ou s t h i n g s . The a s s o c i a t e d a” i s z , or . Those#

#are p r e v i o u s l y encoded ,#

#so we make sure to erase d a ’ d and a”.#

codedWord = codedWord [3 :]

#There are t hr e e p o s s i b l i l i t i e s immediate ly a f t e r d a ’ d , namely#

#bs , b ’ or a ’.#

195

#I f i t i s a ’ , then the s u f f i x o f the pr e v i ou s s e t was encoded by#

#z c” d.#

#We f i r s t g e t r i d o f t h i s case .#

while codedWord [0] != ’ bs ’ and codedWord [0] != ”b ’ ” :

codedWord = codedWord [1 :]

codedWord . remove (’ a” ’)

#Now, i t ’ s down to two p o s s i b i l i t i e s ; bs or b ’.#

i f codedWord [0] == ’ bs ’ :

#I f i t i s f o l l o w e d by bs , then a l l we have to do i s to#

#r e p l a c e t h i s wi th y.#

codedWord [0] = ’y ’

e l i f codedWord [0] == ”b ’ ” :

#I f i t i s f o l l o w e d by b ’ , t h i s shou ld be y ’ or yˆ.#

#Now, i f the number o f b ’ & b” pa i r i s 1 , AND b” happens#

#in the s u f f i x ,#

#then t h i s case needs a s p e c i a l a t t e n t i o n .#

i f codedWord . count (”b ’ ”) == 1 :

i f codedWord [−3: l en (codedWord)] == [’d ’ , ’ b” ’ , ’ d ’] :

#We do not modify ’ b ” ’ because i t i s#

#i n c l u de d in the s u f f i x C o n v e r t e r .#

i f m != n :

#The current s e t we are encoding i s not the

#f i n a l s e t . Then b ’ −> yˆ.#

codedWord [0] = ’ yˆ ’

else :

#I . e . , m == n . In t h i s case , b ’ −> y ’.#

#Then d y” d at the end.#

codedWord [0] = ”y ’ ”

e l i f codedWord [−4: l en (codedWord)] ==

[”dc ’ ” , ’b” ’ , ’ dc” ’ , ’ d ’] :

#S i m i l ar to the above case .#

#The d i f f e r e n c e i s whether the f o l l o w i n g b”#

#becomes d (pr e v i ou s case) or d ˆ (t h i s case).#

#Again , We do not modify ’ b ” ’ because i t i s

#i n c l u de d in the s u f f i x C o n v e r t e r .#

i f m != n :

#The current s e t we are encoding i s not the#

196

#f i n a l s e t . Then b ’ −> yˆ.#

codedWord [0] = ’ yˆ ’

else : #I . e . , m == n . In t h i s case , b ’ −> y ’.#

#Then dc ’ y” dc” d at the end.#

codedWord [0] = ”y ’ ”

e l i f codedWord [−5: l en (codedWord)] ==

[”c ’ ” , ’b” ’ , ’ d ’ , ’ c” ’ , ’ d ’] :

#Very s p e c i a l case .#

#This i s the s t r u c t u r e o f#

#d a ’ d b ’ a” (a) (c) c ’ b” d c” d , r e s u l t i n g#

#y ’ z y” d y encoding . We do not conver t b”#

#s i n c e i t i s a part o f the s u f f i x .#

codedWord [0] = ”y ’ ”

else :

#The case b ’& b” pa i r happens once , bu t b” i s not#

#in the s u f f i x .#

#In t h i s case , b” −> y” as w e l l as b ’ −> y ’.#

#Since b” i s n ’ t i n c l u de d in#

#the s u f f i x , we must conver t i t here .#

codedWord [0] = ”y ’ ”

codedWord [codedWord . index (’b” ’)] = ’y” ’

else :

#The case b ’ & b” pa i r happens more than once .#

#Same as be fore , b” −> y” as w e l l as#

#b ’ −> y ’ because b” i s n ’ t i n c l u de d in the s u f f i x .#

codedWord [0] = ”y ’ ”

codedWord [codedWord . index (’b” ’)] = ’y” ’

e l i f codedWord [0 : 3] == [’d ’ , ”b ’ ” , ’d ’] :

#This i s a s s o c i a t e d wi th dˆ b i n t e r a c t i o n .#

#b ’ i s e i t h e r dˆ or d ˆ . This i s p r e v i o u s l y encoded , so we#

#simply erase d b ’ d.#

#The a s s o c i a t e d b” can be many d i f f e r e n t t h i n g s , such as#

#b , d , d ˆ , and x .#

#I f b” i s a part o f the s u f f i x , then we postpone the#

#m odi f i c a t i on t i l l s u f f i x C o n v e r t e r .#

#I f t h i s i s n ’ t the case , then we modify b” here .#

codedWord = codedWord [3 :]

197

i f codedWord . count (’b” ’) == 1 :

#Since we have erased b ’ , we check i f b” on ly shows up once .#

i f codedWord [−3: l en (codedWord)] == [’d ’ , ’ b” ’ , ’ d ’] :

#We do not modify b” because i t i s#

#i n c l u de d in the s u f f i x C o n v e r t e r .#

pass

e l i f codedWord [−4: l en (codedWord)] ==

[”dc ’ ” , ’b” ’ , ’ dc” ’ , ’ d ’] :

#We do not modify b” because i t i s#

#i n c l u de d in the s u f f i x C o n v e r t e r .#

pass

e l i f codedWord [−5: l en (codedWord)] ==

[”c ’ ” , ’b” ’ , ’ d ’ , ’ c” ’ , ’ d ’] :

i f m != n :

#I f the s e t i s n ’ t f i n a l , we l e a v e b” f o r the#

#s u f f i x C o n v e r t e r .#

pass

else : #Otherwise , b” needs to be modi f i ed to b ,#

#s i n c e f i n a l S u f f i x f u n c t i on don ’ t#

#de a l wi th the case o f ending wi th d c” d.#

codedWord [codedWord . index (’b” ’)] = ’ b ’

else : #The case b ’& b” pa i r happens once , bu t b” i s not#

#in the s u f f i x .#

#In t h i s case , we must conver t b” −> b .#

codedWord [codedWord . index (’b” ’)] = ’ b ’

else : #The case b ’ & b” pa i r happens more than once . Same as#

#before , b” −> b #

#because b” i s n ’ t i n c l u de d in the s u f f i x .#

codedWord [codedWord . index (’b” ’)] = ’ b ’

else : #Any ot he r p r e f i x shou ld never appear due to the way we#

#s p l i t each s e t .#

codedWord = print (”Error . Something went wrong . . . ”)

return codedWord

suffixConverter.py

”””

198

Taking an a r b i t r a r y N or S s e t out o f a s imple adb i permutat ion o f

extreme pat t e r n 2143 , the p r e f i x & s u f f i x o f i t must be modi f i ed

according to :

1 . where i t comes from , and

2 . how i t connec ts to the pr e v i ou s / next N & S s e t s .

The f o l l o w i n g f u n c t i o n s w i l l modify the s u f f i x o f the N or S s e t

t h a t we are c u r r e n t l y encoding .

There i s a s l i g h t d i f f e r e n c e from pr e f i x C on v e r t e r f u n c t i o n s . word i s

the o r i g i n a l , and codedWord i s the encoded word a f t e r pr e f i x C on v e r t e r

i s a p p l i e d .

”””

import Nsp l i t

import encodeNS

import pre f i xConver t e r

def f i n a l S u f f i x (word , codedWord) :

”””

This f u n c t i on i s p a r t i c u l a r l y a p p l i e d i f the N s e t we are

encoding i s the f i n a l s e t o f a whole permutation , bu t not the

i n i t i a l s e t . In a d d i t i o n to the e x i s t i n g 6 ways to end the

encoded word , t he r e are 4 more p o s s i b i l i t i e s a s s o c i a t e d wi th

y” and b .

”””

i f word . count (”b ’ ”) == 1 : # This l i n e ensures t h a t the f i r s t b ’#

#showing up needs to be modi f i ed to x ’ or bˆ.#

i f word [−3: l en (word)] == [’d ’ , ’ b” ’ , ’ d ’] and word [0 : 5] ==

[’d ’ , ”a ’ ” , ’d ’ , ”b ’ ” , ’ a” ’] :

codedWord [−2] = ’ y” ’ #This i s the m odi f i c a t i on f o r the#

#r e v e r s e o f Case 9 : . . . d y” d ending case .#

e l i f word [−4: l en (word)] == [”dc ’ ” , ’ b” ’ , ’ dc” ’ , ’ d ’] and

word [0 : 5] == [’d ’ , ”a ’ ” , ’d ’ , ”b ’ ” , ’ a” ’] :

codedWord [−3] = ’ y” ’ #This i s the m odi f i c a t i on f o r the#

#r e v e r s e o f Case 10: . . . dc ’ y” dc” d#

e l i f word [−3: l en (word)] == [’d ’ , ’ b” ’ , ’ d ’] and (word [0 : 3] ==

[’d ’ , ”b ’ ” , ’d ’] or word [0 : 4] == [’d ’ , ”da ’ ” , ”b ’ ” , ’ da” ’]) :

codedWord [−2] = ’ b ’ #This i s the m odi f i c a t i on f o r the#

199

#r e v e r s e o f Case 18: . . . d b d#

e l i f word [−4: l en (word)] == [”dc ’ ” , ’ b” ’ , ’ dc” ’ , ’ d ’] and

(word [0 : 3] == [’d ’ , ”b ’ ” , ’d ’] or word [0 : 4] ==

[’d ’ , ”da ’ ” , ”b ’ ” , ’ da” ’]) :

codedWord [−3] = ’ b ’ #This i s the m odi f i c a t i on f o r the#

#r e v e r s e o f Case 19: . . . dc ’ b dc” d#

else :

pass

else :

pass

return codedWord

def n on f i n a l S u f f i x (word , codedWord ,m) :

”””

This f u n c t i on i s a p p l i e d i f the N s e t we are encoding i s not the

f i n a l s e t o f a whole permutat ion . word i s the o r i g i n a l encoded

word which i s the r e s u l t o f encodeN(word) func t ion , codedWord i s

the encoded word by e i t h e r i n i t i a l P r e f i x (word) or

n o n i n i t i a l P r e f i x (word) func t ion , m i s the current s e t number

(2 l e q m l e q (# of f i n a l s e t)−1).

”””

l a s t 1 = len (word)

l a s t 2 = len (codedWord) #Just to make t h i n g s a l i t t l e e a s i e r . . . #

i f word [−2: l a s t 1] == [’d ’ , ’ d ’] : #We erase the second d , s i n c e#

#t h i s w i l l be encoded in the next s e t .#

codedWord = codedWord [0 : l a s t2 −1]

e l i f word [−4: l a s t 1] == [”dc ’ ” , ’ bs ’ , ’ dc” ’ , ’ d ’] :

#The case which didn ’ t r i s e in the pr e f i x C on v e r t e r .#

#We need to erase dc ’ and dc ” , and conver t b −> d ˆ . dc” w i l l be#

#conver ted in the next s e t .#

codedWord = codedWord [0 : l a s t2 −4]

#Simply erase a l l f our o f them f i r s t .#

codedWord . append(’dˆ ’) #Then add d ˆ , and#

codedWord . append(’d ’) #add back d.#

e l i f word [−3: l a s t 1] == [’d ’ , ’ c” ’ , ’ d ’] :

#This i s a s s o c i a t e d wi th z x d y i n t e r a c t i o n .#

#c ’ i s z . The a s s o c i a t e d c” i s y . The s c i s s o r i n g e lement f o r#

200

#t h e s e c ’ & c” cou ld be v ar i ou s t h i n g s .#

#We f i r s t erase the s u f f i x d c” d , modify whatever needs to be#

#modif ied , then add back necessary s t u f f .#

#c” and the f i r s t d are encoded in the fu ture , so f o r now , we#

#w i l l not add t h e s e back .#

word = word [0 : l a s t1 −3]

codedWord = codedWord [0 : l a s t2 −3]

codedWord [−2] = ’ z ’ #Fix c ’ to be z here .#

#There are t hr e e p o s s i b l i l i t i e s immediate ly b e f o r e d c” d#

#namely bs , b” or c”.#

#I f i t i s c ” , then we keep i t as c ” , so we have z c” d.#

i f word [−1] == ’ c” ’ :

codedWord . append(’d ’)

e l i f word [−1] == ’ bs ’ : #I f i t i s bs , then a l l we have to do#

#i s to r e p l a c e t h i s wi th x.#

codedWord [−1] = ’ x ’

codedWord . append(’d ’)

e l i f word [−1] == ’b” ’ :

#I f i t i s b ” , t h i s shou ld be x ” , x or y”.#

#Now, i f the number o f b ’ & b” pa i r i s 1 , AND b ’ happens in#

#the p r e f i x ,#

#then t h i s case needs a s p e c i a l a t t e n t i o n .#

i f word . count (”b ’ ”) == 1 :

i f word [0 : 3] == [’d ’ , ”b ’ ” , ’d ’] :

#We do not modify ”b ’” because i t i s#

#i n c l u de d in the pr e f i x C on v e r t e r .#

i f m != 2 :

#The current s e t we are encoding i s not the#

#i n i t i a l s e t . Then b” −> x .#

codedWord [−1] = ’ x ’

codedWord . append(’d ’)

else : #I . e . , m == 2. In t h i s case , b” −> x”.#

#d x” d shou ld be the a c t u a l s u f f i x .#

codedWord [−1] = ’x” ’

codedWord . append(’d ’)

e l i f word [0 : 4] == [’d ’ , ”da ’ ” , ”b ’ ” , ’ da” ’] :

#We do not modify b ’ because i t i s#

201

#i n c l u de d in the pr e f i x C on v e r t e r .#

codedWord [−1] = ’x” ’

#Now, Since t h i s p a r t i c u l a r p r e f i x on ly#

#happens when the s e t i s#

#i n i t i a l , we may assume m == 2 here .#

#Thus , t h i s can never be x .#

codedWord . append (’d ’)

e l i f word [0 : 5] == [’d ’ , ”a ’ ” , ’d ’ , ”b ’ ” , ’ a” ’] :

#Very s p e c i a l case .#

#This i s the s t r u c t u r e o f#

#d a ’ d b ’ a” (a) (c) c ’ b” d c” d , r e s u l t i n g#

#y ’ z y” d y encoding . We do not conver t b ’#

#s i n c e i t i s a part o f the p r e f i x .#

i f m != 2 : #The current s e t we are encoding i s#

#not the i n i t i a l s e t . Then b” −> y”.#

codedWord [−1] = ’y” ’

codedWord . append(’d ’)

else : #I f i t i s the i n i t i a l se t , then b” becomes#

#x” i n s t e a d . In addi t ion , we must change#

#the a s s o c i a t e d b ’ to x ’.#

codedWord [−1] = ’x” ’

codedWord [codedWord . index (”b ’ ”)] = ”x ’ ”

codedWord . append(’d ’)

else : #The case b ’& b” pa i r happens once , bu t b ’ i s#

#not in the p r e f i x .#

#In t h i s case , b ’ −> x ’ as w e l l as b” −> x”.#

#Since b ’ i s n ’ t i n c l u de d in#

#the p r e f i x , we must conver t i t here .#

codedWord [−1] = ’x” ’

codedWord [codedWord . index (”b ’ ”)] = ”x ’ ”

codedWord . append (’d ’)

else : #The case b ’ & b” pa i r happens more than once .#

#Same as be fore , b ’ −> x ’ as w e l l as#

#b” −> x” because b ’ i s n ’ t i n c l u de d in the p r e f i x .#

codedWord [−1] = ’ x” ’

bPr imeIndexList =

[i for i , j in enumerate (codedWord) i f j == ”b ’ ”]

202

#Make a l i s t wi th i n d i c e s o f a l l b ’ in#

#codedWord l i s t .#

codedWord [bPr imeIndexList [−1]] = ”x ’ ”

codedWord . append (’d ’)

e l i f word [−3: l en (word)] == [’ d ’ , ’ b” ’ , ’ d ’] :

#This i s a s s o c i a t e d wi th bˆ d i n t e r a c t i o n .#

#b” i s d . As usual , a f t e r e r as i n g d b” d , we add back#

#whatever we need . The a s s o c i a t e d b ’ can be many d i f f e r e n t#

#t h i n g s , such as b ˆ , d ˆ , d ˆ , and y ˆ . I f the a s s o c i a t e d b ’ i s a#

part o f the p r e f i x , then we must have mod i f i ed i t p r ev i ou s l y .#

#I f t h i s i s n ’ t the case , then we modify b ’ here .#

word = word [0 : l a s t1 −3]

codedWord = codedWord [0 : l a s t2 −3]

i f word . count (”b ’ ”) == 1 :

#As usual , count the number o f b ’ appearing .#

i f word [0 : 3] == [’d ’ , ”b ’ ” , ’d ’] :

#We do not modify b ’ because i t i s#

#i n c l u de d in the pr e f i x C on v e r t e r .#

pass

e l i f word [0 : 4] == [’d ’ , ”da ’ ” , ”b ’ ” , ’ da” ’] :

#We do not modify b ’ because i t i s#

#i n c l u de d in the pr e f i x C on v e r t e r .#

pass

e l i f word [0 : 5] == [’d ’ , ”a ’ ” , ’d ’ , ”b ’ ” , ’ a” ’] :

i f m != 2 :

#I f the s e t i s n ’ t i n i t i a l , we modify b ’ in the#

#pr e f i x C on v e r t e r .#

pass

else : #Otherwise , b ’ needs to be modi f i ed to bˆ,#

#s i n c e i n i t i a l P r e f i x f u n c t i on don ’ t#

#de a l wi th the case o f beg inning wi th d a ’ d.#

codedWord [codedWord . index (”b ’ ”)] = ’bˆ ’

else : #The case b ’& b” pa i r happens once , bu t b ’ i s#

#not in the p r e f i x . In t h i s case , we must conver t#

#b ’ −> bˆ.#

i f codedWord . count (”b ’ ”) == 1 :

#This doub le checks i f i t r e a l l y i s n ’ t f i x e d in the#

203

#pr e f i x C on v e r t e r . In the case o f N−C chain , the#

#above t hr e e cannot cover i t .#

codedWord [codedWord . index (”b ’ ”)] = ’bˆ ’

else :

pass

else : #The case b ’ & b” pa i r happens more than once .#

#Same as be fore , b ’ −> bˆ#

#because b ’ i s n ’ t i n c l u de d in the p r e f i x .#

bPrimeIndexList =

[i for i , j in enumerate (codedWord) i f j == ”b ’ ”]

#Make a l i s t wi th i n d i c e s o f a l l b ’ in codedWord l i s t .#

codedWord [bPr imeIndexList [−1]] = ’bˆ ’

codedWord . append(’ d ’)

codedWord . append(’d ’)

e l i f word [−4: l en (word)] == [”dc ’ ” , ’b” ’ , ’ dc” ’ , ’ d ’] :

#This i s a s s o c i a t e d wi th bˆ d ˆ i n t e r a c t i o n . The case which#

#didn ’ t r i s e in the pr e f i x C on v e r t e r .

#The m odi f i c a t i on i s i d e n t i c a l to the case o f bˆ d .#

word = word [0 : l a s t1 −4]

codedWord = codedWord [0 : l a s t2 −4]

i f word . count (”b ’ ”) == 1 :

#As usual , count the number o f b ’ appearing .#

i f word [0 : 3] == [’d ’ , ”b ’ ” , ’d ’] :

#We do not modify b ’ because i t i s#

#i n c l u de d in the pr e f i x C on v e r t e r .#

pass

e l i f word [0 : 4] == [’d ’ , ”da ’ ” , ”b ’ ” , ’ da” ’] :

#We do not modify b ’ because i t i s#

#i n c l u de d in the pr e f i x C on v e r t e r .#

pass

e l i f word [0 : 5] == [’d ’ , ”a ’ ” , ’d ’ , ”b ’ ” , ’ a” ’] :

i f m != 2 : #I f the s e t i s n ’ t i n i t i a l , we modify b’#

#in the pr e f i x C on v e r t e r .#

pass

else : #Otherwise , b ’ needs to be modi f i ed to bˆ,#

#s i n c e i n i t i a l P r e f i x f u n c t i on don ’ t#

#de a l wi th the case o f ending wi th d a ’ d.#

204

codedWord [codedWord . index (”b ’ ”)] = ’bˆ ’

else : #The case b ’& b” pa i r happens once , bu t b ’ i s not#

#in the p r e f i x . In t h i s case , we must conver t b ’ −> bˆ.#

i f codedWord . count (”b ’ ”) == 1 :

#This doub le checks i f i t r e a l l y i s n ’ t f i x e d in the#

#pr e f i x C on v e r t e r . In the case o f N−C chain , the#

#above t hr e e cannot cover i t .#

codedWord [codedWord . index (”b ’ ”)] = ’bˆ ’

else :

pass

else : #The case b ’ & b” pa i r happens more than once .#

#Same as be fore , b ’ −> bˆ#

#because b ’ i s n ’ t i n c l u de d in the p r e f i x .#

bPrimeIndexList =

#[i f o r i , j in enumerate (codedWord) i f j == ”b ’ ”]

#Make a l i s t wi th i n d i c e s o f a l l b ’ in codedWord l i s t .#

codedWord [bPr imeIndexList [−1]] = ’bˆ ’

codedWord . append(’ d ˆ ’)

codedWord . append(’d ’)

else : #Any ot he r p r e f i x shou ld never appear due to the way we#

#s p l i t each s e t .#

print (”Error . ”)

codedWord += [’<− Something went wrong here . ’]

return codedWord

encode.py

”””

The f o l l o w i n g f u n c t i on t a k e s a permutat ion having extreme pat t e r n o f

e i t h e r 2413 , or 2143 s t a r t i n g wi th N s e t .

”””

import counter

import encodeNS

import i n v e r t

import Nsp l i t

import pre f i xConver t e r

205

import s u f f i xConve r t e r

def encode (perm) :

word = [] #We w i l l re turn t h i s l i s t as the f i n a l word.#

m = 2 #I n i t i a l number.#

n = counter . counter (perm) #Final number.#

i f n == 2 : #The permutat ion i s o f extreme pat t e r n 2413.#

word = encodeNS . encodeN (perm)

else :

while m != n+1:

subperm = Nsp l i t . Nsp l i t (perm) [0] #S p l i t i t .#

CLast = Nsp l i t . Nsp l i t (perm) [1]

subword1 = encodeNS . encodeN (subperm)

#Encode the s p l i t subpermutat ion .#

#Perform the m o d i f i c a t i o n s o f p r e f i x / s u f f i x Converters .#

i f m == 2: #I n i t i a l s e t .#

subword2 = pre f i xConver t e r . i n i t i a l P r e f i x (subword1)

#Resu l t o f the pr e f i x C on v e r t e r .#

subword2 =

su f f i xConve r t e r . n on f i n a l S u f f i x (subword1 , subword2 ,m)

#Resu l t o f the s u f f i x C o n v e r t e r .#

e l i f m == n : #Final s e t .#

subword2 =

pre f i xConver t e r . n o n i n i t i a l P r e f i x (subword1 ,m, n)

#Resu l t o f the pr e f i x C on v e r t e r .#

subword2 =

su f f i xConve r t e r . f i n a l S u f f i x (subword1 , subword2)

#Resu l t o f the s u f f i x C o n v e r t e r .#

else : #Nei ther i n i t i a l nor f i n a l .#

subword2 =

pre f i xConver t e r . n o n i n i t i a l P r e f i x (subword1 ,m, n)

#Resu l t o f the pr e f i x C on v e r t e r .#

subword2 =

su f f i xConve r t e r . n on f i n a l S u f f i x (subword1 , subword2 ,m)

#Resu l t o f the s u f f i x C o n v e r t e r .#

word += subword2

perm = Nsp l i t . setMinus (perm , CLast , subword2)

206

perm = inve r t . invPerm(perm)

m += 1

word [−1] = ’ d l ’

return word

main.py

import makeList

import c r e a t eF i l e

import ep

import encode

import l i s t 2 S t r

import Nsp l i t

input (”We f i r s t read a tex t f i l e o f permutations , and conver t the

s t r i n g type to the i n t e g e r type . ”)

print (”Enter a tex t f i l e d i r e c t o r y . ”)

while (True) :

try :

permList = input ()

permList = makeList . r e adF i l e (permList)

break

except :

print (”There i s no such a f i l e d i r e c t o r y . ”)

i f l en (permList [0]) <10 :

permList = makeList . convLis t1 (permList)

else :

permList = makeList . convLis t2 (permList)

print (”Done . Permutations in the txt f i l e are s to r ed in permList .\ n”)
operat ion1 = input (”Now, we d e l e t e a l l permutations which s a t i s f y at

l e a s t one o f the f o l l ow in g cond i t i on s .\ n 1 .The f i r s t number i s not 2 ,

3 , or 4 . \n 2 .The second number i s 1 . ”)

h a l f L i s t =[]

for i in permList :

h a l f L i s t . append (ep . Nstart (i))

207

while (True) :

try :

h a l f L i s t . remove (None)

except :

break

print (”Done . Permutations s t a r t i n g with 2 , 3 , or 4 AND the second

number i s not 1 are s to r ed in h a l f L i s t . ”)

operat ion2 = input (”Type encode to c r ea t e a tex t f i l e o f coded words .

Pres s en te r to e x i s t .\ n”)
words=[]

while operat ion2 != ’ encode ’ and operat ion2 != ’ ’ :

print (”Type encode or p r e s s en te r to e x i t . ”)

operat ion2 = input ()

i f operat ion2 == ’ encode ’ :

d e s t i n a t i on =

’C:\\ Users \\ Ikeda \\Desktop \\ encode(%d) . txt ’%len (permList [0])

for i in h a l f L i s t :

words . append(l i s t 2 S t r . l i s t 2 S t r (encode . encode (i)))

c r e a t eF i l e . c r e a t eF i l e (d e s t inat i on , words)

print (”Done . The tex t f i l e i s now cr eated . ”)

else :

pass

def uniqueCheck (words) :

for i in range (l en (words)−1):

for j in words [i +1 :] :

i f words [i] != j :

pass

else :

print (j)

def createWordList (h a l f L i s t) :

wordList = []

for i in h a l f L i s t :

wordList . append (encode . encode (i))

return wordList

208

def lengthCheck (wordList) :

n = len (wordList [0])

for i in wordList :

i f l en (i) != n :

print (i)

else :

pass

209

References

[1] M. H. Albert, Permlab: Software for permutation patterns, 2012.

[2] M. H. Albert and M. D. Atkinson, Simple permutations and pattern restricted permutations,

Discrete Math. 300 (2005), no. 1-3, 1–15. MR2170110 (2006d:05007)

[3] M. H. Albert, M. D. Atkinson, and Robert Brignall, The enumeration of permutations

avoiding 2143 and 4231, Pure Math. Appl. (PU.M.A.) 22 (2011), no. 2, 87–98. MR2924740

[4] M. H. Albert, M. D. Atkinson, and M. Klazar, The enumeration of simple permutations, J.

Integer Seq. 6 (2003), no. 4, Article 03.4.4, 18. MR2051958

[5] Michael H. Albert, M. D. Atkinson, Mathilde Bouvel, Nik Ruškuc, and Vincent Vatter,

Geometric grid classes of permutations, Trans. Amer. Math. Soc. 365 (2013), no. 11, 5859–

5881. MR3091268

[6] Michael H. Albert, M. D. Atkinson, and Vincent Vatter, Counting 1324, 4231-avoiding

permutations, Electron. J. Combin. 16 (2009), no. 1, Research Paper 136, 9. MR2577304

(2011e:05003)

[7] Michael H. Albert and Robert Brignall, Enumerating indices of Schubert varieties defined

by inclusions, J. Combin. Theory Ser. A 123 (2014), 154–168. MR3157805

[8] Michael H. Albert, Cheyne Homberger, Jay Pantone, Nathaniel Shar, and Vin-

cent Vatter, Generating permutations with restricted containers (2015), available at

arXiv:math/1510.00269v3.

[9] Noga Alon and Ehud Friedgut, On the number of permutations avoiding a given pattern, J.

Combin. Theory Ser. A 89 (2000), no. 1, 133–140. MR1736130 (2000i:05007)

[10] David Bevan, Permutations avoiding 1324 and patterns in Lukasiewicz paths (2015), avail-

able at arXiv:math/1406.2890v2.

[11] Miklós Bóna, Exact enumeration of 1342-avoiding permutations: a close link with labeled

trees and planar maps, J. Combin. Theory Ser. A 80 (1997), no. 2, 257–272. MR1485138

(98j:05003)

[12] , The solution of a conjecture of Stanley and Wilf for all layered patterns, J. Combin.

Theory Ser. A 85 (1999), no. 1, 96–104. MR1659444 (99i:05005)

arXiv:math/1510.00269v3
arXiv:math/1406.2890v2

210

[13] , A new record for 1324-avoiding permutations, European Journal of Mathematics

1 (2015), no. 1, 198–206 (English).

[14] Mireille Bousquet-Mélou and Steve Butler, Forest-like permutations, Ann. Comb. 11 (2007),

no. 3-4, 335–354. MR2376109 (2009b:05003)

[15] Robert Brignall, A survey of simple permutations, Permutation patterns, 2010, pp. 41–65.

MR2732823 (2012d:05008)

[16] Murray Elder and Vincent Vatter, Problems and conjectures presented at the third interna-

tional conference on permutation patterns, university of florida, march 7-11, 2005 (2005),

available at arXiv:math/0505504.

[17] P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935),

463–470. MR1556929

[18] Jacob Fox, Stanley-wilf limits are typically exponential (2013), available at

arXiv:math/1310.8378v1.

[19] S. Garrabrant and I Pak, Pattern avoidance is not P -recursive (2015), available at

arXiv:math/1505.06508v1.

[20] V. Gasharov and V. Reiner, Cohomology of smooth Schubert varieties in partial flag mani-

folds, J. London Math. Soc. (2) 66 (2002), no. 3, 550–562. MR1934291 (2003i:14064)

[21] Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53

(1990), no. 2, 257–285. MR1041448 (91c:05190)

[22] M. Haiman, Smooth schubert varieties, Preprint (1992).

[23] Tomáš Kaiser and Martin Klazar, On growth rates of closed permutation classes, Electron.

J. Combin. 9 (2002/03), no. 2, Research paper 10, 20. Permutation patterns (Otago, 2003).

MR2028280 (2004m:05026)

[24] Martin Klazar, The Füredi-Hajnal conjecture implies the Stanley-Wilf conjecture, Formal

power series and algebraic combinatorics (Moscow, 2000), 2000, pp. 250–255. MR1798218

(2001k:05005)

[25] D. Knuth, The art of computer programming, Vol. 1, Addison-Wesley, Reading, MA, 1968.

[26] , The art of computer programming, Vol. 3, Addison-Wesley, Reading, MA, 1973.

[27] Darla Kremer, Permutations with forbidden subsequences and a generalized Schröder num-

ber, Discrete Math. 218 (2000), no. 1-3, 121–130. MR1754331 (2001a:05005)

arXiv:math/0505504
arXiv:math/1310.8378v1
arXiv:math/1505.06508v1

211

[28] , Postscript: “Permutations with forbidden subsequences and a generalized Schröder

number” [Discrete Math. 218 (2000), no. 1-3, 121–130; MR1754331 (2001a:05005)], Dis-

crete Math. 270 (2003), no. 1-3, 333–334. MR1997910 (2004d:05010)

[29] V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert varieties in Sl(n)/B,

Proc. Indian Acad. Sci. Math. Sci. 100 (1990), no. 1, 45–52. MR1051089 (91c:14061)

[30] P. MacMahon, Combinatory analysis, Vol. 1, Cambridge University Press, London, 1915.

[31] Adam Marcus and Gábor Tardos, Excluded permutation matrices and the Stanley-Wilf

conjecture, J. Combin. Theory Ser. A 107 (2004), no. 1, 153–160. MR2063960 (2005b:05009)

[32] published electronically at http://oeis.org. N. J. A. Sloane, Online encyclopedia of integer

sequences. http://oeis.org/.

[33] John Noonan and Doron Zeilberger, The enumeration of permutations with a prescribed

number of “forbidden” patterns, Adv. in Appl. Math. 17 (1996), no. 4, 381–407. MR1422065

(97j:05003)

[34] T. Kyle Petersen and Bridget Eileen Tenner, The depth of a permutation (2012), available

at arXiv:math/1202.4765v3.

[35] Vaughan R. Pratt, Computing permutations with double-ended queues. Parallel stacks and

parallel queues, Fifth Annual ACM Symposium on Theory of Computing (Austin, Tex.,

1973), 1973, pp. 268–277. MR0489115 (58 #8588)

[36] Rodica Simion and Frank W. Schmidt, Restricted permutations, European J. Combin. 6

(1985), no. 4, 383–406. MR829358 (88a:05006)

[37] Daniel A. Spielman and Miklós Bóna, An infinite antichain of permutations, Electron. J.

Combin. 7 (2000), Note 2, 4 pp. (electronic). MR1741337 (2000k:05014)

[38] Henning Ulfarsson and Alexander Woo, Which Schubert varieties are local complete inter-

sections?, Proc. Lond. Math. Soc. (3) 107 (2013), no. 5, 1004–1052. MR3126390

[39] Vincent Vatter, Small permutation classes, Proc. Lond. Math. Soc. (3) 103 (2011), no. 5,

879–921. MR2852292 (2012j:05022)

[40] , Permutation classes (2015), available at arXiv:math/1409.5159v3.

arXiv:math/1202.4765v3
arXiv:math/1409.5159v3

	Authorization to Submit Dissertation
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Result
	1.2 History
	1.3 Place of dissertation in the literature

	2 Definitions and prerequisites
	2.1 Permutations and permutation classes
	2.1.1 Permutations
	2.1.2 Constructions of new permutations
	2.1.3 Permutation avoidance and permutation classes

	2.2 Generating functions
	2.3 Simple permutations
	2.3.1 Definition
	2.3.2 Inflation
	2.3.3 The importance of simple permutations

	2.4 Automata and the transfer matrix method
	2.4.1 Definition and example
	2.4.2 Transfer matrix method

	3 Examples of finding generating functions
	3.1 Enumeration of the class Av(123,213,132)
	3.2 Enumeration of the class Av(4123,4213,4132)
	3.2.1 Number of permutations in Av(4123,4213,4132)
	3.2.2 Skew-indecomposable permutations in Av(4123,4213,4132)

	4 Enumeration of the class A
	4.1 Overview
	4.2 Extreme patterns 2413, 3142 and 3412
	4.3 General simple permutations in A.
	4.3.1 Structure theorem
	4.3.2 Proof of Theorem 4.4 (Part 1)
	4.3.3 Proof of Theorem 4.4 (Part 2)

	4.4 Enumeration
	4.4.1 Enumeration of simple permutations in A
	4.4.2 Enumeration of the whole class of A

	5 Structure of general simple permutations in A'
	5.1 Extreme patterns 2413, 3142 and 3412
	5.1.1 Structural propositions
	5.1.2 Detailed structures

	5.2 General simple permutations in A'
	5.2.1 Glue sums and the structure theorem
	5.2.2 Proof of Theorem 5.21 (Part 1)
	5.2.3 Proof of Theorem 5.21 (Part 2)

	6 Enumeration of the class A'
	6.1 Enumeration of simple permutations in A'
	6.1.1 Defining the encoding function ' and the language L'
	6.1.2 Defining the automaton M'

	6.2 Enumeration of the whole class A'
	6.3 Conclusions

	Appendices
	A Transitions of M'i (1i10) and adjacency matrix associated with M'i
	B Python code

	References

