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Abstract

We study the distribution and the popularity of left children on sets of treeshelves
avoiding a pattern of size three. (Treeshelves are ordered binary increasing trees
where every child is connected to its parent by a left or a right link.) The con-
sidered patterns are sub-treeshelves, and for each such a pattern we provide ex-
ponential generating function for the corresponding distribution and popularity.
Finally, we present constructive bijections between treeshelves avoiding a pattern
of size three and some classes of simpler combinatorial objects.

Keywords: Binary increasing tree, pattern, statistic, popularity, Bell/Euler(ian)/Lah
number.

1 Introduction and notation

The study of patterns in permutations was first introduced by Knuth [13], and con-
tinues to be an active area of research today. Recently, patterns have been studied
in contexts other than permutations, see for instance [5, 16] where the combinatorial
class under consideration are inversion sequences, which can be seen as an alternative
representation for permutations. The present paper deals with treeshelves (formally
defined below) which are still another class in bijection with permutations, and pat-
terns are sub-treeshelves contained or avoided in a similar way as consecutive patterns
do in permutations or in inversion sequences. More precisely, we consider the class of
unrestricted treeshelves and of those avoiding a pattern of size 3 (treeshelves avoiding
a pattern of size 2 collapse trivially to a singleton set). We not only enumerate these
classes for any avoider of size 3, but also give bivariate generating functions with re-
spect to the size and to the number of occurrences of a second pattern of size 2. As a
byproduct we obtain the popularity among these classes of the pattern of size 2, obtain-
ing counting sequences which are not yet recorded in Sloane’s Encyclopedia of Integer
Sequences [20].
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Treeshelves are particular classes of binary increasing trees, considered for example
in Françon’s work [10] in the context of data structures for binary search methods. An
increasing tree of size n, is a rooted tree with n nodes labeled by distinct integers in
{1, 2, . . . , n}, so that the sequences of labels are increasing along all branches starting at
the root (and thus, the root is labeled by 1). A binary increasing tree (sometimes called
0-1-2 increasing tree) is an increasing tree where every node has at most two children.
Many studies (e.g., [1, 2, 3, 6, 15]) investigate binary increasing trees, but very few deal
with such trees endowed with the additional property that every child (including those
with no siblings) is connected to its parent by either a left or a right link. We call such
a binary increasing tree treeshelf (or t-shelf for short), and its size is the number of its
nodes, see Figure 1 for a size 7 t-shelf. We denote by Bn the set of size n t-shelves,
and B1 consists of the single one-node t-shelf. Often it is more convenient to represent
graphically t-shelves by trees where the integers labeling the nodes are proportional
with the lengths of the branches. For example, the size 3 t-shelf

1

2 3 is represented by
•

•
• , and

1

3 2 is represented by
•

•
• ,

see also Figure 1. In this representation, B2 = { •
• , • •}, and B3 = {

•
•

• ,
•
•

• ,
•

•
• ,

•
•

• ,
•

•
• ,

•
•
• , }.

We denote ∪n≥0Bn by B, and ∪n≥1Bn by B•. The labeled tree rooted at the left
child of the root of a t-shelf T becomes a t-shelf after appropriately relabeling its nodes,
and in the following we refer to it as the left t-shelf of T , and similarly for the right
t-shelf of T .

There is a bijection between Bn and the set of permutations of size n, and so the
cardinality of Bn is n!. Indeed, to any t-shelf T in Bn we can uniquely associate the
length n permutation π = α(n− r(T ) + 1)β, where r(T ) is the label of the root of T ,
and α (resp. β) is recursively defined from the left (resp. right) t-shelf of T (see again
Figure 1). As mentioned by Bergeron, Flajolet, and Salvy [1], this construction appears
in [10] and thereafter recalled in Stanley’s book [21]. Additional information (including
historical notes) about binary and other families of increasing trees can be found for
example in [1, 4, 11].

•
•

•

•
•

•
•

5 3 7 4 6 2 1

3

5

1

4

2

6
7

Figure 1: The t-shelf corresponding to the permutation 5 3 7 4 6 2 1; dashed/dotted lines
correspond to different patterns of size three.

In this paper we are interested in the sets of t-shelves avoiding a pattern P ∈ B3, i.e.,
the sets of those that do not contain any occurrence of P . The containment/avoidance
of a pattern in a t-shelf can most easily be explained with examples. The avoidance of
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•
•

• in a t-shelf T means that T does not contain any node where the label of its left child

is less than that of its right child. The t-shelf in Figure 1 contains only one pattern
•

•
•

(illustrated by dashed lines), one pattern
•

•
• (dotted) and avoids the pattern

•
•

• .

Since the number of •
• patterns in a t-shelf is equal to the size of the t-shelf minus

the number of •
• patterns, minus one, in the following we will consider only •

• patterns.
Moreover, an occurrence of the •

• pattern is equivalent to that of a left child in the
underlying tree of the t-shelf, we will refer to this pattern as a left child (similarly

the pattern •
• corresponds to a right child). Also, since the patterns

•
•
• and

•
•

• are

equivalent by symmetry, and so are the patterns
•

•
• and

•
•
• , and the patterns

•
•

• and
•
•

• , we will consider only avoiders P in {
•

•
• ,

•
•

• ,
•

•
•}.

T-shelves are labeled combinatorial objects, and so it is appropriate to use expo-
nential generating functions (e.g.f.) for the enumerative analysis of them. In Section
2, for each of the avoiders P above mentioned, we consider the set B(P ) of t-shelves
avoiding P , or B•(P ) when we restrict to non-empty t-shelves. We provide a bivariate
exponential generating function for each B(P ) with respect to the size and the number

of left children, that is, function where the coefficient of znyk

n!
in its series expansion is

the number of t-shelves of size n having exactly k left children, and deduce the e.g.f.
for B(P ) with respect to the size. We also give the e.g.f. for the popularity of the left
children among B(P ), function where the coefficient of zn

n!
in its series expansion is the

total number of left children appearing in all size n t-shelves in B(P ). These results are
summarized in Tables 1 and 2.

Our method consists in constructing recursively the combinatorial class in question
from two smaller classes, A1 and A2, using the usual labeled product A1 ⋆A2 and the
boxed product A�

1 ⋆A2. The boxed product A�

1 ⋆A2 is a subset of A1 ⋆A2 where the
smallest label appears in the A1 component. See [8] for more information about the
boxed product and its application on labeled combinatorial structures.

Theorems 4-6 in Section 3 give constructive proofs of some results in Section 2,

namely constructive bijections between: (i) t-shelves avoiding
•

•
• and set partitions,

(ii) (unordered) binary increasing trees where every node of degree one has either a

left or a right child and t-shelves avoiding the pattern
•

•
•, and (iii) unordered binary

increasing trees and t-shelves avoiding the pattern
•

•
• .

2 T-shelves avoiding a size 3 pattern

We begin this section by considering unrestricted t-shelves, then we extend our approach

to those avoiding a pattern in {
•

•
• ,

•
•

• ,
•

•
•} ⊂ B3.

A t-shelf is either empty or consists of a root with two (possibly empty) children.
Thus, the set B of unrestricted t-shelves can be expressed as

B = ǫ+ Z� ⋆ B2,

where Z corresponds to the atom, i.e., the singleton formed by the unique object of
size one.
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As the boxed product A�

1 ⋆ A2 has its exponential generating function given by
∫ z

0
∂tA1(t) · A2(t) dt, where A1(t) and A2(t) are the exponential generating functions of

A1 and A2, respectively (see [8, Theorem II.5]), we obtain the differential equation

B(z) = 1 +

∫ z

0

B2(t) dt,

which, with the initial condition B(0) = 1, gives as expected B(z) = 1
1−z

, the e.g.f. for
the sequence n!.

If we are interested in the bivariate exponential generating function B(z, y) where

the coefficient of znyk

n!
is the number of t-shelves of size n having exactly k left children

(or, equivalently by symmetry, k right children), then it is more convenient to consider
the set B• of non-empty t-shelves. A t-shelf T ∈ B• can be in one of the following cases:
the root of T either

− has no children (T is reduced to one root node), in this case the set of such T is
Z; or

− has only a left or only a right child, in both cases the set of such T is Z� ⋆B•; or

− has both left and right children, the set of such T is Z� ⋆ B• ⋆ B•.
Thus, B• can be expressed as

B• = Z + Z� ⋆ B• + Z� ⋆ B• + Z� ⋆ (B•)2,

and after multiplying by y whenever a new left child is created, we obtain the differential
equation

B•(z, y) = z +

∫ z

0

B•(t, y) dt+ y

∫ z

0

B•(t, y) dt+ y

∫ z

0

(B•(t, y))2 dt,

where B(0, y)• = 0, and its solution is B•(z, y) = 1−ez(y−1)

ez(y−1)−y
. Finally,

B(z, y) = 1 +B•(z, y) =
1− y

ez(y−1) − y
,

and we retrieve two well known results, see [18, Exercise 1.9]:

− the distribution of the left children on the set B has the exponential generating
function B(z, y), and it is given by a shift of the Eulerian numbers (sequence
A008292 in OEIS [20]); and

− the popularity of the left (or right) children among B, which is the coefficient of
zn

n!
in ∂yB(z, y)|y=1 =

z2

2 z2−4 z+2
, is given by the Lah numbers (sequence A001286

in OEIS [20]).

In the following, for each t-shelf P ∈ {
•

•
• ,

•
•

• ,
•

•
•} we will count the class B(P ) (or

B•(P )) of t-shelves avoiding P , and explore the distribution and the popularity of left
children (i.e, of the pattern •

• ) among each class.

4
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2.1 Pattern
•

•
•

Here we consider B(P ) with P =
•

•
• , that is, t-shelves having all they left children with

no right child, we refer to Figure 2 for an illustration of the shape of such a t-shelf.

•1
•

•
•

Figure 2: The shape of a t-shelf avoiding pattern
•

•
• .

Theorem 1. Let P be the pattern
•

•
• . The bivariate e.g.f. for B(P ) with respect to the

size of t-shelves and the number of left children is given by

C(z, y) = e
ezy−1

y .

Proof. Let C = B(P ) and T ∈ C. According to the shape of the t-shelves in C (see
Figure 2), if T is non-empty, then it is obtained by a pair of t-shelves, namely a non-
empty t-shelf with no right children containing the smallest label of T , and a second
unrestricted t-shelf in C. The set of such non-empty t-shelves is D� ⋆ C, where D is the
set of non-empty t-shelves with no right children. Thus we have

C = ǫ+D� ⋆ C.

Since the bivariate exponential generating function for D is D(z, y) = ezy−1
y

, we
obtain the differential equation

C(z, y) = 1 +

∫ z

0

ety · C(t, y) · dt

where C(0, y) = 1, with the solution C(z, y) = e
ezy−1

y .

By calculating C(z, 1) we have the following corollary.

Corollary 1. The exponential generating function for the set B(P ) with respect to the
size of t-shelves is Bell(z) = ee

z−1, which generates the Bell numbers (sequence A000110
in OEIS [20]).

Corollary 2. The popularity of the left children among the set B(P ) is given by the
exponential generating function

PC(z) = (zez − ez + 1) ee
z−1.

5
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Moreover, the coefficient pcn of zn

n!
in PC(z) satisfies pcn = (n + 1)bn − bn+1 where bn

is the nth Bell number. The asymptotic of pcn is given by

√
n

(

n

W (n)

)n+ 1
2

e
n

W (n)
−n−1

,

where W is the Lambert function [7, 19], that is, W (n) is the unique solution of
W (n) · eW (n) = n.

(The first terms of pcn, n ≥ 2, are 1, 5, 23, 109, 544, 2876, 16113, 95495.)

Proof. The popularity is given by ∂yC(z, y)|y=1 = (zez − ez + 1) ee
z−1. The recurrence

for pcn is directly obtain from the relation (z − 1)∂zBell(z) + Bell(z) = PC(z).
Finally, the asymptotic follows from the asymptotic formula due to M. Klazar [12,
Proposition 2.6] and D.E. Knuth [14, eq. (30), p. 69]:

bn+1

bn
∼ n

ln(n)
,

and from the well known asymptotic for the Bell numbers (see A.M. Odlyzko [17]):

1√
n

(

n

W (n)

)n+ 1
2

e
n

W (n)
−n−1

,

where W (n) is the unique solution of W (n) · eW (n) = n.

2.2 Pattern
•

•
•

Here we consider the set B(P ) of t-shelves avoiding the pattern P =
•

•
• .

Theorem 2. Let P be the pattern
•

•
• . Then the bivariate e.g.f. for B(P ) with respect

to the size of t-shelves and the number of left children is given by

E(z, y) =
2y − 1

y cosh
(

z
√−2y + 1 + ln

(

1
y

(

y +
√−2y + 1− 1

)

))

+ y
.

Proof. Let E = B(P ) and T ∈ E . One of the following cases can occur.

− T is empty.

− T is not empty, and its root does not have a left child. In this case, the right
t-shelf of T belongs to E and the set of such t-shelves T is Z� ⋆ E .

− The root of T has a left child. In this case T is obtained from a pair of t-shelves
satisfying the second point above, namely one formed by the root of T together
with its right t-shelf, and the other one being the left t-shelf of T . See Figure 3
for an illustration of this case. So, T is the product of two t-shelves satisfying
the second point above and, with the smallest label belonging to the first t-shelf.
Thus, the set of such t-shelves T is F� ⋆ F where F = Z� ⋆ E .

6



Combining these cases we have

E = ǫ+ Z� ⋆ E +
(

Z� ⋆ E
)�

⋆
(

Z� ⋆ E
)

,

which yields the differential equation

E(z, y) = 1 +

∫ z

0

E(t, y)dt+ y ·
∫ z

0

(

E(u, y) ·
∫ u

0

E(t, y) dt

)

du,

with the initial conditions E(0, y) = 1 and ∂zE(z, y)|z=0 = 1. A simple calculation
(using Maple for instance) gives the desired result.

•1
• E

E

Z�
⋆ EZ�

⋆ E

Figure 3: Illustration of a t-shelf satisfying the third case in the proof of Theorem 2.

The next corollary is obtained by calculating E(z, 1).

Corollary 3. The exponential generating function for the set B(P ) with respect to the
size of trees is given by

Eul(z) =
1

1− sin z
,

which yields a shift of the Euler numbers (sequence A000111 in OEIS [20]– not to be
confused with Eulerian numbers).

Corollary 4. The popularity pen of the left children among the set B(P ) is given by
the exponential generating function

PE(z) =
− sin z + 1 + (z − 1) cos z

(1− sin z)2
.

Moreover, the coefficient pen of zn

n!
satisfies pen = (n+1)en−en+1 where en is the shifted

Euler number defined by the e.g.f. Eul(z) = 1
1−sin(z)

. The asymptotic of pen is given by

8(π − 2)

π3
n2

(

2

π

)n

.

(The first terms of pen, n ≥ 2, are 1, 4, 19, 94, 519, 3144, 20903, 151418).

Proof. Using Theorem 2, PE(z) is obtained by calculating ∂yE(z, y)|y=1. The recur-
rence relation is directly obtained with the relation PE(z) = (z − 1)∂zEul(z) + Eul(z),
and the asymptotic follows from the classical singularity analysis (see for instance
[8]).

7
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2.3 Pattern
•

•
•

We conclude this section by considering the pattern P =
•

•
• and the set B•(P ) of

non-empty t-shelves avoiding P .

Theorem 3. Let P be the pattern
•

•
•. Then the bivariate e.g.f. for B•(P ) with respect

to the size of t-shelves and the number of left children is given by

G(z, y) =
−2

1 + y −
√

y2 + 1 coth

(

z
√

y2+1

2

) .

Proof. For P =
•

•
•, a non-empty t-shelf T in G = B•(P ) is in one of the following cases:

− T is reduced to one (root) node.

− T has at least two nodes and its root does not have a left child. In this case the
set of such t-shelves T is Z� ⋆ G.

− T has at least two nodes and its root does not have a right child. As above, the
set of such t-shelves T is Z� ⋆ G.

− The root of T has both left and right children (see Figure 4). In this case T is
obtained from a pair of t-shelves in G connected by a common root, with the
smallest label of T in its right t-shelf. The set of such T is Z� ⋆ (G� ⋆ G).

Combining these four cases we obtain

G = Z + Z� ⋆ G + Z� ⋆ G + Z� ⋆
(

G� ⋆ G
)

which induces the differential equation

G(z, y) = z +

∫ z

0

G(t, y) dt+ y ·
∫ z

0

G(t, y) dt+ y ·
∫ z

0

∫ u

0

∂tG(t, y) ·G(t, y) dt du,

with the initial conditions G(0, y) = 0 and ∂zG(z, y)|z=0 = 1. A simple calculation
(using Maple for instance) gives the desired result.

•1

•2
G GG�

⋆ GZ� ⋆
(

G� ⋆ G
)

Figure 4: Illustration of a t-shelf satisfying fourth case in the proof of Theorem 3.

Corollary 5. The exponential generating function for the set B(P ) with respect to the
size of t-shelves is given by

1 +
−2

−
√
2 coth

(

z√
2

)

+ 2

which generates the sequence A131178 in OEIS [20].

8
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Corollary 6. The popularity pgn of the left children among the set B(P ) is given by
the exponential generating function

PG(z) =
e
√
2z (4 z − 4)−

(√
2− 2

)

e2
√
2z +

√
2 + 2

((√
2− 2

)

e
√
2z + 2 +

√
2
)2 .

Moreover, the asymptotic of the coefficient pgn of zn

n!
is given by

n

( √
2

ln
(

2
√
2 + 3

)

)n+1

.

(The first terms of pgn, n ≥ 2, are 1, 5, 24, 128, 770, 5190, 38864, 320704.)

Proof. Using Theorem 3, PG(z) is obtained by calculating ∂yG(z, y)|y=1, and the
asymptotic follows from the classical singularity analysis.

Pattern P Sequence counting B(P ) OEIS [20] Comments
•

•
• 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ... A000110 (Bell) Cor. 1 and Th. 4
•

•
• 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, ... A000111 (Euler) Cor. 3 and Th. 6
•

•
• 1, 1, 2, 5, 16, 64, 308, 1730, 11104, 80176, ... A131178 Cor. 5 and Th. 5

Table 1: Number of t-shelves avoiding the pattern P .

Pattern P Popularity of left children in B(P ) Comments
•

•
• 1, 5, 23, 109, 544, 2876, 16113, ... Corollary 2
•

•
• 1, 4, 19, 94, 519, 3144, 20903, 151418, ... Corollary 4
•

•
• 1, 5, 24, 128, 770, 5190, 38864, 320704, ... Corollary 6

Table 2: Popularity of left children among t-shelves avoiding the pattern P . None of
these sequences is yet recorded in OEIS [20].

3 Constructive bijections

The counting sequences for t-shelves avoiding a pattern of length 3 given in Corollaries
1, 3 and 5 are known (see Table 1), and these results deserve bijective proofs. Here,

for each pattern P ∈ {
•

•
• ,

•
•

• ,
•

•
•}, we give an explicit bijection between B(P ) and a

simpler combinatorial class. These results are stated in the next three theorems, the
first two of them are straightforward.

9
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Theorem 4. There is a bijection between the set of partitions of {1, 2, . . . , n} and the

set Bn(P ) of t-shelves of size n avoiding the pattern P =
•

•
• .

Proof. For a partition S1, S2, . . . , Sk of a set S ⊆ {1, 2, . . . , n} with minS1 < minS2 <

. . . < minSk we define a t-shelf T with nodes labeled by integers from S. If k = 1, then
T is simply the t-shelf with no right children (and with labels in S = S1). Elsewhere,
T is defined recursively as:

− the root of T is labeled by minS1,

− the left t-shelf of T has size equal to cardS1−1 and does not have a right children;
its nodes are labeled by integers in S1 \ {minS1},

− the right t-shelf of T is obtained recursively from the partition S2, . . . , Sk of S\S1.
Clearly, the t-shelf T corresponding to a set partition of {1, 2, . . . , n} is a size n t-shelf
avoiding P . See the recursive definition of B(P ) in the proof of Theorem 1 and the shape
of T given in Figure 2. This construction is reversible, and the statement holds

Unordered binary increasing trees are the non-ordered counterpart of t-shelves: in
an unordered binary increasing tree the sibling nodes are not longer ordered among
themselves, and nodes with no sibling are not ‘labeled’ left/right. Thus each unordered
binary increasing tree T can be expanded into 2k different t-shelves of same size, where
k is the number of nodes of T having at least one child. Theorem 6 below establishes
a bijection between size n + 1 unordered binary increasing trees and size n t-shelves

avoiding
•

•
• . An interesting intermediate ordered/unordered combinatorial class is that

of binary increasing trees where, as above, the sibling nodes are not ordered, but nodes
with no sibling are still ‘labeled’ left/right. We denote by J the set of these trees.

We define a transformation φ acting on unordered binary increasing trees and on
trees in J by ordering the nodes having a sibling: if a node of a tree has two children,
then we consider the child with the smaller label as the right one (and thus, that with
the larger label as the left one). This configuration is depicted below.

y

u
z , when z < y.

Clearly, applying φ on a tree in J a t-shelf avoiding
•

•
• is obtained. Moreover, this

transformation is reversible, and since J is counted by the sequence A131178 in [20]
(see the references therein), the next theorem gives a constructive proof for the counting

sequence of t-shelves avoiding
•

•
•.

Theorem 5. There is a bijection between the set J and the set B(P ) of t-shelves

avoiding the pattern P =
•

•
•.

In order to obtain a bijection between unordered binary increasing trees and t-shelves

that avoid
•

•
• (next theorem), we apply the shift (defined below) on unordered binary

increasing trees in standard representation. The standard representation of such a tree
is the t-shelf obtained after ordering sibling nodes, which is obtained by performing

10
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the above transformation φ, together with considering as right child each node with no
sibling, as depicted below.

u
z.

The shift of a node y of a t-shelf has effect only if the following conditions are
satisfied: (i) y is a left child and it has a right sibling, say z; and (ii) z in turn does
not have a left child and its label is smaller than that of y. Otherwise the shift has
no effect. With this notation, the shift of a node y satisfying the two conditions above
consists of pruning y from its parent and grafting it as the left child of z, see Figure 5.

y

•
z shift7−−→

y

•
z

Figure 5: The shift operation. The label of z is smaller than that of y.

Finally, the shift of a t-shelf T is defined recursively by shifting, in order, the right
t-shelf of T , the root of T , and then the left t-shelf of T . See the first part of Figure 6
for an illustration. Obviously, the shift of a t-shelf T is still a t-shelf, and if T is the
standard representation of some unordered binary increasing tree, then the shift of T

avoids
•

•
• , and its root does not have a left child.

1

2

3

4

5

6

recursive shift7−−−−−−−→

1

2

3

4

5

6

Root deletion7−−−−−−−→

1

2

3

4

5

Figure 6: A unordered binary increasing tree in standard representation and its image
after the recursive shift process, and after the deletion of the root.

Theorem 6. There is a bijection between unordered binary increasing trees with n+ 1

nodes and the set Bn(P ) of t-shelves of size n avoiding the pattern P =
•

•
• .

Proof. Let S be an unordered binary increasing tree with n + 1 nodes and T be the
shift of its standard representation. As mentioned above, T is a t-shelf and its root does
not have a left child. We define the mapping S 7→ U , where U is the t-shelf obtained
after deleting the root of T and decreasing by one each label of the obtained t-shelf, see

Figure 6. This mapping is injective, and any t-shelf with n nodes that avoids
•

•
• can

be obtained by this mapping from an unordered binary increasing tree.

Let us remark that unordered binary increasing trees are equinumerous with alter-
nating permutations that starts by a descent, as proved by Foata and Schützenberger [9].
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The corresponding bijection is given by Donaghey [6]. Using Donaghey’s bijection to-
gether with the bijection in Theorem 6, we obtain a one-to-one correspondence between

alternating permutations starting with a descent and t-shelves avoiding
•

•
• .
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