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Abstract

Hofstadter’s Q-sequence remains an enigma fifty years after its introduction. Ini-
tially, the terms of the sequence increase monotonically by 0 or 1 at a time. But,
Q(12) = 8 while Q(11) = 6, and monotonicity fails shortly thereafter. In this pa-
per, we add a third term to Hofstadter’s recurrence, giving the recurrence B(n) =
B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3)). We show that this recurrence,
along with a suitable initial condition that naturally generalizes Hofstadter’s initial
condition, generates a sequence whose terms all increase monotonically by 0 or 1 at a
time. Furthermore, we give a complete description of the resulting frequency sequence,
which allows the nth term of our sequence to be efficiently computed. We conclude by
showing that our sequence cannot be easily generalized.

1 Introduction
The Hofstadter Q-sequence [4] is defined by the nested recurrence Q(n) = Q(n−Q(n−1))+
Q(n − Q(n − 2)) with the initial conditions Q(1) = Q(2) = 1. The first 11 terms of this
sequence [9, A005185] are

1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, . . .

These terms increase monotonically with successive differences either 0 or 1. But, Q(12) = 8,
ending the successive difference property. Not long thereafter, Q(15) = 10 and Q(16) = 9,
ending the monotonicity. Calculating more terms leads one to the resignation that the
Hofstadter Q-sequence is anything but well-behaved. While there appear to be some patterns
in the sequence, all such observation are as-yet purely emprical. Essentially nothing has been
rigorously proven about this sequence. Most critically, nobody has been able to prove that
Q(n) even exists for all n. If Q(n− 1) ≥ n for some n, then evaluating Q(n) would require
knowing Q(k) for some k ≤ 0. Since Q is only defined for positive indices, Q(n) (and all
subsequent terms) would fail to exist in this case. If a sequence is finite because of behavior
like this, we say that the sequence dies.

Hofstadter and Huber [1, 5] investigated the following familiy of recurrences, which gen-
eralize the Hofstadter Q-recurrence. For integers 0 < r < s, define

Qr,s(n) = Qr,s(n−Qr,s(n− r)) +Qr,s(n−Qr,s(n− s)).
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They explored these recurrences experimentally for various initial conditions. This work led
them to conjecture that the sequences reulting from an all-ones initial condition always die,
except for (r, s) ∈ {(1, 1), (1, 4), (2, 4)}. The case (1, 1) is the Q-sequence, and the case (2, 4),
often called theW -sequence, displays even wilder behavior than the Q-sequence [9, A087777].
The sequence resulting from (r, s) = (1, 4), on the other hand, behaves much more regularly.
This sequence, known as the V -sequence, was proven to be monotone increasing by 0 or 1
at a time [1]. This growth property is known in the literature as slow.

There has been substantial research concerning slow Hofstadter-like sequences. The most
famous example is perhaps the Hofstadter-Conway $10000 Sequence [9, A004001], given by
A(n) = A(A(n − 1)) + A(n − A(n − 1)) with A(1) = A(2) = 1. Conway notably offered
a $10000 prize for an analysis of the behavior of this sequence. Colin Mallows solved this
problem a few years later [8]. Another prototypical example is Conolly’s [2] recurrence
C(n) = C(n − C(n − 1)) + C(n − 1 − C(n − 2)) with C(1) = C(2) = 1 as the initial
condition [9, A046699]. There are many examples of slow sequences that generalize Conolly’s
recurrence [3,7], some of which have combinatorial interpretations involving counting leaves
in tree structures [7]. In addition, given a slow Hofstadter-like sequence, it is possible to
generate an infinite family of slow sequences with similar recurrences [6].

Most of the known examples of slow sequences have at least one of the following proper-
ties:

• An inner recursive call with a positive coefficient (like the firstA(n−1) in the Hofstadter-
Conway recurrence).

• A “shift” in at least one of the recurrence terms (like the −1 in the second term in
Conolly’s recurrence).

In fact, the only ones that have neither property are the V -sequence and sequences con-
structed from it [6]. We decided to search for additional slow, Hofstadter-like sequences
without these properties. The investigation of Hofstadter and Huber empirically rules out
two-term recurrences, so we began our search by considering the generic 3-term recurrence

Qr,s,t(n) = Qr,s,t(n−Qr,s,t(n− r)) +Qr,s,t(n−Qr,s,t(n− s)) +Qr,s,t(n−Qr,s,t(n− t))

with integers 0 < r < s < t. The all-ones initial condition proved fruitless in our investiga-
tion. However, the initial conditions V (1) = 1, V (2) = 2, V (3) = 3, V (4) = 4 generate the
V -sequence as well (offset by 3 terms) [1]. Thus, we focused our search on slow sequences
with initial conditions of the form Qr,s,t(i) = i for i ≤ t. This allowed us to find the se-
quence with (r, s, t) = (1, 2, 3). In this paper, we prove that this sequence is slow. In fact,
we completely characterize the terms of this sequence and exhibit an efficient algorithm for
computing the nth term. In particular, each term of this sequence appears at most twice, in
contrast to the V -sequence, whose terms appear at most three times [1]. In Section 2, we
examine this sequence and prove our results about it. Then, in Section 3, we discuss some
future directions, and we show that one potential generalization of our sequence fails to yield
other slow sequences.
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2 Our Sequence
We will consider the sequence defined by the recurrence

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

and the initial conditions B(1) = 1, B(2) = 2, B(3) = 3, B(4) = 4, B(5) = 5. The first few
terms of this sequence (A278055 in OEIS) are

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 21, 21, . . .

The main thing we wish to prove is the following:

Theorem 1. For all n, B(n)− B(n− 1) ∈ {0, 1}. In other words, the sequence (B(n))n≥1
is slow.

We will actually prove considerably more than just Theorem 1. We will completely
determine the structure of this sequence. In the terms listed above, each positive integer
appears no more than twice (and at least once). We will show that this is the case for all
numbers, and we will completely characterize which numbers repeat.

We will make use of the following auxiliary sequence (ai)i≥1. Let a1 = 3, and for i ≥ 1,
let ai = 3ai−1 − 1. (This is sequence A057198 in OEIS.) This sequence has the closed form
ai =

5
2
3i−1 + 1

2
. We have the following theorem.

Theorem 2. Let m be a positive integer. If there exists some integer k ≥ 1 such that
m = k · 3i + ai for some i ≥ 1, then m appears in the B-sequence twice. Otherwise, m
appears once. Furthermore, the B-sequence is monotone increasing.

Theorem 2 implies Theorem 1, since Theorem 2 asserts both that the sequence is mono-
tone and that each positive integer appears in the sequence. Throughout the rest of this
section, we will end up proving Theorem 2, and consequently Theorem 1, by induction.
In doing so, we will frequently assume that Theorem 2 holds up to some point. To make
this clear, we will define the following indexed families of propositions (where m and n are
positive integers):

• Let Pm denote the proposition “For all integers 1 ≤ m′ ≤ m, if there exists some integer
k ≥ 1 such that m′ = k ·3i+ai for some i ≥ 1, then m′ appears in the B-sequence twice.
Otherwise, m′ appears once. Furthermore, the B-sequence is monotone increasing as
long as its terms are at mostm.” In this way, Pm is essentially the statement “Theorem 2
holds through value m.”

• Let Tn denote the proposition “The first n terms of the B-sequence are monotone
increasing. Furthermore, for all m appearing as one of these first n terms, if there
exists some integer k ≥ 1 such that m = k · 3i + ai for some i ≥ 1, then m appears
in these first n terms twice (unless this second occurrence would be in position n+1).
Otherwise, m appears once.” In this way, Tn is essentially the statement “Theorem 2
holds through index n.”

3



It should be clear from these definitions that the following are equivalent:

• Theorem 2 is true.

• Pm holds for all m ≥ 1.

• Tn holds for all n ≥ 1.

We will call a pair of positive integers (k, i) such that m = k · 3i + ai a witness pair for
m, and we will call i a witness for m. (Theorem 2 says that a value m is repeated if and
only if it has a witness.) We will now show that every m has at most one witness.

Lemma 1. For any positive integer m, there is at most one i ≥ 1 such that m ≡ ai (mod 3i).

Proof. Suppose for a contradiction that, for some integers i, j ≥ 1, k1 ·3i+ai = k2 ·3i+j+ai+j.
Then

ai+j − ai = k1 · 3i − k2 · 3i+j = 3i(k1 + k2 · 3j).
In particular, ai+j − ai must be divisible by 3i.

But, using the closed form,

ai+j − ai =

(
5

2
· 3i+j−1 +

1

2

)
−
(
5

2
· 3i−1 + 1

2

)
=

5

2

(
3i+j−1 − 3i−1

)
=

5

2
· 3i−1

(
3j − 1

)
.

This is clearly not divisible by 3i, a contradiction. Therefore, no such i and j can exist, so
there is at most one i ≥ 1 such that m ≡ ai (mod 3i), as required.

For a value m, we will examine the number of values less than m that are repeated.
Define R(m, i) = max

(
0,
⌊
m−ai−1

3i

⌋)
. This floored quantity counts the witness pairs (k, i) for

numbers less than m. If Pm holds, then this is also the number of repeated values m′ < m
with witness i. If we now let

R(m) =
∞∑
i=1

R(m, i),

we have that R(m) is the total number of repeated values less than m (provided that Pm

holds.) This sum converges because only the logarithmically many terms with ai − 1 ≤ m
are nonzero.

We now have the following lemmas.

Lemma 2. Let m be a positive integer. Suppose Pm−1 holds. Then, B(m+R(m)−1) = m−1,
and B(m + R(m)) ≥ m. (In other words m + R(m) − 1 is the last index in our sequence
with value at most m− 1.)

Proof. The number of terms before the first occurrence of a term greater than or equal to
m will be at least m− 1, since each number smaller than m must appear at least once. The
first occurrence of such a term will be “delayed” by 1 index for every smaller value that is
repeated. The number of such repeated values is R(m). So, there are m− 1 + R(m) terms
before the first occurrence of a term greater than or equal to m. This means that the last
occurrence of m− 1 is in position m+R(m)− 1, as required.
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An immediate consequence of Lemma 2 is that B(m+R(m)) in fact equals m, provided
that Pm holds.

Lemma 3. Let m be a multiple of 3. If i ≥ 2 is a witness for m − 1, then R(m, i) =
R
(
m
3
, i− 1

)
+ 1. Otherwise, R(m, i) = R

(
m
3
, i− 1

)
.

Proof. The lemma is clearly true if ai + 1 ≥ m, so we can assume without loss of generality
that ai + 1 < m and thereby ignore the max in the definition of R(m, i) when proving this
lemma.

We have
R(m, i) =

⌊
m− ai − 1

3i

⌋
=

⌊
m

3i
− ai + 1

3i

⌋
and

R
(m
3
, i− 1

)
=

⌊ m
3
− ai−1 − 1

3i−1

⌋
=

⌊
m

3i
− ai−1 + 1

3i−1

⌋
.

Since ai =
5
2
· 3i−1 + 1

2
,

ai + 1

3i
=

5

6
+

1

2 · 3i
and

ai−1 + 1

3i−1
=

5

6
+

1

2 · 3i−1
.

The first of these definitely smaller, so R(m, i) ≥ R
(
m
3
, i− 1

)
. Furthermore, the above

fractions differ by 1
3i
, so R(m, i) ≤ R

(
m
3
, i− 1

)
+ 1.

The only way they will not be equal is if there is some integer ` such that

m

3i
− ai−1 + 1

3i−1
< ` ≤ m

3i
− ai + 1

3i
.

Since the bounds differ by 1
3i

and they have common denominator 3i, this can only happen
if ` = m

3i
− ai+1

3i
. This gives that m− ai + 1 = ` · 3i, or m− 1 = ` · 3i + ai for some integer `.

Since ai + 1 < m, we must have ` ≥ 1. So, for R(m, i) = R
(
m
3
, i− 1

)
+ 1, we obtain that i

must be a witness for m− 1, as required.

Lemma 4. Let m be a multiple of 3. Then,

m

3
+R

(m
3

)
=

{
R(m) + 1 if m− 1 has a witness
R(m) + 2 if m− 1 does not have a witness.

Proof. As a consequence of Lemma 3 and Lemma 1,

R(m) =

{
R(m, 1) +R

(
m
3

)
if m− 1 does not have a witness

R(m, 1) +R
(
m
3

)
+ 1 if m− 1 has a witness.

We also have
R(m, 1) =

⌊
m− a1 − 1

3

⌋
=

⌊
m− 4

3

⌋
=

m

3
− 2.

Substituting this into the above and rearranging terms gives the required form.
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Lemma 5. Let m be a multiple of 3. Then m − 1 has a witness if and only if m
3

has a
witness.

Proof.

(=⇒) Suppose m−1 = k ·3i+ai for some positive integers k and i. Then, m = k ·3i+ai+1.
But, ai = 3ai−1− 1, so m = k · 3i +3ai−1. This means that m

3
= k · 3i−1 + ai−1, so i− 1

is a witness for m
3
.

(⇐=) Suppose m
3
= k · 3i + ai for some positive integers k and i. Then, m = 3k · 3i + 3ai.

But, ai+1 = 3ai− 1, so m = k · 3i+1+ ai+1+1. This means that m− 1 = k · 3i+1+ ai+1,
so i+ 1 is a witness for m− 1.

Lemma 6. Let m ≥ 6 be a multiple of 3. Suppose Pm−1 holds. Then, if m − 1 repeats we
have B(R(m) + 1) = m

3
. If m − 1 does not repeat we have B(R(m) + 1) = m

3
− 1. In both

cases we have {
B(R(m) + 2) = m

3

B(R(m) + 3) = m
3
+ 1.

Proof. We will look at the two cases separately.

m− 1 repeats: Then, m− 1 has a witness. So, by Lemma 4, R(m) + 1 = m
3
+ R

(
m
3

)
. By

Lemma 2, B(R(m) + 1) = m
3
. Furthermore, by Lemma 5, m

3
has a witness (and hence

repeats), so B(R(m) + 2) = m
3

as well. Since values appear at most twice, we then
have B(R(m) + 3) = m

3
+ 1, as required.

m− 1 does not repeat: Then, m−1 does not have a witness. So, by Lemma 4, R(m)+2 =
m
3
+R

(
m
3

)
. By Lemma 2, B(R(m) + 2) = m

3
and B(R(m) + 1) = m

3
− 1. Furthermore,

by Lemma 5, m
3
has no witness (and hence does not repeat), so B(R(m) + 3) = m

3
+1.

We are now ready to prove Theorem 2.

Proof. The proof will be by induction on n, the index in the sequence. For the base case,
observe that each term in the initial condition appears once, and no such term has a witness.

Now, suppose that Tn−1 holds, and suppose that we wish to show that B(n) = m for
some m ≥ 6. Also, suppose that Pm−1 holds. There are seven cases to consider, which cover
all possibilities. (Note that no repeated term is congruent to 1 mod 3, since a1 is divisible
by 3 and ai ≡ 2 (mod 3) for all i ≥ 2.)
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m ≡ 0 (mod 3), first occurrence, m− 1 not repeated: In this case, m−1 has no witness
and, by Lemma 2, n = m+R(m). We have (using Lemma 6)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+R(m)− (m− 1)) +B(m+R(m)− (m− 2))

+B(m+R(m)− (m− 3))

= B(R(m) + 1) +B(R(m) + 2) +B(R(m) + 3)

=
(m
3
− 1
)
+

m

3
+
(m
3
+ 1
)

= m,

as required.

m ≡ 0 (mod 3), first occurrence, m− 1 repeated: In this case, m− 1 has a witness and,
by Lemma 2, n = m+R(m). We have (using Lemma 6)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+R(m)− (m− 1)) +B(m+R(m)− (m− 1))

+B(m+R(m)− (m− 2))

= B(R(m) + 1) +B(R(m) + 1) +B(R(m) + 2)

=
m

3
+

m

3
+

m

3
= m,

as required.

m ≡ 0 (mod 3), second occurrence, m− 1 not repeated: In this case, m−1 has no wit-
ness and, by Lemma 2, n = m+R(m) + 1. We have (using Lemma 6)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+R(m) + 1−m) +B(m+R(m) + 1− (m− 1))

+B(m+R(m) + 1− (m− 2))

= B(R(m) + 1) +B(R(m) + 2) +B(R(m) + 3)

=
(m
3
− 1
)
+

m

3
+
(m
3
+ 1
)

= m,

as required.

m ≡ 0 (mod 3), second occurrence, m− 1 repeated: In this case, m − 1 has a witness
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and, by Lemma 2, n = m+R(m) + 1. We have (using Lemma 6)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+R(m) + 1−m) +B(m+R(m) + 1− (m− 1))

+B(m+R(m) + 1− (m− 1))

= B(R(m) + 1) +B(R(m) + 1) +B(R(m) + 2)

=
m

3
+

m

3
+

m

3
= m,

as required.

m ≡ 1 (mod 3): In this case, m − 1 is divisible by 3 and therefore definitely repeats (since
a1 = 3). This also means that R(m − 1) = R(m) − 1. By Lemma 2, n = m + R(m).
We have (using Lemma 6)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+R(m)− (m− 1)) +B(m+R(m)− (m− 1))

+B(m+R(m)− (m− 2))

= B(R(m) + 1) +B(R(m) + 1) +B(R(m) + 2)

= B(R(m− 1) + 2) +B(R(m− 1) + 2) +B(R(m− 1) + 3)

=
m− 1

3
+

m− 1

3
+

(
m− 1

3
+ 1

)
= m,

as required.

m ≡ 2 (mod 3), first occurrence: In this case,m−2 is divisible by 3 and therefore definitely
repeats. This also means that R(m − 2) = R(m) − 1. By Lemma 2, n = m + R(m).
We have (using Lemma 6)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+R(m)− (m− 1)) +B(m+R(m)− (m− 2))

+B(m+R(m)− (m− 2))

= B(R(m) + 1) +B(R(m) + 2) +B(R(m) + 2)

= B(R(m− 2) + 2) +B(R(m− 2) + 3) +B(R(m− 2) + 3)

=
m− 2

3
+

(
m− 2

3
+ 1

)
+

(
m− 2

3
+ 1

)
= m,

as required.
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m ≡ 2 (mod 3), second occurrence: In this case, m has a witness, so R(m+1) = R(m)+1.
Also, R(m−2) = R(m)−1. By Lemma 2, n = m+R(m)+1. We have (using Lemma 6)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+R(m) + 1−m) +B(m+R(m) + 1− (m− 1))

+B(m+R(m) + 1− (m− 2))

= B(R(m) + 1) +B(R(m) + 2) +B(R(m) + 3)

= B(R(m− 2) + 2) +B(R(m− 2) + 3) +B(R(m+ 1) + 2)

=
m− 2

3
+

(
m− 2

3
+ 1

)
+

(
m+ 1

3

)
= m,

as required.

We have the following corollary.

Corollary 1. We have

lim
n→∞

B(n)

n
=

2

3
.

Proof. If B(n) = m, then n = m + R(m) or n = m + R(m) + 1. So, it will suffice to show
that

lim
m→∞

m

m+R(m)
=

2

3
,

for which it is sufficient to show that

lim
m→∞

R(m)

m
=

1

2
.

For each i ≥ 1, we have

lim
m→∞

R(m, i)

m
=

1

3i
.

So,

lim
m→∞

R(m)

m
= lim

m→∞

1

m

∞∑
i=1

R(m, i)

=
∞∑
i=1

lim
m→∞

R(m, i)

m

=
∞∑
i=1

1

3i

=
1

2
,

as required.
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2.1 Algorithm for Computing the Sequence

Theorem 2 leads to an efficient algorithm for calculating B(n). Observe that, for each m and
i, R(m, i) can be computed efficiently. Since only logarithmically many terms in the sum for
R(m) are nonzero, this means that R(m) can be computed efficiently.

To compute B(n), we seek an m such that n = m + R(m). It may be the case that no
such m exists, in which case we need to be able to say that no such m exists, and we need
to find m such that n = m + R(m) + 1. This task can be done efficiently using a binary
search. We know that B(n) ≤ n, so for an initial upper bound on m we can use n (and we
can use 1 as a lower bound). So, in at most O(log(n)) steps, we can either find an m so
that n = m + R(m) or show that none exists. In the latter case, the final lower bound we
find for m will be such that n = m+R(m) + 1. The total running time of this algorithm is
O(log2(n)).

3 Beyond Our Sequence
According to the work of Isgur et al. [6], our B-sequence is the fundamental member of
an infinite family of slow sequences with similar recurrences. (The next one satisfies the
recurrence B′(n) = B′(n−B′(n−2))+B′(n−B′(n−4))+B′(n−B′(n−6)).) As mentioned
in the introduction, this family and the family resulting from the V -sequence comprise the
only known examples of slow Hofstadter-like sequences with all recurrence terms of the form
D(n − D(n − i)) for some i. The author has conducted a search for other such sequences
without finding another (nontrivial) example. An obvious idea would be to generalize the
B-recurrence to the k-term recurrence

Bk(n) =
k∑

i=1

Bk(n−Bk(n− i))

(where B3 is the B-recurrence and B2 is the Q-recurrence). If k = 1, the initial condition
B1(1) = 1 generates the all-ones sequence, which, while technically slow, is not particularly
interesting. Unfortunately, we have the following result:

Theorem 3. The B-sequence is the only nontrivial slow sequence resulting from a recurrence
Bk with an initial condition of the form Bk(i) = i for all i ≤ N for some N .

The bulk of the Theorem 3 follows from the following proposition:

Proposition 1. Suppose k ≥ 4. The sequence generated by the recurrence Bk with the initial
condition Bk(i) = i for all i < k2+k

2
satisfies

Bk

(
1

2
k3 +

1

2
k2 + 2k + 1

)
= Bk

(
1

2
k3 +

1

2
k2 + 2k

)
+ 2.

In particular, the sequence has a jump of difference 2, so it is not slow.
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Proof. For simplicity of notation, let N = k2+k
2

. We will now show that, for 1 ≤ r ≤ k + 1
and −k ≤ qk + r < (N − k)(k + 1)

Bk(N + q(k + 1) + r) = N + qk + r − 1.

We observe that the last k terms of the initial condition correspond to q = −1 and r = 1
through r = k. These all satisfy Bk(N + q(k + 1) + r) = N + qk + r − 1, as required. We
also have, when q = −1 and r = k + 1,

Bk(N) =
k∑

i=1

Bk(N −Bk(N − i)) =
k∑

i=1

Bk(N − (N − i)) =
k∑

i=1

Bk(i) =
k∑

i=1

i = N,

as required.
Now, let q(k + 1) + r > 0 and suppose inductively that

Bk(N + q′(k + 1) + r′) = N + q′k + r′ − 1

for all −k ≤ q′(k + 1) + r′ < q(k + 1) + r < (N − k + 1)(k + 1). We have

Bk(N + q(k + 1) + r) =
k∑

i=1

Bk(N + q(k + 1) + r −Bk(N + q(k + 1) + r − i))

=
r−1∑
i=1

Bk(N + q(k + 1) + r −Bk(N + q(k + 1) + r − i))

+
k∑

i=r

Bk(N + q(k + 1) + r −Bk(N + q(k + 1) + r − i))

=
r−1∑
i=1

Bk(N + q(k + 1) + r − (N + qk + r − i− 1))

+
k∑

i=r

Bk(N + q(k + 1) + r − (N + (q − 1)k + (r − i+ k + 1)− 1))

=
r−1∑
i=1

Bk(q + i+ 1) +
k∑

i=r

Bk(q + i).

Since q ≤ N − k (and, if q = N − k, then r ≤ k), this equals

r−1∑
i=1

(i+ q + 1) +
k∑

i=r

(i+ q) = r − 1 + qk +
k∑

i=1

i = N + qk + r − 1,

as required.
Now, for simplicity of notation, let A = (N − k + 1) (k + 1). We will now show that, for

0 ≤ r ≤ k − 2, Bk(N + A + r) = N + (N − k + 1) k + r − 1. (Note that these values are 1
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less than they would be if the previous pattern continued.) Inductively, suppose this holds
for all r′ < r. We now calculate

Bk(N + A+ r) =
k∑

i=1

Bk(N + A+ r −Bk(N + A+ r − i))

=
r∑

i=1

Bk(N + A+ r −Bk(N + A+ r − i))

+
k∑

i=r+1

Bk(N + A+ r −Bk(N + A+ r − i))

=
r∑

i=1

Bk(N + A+ r − (N + (N − k + 1) k + r − i− 1))

+
k∑

i=r+1

Bk(N + A+ r − (N + (N − k) k + (k + 1 + r − i)− 1))

=
r∑

i=1

Bk(A+ i+ 1− (N − k + 1) k) +
k∑

i=r+1

Bk(A+ i− (N − k + 1) k)

=
r∑

i=1

Bk(N − k + i+ 2) +
k∑

i=r+1

Bk(N − k + i+ 1)

= N +
r∑

i=1

(N − k + i+ 2) +
k−1∑

i=r+1

(N − k + i+ 1)

= Nk − (k − 1) k + r + (k − 1) +
k2 − k

2

= (N − k + 1) k + r − 1 +

(
k +

k2 − k

2

)
= N + (N − k + 1) k + r − 1,

as required. The above calculation is also valid for r = k− 1, except that Bk(N − k+ i+2)
would be Bk(N + 1) when i = k − 1. Recall that Bk(N + 1) = N , rather than N + 1. So,
we obtain Bk(N + A+ k − 1) = N + (N − k + 1)k + k − 3.
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We now compute

Bk(N + A+ k) =
k∑

i=1

Bk(N + A+ k −Bk(N + A+ k − i))

= Bk(N + A+ k −Bk(N + A+ k − 1))

+
k∑

i=2

Bk(N + A+ k −Bk(N + A+ k − i))

= Bk(N + A+ k − (N + (N − k + 1) k + k − 3))

+
k∑

i=2

Bk(N + A+ k − (N + (N − k + 1) k + k − i− 1))

= Bk(A− (N − k + 1) k + 3) +
k∑

i=2

Bk(A− (N − k + 1) k + i+ 1)

= Bk(N − k + 4) +
k∑

i=2

Bk(N − k + i+ 2)

= Bk(N − k + 4) +
k−2∑
i=2

Bk(N − k + i+ 2) +Bk(N + 1) +Bk(N + 2)

= N − k + 4 +
k−2∑
i=2

(N − k + i+ 2) + 2N + 1

= 3N − k + 5 + (k − 3)N − k(k − 3) + 2 (k − 3) +

(
(k − 2) (k − 1)

2
− 1

)
= Nk − k + 4− k (k − 3) + 2 (k − 3) +

(k − 2) (k − 1)

2
= Nk − k + 4− k (k − 1) + 2k + 2k − 6 + (N − k − (k − 1))

= N + (N − k + 1) k + k − 1.

(Observe that these calculations are only valid because k ≥ 4, as otherwise N − k+4 would
be larger than N .) So, we have Bk(N + A + k) = Bk(N + A + k − 1) + 2. Recalling the
values of N and A, we have that N + A+ k = 1

2
k3 + 1

2
k2 + 2k + 1, as required.

We will now complete the proof of Theorem 3.

Proof. Fix a positive integerN . Consider the recurrenceBk with the initial conditionBk(i) =
i for 1 ≤ i ≤ N . Suppose that the sequence we obtain is slow. Clearly, we need N ≥ k, or
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else Bk(N + 1) is undefined. Supposing that N ≥ k, we have

Bk(N + 1) =
k∑

i=1

Bk(N + 1−Bk(N + 1− i))

=
k∑

i=1

Bk(N + 1− (N + 1− i))

=
k∑

i=1

Bk(i)

=
k∑

i=1

i

=
k2 + k

2
.

So, unless N ∈
{

k2+k
2
− 1, k

2+k
2

}
, we would not have Bk(N+1)−Bk(N) ∈ {0, 1}. According

to Proposition 1, N = k2+k
2
− 1 does not result in a slow sequence for k ≥ 4. Similarly,

N = k2+k
2

does not result in a slow sequence for k ≥ 4, as this sequence will be identical to
the one for N = k2+k

2
− 1 (since the first N terms are the same). So, we must have N ≤ 3.

The case N = 1 results in a trivial sequence, N = 2 give the Hofstadter Q-sequence (which is
not slow), and N = 3 gives our B-sequence. Therefore, the B-sequence is the only nontrivial
slow sequence resulting from a recurrence Bk with an initial condition of the form Bk(i) = i
for all i ≤ N for some N , as required.
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