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Abstract

A 1-prefix normal word is a binary word with the property that no factor has more 1s than the prefix of
the same length; a 0-prefix normal word is defined analogously. These words arise in the context of indexed
binary jumbled pattern matching, where the aim is to decide whether a word has a factor with a given
number of 1s and 0s (a given Parikh vector). Each binary word has an associated set of Parikh vectors of
the factors of the word. Using prefix normal words, we provide a characterization of the equivalence class
of binary words having the same set of Parikh vectors of their factors.

We prove that the language of prefix normal words is not context-free and is strictly contained in the
language of pre-necklaces, which are prefixes of powers of Lyndon words. We give enumeration results on
pnw(n), the number of prefix normal words of length n, showing that, for sufficiently large n,

2n−4
√
n lg n ≤ pnw(n) ≤ 2n−lg n+1.

For fixed density (number of 1s), we show that the ordinary generating function of the number of prefix
normal words of length n and density d is a rational function. Finally, we give experimental results on
pnw(n), discuss further properties, and state open problems.

Keywords: prefix normal words, prefix normal forms, binary languages, binary jumbled pattern matching,
pre-necklaces, Lyndon words, enumeration.

1. Introduction

A binary word is called 1-prefix normal if no factor (substring) has more 1s than the prefix of the same
length. For example, 11010 is 1-prefix normal, but 10110 is not. Similarly, a binary word is called 0-prefix
normal if no factor has more 0s than the prefix of the same length. When not further specified, by prefix
normal we mean 1-prefix normal. In [10], we gave an algorithm for generating all prefix normal words of
fixed length n. As we will see later, to each binary word, a 1-prefix normal word and a 0-prefix normal word
can be associated in a unique way, which we will call its prefix normal forms.

The Parikh vector of a binary word u is the pair (x, y), where x is the number of 1s in u, and y is the
number of 0s in u. The set of Parikh vectors of factors of a word w is called the Parikh set of w. For
binary words, the problem of deciding whether a particular pair (x, y) lies in the Parikh set of a word w is
known as Binary Jumbled Pattern Matching (BJPM). There has been much interest recently in the indexed

1Preliminary versions of parts of this article have appeared in [21], [10] and [9].
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version of this problem (IBJPM), where an index for the Parikh set is created in a preprocessing step, which
can then be used to answer queries fast. The Parikh set can be represented in linear space due to the
following interval property of binary strings: If w has k-length substrings with x1 resp. x2 occurrences of
1, where x1 < x2, then it also has a k-length substring with y occurrences of 1, for every x1 ≤ y ≤ x2.
Thus the Parikh set can be represented by storing, for every 1 ≤ k ≤ |w|, the minimum and maximum
number of 1s in a substring of length k. Much recent research has focused on how to compute these numbers
efficiently [14, 29, 30, 16, 2, 23, 22]. The problem has also been extended to graphs and trees [22, 15],
to the streaming model [27], and to approximate indexes [16]. There is also interest in the non-binary
variant [20, 17, 11, 14, 7, 8, 26], as well as in reconstruction from the Parikh multi-set of a string [1].
Applications in computational biology include SNP discovery, alignment, gene clusters, pattern discovery,
and mass spectrometry data interpretation [4, 3, 5, 19, 33].

The current best construction algorithm for the linear size index for IBJPM runs in O(n1.864) time [13],
for a word of length n. As we will see later, computing the prefix normal forms of a word w is equivalent
to creating an index for the Parikh set of w. Currently, we know no faster computation algorithms for
the prefix normal forms than already exist for the linear-size index. However, should better algorithms be
discovered, these would immediately carry over to the problem of IBJPM.

It is worthwhile noting that some relevant sequences have made it into the On-Line Encyclopedia of
Integer Sequences (OEIS [35]): A194850 is the number of prefix normal words of length n, A238109 is a list
of prefix normal words (over the alphabet {1, 2}), and A238110 is the maximum size of a class of binary
words of length n having the same prefix normal form.

The paper is organized as follows: Section 2 contains basic definitions and results about prefix normal
words; in particular that there are unique 0-prefix normal and 1-prefix normal words associated with every
word, and thus the set of words can be partitioned according to this association. In Section 3 we consider the
set of prefix normal words, giving several properties and characterizations and showing that their language
is not context free. One of these properties is then used in Section 4, which is concerned with counting the
number of prefix normal words of a given length. Finally, the paper concludes with some open problems in
Section 5.

2. Basics

A binary word (or string) w = w1 · · ·wn over Σ = {0, 1} is a finite sequence of elements wi ∈ Σ, for
i = 1, . . . , n. Its length n is denoted by |w|. We denote by Σn the set of words over Σ of length n, by
Σ∗ = ∪n≥0Σn the set of finite words over Σ, and the empty word by ε. Let w ∈ Σ∗. If w = uv for some
u, v ∈ Σ∗, we say that u is a prefix of w and v is a suffix of w. A factor or substring of w is a prefix
of a suffix of w. We denote the set of factors of w by Fact(w). Let w = w1 · · ·wn ∈ Σ∗, then the word
w̃ = wnwn−1 · · ·w1 is called the reversal of w. A word w s.t. w = w̃ is called a palindrome. A binary
language is any subset L of Σ∗.

We denote by |w|1 the number of 1s in the word w; similarly, |w|0 is the number of 0s in w. The
Parikh vector of a word w over Σ is defined as p(w) = (|w|0, |w|1). The Parikh set of w is Π(w) = {p(v) |
v ∈ Fact(w)}, the set of Parikh vectors of the factors of w. For example p(011) = p(101) = (1, 2) and
Π(011) = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)} = Π(101) ∪ {(0, 2)}.

Given a binary word w, we denote by P1(w, i) the number of 1s in the prefix of length i and by pos1(w, i)
the position of the ith 1 in the word w, i.e. P1(w, i) = |w1 · · ·wi|1 and pos1(w, i) = min{k : |w1 · · ·wk|1 =
i}. The functions P0 and pos0 are defined similarly. Note that in the context of succint indexing, these
functions are frequently called rank and select, cf. [32]: We have, for x = 0, 1, Px(w, i) = rankx(w, i) and
posx(w, i) = selectx(w, i).

2.1. Prefix normal words
Definition 1 (Maximum-ones and maximum-zeros functions). Let w ∈ Σ∗. We define, for each
0 ≤ k ≤ |w|:

F1(w, k) = max{|v|1 | v ∈ Fact(w) ∩ Σk},



2 BASICS 3

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

F1 0 1 2 3 3 4 4 4 5 6 6 7 7 7 8 8 9 10 10 10 11 11 12
F0 0 1 2 3 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 10 10 10 10

Table 1: The sequences F1 and F0 for the word w = 1010011011000111001011.

the maximum number of 1s in a factor of w of length k. When no confusion can arise, we also write F1(k)
for F1(w, k). The function F0(w, k) is defined analogously by taking 0 in place of 1.

For a word w, we denote by F1(w) the function k 7→ F1(w, k) (and similarly with other functions taking
arguments w and k).

Example 1. Take w = 1010011011000111001011. In Table 1, we give the values of F1 and F0 for w.

Definition 2 (Prefix normal words). A word w ∈ {0, 1}∗ is called 1-prefix normal if P1(w) = F1(w). It
is called 0-prefix normal if P0(w) = F0(w). In other words, w is 1-prefix normal (0-prefix normal) if and
only if it does not have any factors with more 1s (more 0s) than the prefix of the same length. When not
specified, then by prefix normal we mean 1-prefix normal.

Example 2. The word w = 1100110 is 1-prefix normal, but the word w1 = 11001101 is not 1-prefix normal
because the factor 1101 has three 1s, while the prefix of length 4 has only two. Also, w is not 0-prefix normal
since every 0-prefix normal word, except those of the form 1∗, must start with a 0.

We will soon see that it is possible to find, for every word w, a 1-prefix normal word which has the same
maximum-ones function F1 as w; and analogously for 0. These will be called the prefix normal forms of w.
To this end, we define the following equivalence; we will then see that equivalent words have the same prefix
normal form.

Definition 3 (Prefix equivalence). Two words v, w ∈ Σ∗ are called 1-prefix equivalent if F1(v) = F1(w).
They are called 0-prefix equivalent if F0(v) = F0(w).

Example 3. The words 11010, 10110, 01101, 01011 are all 1-prefix equivalent, but not 0-prefix equivalent.
When considering 0, we have that {01011, 11010, 10101} constitute one equivalence class, and {01101, 10110}
another one (note that in the first class, there is an additional word not present in the 1-prefix equivalence
class).

Next we will show that every equivalence class contains exactly one prefix normal word (Theorem 2),
which can thus be used as its representative. This will allow us to associate two prefix normal words to
every word w (Definition 4). First we need the following lemma.

Lemma 1. Let w ∈ Σ∗. Then, for all 0 ≤ i ≤ j ≤ |w|: F1(j)− F1(i) ≤ F1(j − i).

Proof. Observe that if v = yz, then |v|1 ≤ F1(|y|) + F1(|z|). Thus if v is a length j word such that
|v|1 = F1(j) and |y| = i, then F1(j) ≤ F1(i) + F1(j − i). 2

Theorem 2. For every w ∈ Σ∗ there is a unique 1-prefix normal word w′ such that F1(w′) = F1(w);
similarly, there is a unique 0-prefix normal word w′′ such that F0(w′′) = F0(w).

Proof. We only give the proof for w′. The construction of w′′ is analogous.
First note that if the 1-prefix normal words u and v are 1-prefix equivalent, then necessarily u = v. This

holds because the prefix function P1 determines the word, i.e. P1(u) = P1(v) implies u = v for any u, v. But
since u and v are 1-prefix normal words, their prefix and maximum-ones functions coincide, and since they
are 1-prefix equivalent, we have P1(u) = F1(u) = F1(v) = P1(v). This proves uniqueness.
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Next, we will construct w′, given w. It is easy to see that for 1 ≤ k ≤ |w|, one has either F1(w, k) =
F1(w, k − 1) or F1(w, k) = 1 + F1(w, k − 1). Now define the word w′ by

w′k =

{
1 if F1(w, k) = 1 + F1(w, k − 1)

0 if F1(w, k) = F1(w, k − 1)

for every 1 ≤ k ≤ |w|.
By construction, we have P1(w′, k) = F1(w, k) for every 1 ≤ k ≤ |w|. We still need to show that

P1(w′, k) = F1(w′, k) for all k. This will prove that w′ is 1-prefix normal, as well as that it is 1-prefix
equivalent to w.

By definition, P1(w′, k) ≤ F1(w′, k) for all k. Now let v ∈ Fact(w′), |v| = k, and v = wi+1 · · ·wj . Then
|v|1 = P1(w′, j) − P1(w′, i) = F1(w, j) − F1(w, i) ≤ F1(w, j − i) = P1(w′, j − i) = P1(w′, k), where the
inequality holds by Lemma 1. We have thus proved that F1(w′, k) ≤ P1(w′, k), and hence w′ is 1-prefix
normal. 2

2.2. Normal forms and Parikh sets
Definition 4 ((Prefix) normal forms). Let w ∈ Σ∗. Then we denote by PNF1(w) the unique 1-prefix
normal word which is 1-prefix equivalent to w, and by PNF0(w) the unique 0-prefix normal word which is
0-prefix equivalent to w. We refer to PNF1(w) and PNF0(w) as the prefix normal form w.r.t. 1 (resp. w.r.t.
0) or just normal form w.r.t. 1 (resp. w.r.t. 0) of w.

Example 4. Let w = 1010011011000111001011. The normal forms of w are the words

PNF1(w) = 1110100110100101100101,

PNF0(w) = 0001101010101101010111.

Refer to Example 1 for the values of the two functions F1(w) and F0(w).

The operators PNF1 and PNF0 are idempotent operators; i.e., if u = PNFx(w) then PNFx(u) = u,
for x = 0, 1. This gives us an equivalent definition of prefix normality: a word w is x-prefix normal if
PNFx(w) = w. Also, for any w ∈ Σ∗ and x ∈ Σ, it holds that PNFx(w) = PNFx(w̃). Note further that if
the equivalence class of w contains only one element, then w is necessarily prefix normal and a palindrome.
In Table 2 we list all eight 1-prefix equivalence classes for words of length 4.

PNF1 Class Cardinality

1111 {1111} 1
1110 {1110, 0111} 2
1101 {1101, 1011} 2
1100 {1100, 0110, 0011} 3
1010 {1010, 0101} 2
1001 {1001} 1
1000 {1000, 0100, 0010, 0001} 4
0000 {0000} 1

Table 2: The sets of 1-prefix equivalent words of length 4.

The normal forms of a word allow us to determine the Parikh vectors of the factors of the word, as we
will show in Theorem 4. We first recall the following lemma from [14] (which also appears to be folklore).
We say that a Parikh vector q occurs in a word w if w has a factor v with p(v) = q.
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Lemma 3 (Interval Lemma [14]). Let w ∈ Σ∗. Fix 1 ≤ k ≤ |w|. If the Parikh vectors (x1, k − x1) and
(x2, k − x2) both occur in w, then so does (y, k − y) for any x1 ≤ y ≤ x2.

The lemma can be proved with a simple sliding window argument, exploiting the fact that when a fixed
size window is shifted by one, then the number of 1s in the window changes by at most one.

Theorem 4. Let w,w′ be words over Σ. Then Π(w) = Π(w′) if and only if PNF1(w) = PNF1(w′) and
PNF0(w) = PNF0(w′).

Proof. Let f1(w, k) denote the minimum number of 1s in a factor of w of length k. As a direct consequence
of Lemma 3, we have that for a Parikh vector q = (x, y), q ∈ Π(w) if and only if f1(w, x + y) ≤ x ≤
F1(w, x + y). Thus for two words w,w′, we have Π(w) = Π(w′) if and only if F1(w) = F1(w′) and
f1(w) = f1(w′). It is easy to see that for all k, f1(w, k) = k − F0(w, k), thus the last statement is
equivalent to F1(w) = F1(w′) and F0(w) = F0(w′). This holds if and only if PNF1(w) = PNF1(w′)
and PNF0(w) = PNF0(w′), and the claim is proved. 2

Define I(w) = {(P0(w, k), P1(w, k)) | 0 ≤ k ≤ |w|}, the set of Parikh vectors of all prefixes of w. The
following lemma is immediate.

Lemma 5. For all w ∈ Σ∗,

Π(w) =

n⋃
i=1

I(wi · · ·wn).

There is an interesting geometrical way to view Lemma 5 which we describe now. Imagine each Parikh
pair as the coordinates of a point in the Euclidean plane that has been rotated clockwise π/4 radians. Each
word w can be interpreted as a polygonal path in this plane going up and to the right for each 1 (↗) or
down and to the right for each 0 (↘), for each successive bit of w. To obtain Π(w) imagine grabbing the
polygonal path for w and pulling it one step at a time through the origin, keeping track of the integer
lattice points that are hit after each pull (and ignoring the stuff to the left of the origin). The normal forms
PNF1(w) and PNF0(w) are obtained by forming polygonal paths starting at the origin, and connecting the
uppermost and the lowermost points of the region, respectively.

w

PNF1(w)

PNF0(w)

1s

0s

1

1

2

2

3

3

Figure 1: The word w = 1010011011000111001011 (dark line), its normal forms PNF1(w) = 1110100110100101100101 and
PNF0(w) = 0001101010101101010111 (lighter lines); the region between the two is the Parikh set of w; e.g. w has a substring
containing 5 ones and 6 zeros (black dot). Note that the axes giving the number of 0s and 1s are rotated by 45 degrees clockwise.

2.3. Indexing for binary jumbled pattern matching
Theorem 4 is relevant for the problem known as Indexed Binary Jumbled Pattern Matching, which has

attracted much interest recently. Recall that a Parikh vector over {0, 1} is a multiplicity vector of a string,
i.e. it has non-negative integer entries.
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k 0 1 2 3 4 5 6 7
F1(w, k) 0 1 2 2 3 3 3 4
f1(w, k) 0 0 0 1 2 2 3 4

Table 3: The maximum and minimum number of 1s for the word w = 1001101.

k 0 1 2 3 4 5 6 7
F1(w, k) 0 1 2 2 3 3 3 4
F0(w, k) 0 1 2 2 2 3 3 3

Table 4: The maximum number of 1s and 0s for the word w = 1001101. The normal forms of w are PNF1(w) = 1101001 and
PNF0(w) = 0011011.

Indexed Binary Jumbled Pattern Matching (IBJPM)
Given a string w of length n over {0, 1}, create an index which allows fast answers to queries of
the following form:
Input: a Parikh vector q,
Output: return yes if q occurs in Π(w), and no otherwise.

For 1 ≤ k ≤ n, let f1(w, k) be the minimum number of 1s in a factor of length k, and F1(w, k), as before,
the maximum number of 1s in a factor of length k. It follows from Lemma 3 that the answer for query
q = (x, y) is yes if and only if F1(w, x + y) ≥ x ≥ f1(w, x + y). Therefore, it suffices to store, for every
1 ≤ k ≤ n, the two numbers F1(w, k) and f1(w, k), and queries can be answered in constant time. The size
of this data structure is O(n).

All current solutions for IBJPM are based on this observation. The crux is how to construct this
linear size data structure. The construction time of the index has steadily decreased since its first in-
troduction: from O(n2) [14] to O(n2/ log n) [6, 29], to O(n2/ log2 n) in the word RAM-model [30], to
n2/2Ω(log n/ log log n)1/2 [24]. The fastest solution at present is due to Chan and Lewenstein and has running
time O(n1.859) [13].

Normal forms are in effect an encoding of this linear size index. We have already seen that the F -function
can be viewed as a binary string, namely PNF1(w). We have observed in the proof of Theorem 4 how the
function f1(w) is determined by F0(w) and thus also by PNF0(w), thus we have shown the following lemma.

Lemma 6. The answer for an IBJPM query q = (x, y) is yes if and only if P1(PNF1(w), x + y) ≥ x ≥
P1(PNF0(w), x+ y).

Note that P1 can be computed in constant time with constant time rank-queries on bit vectors, using
only o(n) bits of extra space [31, 18].

Example 5. Let w = 1001101. Then the linear size data structure is given in the Table 3, and the F1 and
F0 functions in Table 4.

At present, no faster computation of the normal forms is known than the algorithms cited above for the
IBJPM problem. But the connection shown here implies that, should a fast normal form computation be
found, it would immediately translate into a new solution for IBJPM.

3. The language of prefix normal words

In this section, we take a closer look at prefix normal words. We give several equivalent characterizations
of prefix normality, explore some properties of prefix normal words, and then look at the language of prefix
normal words. We denote by LPN1 ⊂ Σ∗ the language of 1-prefix normal words, and by LPN0 ⊂ Σ∗ the
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language of 0-prefix normal words. Note that these are exactly complemented, i.e. replacing every 1 by a
0 and vice versa, in each word of LPN1, yields LPN0. Therefore, every result about LPN1 has an equivalent
formulation for LPN0, as well. Recall that whenever not further specified, we refer to 1-prefix normality. In
Section 3.2 only, we will talk about 0-prefix normal words, and we will show that LPN0 is strictly contained
in the language of pre-necklaces, when adopting the usual order 0 < 1 on the alphabet.

3.1. General observations about prefix normal words
We start with several characterizations of prefix normal words.

Proposition 7. Let w ∈ Σ∗. The following properties are equivalent:

1. w is a prefix normal word;
2. ∀i, j where 0 ≤ i ≤ j ≤ |w|, we have P1(j)− P1(i) ≤ P1(j − i);
3. ∀v ∈ Fact(w) such that |v|1 = i, we have |v| ≥ pos1(i);
4. ∀i, j such that i+ j − 1 ≤ |w|1, we have pos1(i) + pos1(j)− 1 ≤ pos1(i+ j − 1).

Proof. (1) ⇒ (2). Follows from Lemma 1, since P1(w) = F1(w).
(2) ⇒ (3). Assume otherwise. Then there exists v ∈ Fact(w) s.t. |v| < pos1(k), where k = |v|1. Let

v = wi+1 · · ·wj , thus j− i = k. Then P1(j)−P1(i) = k. But P1(j− i) = P1(|v|) ≤ k−1 < k = P1(j)−P1(i),
a contradiction.

(3) ⇒ (4). Again assume that the claim does not hold. Then there are i, j s.t. pos1(i + j − 1) <
pos1(i) + pos1(j)− 1. Let k = pos1(j) and l = pos1(i+ j − 1) and define v = wk · · ·wl. Then v has i many
1s. But |v| = pos1(i+ j − 1)− pos1(j) + 1 < pos1(i) + pos1(j)− 1− pos1(j) + 1 = pos1(i), in contradiction
to (3).

(4) ⇒ (1). Let v ∈ Fact(w), |v|1 = i. We have to show that P1(|v|) ≥ i. This is equivalent to showing
that pos1(i) ≤ |v|. Let v = wl+1 · · ·wr, thus P1(r) − P1(l) = i. Let j = P1(l) + 1, thus the first 1 in v
is the j’th 1 of w. Note that we have l < pos1(j) and r ≥ pos1(i + j − 1). By the assumption, we have
pos1(i) ≤ pos1(i+ j − 1)− pos1(j) + 1 ≤ r − l = |v|. 2

Next we formulate a characterization of the prefix normal property that will be useful in the enumeration
of fixed-length prefix normal words (Section 4).

Lemma 8. Let w ∈ 1Σ∗. For some sequence of positive integers r1, r2, . . ., rd−1 we can write w =
10r1−110r2−1 · · · 10rd−1. The word w is prefix normal if and only if the following inequalities hold.

r1 ≤ rj j = 2, 3, . . . , d− 1
r1 + r2 ≤ rj + rj+1 j = 2, 3, . . . , d− 2

...
...

r1 + r2 + · · ·+ rd−2 ≤ rj + rj+1 + · · ·+ rd−1 j = 2

Proof. Note that for k = 1, 2, . . . d− 1, we have pos1(k) = 1 +
∑k−1

j=1 rj . The statement of the lemma then
follows by property (4) of Proposition 7. 2

We now give some simple facts about the language LPN1.

Proposition 9. Let LPN1 be the language of prefix normal words.

1. LPN1 is prefix-closed, that is, any prefix of a word in LPN1 is a word in LPN1.
2. If w ∈ LPN1, then any word of the form 1kw or w0k, k ≥ 0, also belongs to LPN1.
3. Let |w|1 < 3. Then w ∈ LPN1 iff either w = 0n for some n ≥ 0 or the first letter of w is 1.
4. Let w ∈ Σ∗. Then there exist infinitely many v ∈ Σ∗ such that vw ∈ LPN1.

Proof. The claims 1., 2., 3. follow easily from the definition. For 4., note that for any n ≥ |w|, the word
1nw belongs to LPN1. 2
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We now deal with the question of how a prefix normal word can be extended to the right into another
prefix normal word.

Lemma 10. Let w ∈ LPN1. Then w1 ∈ LPN1 if and only if for every 0 ≤ k < |w| the suffix of w of length
k has less 1s than the prefix of w of length k + 1.

Proof. Note that for all 1 ≤ k ≤ |w|, P1(w1, k) = P1(w, k). Now if w1 ∈ LPN1, then for the k-length
suffix u of w: |u|1 < |u1|1 ≤ P1(w1, k + 1) = P1(w, k + 1). Conversely, let u be a factor of w1. If u is a
factor of w, then |u|1 ≤ P1(w, |u|) = P1(w1, |u|). Else u = u′1, with u′ a suffix of w, and |u|1 = |u′|1 + 1 <
P1(w, |u′|+ 1) + 1 = P1(w1, |u|) + 1 = P1(w1, |u|) + 1, and thus |u|1 ≤ P1(w1, |u|). Therefore, w1 ∈ LPN1. 2

We close this section by proving that LPN1 is not context-free.

Theorem 11. LPN1 is not context-free.

Proof. Recall that the intersection of a CFL with a regular language is a CFL. We will show that L′ =
LPN1 ∩ 1∗01∗01∗ is not a CFL by using the pumping lemma. Let n be the constant of the pumping lemma
and let z = 1n01n01n ∈ L′. Let z = uvwxy be the usual factorization of the pumping lemma, where we may
assume that |vx| ≥ 1, |vwx| ≤ n, and for all i ≥ 0 we have uviwxiy ∈ L′. Clearly vx cannot contain 0s. If
vx contains some 1s from the first block of 1s in z, then taking i = 0 give a contradiction since the third
block of 1s is too long. If vx contains no 1s from the first block of 1s then taking i = 2 makes the second or
third block of 1s too long. 2

3.2. Connection with Lyndon words and pre-necklaces
In this section we explore the relationship between the language LPN0 of prefix normal words w.r.t. 0

and some known classes of words defined by means of lexicographic properties. Note that in this section,
when referring to prefix normality, we mean with respect to 0. We assume the usual order 0 < 1 on the
alphabet.

A Lyndon word is a word which is lexicographically strictly smaller than any of its proper non-empty
suffixes. Equivalently, w is a Lyndon word if it is the strictly smallest, in the lexicographic order, among
its conjugates, i.e., for any factorization w = uv, with u, v non-empty words, one has that the word vu is
lexicographically greater than w [28]. A word w is a power if it can be obtained by concatenating two or
more copies of another word, i.e. if there exists a non-empty v and a k > 1 such that w = vk. A word that
is not a power is called primitive. Note that, by definition, a Lyndon word is primitive. Let us denote by
Lyn the set of Lyndon words over Σ. One has that Lyn 6⊆ LPN0 and LPN0 6⊆ Lyn. For example, the word
w = 0101 belongs to LPN0 but is not a Lyndon word since it is not primitive. An example of a Lyndon word
which is not in normal form is w = 00110100111.

A necklace is a Lyndon word or a power of a Lyndon word. A pre-necklace is a prefix of a necklace [34]
(also called preprime word [25], or sesquipower or fractional power of a Lyndon word [12]). Let us denote
by PL the language of pre-necklaces. The next proposition shows that every prefix normal word different
from a power of the letter 1 is a prefix of a Lyndon word.

Proposition 12. Let w ∈ LPN0 with |w|0 > 0. Then the word w1|w| is a Lyndon word.

Proof. We have to prove that every rotation of w′ = w1|w| is strictly greater than w′. If the rotation starts
at a position within the second half of w′, then this is clearly true, since then its first character is 1, while
w′ starts with a 0, w being a prefix normal word containing at least one 0. So let v be a suffix of w′ of
length at least |w| + 1, and let u be the longest common prefix of v and w′. If u = v, then v is a border
(both a prefix and suffix) of w′, of length more than half its length, and thus w′ has a period of length
i = |w′| − |v| < |w|, i.e., every character is the same as the one which follows i positions later. Since the
second half of w′ consists of 1s only, this implies that so does the first half, contrary to our assumption. So
v is not a prefix of w′, and therefore u is followed by two different characters in v and in w′. Let us write
v = v′1|w|. If |u| ≥ |v′|, then u1 is a prefix of v, implying that u0 is a prefix of w′, and thus w′ is smaller
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than v. If |u| < |v′|, assume that u0 is a prefix of v and u1 of w′. Then w has a substring (u0) which has
more 0s than the prefix of the same length (u1), a contradiction to w being prefix normal. Therefore, again
we have that w′ is smaller than v. 2

We can now state the following result:

Theorem 13. Every prefix normal word is a pre-necklace.

Proof. If w is of the form 1n, n ≥ 1, then w is a power of the Lyndon word 1, hence it is a pre-necklace.
Otherwise, w contains at least one 0, thus by Proposition 12, it is the prefix of a Lyndon word. 2

The languages LPN0 and PL, however, do not coincide. A shortest word in PL that does not belong to
LPN0 is w = 00110100. Below we give the table of the number of words in LPN0 of each length n ≤ 16,
compared with that of pre-necklaces. Both sequences are listed in the On-Line Encyclopedia of Integer
Sequences [35] (sequences A062692 and A194850), where the reader can find further terms.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LPN0 ∩ Σn 2 3 5 8 14 23 41 70 125 218 395 697 1273 2279 4185 7568
PL ∩ Σn 2 3 5 8 14 23 41 71 127 226 412 747 1377 2538 4720 8800

Table 5: The number of words in LPN0 and in PL for each length up to 16.

4. Enumeration results about prefix normal words

Let pnw(n) denote the number of prefix normal words of length n. It is an easy consequence both of
Lemma 8 and of Proposition 9 that pnw(n) grows exponentially. To see this, note that the conditions of
Lemma 8 are always satisfied if r1 ≤ r2 ≤ . . . ≤ rk, and thus the number of partitions of n is a lower bound
for pnw(n). On the other hand, Proposition 9 states that for all w, 1|w|w is prefix normal, so pnw(2n) ≥ 2n.

In Table 5, we give pnw(n) for n up to 16, the sequence for n up to 50 can be found in the On-Line
Encyclopedia of Integer Sequences [35], sequence A194850. In Fig. 2 we show the growth ratio for small
values of n. Two interesting phenomena can be observed: the values seem to approach 2 slowly, i.e., the
number of prefix normal words almost doubles as we increase the length by 1. Second, the values show on
oscillation pattern between even and odd values.

Figure 2: The value of pnw(n)/pnw(n− 1) for prefix normal words w of length n, for n ≤ 50 (loglinear scale).
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4.1. Asymptotic bounds on the number of prefix normal words
We give lower and upper bounds on the number pnw(n) of prefix normal words of length n.

Theorem 14. For n sufficiently large

pnw(n) ≥ 2n−4
√
n log n. (1)

Proof. Let k = k(n) be a positive integer to be fixed later. First we only consider words whose length, n,
is a multiple of 2k, whose first 4k letters are 1s, and in each of the following blocks of length 2k, there are
exactly k 1s and k 0s. The number of such words is

(
2k
k

)(n−4k)/2k
and by construction, they are all prefix

normal.
We use the inequality

(
2k
k

)
≥ 22k/(2

√
k) and substitute k =

√
n log n in the third step.(

2k

k

)(n−4k)/2k

≥
(

22k

2
√
k

)n/(2k)−2

=
2n

(2
√
k)n/(2k)

4k

24k

=
2n

24
√
n log n

(2
√
k)1−n/(2k)

≥ 2n

24
√
n log n

for sufficiently large n.

The last inequality follows from the fact that limn→∞(2
√
k)1−n/(2k) = 0 if k =

√
n log n. 2

Next we show how to obtain an upper bound on pnw(n), considering the length of the first 1-run.

Theorem 15. For n sufficiently large, we have pnw(n) ≤ 2n−lg n+1.

Proof. This will follow from enumeration results about pre-necklaces since every 0-prefix normal word is
a pre-necklace. Let PL(n) be the number of pre-necklaces of length n. In [34] it is shown (top of page 424)
that

PL(n) ≤
n∑

i=1

2i

i
+

n∑
i=1

√
2i.

They also show that (Lemma 5 of [34])

lim
n→∞

n

2n

n∑
i=1

2i

i
= 2.

Thus, for large enough n, and fixed ε > 0,

PL(n) ≤ (1 + ε)

n∑
i=1

2i

i
≤ (1 + 2ε)2n/n ≤ 2n−lg n+1.

2

4.2. Exact formulas for words with fixed density.
For a binary word w, its density is defined as the number of 1s in w, i.e. as |w|1. If we count the number

of prefix normal words of length n with a given fixed number of 1s, we get exact results in a few cases. Let
us denote by pnw(n, d) the cardinality of the set {w ∈ LPN1 ∩ Σn | |w|1 = d}.

Proposition 16. For d = 0, 1, . . . , 6, we have the generating functions fd(x) =
∑∞

n=0 pnw(n, d)xn:
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f0(x) =
1

1− x
f1(x) =

x

1− x

f2(x) =
x2

(1− x)2

f3(x) =
x3

(1− x2)(1− x)2

f4(x) =
x4

(1− x3)(1− x)3

f5(x) =
x5(1 + x+ x2)

(1− x4)(1− x2)2(1− x)2

f6(x) =
x6(1 + x+ x2 + x3)

(1− x5)(1− x3)(1− x2)(1− x)3

Proof. For d ≤ 3, one easily checks pnw(n, 0) = pnw(n, 1) = 1, pnw(n, 2) = n − 1 and pnw(n, 3) =
b(n+ 1)2/4c, giving the desired functions.

For d = 4, we calculate the number of positive solutions r1, r2, r3, r4 to the inequalities in Lemma 8. Let
q1 = r1 − 1, q4 = r4 − 1, d2 = r2 − r1 and d3 = r3 − r1. We are counting the nonnegative solutions of

3q1 + d2 + d3 + q4 + 4 = n,

which give generating function f4(x) by equating the coefficients of xn in the expansion of the following
product:

(1 + x3 + x6 + · · · )(1 + x+ x2 + · · · )3 · x4 (2)

=
x4

(1− x3)(1− x)3
. (3)

More complicated but manageable case analysis leads to the results for d = 5 and 6. 2

Similar formulas can be derived for pnw(n, n− d) for small values of d. Unfortunately, no clear pattern
is visible for fd(x) that we could use for calculating pnw(n).

The inequalities in Lemma 8 define linear diophantine equations. The general theory for enumerating
solutions of such equations [36] guarantees that there is a closed rational function form for the generating
functions with the observed denominators, in [37] there are algorithms for calculating these functions (which,
however are not efficient enough to get results for much larger values of d). Above, we only discussed the
first few simple cases. We did not succeed in extending our list of concrete formulas for the rational functions
fd for d > 6 using automated computation.

4.3. Exact formulas for words with a fixed prefix.
We now fix a prefix w and give enumeration results on prefix normal words with prefix w. Our first

result indicates that we have to consider each w separately.

Definition 5. If w is a binary word, let Lext(w) = {w′ : ww′ is prefix normal}, and Lext(w,m) = Lext(w)∩
Σm. Let ext(w,m, d) = |{w′ : ww′ is prefix normal of length |w| + m and density d}|, and ext(w,m) =
|Lext(w,m)|.

Lemma 17. Let v, w ∈ 1{0, 1}∗ be both prefix normal. If v 6= w then Lext(v) 6= Lext(w).

Proof. We may assume |v| ≤ |w|.
First case. v is not a prefix of w. Let i denote the first position where they differ. If vi = 1 and wi = 0, then
for u = 0|w|v we have that vu is prefix normal while wu is not. If vi = 0 and wi = 1, then let u = 0|w|w.
We have that vu is not prefix normal but wu is.
Second case. v is a prefix of w. If w has a 1 in any position after |v|, then we can proceed as in the first
case. The remaining case is when w = v0m for some m > 0. If vv is prefix normal, then so must be vvv,
but v0mvv cannot be. Otherwise, let k ≥ 1 be the smallest integer (which is sure to exist) such that v0kv
is prefix normal. Then v0k−1v is not prefix normal while w0k−1v is. This completes the proof. 2



4 ENUMERATION RESULTS ABOUT PREFIX NORMAL WORDS 12

We were unable to prove that the growth of these two extension languages also differ.

Conjecture 18. Let v, w ∈ 1{0, 1}∗ be both prefix normal. If v 6= w then the infinite sequences (ext(v,m))m≥1

and (ext(w,m))m≥1 are different.

The values ext(w,m, d) seem hard to analyze. We give exact formulas for a few special cases of interest.
Using Lemma 8, it is possible to give formulas similar to those in Proposition 16 for ext(w,m, d) for fixed w
and d. We only mention one such result.

Lemma 19. For 1 ≤ d ≤ n we have ext(10, n+ d− 3, d) = pnw(n, d).

Proof. Consider the following map: let w be an arbitrary word of length n and density d > 1, starting
with 1. Except for the starting 1, insert a 0 right before each subsequent occurrence of 1. This gives a word
w′ of length n+d−1, starting with 10 that does not contain the factor 11. Clearly, the map is injective and
all words of length n + d − 1 starting with 10 and containing no factor 11 are obtained this way. In order
to prove the lemma, we only need to show that prefix normality is preserved by the map and its inverse.
For this, observe that there exists a prefix (resp. factor) of w of length k containing r 1s if and only if there
exists a prefix (resp. factor) of w′ of length k + r − 1 containing r 1s. 2

The following lemma lists exact values for ext(w, |w|) for some infinite families of words w. Here F (n)
denotes the nth Fibonacci number, i.e. F (1) = F (2) = 1 and F (n+ 2) = F (n+ 1) + F (n).

Lemma 20. For all values of n where the exponents are nonnegative, we have the following formulas:

ext(0n, n) = 1

ext(1n, n) = 2n

ext(1n−10, n) = 2n − 1

ext(1n−201, n) = 2n − 5

ext(1n−200, n) = 2n − (n+ 1)

ext((10)
n
2 , n) = F (n+ 2) if n is even

ext((10)
n−1
2 1, n) = F (n+ 1) if n is odd

ext(10n−21, n) = 3

ext(10n−1, n) = n+ 1

Proof. For w = 1n, w = 1n−10, w = 1n−201 and w = 1n−200, it is easy to count those extensions that fail
to give prefix normal words: None for w = 1n; only one for w = 1n−10, namely 1n−101n; for w = 1n−201,
those extensions which contain a 1-run of length n − 1, namely 1n−2 followed by any two characters, or
01n−1; and for w = 1n−200, those that contain at least n − 1 many 1s in the second half, i.e. with second
half 1n, 1n−10, 1n−201, . . . , 01n−1.

Similarly, for w = 10n−21, w = 10n−1 and w = 0n, counting the extensions that yield prefix normal
words gives the result in a straightforward way.

Let n be even. For w = (10)
n
2 , note that ww′ is prefix normal if and only if w′ avoids 11. The number

of such words is known to equal F (n + 2). For n odd, the argument is similar, with the prefix of interest,
w1, being of length n+ 1, hence the previous Fibonacci number. 2

4.4. Some experimental results about enumeration of prefix normal words
We consider extensions of prefix normal words by a single symbol to the right. It turns out that this

question has implications for the enumeration of prefix normal words.

Definition 6 (Extension-critical words). We call a prefix normal word w extension-critical if w1 is not
prefix normal. Let ecrit(n) denote the number of extension-critical words in LPN1 ∩ Σn.

The lemma below applies to any family of words B for which ε ∈ B and such that x ∈ B implies x0 ∈ B.
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Figure 3: The ratio ecrit(n)
pnw(n)

(left), and the value ecrit(n)
pnw(n)

· n
lnn

(right).

Lemma 21. For n ≥ 1 we have

pnw(n) = 2pnw(n− 1)− ecrit(n− 1) = pnw(n− 1)

(
2− ecrit(n− 1)

pnw(n− 1)

)
. (4)

From this it follows that

pnw(n) = 2

n−1∏
i=1

(
2− ecrit(i)

pnw(i)

)
. (5)

Proof. The number of prefix normal words of length n ending in 0 is pnw(n − 1), that of prefix normal
words of length n ending in 1 is pnw(n− 1)− ecrit(n− 1), hence we have (4). The product form follows if
we use pnw(n) = pnw(1)

∏n−1
i=1

pnw(i+1)
pnw(i) . 2

Lemma 22. For n going to infinity, lim inf ecrit(n)/pnw(n) = 0.

Proof. Assume that there exist an integer N0 and a real number ε > 0 such that for n ≥ N0 we have
ecrit(n)/pnw(n) > ε. Then by (5) we would have pnw(n) = O((2− ε)n), contradicting Theorem 14. 2

We conjecture that in fact the ratio of extension-critical words converges to 0. We study the behavior
of ecrit(n)/pnw(n) for n ≤ 49. The left plot in Fig. 3 shows the ratio of extension-critical words for n ≤ 49.
These data support the conjecture that the ratio tends to 0. Interestingly, the values decrease monotonically
for both odd and even values, but we have ecrit(n+ 1)/pnw(n+ 1) > ecrit(n)/pnw(n) for even n. We were
unable to find an explanation for this.

The right plot in Fig. 3 shows the ratio of extension-critical words multiplied by n/ log n. Apart from
a few initial data points, the values for even n increase monotonically and the values for odd n decrease
monotonically, and the values for odd n stay above those for even n.

Conjecture 23. Based on empirical evidence, we conjecture the following:

ecrit(n) = pnw(n)Θ(log n/n), (6)

pnw(n) = 2n−Θ((log n)2). (7)

Note that the second estimate follows from the first one by (5).
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5. Conclusion and open problems

We introduced two new normal forms of binary words, the prefix normal forms with respect to 1 and 0,
and showed how they arise naturally in the investigation of Parikh sets of binary words and jumbled pattern
matching. We introduced prefix normal words (w.r.t. 1 or 0), words which equal their own normal form, and
discussed several properties of these words. We showed results about the language of prefix normal words,
among these that 0-prefix normal are strictly contained in the language of pre-necklaces. We also discussed
extensively the growth behavior of the number of fixed-length prefix normal words.

Many open problems remain. It would be nice to have exact, or at least more precise asymptotic formulas
for the enumeration of prefix normal words. Related to the enumeration, the strange oscillating behavior in
Figures 2 and 3 between odd and even values calls for an explanation.

Another question is testing binary words for prefix normality. Currently, no faster method is known (in
worst-case running time), then calculating the normal form.

It would be an interesting direction to explore the connection between the normal forms w.r.t. 1 and
0, for example how many different values can PNF0(w) take (and what can we say about them) if we fix
PNF1(w).

Finally, prefix normality could also be defined over non-binary alphabets. In this case however, we do
not obtain an index directly applicable to jumbled pattern matching. Combinatorial or formal language
theoretic investigation and enumeration of prefix normal words for general alphabets is subject of future
work.
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