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Abstract

Players of coevolutionary games may update not only their strategies but also their networks of
interaction. Based on interpreting the payoff of players as fitness, dynamic landscape models are proposed.
The modeling procedure is carried out for Prisoner’s Dilemma (PD) and Snowdrift (SD) games that both
use either birth–death (BD) or death–birth (DB) strategy updating. With the main focus on using
dynamic fitness landscapes as an alternative tool for analyzing coevolutionary games, landscape measures
such as modality, ruggedness and information content are computed and analyzed. In addition, fixation
properties of the games and quantifiers characterizing the network of interaction are calculated numerically.
Relations are established between landscape properties expressed by landscape measures and quantifiers
of coevolutionary game dynamics such as fixation probabilities, fixation times and network properties.

1 Introduction

For describing evolutionary dynamics the framework of fitness landscapes has been introduced, see for
instance [Kauffman and Johnsen, 1991, Richter and Engelbrecht, 2014, Stadler and Stephens, 2003]. A fit-
ness landscape formulates relationships between genetic specifications, individual instantiations, and their
fitness. Together with postulating differences in fitness over all possible genetic specifications and a moving
bias towards higher fitness, the setup suggests the picture of an evolving population that is moving directedly
on the landscape. On a conceptual level, this picture is based on the notion of evolutionary paths that are
created by the topological features of the fitness landscape. Evolutionary paths are a succession of moves on
the landscape with persistently ascending fitness values. The existence and abundance of such evolutionary
paths gives rise to estimates about how likely a transition from low–fitness regions to high–fitness regions
in the landscape is. These transitions instantiate evolutionary dynamics.

Apart from fitness landscapes, another approach for specifying evolutionary dynamics is evolutionary
games, [Szabo and Fath, 2007, Nowak and Sigmund, 2004, Nowak, 2006, Maynard Smith, 1991]. Evolution-
ary games are mathematical models of dynamic interactions between individuals in a population and explain
how their behavioral strategies (for instance cooperation or competition) spread in a population. The main
question is how adoption of the strategies contributes to payoff collecting and consequently to the fitness
characterizing the success of each individual. An evolutionary game becomes dynamic if it is played it-
eratively over several rounds and the individuals are allowed to change their strategies and/or to recast
the network describing with whom they are interacting. Such an iterated evolutionary game comprises of
an evolving population of individuals acting as players and can be seen as an expression of evolutionary
dynamics.

Given the fact that there are two frameworks for addressing evolutionary dynamics, it is natural to
ask about their relationships. Unfortunately, both frameworks are not immediately compatible. Although
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it is acknowledged that evolutionary games cast fitness landscapes, it has become clear that such game
landscapes change with an evolving population of players, [Nowak and Sigmund, 2004]. This is attributed
to frequency–dependent selection. In other words, game landscapes are dynamic. Based on some earlier
results on dynamic fitness landscapes, e.g. [Foster et al., 2013, Richter, 2008, Richter, 2014b], there are
some first attempts at applying these ideas to games, for instance, [Richter, 2015]. In this paper dynamic
landscapes are employed for analyzing coevolutionary games by using and extending a framework introduced
recently, [Richter, 2016]. Games are considered where the players may update their strategies (evolutionary
games), see e.g. [Allen and Nowak, 2014, Greenwood and Ashlock, 2012, Szabo and Fath, 2007], but also
games where the players may additionally change their network of interaction (coevolutionary games), see
e.g. [Perc and Szolnoki, 2010, Tanimoto, 2007]. In particular, it is shown that the proposed method makes
it possible to model and analyze evolutionary games and coevolutionary games within the same framework.

The paper is structured as follows. In Sec. 2, some basic definitions are given, and evolutionary and
coevolutionary games are briefly recalled. Sec. 3 reviews game dynamics, particularly the processes to
update strategies and networks of interaction. Dynamic landscape models of coevolutionary games are
introduced and discussed in Sec. 4. The modeling procedure is demonstrated for Prisoner’s Dilemma (PD)
and Snowdrift (SD) games that both use either birth–death (BD) or death–birth (DB) strategy updating. It
is further shown that BD and DB updating yield landscapes with symmetry properties, and that replacement
restrictions entail symmetry breaking. Moreover, the local topological features of absorbing configurations
of the games are interpreted as absorption structure. It is described how landscape properties may be linked
to fixation via the absorption structure. Sec. 5 reports numerical experiments on landscape measures such
as modality, ruggedness and information content. Fixation probabilities and fixation times are calculated
as well as network measures characterizing the networks of interaction of the coevolutionary games. It is
shown and discussed how the landscape measures relate to both fixation properties and network measures.
Sec. 6 closes the paper with a summary and conclusions.

2 Definitions and game description

The coevolutionary dynamics of the games considered in this paper stems from three levels of activity: (i)
game playing, (ii) updating the strategy, and (iii) updating the network of interaction. The game playing is
done by a finite population of N players I that use one of two strategies π during each round k = {0, 1, 2, . . .}.
A player Ii ∈ I, i = 1, 2, . . . , N , can either cooperate (Ci) or defect (Di). A pairwise interaction between
two players Ii and Ij (which can be seen as player and coplayer) yields rewards in form of payoff (pi, pj) as
given by the payoff matrix (Cj Dj

Ci R S
Di T P

)
. (1)

For player and coplayer using the same strategy, (πi, πj) = (Ci, Cj) or (πi, πj) = (Di, Dj), they both obtain
the reward R for mutual cooperation (pi = pj = R) or the punishment P for mutual defection (pi = pj = P ).
A mixed choice of strategy gives one of them the sucker payoff S for cooperating with a defector, and the
other one the temptation T to defect while the coplayer is cooperating. Hence, for (πi, πj) = (Ci, Dj), there
is pi = S and pj = T , while for (πi, πj) = (Di, Cj), there is pi = T and pj = S. Depending on the numerical
values of (R,P, S, T ) and their order, particular examples of the game are obtained, which have become
metaphors for studying social dilemmas and discussing strategy selection along with the effect on short–
and long–term success in accumulating payoff, [Maynard Smith, 1991, Nowak, 2006]. Most prominently,
there are Prisoner’s Dilemma (PD) games, where T > R > P > S, and Snowdrift (SD) games, where
T > R > S > P .

The payoff pi(k) of player Ii in round k depends not only on the player’s strategy πi(k) and the values
of the payoff matrix (1), but also on who its coplayer is (or more precisely as to what the coplayer’s
strategy is) and how many coplayers there are. The question of who–plays–whom in a given round of
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the game is addressed by the network of interaction. A convenient way of expressing and visualizing
the network of interaction is by using elements from evolutionary graph theory, [Allen and Nowak, 2014,
Lieberman et al., 2005, Ohtsuki et al., 2007, Shakarian et al., 2012]. Evolutionary graph theory places each
player of the population on a vertex of an (undirected) graph. This graph describes the network of interaction
and consequently it can be called an interaction graph. As there are no empty vertices and a vertex can
only be occupied by one player, the number of vertices of the graph equals the number of players N . For
each player, its coplayers are indicated by edges that connect the vertex of the player with the vertices of
the coplayers. Such an edge defines the connected players to be adjacent. Each vertex can have up to N − 1
edges (self–play is not allowed). As the degree d is the number of edges incident with a vertex, the degrees
of the interaction graph equal the number of coplayers that are engaged with each player in a single round.
A graph is called regular if the degree is the same for all vertices. Hence, a regular interaction graph means
that all players have the same number of coplayers.

The interaction graph can be described algebraically by its (interaction) adjacency matrix AI , which is
also called an interaction matrix. The matrix AI ∈ [0, 1]N×N is a symmetric N × N matrix with entries
aij = 1 indicating an edge between vertex i and j and aij = 0 showing that players Ii and Ij are not
adjacent. The diagonal elements aii = 0 because there is no self–play. The symmetry of AI reflects the fact
that two players Ii and Ij mutually engage in the game. From the perspective of player Ii, the player Ij may
be the coplayer. If so, then from the perspective of player Ij , the player Ii is the coplayer. Consequently,
aij = aji in the adjacency matrix AI . If all aij = 1 (except aii = 0), the graph is complete, meaning
that every player has all other players as coplayers and the evolutionary game is understood to be well–
mixed, [Szabo and Fath, 2007]. To summarize, for describing completely and deterministically the game and
the allocation of payoff, apart from the payoff matrix (1) only two other entities are necessary: the strategy
vector π = (π1π2 . . . πN ) with πi ∈ [Ci, Di] and the adjacency matrix AI . This setting deterministically
fixes the payoff p = (p1, p2, . . . , pN ) for each player. For making payoff pi of a player Ii interpretable
as reproduction rate or survival probability (and lastly as fitness f), it has been suggested to rescale pi
by a positive, increasing, differentiable function, [Allen and Nowak, 2014, Shakarian et al., 2012]. In the
following the linear function f = 1 + δp is used with the intensity of selection δ ≥ 0.

3 Coevolutionary game dynamics

As the game is completely determined by fixing the payoff matrix (1), the strategy vector π, and the
adjacency matrix AI , the distribution of payoff pi(k) amongst the players remains the same if the players
were to engage in the game with the same entities for a second time in round k + 1. Put another way for
these entities being constant the game can be seen as static. Consequently, making the evolutionary game
dynamic requires updating either the players’ strategies or the network of interaction, or both.

3.1 Updating strategies

There is a huge amount of work devoted to the modes of updating the player strategies in evolution-
ary games, [Allen and Nowak, 2014, Ohtsuki et al., 2007, Pattni et al., 2015]. Most models use versions of
stochastic strategy updating based on a Moran process, but there are also works emphasizing limiting the
effect of randomness and including the self–interest of players, e.g. [Greenwood and Avery, 2014]. According
to a Moran process, in each round a player Ii (or more precisely its strategy) is replaced by (the strategy
of) a player Ij . The players Ii and Ij are selected at random, but the probabilities of the selection may not
be uniform, for instance depending on the players’ fitness, which may vary. Versions of stochastic updating
rules differ in several respects. Differences are, for example, the actual probabilities that given players Ii
and Ij are selected or whether or not there is an order between selecting the player providing the strategy
(the source) and selecting the player receiving the strategy (the target). Finally, there may be general
restrictions as to which players are allowed to be a possible source and/or target of another player. Such
predetermined restrictions imply a replacement structure, [Ohtsuki et al., 2007]. Conceptually similar to
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interaction, the question of who–may–replace–whom can be described by a network of replacement. This
network is expressible by a replacement graph and consequently by a (replacement) adjacency matrix WR,
which is called a replacement matrix. The matrix WR ∈ RN×N has entries wij ≥ 0, and wij > 0 indicates
that player Ii may provide its strategy for player Ij to receive. The values of wij > 0 contribute to the
probabilities that player Ii is source and player j is target. If all wij = w̄ for a constant w̄ 6= 0, every
player Ii may be the source to every target player Ij with equal probability. Consequently, if there are no
restrictions, the replacement graph is fully connected with evenly weighted edges.

Amongst strategy updating, the following replacement rules are frequently studied: birth–death (BD),
death–birth (DB), imitation (IM), and pair–wise comparison (PC), [Allen and Nowak, 2014, Pattni et al., 2015,
Shakarian et al., 2012]. For all rules there may be restrictions with respect to replacement. The rules BD
and DB differ in the order with which source and target are selected, with BD selecting source before target
and DB target before source. The probability to become a source depends on the source’s fitness. IM is
similar to DB but with the difference that the target itself can compete with other players to become a
source. In PC (also known as link dynamics) both players are selected simultaneously and the source is
replaced by the target with a probability depending on the fitness difference between the players, for instance
via a Fermi function. Hence, IM and PC share that the source can be its own target, meaning than the
strategy remains the same. To summarize, all Moran–based updating rules depend only on random (and
possibly on players’ fitness and replacement restrictions), but not on details of the interaction (for instance
who the source or target are actually interacting with and what those strategies are). Therefore, they do
not account for self–interested players, [Greenwood and Avery, 2014]. These reasons make it possible to dis-
entangle player and strategy in the sense that it makes no difference from which source the target receives
its strategy updating. In other words, for all these updating rules it is possible to specify probabilities that
the strategy of a source Ii replaces the strategy of a target Ij depending only on replacement matrix and
fitness, [Pattni et al., 2015].

3.2 Updating networks of interaction

If, in addition to the strategies, also the network of interactions can be updated in evolutionary games, the
game is called coevolutionary. However, the players I of the coevolutionary game are functionally alike and
can hence be thought as belonging to the same species. Therefore, coevolution takes place within a single
population of players and is between different features of the players’ function, that is game strategy and
interaction network. Such a coevolution is hence methodologically different from an alternative understand-
ing of coevolution, which is between different ecological functions (and hence different species), for instance
between predator and prey, or between host and parasite, see e.g. [Thompson, 1995].

With the players belonging to a single population and strategy updating already addressed, coevolution
in evolutionary games is in essence considering the network of interaction as dynamic, from which follows
that the interaction matrix AI must be time–dependent. There is a substantial variety of schemes and
rules for coevolution, [Pacheco et al., 2006, Perc and Szolnoki, 2010, Tanimoto, 2007]. These schemes can
be categorized according to different criteria. A first criterion is the type of dynamics of AI , for which there
can be three groups: (i) purely random updating, (ii) random updating with probabilities depending on
fitness or current strategy or network properties, and (iii) deterministic updating. A second criterion is the
effect which the dynamics has on graph–theoretical properties of the networks, for instance, the number of
edges (is the number of links in the network constant or growing/shrinking), or the regularity of the graph
(do all players have always the same number of coplayers, or are there rules that allow specific players to
become super–connected), or network connectivity. Finally, there is the question of time scale, that is how
the cycles of strategy updating relate to the cycles of network updating, for instance if the edges have a
life–time depending on the number of strategy updating that the players experienced.

Unfortunately, the topic of network updating has not yet matured as far as to express for a given coevolu-
tionary rule the transitions from one network of interactions to another as a probabilistic function. Whereas
for strategy updating, there are replacement probabilities for different updating rules, [Pattni et al., 2015],
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the same is not known for network updating. However, it might be reasonable to assume that network
updating involves creating an interaction matrix AI(κ + 1) at point in time κ + 1 from a matrix AI(κ)
at the previous point κ, for an integer time variable κ = {0, 1, 2, . . . }. Such a succession of interaction
networks can be modelled by instances of an Erdös–Rényi graph. In this paper, the discussion is restricted
to the case where the number of coplayers is the same for all players and constant for all updating in-
stances. Employing such a model precludes situations where a more highly connected player possesses high
fitness due to its connectedness, but not necessarily due to the effectiveness of its strategy. For d coplay-
ers, such an interaction graph has degree d and belongs to a special class of Erdös–Rényi graphs, namely
random d–regular graphs. Modeling the interaction network by random d–regular graphs makes it possible
to systematically carry out numerical experiments because recently efficient algorithms for generating such
graphs became available, [Bayati et al., 2010, Blitzstein and Diaconis, 2011, Kim and Vu, 2003]. Moreover,
for random d–regular graphs, some analytic results about the number of different graphs are known. This,
in turn, corresponds to the number of possible player–coplayer combinations. As a d–regular graph with
N vertices has dN

2 edges, the number dN needs to be even. Employing such an interaction network model
implies that we cannot have an odd number of players with an odd number of coplayers.

For a small number of edges (= coplayers) d, the number Ld(N) of different d–regular graphs on N
vertices (= players) can be found by enumeration, see for instance the entries in the Sloane encyclopedia of
integer sequences, [Sloane, 2016]. Thus, L2(4) = 3 and L3(4) = 1, while L2(6) = 70, L3(6) = 70, L4(6) = 15
and L5(6) = 1, and L2(8) = 3507, L2(10) = 286884. Note that LN−1(N) = 1 for all N , which means that a
complete network of interactions representing a well–mixed population holds only one instance of the matrix
AI . Thus, for a complete network graph the game cannot be coevolutionary. It is always static with respect
to interaction because no dynamic changes can be cast out of a single instance of AI . Further note that
Ld(N) grows rapidly. For interaction networks with d = 2 coplayers, the number of possible player–coplayer
combinations L2(N) can be calculated exactly, as there is a recursive formula for the number of 2–regular
graphs, [Bollobás, 2001], p.56:

L2(N) = (N − 1) · L2(N − 1) +

(
N − 1

2

)
· L2(N − 3) (2)

valid for N ≥ 3, with L2(0) = 1, L2(1) = 0 and L2(2) = 0. For d > 2, no formula is known to compute
exactly the total number Ld(N) of d–regular graphs on N vertices, but asymptotic expressions have been
found, [Wormald, 1999]. Asymptotically, and for d = o(

√
N) and dN even, the number is

Ld(N) =
(dN)! · exp

(
1−d2

4 − d3

12N +O
(
d2

N

))
(
dN
2

)
! 2

dN
2 (d!)N

. (3)

Based on a collection of random d–regular graphs the effect of different networks of interaction on payoff
collecting and fitness can be analyzed, for which a landscape approach is proposed in the next section.

4 Landscape models of game dynamics

4.1 Static and dynamic landscapes

A general definition of a (static) fitness landscape ΛS is the triple ΛS = (X, n, f), where X is a configuration
space, n(x) is a neighborhood structure that assigns to every x ∈ X a set of direct neighbors, and f(x) : X→
R is a fitness function that provides every x ∈ X with a proprietary quantity to be interpreted as a ’quality’
information or fitness, [Richter and Engelbrecht, 2014, Stadler and Stephens, 2003]. In this definition, the
configuration space together with the neighborhood structure expresses a (multi–dimensional) ’location’,
while fitness is a property of this location. The configuration space itself can be seen as an unordered (finite
or infinite) list of configurations that genetic specifications of biological systems can have. The neighborhood
structure defines a (possibly multi–dimensional) order of this list by establishing what is directly next to
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each element of the configuration space. As direct neighbors of an element have a neighborhood structure
themselves, this naturally establishes distant neighbors of the element as well.

The definition of a (static) landscape has the consequence of each configuration possessing a constant
fitness value. For several reasons this might not realistically reflect the evolutionary scenario to be described
and may generally restrict the descriptive power and versatility of the landscape model. Hence, assuming
that fitness may change over time, while configuration space and neighborhood structure remain constant,
the definition above can be extended to a dynamic fitness landscape, which can be expressed as the quintuple
ΛD = (X, n,K, F, φ), [Richter, 2014a]. In addition to the elements of the static landscape, there is the time
set K, the set of all fitness functions F in time κ ∈ K, and the transition map φ defining how the fitness
function changes over time. It is noteworthy that for a discrete time set K, for instance for the integer
numbers K = {0, 1, 2, . . .}, the notion of a dynamic landscape coincides with the notion of a series of static

landscapes. Hence, two static landscapes Λ
(1)
S = (X, n, f (1)) and Λ

(2)
S = (X, n, f (2)) can be reformulated

as one dynamic landscape ΛD with (f (1), f (2)) ∈ F and φ describing how f (1) changes into f (2). Such a
dynamic landscape model implies the time variable κ ∈ K to act as an integer counting and ordering scale
for dynamic instances of a static landscape. Hence, κ ∈ K is numerically tantamount to yet conceptually
different from counting the rounds of an coevolutionary game by k = {0, 1, 2, . . .}.

4.2 Player landscapes

Applying a landscape approach for describing evolutionary dynamics requires addressing what may con-
stitute a configuration x ∈ X and its neighborhood n(x), and also what defines fitness f(x). For the
coevolutionary games described in the previous sections, there are several modeling options, which are re-
viewed in the following. The actual modeling choice of X, n and f and their interdependencies may either
result in a static landscape or entail a landscape that is dynamic and additionally requires K, F and φ to
be specified.

The simplest modeling choice is to equate configurations with players I, which for N players leads to a
player configuration space X = I with N elements. The neighborhood structure follows from the d coplayers
that each player has, which can be 1 ≤ d ≤ N−1. Thus, the neighborhood of a player consists of all the other
players with which it is mutually engaged in a game according to the interaction matrix AI . Hence, assuming
that each player Ii can be attributed with a fitness fi, such a player landscape ΛI could be specified by
ΛI = (I, AI , f). A popular form of such player landscapes is to place the players on a two–dimensional square
lattice and define the coplayers to be Von Neumann (or Moore) neighborhoods, which consists of the lattices
cells orthogonally (or additionally diagonally–adjacent) surrounding a central cell [Nowak and May, 1993].
Admittedly, such an arrangement fixes the number of direct neighbors to d = 4 (or d = 8), but yields a
convenient way of visualizing the quality information over the resulting two–dimensional structure, which
might be one reason for the popularity of these neighborhoods. The most obvious choice of the quality
information is payoff p or quantities directly derived from it such as the linear fitness f = 1 + δp introduced
earlier. This has led to label such landscapes as payoff landscapes, [Brede, 2011].

There are, however, several problems with such a player landscape model. The main problem is that
the configuration is the player, not its strategy, nor the strategies of its coplayers. Hence, with the player’s
and coplayers’ strategies, two quantities decisive for the amount of payoff, are not directly attached to the
configuration. Strategies can be seen as ambiguous and polyvalent properties of the configuration of players.
This means that the payoff attributable to a configuration depends on both the player’s strategy and also
on the strategies of its neighboring coplayers. This aspect is known as frequency–dependence, as the payoff
can be seen as to depend on how frequent the strategy that the player adopts also occurs in the coplayers.
Consequently, frequency–dependent fitness refutes the assumption that each player Ii can be attributed with
a unique and static fitness. In short, fitness derived from payoff can be seen as dynamic so that the real player
landscape cannot be static, but should be dynamic: ΛI = (I, AI ,K, f(κ), φ). Moreover, the dynamics of f(κ)
is caused not only by frequency–dependence, but also by strategy updating for which the player landscape
model does not directly account and both these causes can hardly be separated from each other. Hence,
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the transition map φ describing how the fitness f(κ+ 1) relates to f(κ) is not straightforwardly definable.
In addition, modeling configurations of a landscape by players means that the neighborhood structure is
expressed by the adjacency matrix AI . A variable network of interaction, as in coevolutionary games,
therefore implies a changing neighborhood structure. To conclude a player landscape of a coevolutionary
game would involve changing neighborhood structure as well as dynamic fitness. This may make analyzing
such a landscape rather complicated.

There is another reason for the difficulties to deduce meaningful conclusions from payoff–based fitness
over a player landscape. Topological features of the landscape can be used as a starting point for estimating
how likely transitions from low–fitness configurations to high–fitness configuration are and also which config-
urations are most likely to be a steady state of evolutionary dynamics. However, which player in a symmetric
game as specified by the payoff matrix (1) exactly is a likely high–fitness outcome of an evolutionary process
is not very relevant. A much more important question is what fraction of the players in the long run settles
stably to one of the possible strategies. In pursuing this question, there are several works that define the
quality information of the landscape to be the strategy to which a player temporarily or finally settles. This
means the ’fitness’ is expressed by the strategy vector π(k). The results have been visualized by coloring the
players according to their strategy, [Nowak and May, 1993, Nowak and Sigmund, 2004]. Such a model has
the advantage that the spatial and temporal distribution of the strategy preferences can be visualized with
respect to the player–coplayer structure. However, payoff–based fitness as the main drive of evolutionary
game dynamics is not an explicit component of such a landscape and the number of coplayers is defined by
the restrictions of the adjacency of the lattice grid.

4.3 Strategy landscapes

An alternative modeling choice is to equate configurations with all possible combinations of strategies that
each player and its coplayers can have. An element π ∈ Π of the strategy configuration space Π is comprised
of the strategies of any player Ii, i = 1, 2, . . . , N , and its up to N − 1 coplayers: π = (π1π2 . . . πN ). The
strategy configuration space X = Π generalizes the time–dependent strategy vector π(k) towards all of its
possible instances. Hence, for N players with two possible strategies, Π contains ` = 2N elements. If we
binary code the strategies cooperation and defection (for instance Ci = 1, Di = 0), an element π ∈ Π
appears as binary string of length N . Note that for this case the bit–count of π, bc(π), provides a simple
way of expressing the fraction of cooperators bc(π)/N . It is assumed that only one player or coplayer can
change its strategy at a given point in time. This implies a neighborhood structure where each element π
has N direct neighbors which are distanced by Hamming distance of 1, which is denoted by H1

d(π). For
instance, H1

d(0000) = {1000, 0100, 0010, 0001} With such a model we obtain for payoff–based fitness f a
unique and static landscape ΛiΠ = (Π,H1

d, fi) for each player Ii and each network of interaction. As the
game specified by the payoff matrix (1) is symmetric, the strategy landscapes ΛiΠ are topologically alike for
all players Ii. The landscapes ΛiΠ can be transformed into each other by shifting and reshuffling. For a
landscape interpretation this topological likeness implies that landscape quantifiers such as the number of
maxima, or correlation structure, or information content do not vary over the ΛiΠ.

For N = 4, the landscapes can be visualized in two dimensions, see Fig. 1. It shows ΛiΠ, i = 1, 2, 3, 4,

for the payoff matrix

(Cj Dj

Ci 3 0
Di 5 1

)
and the adjacency matrix AI =

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
specifying a PD game with

a complete network of interaction and d = 3 coplayers for each player Ii.
We find that L3(4) = 1 and hence the game is static with respect to updating the network of interaction.

Observe that for each player there is only one maximum fitness value (the player is defecting, while all
coplayers cooperate) and one minimum fitness value (the player cooperates, while all coplayers defect). Apart
from the single maximum and the single minimum, there are several configurations that have the same fitness
value. Interestingly, these configurations do not form a neutral network, [Richter and Engelbrecht, 2014],
as they have Hamming distance of 2 and hence are not direct neighbors. From the strategy landscape ΛiΠ
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it can be concluded which strategy for the player Ii (with respect to the strategies of the coplayers) yields
the highest fitness and is therefore most desirable from the perspective of Ii. Nonetheless, the evolutionary
path from a given initial configuration may depend on, and be influenced by, the strategies provided to
and/or received from the coplayers. In addition, from the perspective of another player, another strategy
configuration is best. Best configurations for respective players, however, are mutually exclusive, which is a
defining feature of social dilemma games such as the PD. Consequently, each strategy landscape ΛiΠ can be
seen as a building block that constructs a strategy landscape of the game. Such a game landscape would
allow conclusions as to what strategy configurations are adopted if all players and their interactions are
taken into account. In other words, a game landscape may model the dynamics caused by the strategy
updating processes discussed in Sec. 3.1.

4.4 Game landscapes

Reconsider the game with N = 4 players, for which Fig. 1 depicts the player–wise strategy landscapes ΛiΠ.
At every point in time k, the game can be seen as occupying one of its 24 = 16 configurations. Put another
way, the actual strategy vector π(k) specifies an actual configuration on the landscapes ΛiΠ. For each player
Ii, its landscape ΛiΠ gives its actual fitness fi(k). The strategy updating process means that one player
provides its strategy for another player to receive. The receiving player changes its strategy. According to
the landscape view this process corresponds with changing the actual configuration π(k) to a neighboring
configuration π(k + 1). As the change of configuration affects all players (and consequently all player–wise
strategy landscapes), it entails that all players may experience a change of fitness as well. No player can hold
onto its configuration as long as the strategy updating process is underway unless one of the two absorbing
configurations π∞ are reached, namely π∞ = (0000) or π∞ = (1111).

In the following, the strategy updating processes birth–death (BD) and death–birth (DB) will be dis-
cussed. For these processes transition probabilities can be derived, [Pattni et al., 2015], which can now be
employed to define game landscapes. Therefore, it will be convenient to rewrite the landscape ΛiΠ as its
decomposition ΛiΠ = {λi`}, ` = 1, 2, . . . , 2N , where each λi` contains the fitness and preserves the neighbor-
hood of configuration `. Assume that the game is in configuration π(k) = (1101), which means that player
I3 is defecting, while the three other players are cooperating. According to the PD game, the fitness of I3

is highest, the three other players have the same (albeit lower) fitness. To start with, let us consider a BD
strategy updating. A player’s strategy is chosen at random with a probability proportional to fitness to be
a source (hence birth). The birth probability of a configuration ` of player Ii therefore scales to

bi` =
λi`∑2N

`=1 λ
i
`

, (4)

where the λi` are the decompositions of the landscape ΛiΠ containing the fitness. The player with the highest
fitness is most likely to be a source, which is presumably I3 with strategy π3(k) = 0. Which one of the
three players is the target to receive the strategy (hence death) is due to chance but influenced by possible
restrictions regarding the replacement. Hence, the death probability of a player Ii is

di =
1

N

N∑
j=1

wji∑N
i=1wji

, (5)

where the wji are the elements of the replacement matrix WR possibly restricting replacements of strategies
as discussed in Sec. 3.1. Note that the death probability is independent of fitness and hence the same for
all configurations of each player. A BD (and also a DB) updating does not envisage self–replacement and
hence the replacement matrix WR must have diagonal elements wii = 0. If, on the other hand, there are no
replacement restrictions, then the death probability is invariant over players: di = 1

N for all players using a
BD updating. Assume that all players can be a target and I2 is chosen. Hence, the strategy configuration
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after the strategy updating is π(k + 1) = (1001). The players I2 and I3 have leveled their fitnesses, while
the fitness of both the other players is fallen even more.

Now consider a DB strategy updating. Here, a player’s strategy is chosen at random with a probability
proportional to the inverse of its fitness to be a target (hence death). Therefore, the death probability of a
configuration ` of player Ii can be expressed as scaling to

di` = 1−
λi`∑2N

`=1 λ
i
`

. (6)

Still assume that the game is in configuration π(k) = (1101) and as the players I1, I2, and I4 have the same
(low) fitness values, one of them is most likely to be the target. Suppose I1 is chosen. Which one of the
three players provides its strategy as a source (hence birth), depends on chance and possible replacement
restrictions. We get the birth probability

bi =
1

N

N∑
j=1

wij∑N
i=1wij

, (7)

which is the same as the death probability (5) in BD, but the target and the source are switched in the
elements of the replacement matrix. Note that only if the player I3 is chosen, a change in configuration takes
place, that is the strategy configuration after the strategy updating is π(k + 1) = (0101). Put differently,
the outcome of both a BD and a DB updating may be the same, but the probabilities to reach it may be
different.

For a sufficiently large number of strategy updating events (and therefore changes of configuration),
there may be some configurations that the game occupies more often than others. These may, for instance,
be the absorbing configurations π∞ with a bit count bc(π∞) = 0 and bc(π∞) = N . Analyzing whether or
not these absorbing configurations are reached and how long this takes, gives rise to fixation probabilities
and fixation times, which will be discussed in Sec. 4.5. Before, however, we focus on the question of how
frequent any configuration is over strategy updating events. The frequency of reaching a configuration scales
to the probabilities of birth and death discussed so far. Hence, for a BD updating the game landscape

ΛBDΠ = {λBD` } =

 1

1
2

(
1 + exp

(
α
N

∑N
i=1 b

i
`di

))
 , (8)

can be defined, while for a DB updating, we set

ΛDBΠ = {λDB` } =

 1

1
2

(
1 + exp

(
α
N

∑N
i=1 d

i
`bi

))
 , (9)

both with ` = 1, 2, . . . , 2N and α being a sensitivity weight. Both game landscapes retain the configuration
space and the neighborhood structure of the player–wise strategy landscapes ΛiΠ, hence using them as
building blocks. The fitness of each configuration ` summarizes via a Fermi function the probabilities to
reach the configuration according to the birth and death events of the strategy updating process. The
fitness of the game landscape therefore depends on the fitness of each player–wise landscape and possible
replacement restrictions. Moreover, different updating processes cast different game landscapes ΛBDΠ and
ΛDBΠ out of the same strategy landscapes ΛiΠ of the players Ii. Given that the ΛiΠ are topological alike,
and hence might be seen as possessing symmetry properties, different strategy updating rules break the
symmetry of the player–wise strategy landscapes. At the same time, the BD and DB updating processes
themselves possess symmetry properties via the birth and death probabilities (4) and (6). Consequently
(and in the absence of replacement restrictions), the game landscapes ΛBDΠ and ΛDBΠ retain symmetry
properties. Replacement restrictions induced by different WR, however, yield another symmetry breaking.
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These symmetries (and broken symmetries) are reflected by the landscape properties discussed in the next
section.

The discussion so far has been for a constant network of interaction, that is for a specific matrix AI . As
pointed out in Sec. 3.2, network updating can be described by a series of adjacency matrices AI(κ). Hence,
as the genetic description of the coevolutionary game comprises of the strategy vector and the network
of interaction, the strategy configurations made up by the space Π could be augmented by interaction
configurations built by all possible networks of interaction. Consequently, the Ld(N) different interaction
graphs enumerated approximately by Eq. (3) could be seen as configurations according to the landscape
definitions discussed above. However, in view of the rather large number of possible graphs for given N and
1 < d < N − 2 (a rough estimate of Eq. (3) for d� N yields Ld(N) = O(NN )), an alternative model is to
understand different interaction graphs as dynamic instances of the strategy landscape. Put differently, the
dynamics of the strategy landscape is the results of its variability with respect to the network of interaction.
A consequence of such a modeling is that the timely order of the varying network of interaction could
be interpreted as temporal neighborhoods according to the neighborhood structure inherent in landscapes.
With network updating expressed as dynamic instances of player–wise strategy landscapes, we get a dynamic
landscape ΛiΠ = (Π,H1

d,K, fi(κ), {AI(κ), AI(κ+ 1)}) for describing a coevolutionary game. Apart from the
strategy configuration Π with neighborhood H1

d and the integer time set K, the quantity fi(κ) gives payoff–
based fitness for each configuration, each player Ii, and the κ–th network of interaction. The matrix pair
{AI(κ), AI(κ+ 1)} of subsequent adjacency matrices specifies how the fitness fi(κ+ 1) relates to fi(κ), thus
constructing the transition map φ.

Taking up the example of N = 4 with the same values of the payoff matrix as in Sec. 4.3, but d = 2
coplayers, we get L2(4) = 3 and hence a game that is dynamic with respect to updating the network of
interaction. The three dynamic instances are shown in Fig. 2, where Fig. 2a is for the adjacency matrix

AI(0) =

(
0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

)
, Fig. 2b is for AI(1) =

(
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)
, and Fig. 2c is for AI(2) =

(
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

)
. It can be seen

that the three different networks produce three different player–wise strategy landscapes for each player,
which means that we indeed obtain dynamic changes over the three instances of 2–regular graphs on N = 4
vertices.

Comparing these strategy landscapes with those for the complete network of interactions (see Fig. 1)
reveals differences. A first is that for each player, there are now two maxima and two minima. Each player
retains a maximum (minimum) if it itself defects (cooperates), while its two coplayers cooperate (defect).
The two maxima (minima) come about as it makes no difference for the player’s payoff whether the fourth
player (who is no coplayer as d = 2) cooperates or defects. A second difference is that two neighboring
configurations may build a block of equal fitness in connection with every configuration belonging to such
a same–fitness block. Consequently, there is neutrality in these fitness landscapes. Moreover, these results
suggest that the number of maxima and degree of neutrality scales to the number of coplayers, which can
be confirmed by numerical experiments for landscapes with more than N = 4 players.

Within the given modeling framework of coevolutionary games, the timely order of the adjacency ma-
trices is not associated with a particular updating process of the interaction network. The main reason
is the general lack of established algebraic descriptions of network updating. The dynamic landscapes
proposed may offer such an algebraic description as the transition map φ can be formulated uniquely for
regular graphs, for instance for the transient between AI(0) and AI(1) of the example considered above

as {AI(0), AI(1)} = φ01 = AI(1) − AI(0) =

( 0 1 −1 0
1 0 0 −1
−1 0 0 1

0 −1 1 0

)
. For dynamic player–wise strategy landscapes

ΛiΠ = (Π,H1
d,K, fi(κ), {AI(κ), AI(κ + 1)}), game landscapes for BD and DB updating can be defined ac-

cording to the probabilities of birth/death and expressed as dynamic counterparts of Eqn. (8) and (9). As
the fitness fi(κ) of each player Ii now depends on the time variable κ specifying dynamic instances of the
adjancency matrix, the death and birth probabilities di(κ), bi(κ), di`(κ), bi`(κ) are also dynamic. Conse-
quently, the static games landscapes (8) and (9) become dynamic game landscapes: ΛBDΠ (κ) = {λBD` (κ)}
and ΛDBΠ (κ) = {λDB` (κ)}. These dynamic BD and DB landscapes are the main topic of the numerical
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experiments reported in Sec. 5.

4.5 Landscapes and fixation

The game specified by the payoff matrix (1) and the updating processes described in Sec. 3 instantiate
evolutionary dynamics describable by the game landscapes (8) and (9) introduced above. As updating
processes such as BD and DB depend on random processes, the resulting game dynamics can also be seen as
a stochastic process. Consequently, stochastic properties such as fixation probability and fixation time have
been suggested for evaluating and comparing the long–term outcome of evolutionary game dynamics, and
studied widely in theory and numerical experiment, see, for instance, [Lieberman et al., 2005, Nowak, 2006,
Pattni et al., 2015, Shakarian et al., 2012]. These fixation properties particularly account for whether or not
the game dynamics settles on a steady state, and if so, how long this takes on average, and how frequent it
is.

The fixation probability quantifies how likely it is that one of the two strategies that a player can use
(cooperate or defect) spreads to the whole population of players, given that only one player started using this
strategy. According to the landscape interpretation, this corresponds to reaching one of the two absorbing
configurations π∞ with bit count bc(π∞) = 0 and bc(π∞) = N , given that the initial configuration π(0) = π0

had bit count bc(π0) = N − 1 and bc(π0) = 1, respectively. For each absorbing configuration, there are N
different configurations that can possibly serve as an initial configuration. Hence, as N

2N
tends to zeros for N

getting larger, initial configurations getting scarce in the overall topological structure of the game landscape
for a sufficiently large number of players. The same also applies to absorbing configurations. This is in
agreement with the observation that fixation probabilities generally decrease while N increases (see also
the results of numerical experiments in Sec. 5.4). As there are two absorbing configurations, two distinct
fixation probabilities can be defined, one for complete cooperation and another for complete defection. The
probability to reach the configuration where all player cooperate, bc(π∞) = N , is denoted by %c, while the
probability of all players defecting, bc(π∞) = 0, is named %d.

Fixation probabilities can be analytically calculated for Moran processes based on properties of Markov
chains for well–mixed populations, [Nowak, 2006, Hindersin and Traulsen, 2015] and numerically for games
on graphs, [Hindersin et al., 2016]. For games on graphs with replacement restrictions, estimates of the
fixation probabilities using diffusion theory have been reported, [Ohtsuki et al., 2007]. For coevolutionary
games considering dynamic networks of interaction of varying degree, numerical experiments can be carried
out. Following previous experimental works, the fixation probabilities are approximated by the relative
frequency of fixation. The fixation time quantifies how many changes in configuration it takes on average to
reach an absorbing configuration π∞. This corresponds with the average amount of time needed to achieve
fixation. The notion of fixation time can be refined by distinguishing which one of the two absorbing config-
uration is reached, which gives rise to conditional fixation times, [Traulsen and Hauert, 2009]. The fixation
times for the cooperative and defective absorbing configurations are denoted by τc and τd, respectively.

As fixation probability and fixation time are the most important quantities in stochastic game dynamics,
these quantities are discussed next with respect to the landscape interpretation proposed in the previous
sections. The fitness of the landscapes (8) and (9) derives from payoffs of each player and summarizes the
probabilities that a particular configuration is occupied by the game. Hence, possible differences in fitness
across neighborhoods generate topological features of the landscape. These topological features, in turn,
create evolutionary paths on the landscape, which any evolutionary dynamics has to observe. However, the
evolutionary dynamics is governed by a move bias towards higher fitness, which is not a move imperative.
In other words, the landscape view implies that there are probabilities that the maxima are reached, but no
certainties. Moreover, these probabilities depend on what exactly the topological features of the landscape
are, for instance, on the number of maxima, their distribution and their accessibility. For evaluating the
effect of landscape features, just focusing on the maxima is not sufficient. Therefore, different types of
landscape measures have been proposed which aim at reflecting, in a more general sense, the impact that
landscape features have on evolutionary dynamics, see also the discussion in Sec. 5.1.
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Fixation occurs if a succession of changes in configuration leads from prescribed initial configurations
to the absorbing configurations. Fixation probabilities %c > 0, %d > 0 require evolutionary paths connect-
ing initial configurations with respective absorbing configurations. The values of %c > 0, %d > 0 scales to
how easy or how difficult it is that these evolutionary paths can be accessed or distracted. The fixation
time, on the other hand, varies with the length of the evolutionary path. Consequently, by analyzing the
topological structure of the game landscape, it may be feasible to infer fixation properties. This kind of
analysis, however, is impeded by the fact that absorbing configurations in game landscapes are, topologically
interpreted, non–passable points in the landscape. However, non–passable points are not a standard concept
of landscapes. Perhaps most similar are steady states of a landscape, but there is the difference that the
evolutionary dynamics can, under certain conditions, leave a steady state and there is the even more fun-
damental difference that steady states are by definition maxima of the landscape. Absorbing configurations
may or may not be maxima of the game landscape. In the same way, the initial configurations marking the
origin of the evolutionary path may or may not be minima of the landscape. The numerical experiments
discussed in Sec. 5.4 confirm such a characteristics for the game landscapes (8) and (9).

This line of reasoning suggests that a landscape analysis should take into account that fixation properties
are likely to be related to landscapes via the local (and possibly also the global) topological features of
absorbing and initial configurations. In analogy to the landscape structure, which describes globally the
topological features of the entire landscape, these topological features and their interdependences with
fixation we may call absorption structure. The numerical experiments reported next section address not
only topological features of the landscapes, but also the absorption structure, where the focus is on the local
structures.

5 Numerical experiments

5.1 Landscape measures

Game landscapes can only be visualized as two–dimensional projections up to N = 4 players. For analyzing
landscapes with more players, we need to resort to landscape measures. A first measure we look at is
modality expressed by the number of local maxima #LM . Local maxima are potential steady states on
the evolutionary path. Hence, the number of local maxima relates to the variety of possible evolutionary
paths and consequently to the complexity of the evolutionary dynamics displayed. If there is just one
(smoothly accessible) maximum, then all evolutionary paths converge to it and the evolutionary dynamics
displayed is rather simple. If, on the other hand, there is a large number of maxima, then the possible
evolutionary paths may differ from each other massively resulting in more complex evolutionary dynamics.
For a landscape ΛΠ = (Π,H1

d, f) a configuration π is a local maximum π̂, if ∀π ∈ H1
d(π̂), the fitness of this

strategy configuration satisfies f(π̂) ≥ f(π). Moreover, if this condition holds ∀π ∈ Π, then π̂ is a global
maximum.

For evaluating the local absorption structure, we need to consider three further local topological features:
minimum, neutrality, and saddles. A local minimum π̌ has at least one neighbor that has a smaller fitness
and no neighbors that have larger fitness than itself. A neutral configuration π̄ has only neighbors with the
same fitness, which means that landscape area containing π̄ and its neighbors is flat. Lastly, a saddle π́ has
some neighbors that are larger and some other neighbors that are smaller. In numerical experiments, the
number of local maxima #LM can be computed for the game landscapes (8) and (9). The same applies to
whether the absorbing configuration π∞ and its initial configurations π0 are maxima, minima, neutral or
saddles. Consequently, for the dynamic instances of these landscapes, a time series containing the numbers
of local maxima #LM (κ) is obtained. The same applies to all other measures of dynamic landscapes.

There are two immediate problems with analyzing landscapes by modality expressed by the number of
local maxima #LM . First, on a practical level, we find that #LM can only be calculated by enumeration,
which entails the proverbial curse of dimensionality. Second, on a conceptual level, there is the fact that the
pure number of local maxima is a decisive (and arguable the most important) factor defining evolutionary
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paths, but the distribution of the maxima and their accessibility is also profoundly influential. To overcome
these issues, other types of measure have been proposed for quantifying smoothness, ruggedness, or neutrality
of the landscape. Two of them are studied here, correlation length λ and information content hIC .

The correlation length evaluates across the landscape how strongly the fitness of any configuration
relates to the fitness of neighboring configurations and hence is a measure of the landscape’s rugged-
ness, [Stadler, 1996, Richter and Engelbrecht, 2014]. For calculating the correlation length λ, a random
walk on the landscape of length T is used. The fitness values for each step on the walk are recorded by the
sequence

S = (f(0), f(1), . . . , f(T − 1)) (10)

and thus a series of neighboring fitness relations is obtained. Assuming that the landscape is isotropic,
these neighboring fitness relations account for general changes in fitness across the landscape. Hence, the
autocorrelation of sequence (10) with time lag tL defines the landscape’s random walk correlation function

r(tL) =

T−1−tL∑
i=0

(f(i)−µ)(f(i+tL)−µ)

σ2 , where µ = 1
T

T−1∑
i=0

f(i), σ2 = 1
T

T−1∑
i=0

(f(i)− µ)2 and T � tL > 0. The function

r(tL) measures the correlation between different regions of the fitness landscape and expresses a measure of
how smooth or rugged the landscape is. The correlation length

λ = −1/ log(|r(1)|) (11)

derives from the autocorrelation r(1) of time lag tL = 1, [Stadler, 1996, Richter and Engelbrecht, 2014].
The information content hIC , [Muñoz et al., 2015, Vassilev et al., 2000], is an entropic landscape mea-

sure, which also uses the fitness sequence (10) generated by a random walk on the landscape. It can be
interpreted as a measure of the amount of information required to reconstruct the landscape structure.
From the time series (10), differences in fitness between two consecutive walking steps are coded by symbols
si ∈ S, i = 0, 1, 2, . . . , T − 1, taken from the set S = {−1, 0, 1}. These symbols are obtained by

si(ε) =


−1, if f(i+ 1)− f(i) < ε

0, if |f(i+ 1)− f(i)| ≤ ε
1, if f(i+ 1)− f(i) > ε

(12)

for a fixed ε ∈ [0, L], where L is the maximum difference between two fitness values. The obtained symbols
are concatenated to a string

SIC(ε) = s0s1 . . . sT−1. (13)

The parameter ε defines the sensitivity by which the string SIC(ε) accounts for differences in the fitness
values. For example, if ε = 0, the string SIC(ε) contains the symbol zero only for the random walk reaching
a strictly flat area. Hence, ε = 0 discriminates very sensitively between increasing and decreasing fitness
values. By contrast, for ε = L, the string only contains the symbol zero, which makes evaluating the structure
of the landscape pointless. A fixed value of ε with 0 < ε < L defines a level of detail with respect to the
information gained about the landscape structure. The string (13) represents this information depending
on ε and codes it by subblocks over the set S. In other words, varying ε allows zooming in or zooming out
on the information structure of the landscape.

For defining the information content of the landscape, the distribution of subblocks of length two,
sisi+1, i = 0, 1, . . . T − 2, within the string (13) is analyzed. These subblocks stand for local patterns in the
landscape. The probabilities of the occurrence of the pattern ab with a, b ∈ S and a 6= b are denoted by pab.
For numerical calculation, these probabilities are approximated by the relative frequency of the patterns
within the string (13). As the set S consists of three elements, we find six different kinds of subblock
sisi+1 = ab with a 6= b within the string SIC(ε). From their probabilities and a given sensitivity level ε the
entropic measure

hIC(ε) = −
∑
a,b∈S
a6=b

pab log6 pab, (14)
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is calculated, which is called information content of the fitness landscape, [Muñoz et al., 2015, Vassilev et al., 2000].
Note that by taking the logarithm in Eq. (14) with the base 6, the information content is scaled to the
interval [0, 1].

5.2 Graph–theoretical properties of interaction networks

Networks of interaction may be described by instances of a random d–regular graph, as set out in Sec.
3.2. Based on this description, varying interaction networks have been interpreted in this paper as to
cast dynamic instances of a landscape characterizing the coevolutionary games. Instances of interaction
networks specify who–plays–whom in the game, which means that even if for each player the number of
coplayers is constant, who in fact the coplayers are is not. As different coplayers may imply different
strategies and hence different allocations of payoff, different networks of interaction may result in topo-
logically different game landscapes. Put another way, if properties of game landscapes vary over dynamic
instances, the variation should be reflected by properties of interaction networks, that is graph–theoretical
quantifiers of d–regular graphs. Spectral graph theory defines several such quantifiers, which take ad-
vantage of connections between the algebraic description of a graph and its structural properties; see for
instance [Biggs, 1994, Brouwer and Haemers, 2012, Cvetkovic et al., 2009, Li et al., 2012, Spielman, 2009],
upon which the remainder of this section about quantification of graph–theoretical properties of interaction
networks relies. The main propose of this quantification is to map structural differences of the interaction
graph to different values of graph–spectral invariants, which, in turn, are interpretable as (graph–theoretical)
network measures. For definitions of these invariants, also see [Biggs, 1994, Brouwer and Haemers, 2012,
Cvetkovic et al., 2009, Li et al., 2012, Spielman, 2009].

The quantities considered are based on algebraic properties of the adjacency matrix AI , or the Laplacian
matrix L = dI − AI , which is derived from AI to include the degree d explicitly. For the matrices AI and
L, the spectra of eigenvalues, eig(AI) = (α1, α2, . . . , αN ) and eig(L) = (λ1, λ2, . . . , λN ), are starting points
for further consideration. For connected d–regular graphs, we find for spectra of the adjacency matrix AI
that all eigenvalues are real and −d ≤ α1 ≤ α2 ≤ . . . ≤ αN ≤ d, while eigenvalues of the Laplacian L are
also all real, and non–negative as well as sortable according to 0 = λ1 ≤ λ2 ≤ . . . ≤ λN .

A first quantity is the (normalized) energy ene of a graph:

ene =
1

N

N∑
i=1

|αi|, (15)

which can be interpreted as the spectral distance between a given graph and an empty graph, and can hence
be seen as scaling to the degree of difference between graphs. A second graph–theoretical network measure
based on the eigenvalues eig(AI) is the independence number

ind =
−Nα1

d− α1
, (16)

which is an approximation of the size of the largest independent set of vertices in a graph. An independent
set is a set of vertices in a graph such that no two vertices of the set are connected by a edge.

A network measure based on the Laplacian derives from the smallest eigenvalue of L larger than zeros,
λ2, is termed (normalized) algebraic connectivity

acl =
λ2

λN
, (17)

and scales to how well a graph is connected. Connectivity denotes the structural property of a graph that
removal of vertices or edges disconnects the graph. The Laplacian eigenvalue λ2 = 0 if the graph is not
connected, and λ2 = N if the graph is complete (that is fully connected). Larger values of λ2 indicate
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graphs with a rounder shape, and high connectivity and girth, while for smaller values of λ2 the graph is
more path–like with low connectivity and girth. Also calculated from the Laplacian is the expander index

exi = max

(
1− λ2

d
,
λN
d
− 1

)
(18)

which is a measure for the d–regular graph possessing expander properties. The expander index has small
values for all eigenvalues λi being close to d, and larger values for the opposite. Expander graphs are marked
by all small sets of vertices usually having a larger number of neighbors. Thus, they can be seen as their
neighborhood expanding.

As far as possible and needed, the graph–theoretical quantifiers are normalized with respect to the order
of the graph. Hence, they can be compared over a varying number of vertices and hence players. In Sec. 5.4
results are given that analyze the correlation between the network measures (15)–(18) and the landscape
measures (11) and (14).

5.3 Experimental setup

The numerical experiments with the dynamic fitness landscapes of coevolutionary games specify the pay-

off matrix (1) and consider a PD game and a SD game with

(Cj Dj

Ci 3 0
Di 5 1

)
and

(Cj Dj

Ci 3 1
Di 5 0

)
, re-

spectively, which is a parametrization as suggested by Axelrod’s seminal work, [Axelrod, 1980]. Addi-
tionally, the effect of varying the T/R ratio (which encourages or dampens the temptation to defect)
is studied. Therefore, results for T = 5 are contrasted with T = 7. The dynamics of the landscape
is addressed by examining the effect of varying networks of interaction. Algorithms are employed that
numerically generate adjacency matrices AI(κ) specifying random regular graphs with given order and de-
gree, [Bayati et al., 2010, Blitzstein and Diaconis, 2011, Kim and Vu, 2003]. We checked to see if the graphs
are connected. If a graph fails the check, there are isolated vertices that may bias controlling the interaction
network via the graph’s degree and hence such graphs are discarded.

For the experiments, different sets of graphs with prescribed N and d are generated and used. The
absorption structure was analyzed with a set of G = 6000 graphs. Some experiments studying landscape
measures and fixation properties were done with a set of G = 3000 graphs. These experiments have shown
that for a considerable number of different networks, rather similar results are obtained. For this reason
and also to facilitate the numerical experiments, unless stated differently the results presented in the figures
are based on a set of G = 1000 different interaction networks. In all cases for Ld(N) < G, the complete set
of possible networks of interaction is taken. The experiments are conducted for N even to guarantee the
existence of d–regular graphs for all 2 ≤ d ≤ N − 1.

Different replacement structures are analyzed. The experimental setup follows previous works, [Ohtsuki et al., 2007],
and defines the replacement matrix WR as random regular graph with given degree and guaranteed con-
nectivity. Additionally, the elements wij 6= 0 are filled with realizations of a random variable uniformly
distributed on the interval [0, 1]. The degree of WR is set to match the degree of AI . All these experiments
are carried out for BD and DB landscapes. Other updating schemes such as PC or IM can be treated
likewise. For these processes transition probabilities are known, [Pattni et al., 2015], and hence landscapes
similarly to (8) and (9) can be computed. With the conventional PC–based computational resources that
were available, it was possible to experiment within a reasonable time–frame with up to N = 20 players.
All experiments employ a linear relationship f = 1 + δp between payoff and fitness with δ = 0.25. The game
landscapes are computed with a sensitivity weight α = 5. For calculating the correlation length λ and the
information content hIC , a random walk of length T = 10000 was used, and the results are averaged over 50
independent walks. Numerical experiments have shown that the results obtained are statistically equivalent
over different initial configurations that the walks starts with. Hence, it appears reasonable to assume for
the tested cases that the game landscapes are isotropic. The information content (14) is computed with a
sensitivity level that scales to the number of players by ε = exp (−12−N).
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The numerical experiments calculating fixation properties are based on 2500 repetitions. This is a
rather small amount compared to other recent experimental works, e.g. [Hindersin and Traulsen, 2015,
Zukewich et al., 2013]. Some auxiliary experiments with a larger amount of repetition, however, have shown
that the values of the fixation properties analyzed converge well so that the numerical setup used appears
sufficient for up to N = 20 players.

5.4 Experimental results

Figs. 3, 4 and 5 show the landscape measures number of local maxima #LM , correlations length λ and
information content hIC over N and d. The red lines indicate a BD updating, the green lines a DB
updating. In addition to the quantities averaged over the up to 1000 different interaction networks tested
(horizontal lines), the vertical spikes indicate the range between the least and the largest value of #LM , λ
or hIC over these networks described by the adjacency matrices AI . This presentation and color code is
kept for all landscape measures and fixation properties.

In Fig. 3, the number of local maxima #LM are given as semi–logarithmic plots, except Fig. 3a showing a
PD game for T = 5. Considering #LM , the results show that DB updating produces generally more maxima
that BD updating. An exception is the PD landscape for T = 5, which has only one maximum for all tested
N and d, and both BD and DB updating. It hence is unimodal while all other landscapes are multimodal.
Also, accounting for #LM does not reflect the symmetry between BD and DB landscapes. Again, the
exception is the PD game with T = 5. For T = 7, there is a larger similarity between the landscape for
the PD game and the SD game, compared with T = 5. Moreover, for the SD game with T = 5, we find for
DB updating that #LM decreases for a given N and d getting larger. For T = 7 such a clear trend is not
visible. Another observation is that for all landscapes (except PD with T = 5) the number of local maxima
#LM sometimes shows vertical spikes indicating the amount to be not constant for a given N and d and
varying networks. In other words, there is a certain variety in the number of local maxima over instances
of interaction networks expressed as d–regular graphs. Further note that #LM

2N
→ 0 for N getting larger.

All these results support previous findings about evolutionary games, for instance that PD games and BD
updating do not provide an advantage for cooperators, [Ohtsuki et al., 2007, Zukewich et al., 2013]. Thus,
for PD the small number of maxima of the player–wise landscapes Λiπ (compare to Fig. 1) corresponds with
the small number of maxima in the game landscape. By contrast, for the SD game and DB updating not
only configurations where the defecting player earns the largest payoff are maxima of the game landscapes.
Consequently, the number #LM is larger. Also, an increased T/R ratio leads to the number of #LM being
more volatile over d. In addition, for T = 7 the spread of #LM is over a larger range, indicating that
different networks of interaction produce landscapes topologically more different.

For the landscape measures λ and hIC in Figs. 4 and 5, we find almost identical results for BD and
DB landscapes, yet the different games and different values of T can be distinguished, albeit not as clearly
as for #LM . Hence, correlation length and information content largely reflect the symmetry of the game
landscapes. It can also be seen that the variety over different networks of interactions is slightly stronger
for hIC than for λ.

We next analyze the effect of replacement restrictions imposed by the replacement graph not being fully
connected with evenly weighted edges, and focus on the differences between replacement restriction being
set or not. The results are for T = 5 and a PD and a SD game, see Fig. 6, 7 and 8. A main observation is
that replacement restrictions modify the game landscapes, which is also shown by the landscape measures.
For instance, the number of local maxima #LM for the PD game with T = 5 and DB updating is no longer
strictly unimodal (compare Figs. 3a and 6a). Interestingly, for BD updating, even replacement restrictions
do not alter unimodality. For the SD game, the inverse proportionality between #LM and d ceases, and
generally the number of local maxima does vary more strongly for different networks of interaction. These
characteristics can also be seen for the landscape measures correlation length λ (see Fig. 7) and information
content hIC (see Fig. 8). Here, the main difference is that the measures are no longer the same (or almost
the same) for BD and DB updating. This reflects the broken symmetry that replacement imposes on BD
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and DB game landscapes. Generally, replacement restrictions imply landscapes that vary more substantially
over different networks of interaction. Furthermore, as there is an inverse relationship between ruggedness
and correlation length λ, it can be noted that ruggedness decreases as the number of player gets larger. This
effect, which is also visible very slightly in Fig. 4, is amplified by replacement restrictions.

In Figs. 9 and 10 fixation properties of the cooperative absorbing configuration π∞ with bc(π∞) = N
are given over N and d. The fixation probability %c is zero for the PD games and BD updating, which
corresponds to previous results showing that cooperation is never favored or beneficial under such an updat-
ing, [Ohtsuki et al., 2007, Zukewich et al., 2013]. Apart from this result, %c falls with the number of players
N getting larger, but for a given N , the fixation probability is the same for a varying number of coplayers
d. These results are in line with the findings that regular evolutionary graphs are generally isothermal.
Moreover, except for very small numbers of players (N = 4 and partly N = 6), the fixation probability for
the well–mixed case (d = N−1) is also the same as for a smaller number of coplayers. This, however, is only
the case for averages over interaction networks. There are for a constant N and d interaction networks with
fixation probabilities larger or smaller than average indicated by the vertical spikes (for d = N − 1 there
cannot be a spike as only one instance of AI exists). Hence, these results suggest that the graph structure
of the interaction network does matter for 2 ≤ d < N − 1. Moreover, which AI(κ) causes the largest or
smallest %c varies over N and d. Regarding the fixation times τc, similar observations can be made. Note
that for the PD games no fixation time for BD updating are given as the fixation probability is zero. For the
SD game the fixation times for BD updating are much larger than for DB, and this effect is even amplified
by an increase in the T/R ratio, which stand for encouraging the temptation to defect; compare Fig. 10c
for T = 5 with Fig. 10d for T = 7. Particularly, for N > 16 the fixation times are getting very large.

Fixation properties of the defective absorbing configuration π∞ with bc(π∞) = 0 are given in Figs. 11
and 12. All game settings produce fixation probabilities %d > 0. Apart from this, the results are similar
to the general trends for the cooperative absorption, namely fixation probability differs for BD and DB
updating, falls with an increasing number of players N and is isothermal for given N and a varying number
of coplayers d. The fixation times τd in Fig. 12 also show some similarity, but also differences. The main
observation is that for the SD games the maximal fixation times are not substantially larger than for PD
games.

We next consider the local absorption structure of the game landscapes, which are based on up to 6000
different interaction matrices AI(κ). The results for PD and SD games with BD and DB landscapes and
T = 5 and T = 7 are given in Tab. 1. The final absorption structure (F) indicates the local topological
features of the absorbing configurations π∞, while the initial absorption structure (I) denotes the features
of the initial configurations π0 from where potential paths to the absorbing configuration may start. The
features are given for both the cooperative absorbing configuration with bc(π∞) = N and the defective
absorbing configuration with bc(π∞) = 0.

The results in Tab. 1 show some general features of the local absorption structure for the game settings
considered, which in turn can be interpreted as specific properties of the game landscape as proposed by
Eqn. (8) and (9). A first feature is that for both games, both parameter values of T and both absorbing con-
figurations, the absorption structure of BD updating generally differs from DB updating. This may answer
the question of why game landscapes that are symmetric with respect to BD and DB for no replacement
restrictions yield fixation properties that do differ from BD to DB. A possible explanation is that while the
game landscapes are topologically the same as shown by the landscape measures λ and hIC (see Figs. 4
and 5), their absorption structure is not. This suggests the absorption structure to be a determining factor
in the relationships between game landscapes and fixation. A second feature is that for all settings tested
there is rarely a variety over the number of players and coplayers. In other words, within a given game
setting changing the number of players and coplayers does not alter the absorption structure. An exception
to that rule is the initial structure of the defective configuration and T = 7, which intermixes a saddle and
maximum/minimum. Though, the maximum/minimum is only for two cases, namely N = 4 with d = 3
and N = 6 with d = 5, that is the well–mixed cases for a rather small number of players. A third feature is
a general absence of variety over different interaction matrices AI(κ). At least for the interaction matrices
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Table 1: Local absorption structure for a PD and a SD game with T = 5 and T = 7; bc(π∞) = N is for
the cooperative absorbing configuration and bc(π∞) = 0 for the defective absorbing configuration. Results
show the final absorption structure (F) and the initial absorption structure (I). Local topological features
of absorbing configurations: maximum (mx), minimum (mn), neutral (nt), saddle (sd)

Cooperative absorbing Defective absorbing
configuration: bc(π∞) = N configuration: bc(π∞) = 0

PD SD PD SD

T = 5 BD F: mn F: nt BD F: mx F: mx
I: sd I: sd I: sd I: mn

DB F: mx F: mxa,mna,nt DB F: mn F: mn
I: sd I: sd I: sd I: mx, sd

T = 7 BD F: mxb F: mxb BD F: mx F: mx
I: sd I: sd I: sd, mnd I: sd, mnd

DB F: mnc F: mnc DB F: mn F: mn
I: sd I: sd I: sd, mxd I: sd, mxd

a Never global for 4 ≤ N ≤ 20
b Only local maxima for 4 ≤ N ≤ 10 and 2 ≤ d ≤ N − 1
c Only local minima for 4 ≤ N ≤ 10 and 2 ≤ d ≤ N − 1
d Only for N = 4, d = 3 and N = 6, d = 3

tested, the absorption structure is largely invariant over interaction networks. There is an exception with
the SD game, T = 5 and DB updating to be discussed later. Before, two further features can be noted. The
maxima/minima of the absorption structure are mostly global, with exception of the cooperative absorption
structure and T = 7. Finally, it can be observed that the absorption structure is inverse complementary for
BD and DB, the meaning of which is that if there is a maximum for BD, then DB has a minimum, and vice
versa, while a saddle remains a saddle. This follows from the symmetry properties via the birth and death
probabilities (4) and (6) as discussed in Sec. 4.4.

There is again, however, an interesting exception in form of the SD game with T = 5. For this game
setting, we find that the cooperative final absorbing configuration is neutral for BD updating, and a com-
bination of maximal, minimal and neutral for DB updating. Further analysis shows that these topological
features vary over N , d and AI(κ). For most N and d the absorbing configuration is neutral, while for a
few N and d it is either a maximum or a minimum. In these cases, the topological features are fixed for
varying interaction networks. In addition, there are N and d for which varying interaction networks give
either a mixture of maxima and neutral, or a mixture of minima and neutral. For the defective absorbing
structure, the initial configurations vary over AI(κ), where for most N and d we have neutrality, while for
some other N and d there is a mix of neutral and maxima. Numerical evaluation affirms that such a variety
of the topological features of the absorption structure over interaction networks can be observed for other
game settings as well, particularly those on the line 2T = 11 + P − S. The SD game with T = 5 is exactly
on this line for the parametrization used (R = 3, S = 1, P = 0).

Based on the absorption structure of the game landscapes, the next set of numerical results deals with
correlations between landscape measures and fixation properties. As already discussed in Sec. 4.5, rela-
tionships between topological structures of the game landscapes and fixation events are likely to be shaped
and typified by the absorption structure. The results for the correlations between landscape measures and
fixation properties of the cooperative absorbing configuration are shown in Fig. 13 for the correlation length
λ and Fig. 14 for the information content hIC , while the same is done for the defective absorbing configura-
tion in Figs. 15 and 16. The results are for all game settings considered with red markers indicating a PD
game with BD updating, green PD game and DB, blue is SD game with BD and yellow SD and DB. The
lines connecting the markers are depicted to ease following trends. The Pearson product–moment correla-
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tion coefficient is calculated to aggregate over interaction networks and the number of players N for each
number of coplayers d. The advantages of such a mode of calculation are that the database for analyzing
correlations becomes sufficiently large (it comprised of data for the instance of interaction matrices AI(κ)
times the number of players N) and that trends over a varying number of players are captured. However,
there should be an awareness that the calculation implicitly assumes that fixation properties and landscape
measures scale on N in ways compatible with the dependence on AI(κ).

Comparing the results in Figs. 13 and 14 tells us that the correlations between λ and either %c or τc
are volatile and hardly evaluable, while for hIC there are clear trends. The same can be said about the
defective fixation, see Figs. 15 and 16 for %d and τd. Further analysis (not shown in a figure) confirms
this to remain if the calculation is done for each N and d. Hence, it appears to be justified to conclude
that the information content hIC correlates more clearly to fixation properties than the correlation length
λ. Another results (also not shown in a figure for brevity reasons) shows that the number of local maxima
#LM correlates poorly to fixation properties. Apart from the fact that there is no correlation for the PD
game, BD updating and the fixation of cooperation as %c = 0, there are further results to note. For d = 19,
the correlations are always zeros. This is why: with the experimental setup employed (see Sec. 5.3) only for
N = 20, there can be d = 19, with the additionally meaning that such a game is well–mixed with just one
instance of the interaction matrix AI . As correlation cannot be based on a single data pair, the correlation
must be zero. Furthermore, it can be seen that there is a negative correlation between hIC and %c (and
%d), while the correlation between hIC and τc (and τd) is positive. This appears reasonable as the fixation
probabilities fall with increasing number of players N , yet the fixation times grow. Also, it can be observed
that generally the correlations are strongest for small number of players and weaken before they reach zero
for d = 19.

Regarding the shaping and typifying effect of absorption, the following can be observed comparing the
local absorption structure in Tab. 1 with the correlations in Figs. 14 and 16. From a topological point
of view the correlation should be particularly strong if the absorbing configuration is a maximum and the
initial configurations are all minima. For absorbing and initial configurations being minima and maxima,
the opposite should apply. Only for one example, the final absorbing configuration is a maximum and the
initial configurations are minima for all N , d and AI(κ): the defective absorption of the SD game with
T = 5. For this case, the correlation between hIC and %d is indeed slightly stronger than for the other cases.
However, for the correlation between hIC and τd the opposite is true. In general, it can be noted that the
correlations for all settings (except PD-BD for the cooperative absorption) are clearly visible and rather
similar. It can be concluded that while there are some hints in the local absorption structure to clarify
the correlations between landscape measures and fixation properties, the explanatory framework should not
be overstretched. Analogous to a landscape analysis that only focuses on selected points in the landscape
(for instance the maxima/minima), the local absorption structure only captures a subset of the topological
structures that shape coevolutionary game dynamics. Therefore, extensions toward a global absorption
structure seem desirable.

A last set of experiments reports correlations between landscape measures and network measures of the
interaction matrices AI(κ). Figs. 17–19 give the correlations between information content hIC and either
graph energy, Eq. (15), independence number, Eq. (16), algebraic connectivity, Eq. (17), or expander index,
Eq. (18). Again, the Pearson coefficient is used aggregating over interaction networks and the number of
players N for each number of coplayers d. The same color code for the game settings as for the correlations
with fixation properties is used. It can be seen that the information content correlates well to all networks
measures, and there are small differences between the landscapes with T = 5 (Fig. 17) and T = 7 (Fig.
18). It is conspicuous that the results are indistinguishable for BD and DB landscapes, which fully reflects
the symmetry properties of these landscapes. The symmetry is broken by replacements restrictions. The
correlations between the network measures and hIC for T = 5 and replacement restrictions reported in Fig.
19 confirm this as there are differences between BD and DB. The correlations, however, are less smooth over
d as compared to the results in Figs. 17 and 18, which is most likely due to the additional stochastic nature of
replacement restrictions. Lastly, two more observations can be noted. A first is that the correlations between
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hIC and the networks measures are negative for graphs energy, independence number and expander index,
while they are positive for algebraic connectivity. The main reason is that amongst the network measures
studied only algebraic connectivity increases continuously for d getting larger in both mean and variance
over instances of the interaction matrices AI(κ). A second is that for the graph energy and the expander
index the correlations are weak for both small numbers of coplayers (d < 6) before they get stronger to
weaken again for larger number of players (d > 16). For the other two network measures the weakening is
only for d > 16, which is similar to the correlations with fixation properties.

5.5 Discussion

The results given above set out relationships between landscape measures and both fixation properties
and network properties, and argue that dynamic landscape models of coevolutionary games are viable. In
this section, features and implications of such a modeling approach are discussed and some concluding
observations are offered.

1. An essential part of the experimental study is the study of correlations between landscape measures
and both fixation properties and quantifiers of the networks of interaction. The main results are that
information content scales much better to fixation properties and network measures than the other
landscape measures considered. Particularly ruggedness as measured by the correlation length relates
less clearly and much weaker to fixation properties than information content, which is understood
to account not specifically for ruggedness, but more for the interplay between smooth, rugged and
flat landscape areas. Hence, a conclusion may be that also for game landscapes ruggedness alone
is not a good predictor for evolutionary dynamics, as also reported for other types of fitness land-
scapes, [Malan and Engelbrecht, 2013]. As there are additional entropic landscape measures based
on the information content, for instance partial information content, information stability or density–
basin information, [Muñoz et al., 2015, Vassilev et al., 2000], it might be interesting to study whether
these measures also scale well for game landscapes and may offer further insight into game dynam-
ics. Regarding the correlations between landscape measures and quantifiers of interaction networks,
the results are more consistent. There are clear correlations for all four of the network measures
considered, with algebraic connectivity and independence number scaling slightly better than graph
energy and expander index. However, it should be noted that the correlations established between
the landscape measures and network measures are based on the Laplacian or adjacency spectra of
the adjacency matrix AI . As these spectra do not uniquely determine the interaction graph, there
might be correlations between the graph structure of the interaction network and the game landscape
that are not captured. The discussion might be extendable by considering alternatives, for instance
generalized graph distance measures as reported by [Gu et al., 2016].

2. The experiments studying the effect of different networks of interaction with given N and d on fixa-
tion properties and landscape measures only report mean, maximum, and minimum values and their
interdependencies. Further statistical analysis, for instance considering variances, or higher–order mo-
ments, or estimates of the underlying distribution, are deliberately omitted. The main argument is
that we should beware of drawing conclusions based on such a far–reaching statistical analysis as it is
not clear what it might really signify. For instance, for d = 2 coplayers, the number of different graphs
can be enumerated exactly by Eq. (2). The experiments presented are for up to N = 20 players.
Accordingly, at the upper limit of the experimental setup, we find L2(20) ≈ 1.4 · 1017. There is no
alternative but to conclude that any number of numerically testable networks of interaction represents
just a tiny subset of all interaction networks. At the same time it is far from being clear how well
the finite number of graphs generated by the numerical procedures represent all possible different
graphs for given N and d. Thus, it might be possible that some trends are biased by the algorithmic
process of numerically generating interaction networks AI . Further work is needed to clarify these
interdependencies.
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3. The experimental results showing landscape measures and their correlations to fixation properties
as well as to graph–theoretical quantities of the interaction networks are for the specific algebraic
description of the game landscapes (8) and (9). The algebraic form of how to cumulate death and
birth probabilities from the player–wise strategy landscapes is definatory and was employed as it fitted
well to fixation properties and previous results known about social dilemma game dynamics. It is an
open question whether an alternative algebraic form of (8) and (9) can achieve similar or even better
results. Similarly, the results obtained here are specific for the linear relation f = 1 + δp. Hence, it
might be interesting to analyze how different payoff–to–fitness relations modify the results, for instance
the exponential relations f = 1 + exp (p) or f = exp (p), as suggested by [Allen and Nowak, 2014].
This may go along with experimental studies of different levels of the intensity of selection δ, which is
also opened up by the game landscape approach proposed in this paper. In the case of weak selection,
that is for δ → 0, the player–wise strategy landscapes lose their distinct topological features, which
yields (in the absence of replacement restrictions) a game landscape that is neutral. Consequently, the
game dynamics on this landscape would be random drift. For larger or large values of δ the topological
features of the player–wise strategy landscapes become more prominent, for which the game landscape
is more rugged. From this line of argument it can be conjectured that there is a direct relation between
the intensity of selection and the ruggedness of the game landscape, which might be verifiable by future
studies.

4. The results presented are for up to N = 20 players. If the trends identified in these results remain
valid for a larger number of players needs to be studied in future work. A limitation in these studies
surely is that the number of configurations to be analyzed in the landscapes increases exponentially
with the number of players, hence setting bounds as to how far such experiments might be extendable.
Therefore, with the computational resources currently available the modeling framework is likely to
be confined to a moderate number of players. However, for an increased number of players there
is the framework of replicator dynamics which sufficiently describes game dynamics for populations
becoming large, [Traulsen et al., 2005].

5. Some primary experiments have shown that for replacement restrictions, the correlation between land-
scape measures on the one hand, and fixations and network properties on the other, cease. Apparently,
the replacement restrictions seriously modify the structure of the game landscapes. It is another open
question if these relationships can be reestablished by taking into account properties of the replace-
ment process, for instance the absorption structure of the restricted network. This may be extended
by foregoing the setting that the degree of the replacement matrix WR matches the degree of the
adjacency matrix AI .

6 Summary and conclusions

Coevolutionary games cast players that update their strategies as well as their networks of interaction.
In this study, a reinterpretation of coevolutionary games as dynamic fitness landscapes is proposed. The
dynamic landscapes are based on three major components: (i) a description of strategy updating as a
Moran process with definable probabilities of strategy transitions, (ii) a formulation of network of interaction
updating as instances of random regular graphs, and (iii) a linear relation between payoff and fitness. Using
these components, payoff–related fitness landscapes can be defined for each player. It is further shown
that coevolutionary game dynamics can be expressed by a game landscape derived from these player–wise
landscapes by including the strategy updating process. Moreover, different strategy updating processes,
such as death–birth (DB) or birth–death (BD) produce different game landscapes, which can be seen as
strategy updating breaking the symmetry of the play–wise landscapes. In numerical experiments it has
been demonstrated that landscape measures such as modality, ruggedness and information content allow
to differentiate between different game landscapes. Fixation probabilities and fixation times have been
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calculated as well as network measures characterizing the networks of interaction of the coevolutionary
games. By correlation analysis it has been shown how the landscape measures relate to both fixation
properties and network measures.

The approach presented is a technique for analyzing coevolutionary games by landscapes. Moreover,
the approach is not restricted to Moran processes as long as strategy transition probabilities can be de-
rived, at least approximately. Finally, networks updating is currently modeled as a given sequence of
random regular graphs, but should be understood as a transition process, for instance by using reproducing
graphs, [Southwell and Cannings, 2010] as a tool to refine the description of transitions between adjacency
matrices.

Different settings of the game represented by the numeric values of the payoff matrix and different
rules of the strategy updating result into a large variety of coevolutionary game dynamics. A consider-
able number of works have analyzed and discussed this game dynamics with respect to fixation properties
such as fixation probability and fixation time from both a theoretical as well as an experimental point of
view, [Allen and Nowak, 2014, Lieberman et al., 2005, Nowak, 2006, Pattni et al., 2015, Shakarian et al., 2012].
The results reported here contribute to this discussion by offering a fitness landscape view as an alterna-
tive explanatory framework. In other words, by the approach presented coevolutionary games may become
amenable to be analyzed by dynamic landscapes.
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Figure 1: Strategy landscapes ΛiΠ for a PD game with N = 4, d = 3 and a complete network of interaction

with AI =

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
. Same colors give equal fitness values f = 1 + δp for payoff p with δ = 0.25. Each

strategy configuration π = (π1π2π3π4) has N = 4 neighbors distanced by Hamming distance H1
d, while

periodic boundary conditions apply.
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Figure 2: Strategy landscapes ΛiΠ for a PD game with N = 4, d = 2 and L2(4) = 3 different networks of

interaction. Same colors give equal fitness values f = 1+δp for payoff p with δ = 0.25. (a) AI(0) =

(
0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

)
(b) AI(1) =

(
0 1 0 1
1 0 1 0
0 1 0 1
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)
(c) AI(2) =

(
0 1 1 0
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)
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Figure 3: Modality measured by the number of local maxima #LM over N and d. Red gives the results for
BD updating, green for DB updating: no replacement restriction. PD games: (a) T = 5; (b) T = 7. SD
games: (c) T = 5; (d) T = 7.
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Figure 4: Correlation length λ over N and d. Red gives the results for BD updating, green for DB updating:
no replacement restriction. PD games: (a) T = 5; (b) T = 7. SD games: (c) T = 5; (d) T = 7.
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Figure 5: Information content hIC over N and d. Red gives the results for BD updating, green for DB
updating: no replacement restriction. PD games: (a) T = 5; (b) T = 7. SD games: (c) T = 5; (d) T = 7.
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Figure 6: Modality measured by the number of local maxima #LM over N and d for T = 5 and replacement
restriction specified by the replacement matrix WR. Red gives the results for BD updating, green for DB
updating: replacement restriction. (a) PD game; (b) SD games.
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Figure 7: Correlation length λ over N and d for T = 5 and replacement restriction specified by the replace-
ment matrix WR. Red gives the results for BD updating, green for DB updating: replacement restriction.
(a) PD game; (b) SD games.
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Figure 8: Information content hIC over N and d for T = 5 and replacement restriction specified by the
replacement matrix WR. Red gives the results for BD updating, green for DB updating: replacement
restriction. (a) PD game; (b) SD games.
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Figure 9: Fixation probability %c of cooperative absorbing configuration over N and d. Red gives the results
for BD updating, green for DB updating: no replacement restriction. PD games: (a) T = 5; (b) T = 7. SD
games: (c) T = 5; (d) T = 7.
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Figure 10: Fixation time τc of cooperative absorbing configuration over N and d. Red gives the results for
BD updating, green for DB updating: no replacement restriction. PD games: (a) T = 5; (b) T = 7. SD
games: (c) T = 5; (d) T = 7.
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Figure 11: Fixation probability %d of defective absorbing configuration over N and d. Red gives the results
for BD updating, green for DB updating: no replacement restriction. PD games: (a) T = 5; (b) T = 7. SD
games: (c) T = 5; (d) T = 7.
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Figure 12: Fixation time τd of defective absorbing configuration over N and d. Red gives the results for BD
updating, green for DB updating: no replacement restriction. PD games: (a) T = 5; (b) T = 7. SD games:
(c) T = 5; (d) T = 7.
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Figure 13: Correlation between fixation properties and correlation length λ for the cooperative absorbing
configuration over d. Red gives the results for PD–BD, green for PD–DB, blue for SD–BD, yellow for
SD–DB. Fixation probability %c: (a) T = 5; (b) T = 7. Fixation time τc: (c) T = 5; (d) T = 7.
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Figure 14: Correlation between fixation properties and information content hIC for the cooperative absorbing
configuration over d. Red gives the results for PD–BD, green for PD–DB, blue for SD–BD, yellow for SD–DB.
Fixation probability %c: (a) T = 5; (b) T = 7. Fixation time τc: (c) T = 5; (d) T = 7.
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Figure 15: Correlation between fixation properties and correlation length λ for the defective absorbing
configuration over d. Red gives the results for PD–BD, green for PD–DB, blue for SD–BD, yellow for
SD–DB. Fixation probability %c: (a) T = 5; (b) T = 7. Fixation time τc: (c) T = 5; (d) T = 7.
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Figure 16: Correlation between fixation properties and information content hIC for the defective absorbing
configuration over d. Red gives the results for PD–BD, green for PD–DB, blue for SD–BD, yellow for
SD–DB. Fixation probability %c: (a) T = 5; (b) T = 7. Fixation time τc: (c) T = 5; (d) T = 7.
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Figure 17: Correlation between matrix measures and information content hIC for T = 5 over d. Red gives
the results for PD–BD, green for PD–DB, blue for SD–BD, yellow for SD–DB. (a) graph energy, Eq. (15);
(b) independence number, Eq. (16); (c) algebraic connectivity; (d) Eq. (17), or expander index, Eq. (18)
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Figure 18: Correlation between matrix measures and information content hIC for T = 7 over d. Red gives
the results for PD–BD, green for PD–DB, blue for SD–BD, yellow for SD–DB. graph energy, Eq. (15),
independence number, Eq. (16), algebraic connectivity, Eq. (17), or expander index, Eq. (18).
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Figure 19: Correlation between matrix measures and information content hIC for T = 5 and replacement
restrictions over d. Red gives the results for PD–BD, green for PD–DB, blue for SD–BD, yellow for SD–DB.
graph energy, Eq. (15), independence number, Eq. (16), algebraic connectivity, Eq. (17), or expander index,
Eq. (18).
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