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Abstract

In a recent issue of the Bulletin of the Korean Mathematical Society, Qi and Zhang discovered an inter-

esting integral representation for the Bernoulli numbers of the second kind (also known as Gregory’s

coefficients, Cauchy numbers of the first kind, and the reciprocal logarithmic numbers). The same represen-

tation also appears in many other sources, either with no references to its author, or with references to

various modern researchers. In this short note, we show that this representation is a rediscovery of an

old result obtained in the 19th century by Ernst Schröder. We also demonstrate that the same integral

representation may be readily derived by means of complex integration. Moreover, we discovered

that the asymptotics of these numbers were also the subject of several rediscoveries, including very

recent ones. In particular, the first-order asymptotics, which are usually (and erroneously) credited

to Johan F. Steffensen, actually date back to the mid-19th century, and probably were known even

earlier.

Keywords: Bernoulli number of the second kind, Gregory coefficient, Cauchy number, logarithmic

number, Schröder, rediscovery, state of art, complex analysis, theory of complex variable, contour

integration, residue theorem.

I. Rediscovery of Schröder’s integral formula

In a recent article in the Bulletin of the Korean Mathematical Society [10], several results concerning

the Bernoulli numbers of the second kind were presented.

We recall that these numbers (OEIS A002206 and A002207), which we denote below by Gn, are

Email address: iaroslav.blagouchine@univ-tln.fr, iaroslav.blagouchine@centrale-marseille.fr,

iaroslav.blagouchine@pdmi.ras.ru. (Iaroslav V. Blagouchine)

Note to the readers of the 3rd arXiv version: this version is a copy of the journal version of the

article, which has been published in the Journal of Integer Sequences, vol. 20, no. 3, Article 17.3.8,

pp. 1-7, 2017. URL: https://cs.uwaterloo.ca/journals/JIS/VOL20/Blagouchine/blag5.html

Artcile history: submitted 20 December 2016, accepted 26 January 2017, published 27 January 2017.

The layout of the present version and its page numbering differ from the journal version, but the

content, the numbering of equations and the numbering of references are the same. For any further

reference to the material published here, please, use the journal version of the paper, which you can

always get for free from the journal site (Journal of Integer Sequences is an open access journal).

http://arxiv.org/abs/1612.03292v3
http://oeis.org/A002206
http://oeis.org/A002207
https://cs.uwaterloo.ca/journals/JIS/VOL20/Blagouchine/blag5.html


Figure 1: A fragment of p. 112 from Schröder’s paper [11]. Schröder’s C
(−1)
n are exactly our Gn.
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and were introduced by the Scottish mathematician and astronomer James Gregory in 1670 in the

context of area’s interpolation formula. Subsequently, they were rediscovered by many famous math-

ematicians, including Gregorio Fontana, Lorenzo Mascheroni, Pierre-Simon Laplace, Augustin-Louis

Cauchy, Jacques Binet, Ernst Schröder, Oskar Schlömilch, Charles Hermite and many others. Because

of numerous rediscoveries these numbers do not have a standard name, and in the literature they are

also referred to as Gregory’s coefficients, (reciprocal) logarithmic numbers, Bernoulli numbers of the second

kind, normalized generalized Bernoulli numbers B
(n−1)
n and normalized Cauchy numbers of the first kind

C1,n. Usually, these numbers are defined either via their generating function

u

ln(1 + u)
= 1 +

∞

∑
n=1

Gn un, |u| < 1 , (1)

or explicitly

Gn =
C1,n

n!
= lim

s→n

−B
(s−1)
s

(s − 1) s!
=

1

n!

1
ˆ

0

x (x − 1) (x − 2) · · · (x − n + 1) dx , n ∈ N .

It is well known that Gn are alternating Gn = (−1)n−1|Gn| and decreasing in absolute value; they

behave as
(

n ln2 n
)−1

at n → ∞ and may be bounded from below and from above accordingly to

formulas (55)–(56) from [3]. For more information about these important numbers, see [3, pp. 410–

415], [2, p. 379], and the literature given therein (nearly 50 references).

Now, the first main result of [10, p. 987] is Theorem 1.2 It states: the Bernoulli numbers of the second

2Our Gn are exactly bn from [10] and
c
(1)
n,1
n! from [4, Sect. 5]. Despite a venerable history, these numbers still lack a standard

notation and various authors may use different notation for them.
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kind may be represented as follows

Gn = (−1)n+1

∞̂

1

dt
(

ln2(t − 1) + π2
)

tn
, n ∈ N . (2)

The same representation appears in a slightly different form3

Gn = (−1)n+1

∞̂

0

du
(

ln2 u + π2
)

(u + 1)n
, n ∈ N , (3)

in [5, pp. 473–474] and [4, Sect. 5], and is called Knessl’s representation and the Qi integral representation

respectively. Furthermore, various internet sources provide the same (or equivalent) formula, either

with no references to its author or with references to different modern writers and/or their papers.

However, the integral representation in question is not novel and is not due to Knessl nor to Qi and

Zhang; in fact, this representation is a rediscovery of an old result. In a little-known paper of the

German mathematician Ernst Schröder [11], written in 1879, one may easily find exactly the same

integral representation on p. 112; see Fig. 1. Moreover, since this result is not difficult to obtain, it is

possible that the same integral representation was obtained even earlier.

II. Simple derivation of Schröder’s integral formula by means of the complex integration

Schröder’s integral formula [11, p. 112] may, of course, be derived in various ways. Below, we

propose a simple derivation of this formula based on the method of contour integration.

If we set u = −z − 1, then equality (1) may be written as

z + 1

ln z − πi
= −1 +

∞

∑
n=1

∣

∣Gn

∣

∣ (z + 1)n, |z + 1| < 1 .

Now considering the following line integral along a contour C (see Fig. 2), where n ∈ N, and then

letting R → ∞ , r → 0, we have by the residue theorem

‰

C

dz

(1 + z)n (ln z − πi)
=

R
ˆ

r

. . . dz +

ˆ

CR

. . . dz +

r
ˆ

R

. . . dz +

ˆ

Cr

. . . dz
R→∞
r→0=

=

∞̂

0

{

1

ln x − πi
−

1

ln x + πi

}

·
dx

(1 + x)n
= 2πi

∞̂

0

1

(1 + x)n
·

dx

ln2 x + π2
=

= 2πi res
z=−1

1

(1 + z)n (ln z − πi)
=

2πi

n!
·

dn

dzn

z + 1

ln z − πi

∣

∣

∣

∣

z=−1

= 2πi
∣

∣Gn

∣

∣ ,

3Put t = 1 + u.
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Figure 2: Integration contour C (r and R are radii of the small and big circles respectively, where r ≪ 1 and

R ≫ 1).
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(1 + z)n (ln z − πi)

∣

∣

∣

∣

∣

∣

∣

= O

(

1

Rn−1 ln R

)

= o(1) , R → ∞ , n ≥ 1 ,

∣

∣

∣

∣

∣

∣

∣

ˆ

Cr

dz

(1 + z)n (ln z − πi)

∣

∣

∣

∣

∣

∣

∣

= O
( r

ln r

)

= o(1) , r → 0 ,

and because at z = −1 the integrand of the contour integral has a pole of the (n + 1)th order. This

completes the proof. Note that above derivations are valid only for n ≥ 1, and so is Schröder’s integral

formula, which may also be regarded as one of the generalizations of Gn to the continuous values of

n.

III. Several remarks on the asymptotics for the Bernoulli numbers of the second kind

The first-order asymptotics |Gn| ∼
(

n ln2 n
)−1

at n → ∞ are usually credited to Johan F. Stef-

fensen [12, pp. 2–4], [13, pp. 106–107], [9, p. 29], [7, p. 14, Eq. (14)], [8], who found it in 1924.4 How-

ever, in our recent work [3, p. 415] we noted that exactly the same result appears in Schröder’s work

written 45 years earlier, see Fig. 3, and the order of the magnitude of the closely related numbers is

contained in a work of Jacques Binet dating back to 1839 [1].5 In 1957 Davis [7, p. 14, Eq. (14)] im-

proved this first-order approximation slightly by showing that |Gn| ∼ Γ(1 + ξ)
(

n ln2 n + nπ2
)−1

at

n → ∞ for some ξ ∈ [0, 1] , without noticing that 7 years earlier S. C. Van Veen had already obtained

the complete asymptotics for them [14, p. 336], [9, p. 29]. Equivalent complete asymptotics were re-

4The same first-order asymptotics also appear in [6, p. 294], but without the source of the formula.
5By the “closely related numbers” we mean the so-called Cauchy numbers of the second kind (OEIS A002657 and A002790),

and numbers I′(k), see [3, pp. 410–415, 428–429]. The comment going just after Eq. (93) [3, p. 429] is based on the statements

from [1, pp. 231, 339]. The Cauchy numbers of the second kind C2,n and Gregory’s coefficients Gn are related to each other via

the relationship nC2,n−1 − C2,n = n! |Gn| , see [3, p. 430].
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Figure 3: A fragment of p. 115 from Schröder’s paper [11].

cently rediscovered in slightly different forms by Charles Knessl [5, p. 473], and later by Gergő Nemes

[8]. An alternative demonstration of the same result was also presented by the author [3, p. 414].
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