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Abstract. The aim of this work is the study of the class of pe-
riodic parallelogram polyominoes, and two of its variantes. These
objets are related to 321-avoiding affine permutations. We first
provide a bijection with the set of triangles under Dyck paths. We
then prove the ultimate periodicity of the generating series of our
objects, and introduced a notion of primitive polyominoes, which
we enumerate. We conclude by an asymptotic analysis.

1. Introduction

The study of polyominoes is very classical in combinatorics. Many
classes of these objects have been considered and studied in the past
decades. The focus of the present work is the class of periodic par-
allelogram polyominoes (nicknamed as PPP’s), which may be seen as
parallelogram polyominoes drawn on a cylinder. These objects were
introduced simultaneously and independently in [2] and [3] . Their
introduction in [2] is linked to the study of the bivariate generating
series of 321-avoiding affine permutations with respect to the rank and
the Coxeter length (or equivalently, to the study of fully commutative

elements with full support in Coxeter groups of type Ãn−1); PPP’s are
enumerated in this paper through the use of heaps of segments (ex-
tending the case of parallelogram polyominoes). In the present work,
which is intended as a sequel to [3], we use a tree structure (inspired
by [4]) to study PPP’s. This structure puts to light a new parame-
ter, called intrinsic thickness (see Definition 2.3). We give here several
answers raised in [3]. In Section 3, we give a bijective explanation to
a fact noticed and proved in [3]: the number of PPP’s with fixed in-
trinsic thickness according to their semi-perimeter coincides with the
sequence A008549 in [8], which gives the total area under Dyck paths.
In Section 4, we study the area parameter in PPP’s and we prove a pe-
riodicity property for the coefficients of the corresponding generating
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series. Moreover, this leads to the introduction of a notion of prim-
itive PPP’s, for which we obtain a very simple enumerative formula
(see Theorem 4.5 - a bijective proof is still to be found). To conclude,
we give in Section 5 an asymptotic estimate of the coefficients of the
generating function of strips (these objects, introduced in [3], may be
defined as orbits of PPP’s under the rotation of the cylinder), according
to their semi-perimeter.

2. Preliminaries

First of all, we recall the main definitions and results from [3] we
will need in this article. The definition of periodic parallelogram poly-
ominoes is based on parallelogram polyominoes. They can be seen as
a maximal set of cells of Z× Z defined up to translation, contained in
between two paths with North and East steps that intersect only at
their starting and ending points. In the following, the first column will
correspond to the leftmost one, and the last column to the rightmost
one.

Definition 2.1 (PPP). A periodic parallelogram polyomino is a par-
allelogram polyomino P with a positive integer g called the gluing size,
such that g is smaller or equal to the minimum of the heights of the first
and last column of P . Moreover, in the rest of the article we consider
PPP’s which are not of rectangular shape with gluing size equal to the
size of the columns.

We represent the integer g of a PPP with a marking in the leftmost
and rightmost columns. This marking indicates how we glue the first
and the last columns, as we can see in Figure 1. In the following, two
rows glued together count as the same row. Let us define some statistics
about PPP’s, the number of column is called width, the number of rows,
i.e. the number of rows strictly below the marking of the last column,
is called the height, the semi-perimeter corresponds to the sum of the
height and the width, and the number of cells is the area. For example,
the PPP in Figure 1 is of height 5, width 8, semi-perimeter 13 and area
26.

As introduced in [3], for each PPP P , we construct a rooted map
ϕ(P ) as follows. The vertices correspond to the top cell of each column
(column vertices) and the rightmost cell of each row (row vertices). We
put an edge between each vertex and its parent: if a vertex is column
vertex, its parent is the row vertex which belongs to the same row,
and the parent of a row vertex is the column vertex which belongs to
the same column. The connected components of the graph obtained
this way, have exactly one cycle. We will now embed the graph in
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Figure 1. A PPP and the illustration of the gluing (dotted).

the plane. If we orient each edge of the cycles from the child to its
parent, we embed the cycles in the plane clockwise. Moreover, we
order counter clockwise the children of a vertex v with respect to their
distance with v starting with the closest one, the father of v being
between the two extremal children. Finally, we root the map in the
column vertex corresponding to the first column of P . An example
is given in Figure 2. It should be noted that the cycles of ϕ(P ) have
the same even length, moreover, since there is an alternation between
column vertices and row vertices, we can bicolor ϕ(P ) in black (column
vertices) and white (row vertices).
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Figure 2. The maps ϕ and ψ.

Definition 2.2. A PPP P is called a trunk PPP if ϕ(P ) is a disjoint
union of cycles. Trunk PPP’s are the ones such that the upper path is
of the form Nk(NE)l, the lower path is of the form (EN)lNk and the
gluing size is equal to k, with l and k two positive integers.

Let P be a PPP, the leaves of ϕ(P ) correspond to the column or
the rows of P containing only one vertex. By removing recursively the
rows and the columns corresponding to leaves, we obtain a trunk PPP
noted trunk(P ).
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Definition 2.3. We call intrinsic thickness of a PPP P the gluing size
of trunk(P ).

If we label the row vertices and the column vertices of a trunk PPP
P both from 1 to l, we can enrich ϕ(P ) with this labelling, we call it
the cyclic structure of P . For a general PPP P , its cyclic structure
corresponds to the cyclic structure of trunk(P ).

The fact that two trunk PPP’s can have the same image with respect
to ϕ, shows that ϕ is not injective. But if we only consider PPP’s of
intrinsic thickness equal to one, we have the following result.

Proposition 2.4. The map ϕ gives a bijection between PPP’s of in-
trinsic thickness equal to one and connected rooted maps containing
exactly one cycle of even length.

Proof. We just need to notice that ϕ gives a bijection between trunk
PPP’s of intrinsic thickness equal to 1 and cycles of even size, and use
the pruning define in [3, Section 4]. The bicoloring of the rooted map
is not necessary since coloring in black the root induces the coloring of
the rest of the map. �

In the general case we have the following result [3, Theorem 7.1].

Theorem 2.5. The PPP’s are in bijection with pairs composed of a
positive integer (the intrinsic thickness) and a non empty list of 4-tuples
of bicolored ordered trees such that:
• each 4-tuple is composed of two black rooted trees and two white

rooted trees,
• in the first 4-tuple we mark a non-root black vertex or the two black

roots.
We denote ψ this bijection. In the rest of the article, the expression
“a list of 4-tuples of trees” should be understood as a non empty list of
4-tuples satisfying the previous conditions.

Let P be a PPP, the vertices of trunk(P ) correspond exactly to the
vertices of ϕ(P ) which compose the cycles. More precisely, the column
vertex and the row vertex contained in a same column correspond to
two consecutive vertices in a cycle of ϕ(P ). In the previous bijection,
the four trees of each tuple correspond to the trees rooted in each two
consecutive cycle vertices of ϕ(P ), two of them belong to the inner face
of the cycle, and the other two, to the outer face. An example of ψ is
given in Figure 2.

We will also deal with two other objects derived from PPP’s. The
marked PPP’s are in bijection with the fully commutative affine per-
mutations ([2]), that is, affine permutations avoiding 321. Regarding
strips, they appeared in the study of PPP’s in [3].
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Definition 2.6. A marked PPP is a PPP with a marking, in one
of its horizontal edges of the first column which are above the gluing,
including the one at the top of the gluing.

Due to the periodic structure of PPP’s, we can define a rotation on
PPP’s which induces a partitioning in equivalent classes called strips.

For example, there are 2 possibilities to mark the PPP of Figure 1.

3. Bijection with the set of triangles under Dyck paths

The aim of this section is to provide a bijective explanation for the
following result, proved analytically in [3].

Proposition 3.1. The number of PPP’s with intrinsic thickness fixed
to 1 and half-perimeter equal to n is given by 4n−1−

(
2n−1
n−1

)
, which may

be interpreted ([8]) as the total (triangular) area under Dyck paths of
size n− 1.

Definition 3.2. Let An denote the set of triples (A, s, i) where
• A is a (rooted) planar tree with n vertices,
• s is a vertex of A different from its root,
• i is an integer, 1 ≤ i ≤ 2p(s)− 1 where p(s) is the depth of vertex

s.

See Figure 3 for an illustration.
It is easy to see that the sequence of cardinalities of An coincides

with A008549 in [8].

Definition 3.3. Let Bn denote the set of couples (B, r) where
• B is a connected planar graph with n vertices, having exactly one

cycle of even length,
• r is a vertex of B.

Another way to present it is as follows. An element of Bn is given
by a (planar) cycle of length 2`, with 4` planar trees attached (one
for each vertex of the cycle, in the inner and outer face of the cycle);
among the whole set of n vertices, one is distinguished.

Because of Proposition 2.4, the set Bn is in bijection with PPP’s of
semi-perimeter n, and whose intrinsic thickness is equal to 1.

Proposition 3.4. The sets An and Bn are in bijection.

Proof. We shall construct a bijection Φ between An and Bn. Let
(A, s, i) be an element of An (Figure 3). We shall create a cycle by
adding an edge from s or from its parent (denoted s′) to one of its
ancestor vertices t (t belongs to the path from the root to s). This new
edge e will be fixed to t either to its left or right when t is different
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from the root, with just one possibility when t is the root: we thus
have exactly 2p(s)−1 possibilities, which we label by integers counter-
clockwise. (see Figure 3; on this example the vertex s has depth equal
to 4, whence 7 possibilities).

s s

1

2

3

4

5

6

7
s′

Figure 3. An element of A19 and the labelling of the
2p(s)− 1 = 7 possibilities for i.

We then distinguish two cases according to the integer i being odd
or even:

1. if i is odd, the edge e goes from the right of s to the half-edge
labelled by i;

2. if i is even, e goes from s′, plugged at the left of the edge of s, to
the half-edge labelled by i.
In any case, the edge e goes around the tree counterclockwise. A last
step in the construction consists in cutting the subtree of the root
located at the right of the edge going towards s (i.e. from the root to
its son which is an ancestor of s), and to plug it on the vertex t:
• just after (counterclockwise) the edge e if i < p(s),
• just before (counterclockwise) the edge e if i > p(s)

(we do nothing if e is plugged on the root, i.e. for i = p(s)). We then
distinguish the root r. We have built in this way the image Φ(A, s, i).
See Figures 4 (i = 6) and 5 (i = 3).

To show that Φ is a bijection, we shall construct the reverse bijection.
This construction is only sketched below. Let us consider an element
(B, r) of Bn. We first “suspend” it by the (future) root r. More for-
mally, each vertex may be assigned a depth through its distance from
r; this is non ambiguous since the cycle is planar: we follow its edges
counterclockwise. When doing this, we place its son which leads to the
cycle to the right.
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Figure 4. Construction of Φ(A, s, 6)
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Figure 5. Construction of Φ(A, s, 3)

Then we get back the right subtree of r (two cases are to be distin-
guished according to whether r lies in the inner or outer face of the
cycle). Next we get back s and i in the following way. We consider u
the lowest vertex of the cycle, and:
• if u has a subtree inside the cycle, then u = s′, and s is its leftmost

son that lies in the inner face, and i is even,
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• if not, then u = s and i is odd. �

4. Intrinsic thickness and enumeration

In this section we study the relations between Periodic Parallelogram
Polyominoes having the same list of trees through the bijection of The-
orem 2.5 but with different intrinsic thicknesses. The principal result
is given in Theorem 4.1, it has consequences in terms of periodicity of
generating functions and leads us to introduce the notion of primitive
PPP. Those are enumerated in Theorem 4.5.

Theorem 4.1. Let P1 and P2 be two PPP’s such that their images
through the bijection of Theorem 2.5 contain exactly the same list of
4-tuples of trees, but have different intrinsic thickness. Assume that
the difference between their intrinsic thicknesses is the width of their
common trunk PPP. Then we have:

(i) P1 and P2 have the same upper (resp. lower) path, and have the
same cyclic structure,

(ii) the difference between the areas of P1 and P2 is w × h, where w
is their common width and h their common height.

Figure 6. Illustration of Theorem 4.1. The list of 4-
tuples of trees is on the right, and the width of the com-
mon PPP-trunk is 1. The PPP’s have intrinsic thickness
1 and 2.

Proof. We proceed by induction on the number of non-root vertices in
the list of 4-tuples of trees. If this number is zero, then the two PPP’s
are staircase PPP’s, with the same width and height, and checking
properties about paths and areas is immediate. The property about
cyclic structures comes directly from the hypothesis about the differ-
ence between their intrinsic thicknesses.

Let P1 and P2 be two PPP’s satisfying the hypothesis. Denote by L
their common list of 4-tuples of trees and choose u one leaf of greatest
depth of one tree in L. Let P3 (respectively P4) be the PPP with the
same intrinsic thickness as P1 (respectively P2) and whose correspond-
ing list (denoted by L′) is L in which we delete the leaf u. By induction
hypothesis, P3 and P4 satisfies (i) and (ii).
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We encode the upper (respectively lower) path of Pi (for i ∈ {1, . . . , 4})
by a finite binary word wu,i (respectively w`,i) by encoding each hori-
zontal step of the path by 1, each vertical step of the path by 0 and
reading this (0-1)-encoding from bottom to top and left to right. In this
encoding, each black vertex in L corresponds to a 0 in the upper binary
word and each white vertex corresponds to an 1 in the lower binary
word. By induction hypothesis, we have wu,3 = wu,4 and w`,3 = w`,4.

We now want to describe the impact on binary words of adding the
vertex u to the list L′. We will show that this impact depends only on
the binary words and on the cyclic structure (and does not depends on
the intrinsic height). This will allow us to prove (i).

Denote by v the father of u. Assume first that u is a white vertex
(i.e we want to add a column to the PPP). Adding u to the list L′ is
done in the following way: determine the 0 in the upper binary word
corresponding to v and replace it by 01. Next, according to which tree
contains v, find the 1 in the lower binary word corresponding to the
column located directly at the right of the 0 in the upper binary word,
or the 1 in the lower binary word corresponding to the column located
at the end of the sequence of 1 following the 0 in the upper binary word
and replace this 1 by 11. If u is a black vertex, the same description
also holds, after exchanging the roles of 0 and 1 and changing column
by line. All this process depends only on the considered binary words
and on the cyclic structure of the PPP, and does not depend on the
intrinsic thickness. Thus, we make the same changes on wu,3 and wu,4
and on w`,3 and w`,4. As these words are equal by induction hypothesis,
we also have wu,1 = wu,2 and w`,1 = w`,2. Moreover, all the operations
preserve the cyclic structure. Then, we have proved (i).

As P3 and P4 have the same lower and upper paths, we can obtain
the one with greatest area (assumed now to be P4) by adding a fixed
number of boxes to each column of the other, namely h(P3) according
to the induction hypothesis (ii). As we already seen, P1 and P2 also
have the same lower and upper paths, so we can obtain the one with
greatest area by adding a fixed number of boxes to each column of the
other.

In the case where we add a column to P3 to obtain P1, we can directly
conclude that this number of boxes is the same for transforming P3 to
P4 and for transforming P1 to P2, namely h(P3), which is also h(P1).
The property (ii) follows in this case.

In the case where we add a line to P3 to obtain P1, it is not direct
but we can show that the number of boxes by column necessarily to
transform P1 to P2 is equal to one plus the number of boxes necessarily
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to transform P3 to P4. So we need h(P3) + 1 = h(P1) boxes by column.
Property (ii) follows in this case, and this concludes the proof. �

We now want to emphasize the fact that if we have two PPP’s sat-
isfying the hypothesis of the previous theorem, the one with greatest
area can be obtained by adding h boxes to each column of the other
(where h is the height of the two PPP’s), and marking the result such
that the two PPP have the same semi-perimeter. If a PPP P1 can be
obtained from another one PPP P2 through this process, we say that
P1 derives from P2. This leads us to distinguish a subset of PPP’s, the
ones which can not be derived from another one.

Definition 4.2. Let P be a PPP. P is primitive iff its intrinsic thick-
ness is less or equal to the width of its trunk PPP.

Corollary 4.3. Let n be an integer. Let An(q), Bn(q) and Cn(q) be
respectively the generating function of PPP’s, marked PPP’s and strips
of fixed semi-perimeter according to the area.

(1) An(q) :=
∑

P∈PPP, sp(P )=n

qarea(P ).

The coefficients of An(q), Bn(q) and Cn(q) are ultimately periodic. In
all three cases, period divides the least common multiple of the integers
i(n− i) for i ∈ {1, . . . , n− 1}.
Proof. We first consider the generating function An(q). According to
Theorem 4.1 (ii), we can gather PPP’s depending on which primitive
PPP they derive to obtain:

(2) An(q) =
∑

P∈ primitive PPP

qarea(P )
(
1 + qw(P )h(P ) + q2w(P )h(P ) + · · ·

)
,

where w(P ) and h(P ) denotes the width and height of P .
According to Theorem 4.5 below, there is only a finite number of

primitive PPP’s with semi-perimeter n. Therefore, in (2), we write
An(q) as a finite sum of series with ultimately periodic coefficients.
This implies that the coefficients of An(q) are ultimately periodic and
the period is a divisor of the least common multiple of all the periods of
those series, namely all the integers w(P )h(P ), where P is a primitive
PPP. As we have w(P ) + h(P ) = n, the result follows for An.

When P1 derives from P2, they have the same number of boxes in
the first column that we can choose for the second mark, moreover,
the derivation commutes with the rotation, hence, the same proof still
stands for Bn and Cn. �
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In the case of PPP’s, the previous result is new. In the case of
marked PPP’s, it was already known that the coefficients of Bn are
ultimately periodic, but the knowledge concerning period is that the
period divides n [1, Theorem 2.3]. Mixing this with our result allows
us to re-obtain the following result [7, Corollary 4.1].

Corollary 4.4. Let n be a prime integer. The period of the coefficients
of the generating function of marked PPP Bn(q) is 1.

Proof. We already known that the sequence of coefficients of Bn(q)
admits both periods n and the least common multiple of the integer
i(n − i) for i ∈ {1, . . . , n − 1}. So it admits a period equal to the
greatest common divisor of these two numbers. When n is prime, this
gcd is 1. �

We now focus on primitive PPP’s and achieve their enumeration
according to semi-perimeter.

Theorem 4.5. Let n be an integer. The number of primitive PPP’s

with semi-perimeter n is
(2n+ 1)!

n!2
. Their generating series is pPPP (z) :=

∑

P∈ primitive PPP

zsp(P ) = z2(1− 4z)−3/2.

Proof. According to the bijection of Theorem 2.5 and the Definition 4.2,
the set of primitive PPP’s with semi-perimeter n is in bijection with
the set of lists of length k (where k is an arbitrary integer) of 4-tuples of
trees and an integer between 1 and k (where this integer is the intrinsic
thickness). In terms of generating function, using the computation of
generating functions of such 4-tuples of trees done in [3, Equation 4],
this leads to:

(3) pPPP (x) =
∑

k≥1

kz2kA(z)4(k−1)
(
√

1− 4z − 1)
4

16 z4
√

1− 4z
,

where A(z) is the well-known generating function of planar tree accord-
ing to the number of vertex. Replacing the term z2k by uk allows us
to compute the sum after recognizing that this sum is now the partial
differentiation with respect to variable u of a geometric sum. We then
replace u by z2 to obtain:

(4) pPPP (x) =
(
√

1− 4z − 1)
4

16 z4
√

1− 4z

z2

(1− z2A(z)4)2
.

As an exact expression for A(z) is known, a straightforward computa-
tion leads to the announced expression of pPPP (x). The number of
primitive PPP’s comes from coefficient extraction. �
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Proposition 3.1 and Theorem 4.5 are very close. Indeed, PPP’s with
intrinsic thickness equal to 1 form a subset of primitive PPP’s. The
first family is enumerated by sequence A008549 of [8], which counts the
total (triangular) area under Dyck paths of fixed size, while the second
is enumerated by the sum of the area of the triangles obtained by ex-
tending the triangular peaks of Dyck paths of fixed size ([8, A002457]).
A bijective proof of the first result is given at Section 3. A similar
bijection for Proposition 3.1 (which could unify the two results) is still
missing.

The sequence [8, A008549] counts also the number of edges in the
Hasse diagram of the poset of partitions contained in the n × n box
and ordered by containment. Unexpectedly, a subset of primitive
PPP’s, thin PPP’s, counts those partitions, minus the empty one ([8,
A030662]). A thin PPP is a PPP such that one column contains only
vertex cells, in particular a thin PPP is of intrinsic height 1.

Finally, a computer exploration using Sage [9] tells us until semi-
perimeter 8 that the number of marked primitive PPP’s is equal to
twice the number of primitive PPP’s.

5. Asymptotic of strips

In this section, we study asymptotic estimate of the coefficients of
the generating function B(z) of strips with intrinsic thickness 1 (equiva-
lently i, with i an arbitrary number) according to their semi-perimeter.

We will use here classical methods in asymptotic theory, which can
mostly be found in [6]. Recall that the fundamental idea is that the
exponential growth of the coefficients is determined by the dominant
singularity of the generating function (which is analytic at the origin),
i.e singularities at the boundary of the disc of convergence, while the
subexponential factor can be computed by studying the type of this
dominant singularity (for example, the order of the poles). We state
here the singular expansion in the case of algebraic-logarithmic singu-
larity [6, Theorem VI.6, Equation (27)] that we use latter.

Theorem 5.1. Let α and µ be two positive integers. Then the coeffi-
cients fn of f(x) = (1 − µx)−α logk( 1

1−µz ) admit the following asymp-

totic expansion in descending power of n:

(5) fn = [xn]f(x) := µnnα−1
[
F (log(n)) +O

(
1

log(n)

)]
,

where F is an explicitly computable polynomial with degree k − 1 and
O is the Landau notation.

We now state the principal result of this section.
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Theorem 5.2. Let bn := [zn]B(z) be the coefficients of B(z). Then
they admit the following asymptotic estimation in descending power of
n :

(6) bn =
4n

2n

[
1 +O

(
1

log(n)

)]
,

Proof. Recall that an expression of B(z) in terms of an infinite sum
is already known from [3, Equation (2)], and this expression is the
following:

(7) B(z) = −
∑

i≥1

ϕ(i)

i
log

(
1− (1−

√
1− 4zi)4

16z2i

)
,

where ϕ is Euler’s totient function.
This insures us that the series B has a single dominant singularity

in z = 1/4 and then we can write:

(8) B(z) = −log

(
1− (1−

√
1− 4z)4

16z2

)
+ A(z),

where we can show that A(z) is analytic at the origin and has radius
of convergence δ > 1/4. Since the logarithmic term is analytic for
|z| < 1/4, we write ε = 1/4− z. This leads to :

(9) B(z) = −log

(
1− (1−√ε)4

1 + 8ε+ 16ε2

)
+ A(1/4 + ε),

which can be expanded in ε through
(10)

B(z) = −1

2
log(ε) +O(

√
ε) + A(1/4− ε) =

1

2
log(

1

1− 4z
) [1 +O(1)] .

As B(z) has an algebraic-logarithmic singularity, we can now apply
a classical theorem of transfer (see for instance [6, Theorem VI.3]) and
Theorem 5.1 in the case µ = 4, m = 0 and k = 1 to conclude. The
involved polynomial F has degree 0, thus it is a constant, which is
exactly 1/2, coming from the right-hand side of (10). �
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