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Abstract

The number of conjugate classes of permutations of order n is the same as the
partition number p(n). There are already several practical formulae to calculate
p(n). But they are either inconvenient for ordinary people (not majored in math)
who do not want do write programs, or unsatisfying in accuracy. In this paper, some
elementary approximation formulae with high accuracy for p(n) will be presented.
These estimation formulae are revised from Hardy-Ramanujan’s asymptotic formula
and they can be used to obtain the approximate value of p(n) by a pocket calculator
without programming function.
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1 Introduction

An integer solution of the equation

s1 + s2 + · · ·+ sq = n (1 6 s1 6 s2 6 · · · 6 sq, q > 1), (1.1)

(where s1, s2, · · · , sq are unknowns) is called a partition of an positive integer n. The
number of all the partitions of n is denoted by p(n). p(n) is also called the partition
number or the partition function. For a definite q, the number of solutions of Equation
(1.1) is usually denoted by Pq(n) or p(n, q).
Partitions are tightly connected with the permutation groups and Latin squares. There
is a 1-1 correspondence between conjugate classes of permutations of order n and the
partitions of n. All the members in a conjugate class of permutations share the same
cycle structure. A cycle structure of a permutation of order n can be considered as a
partition of n if we admit the cycle of length 1 and keep the ones in a cycle structure.
There are already a lot of literatures on many aspects of p(n). Euler, Hardy, Ramanujan,
Rademacher, Newman, Erdős, Andrews, Berndt and Ono have made great contribution
to this subject. Some important literatures may be found in [1], or in the references of
[21], [5], [4] and [17].
Some important results about p(n) are mentioned (or can be found) in [4], [21], [5] or [17].
In recent years, a very important result dues to Ken Ono and his team who connected
the partition function with the modular form and found the principles of the congruence
property of p(n) that may even be considered as the revealing of the nature of numbers
(refer [2], [10], [6], [8] and [7]).
There are already several formulae to calculate p(n).
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In reference [12] (page 53, 57) or [15], we may find the generation function of p(n) obtained
by Euler:

F (x) =
∞∑
n=0

p(n)xn = 1
1− x

1
1− x2

1
1− x3 · · ·

1
1− xi · · · · · · =

∞∏
i=1

(
1− xi

)−1
, (1.2)

and a formula

p(n) = 1
2πi

˛
C

F (x)
xn+1 dx, (1.3)

where C is a contour around the original point. Of course, we seldom use Equation (1.3)
to compute the value of p(n) in practical.
There is a recursion for p(n),

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + · · ·+

(−1)k−1p

(
n− 3k2 ± k

2

)
+ · · · · · ·

=
k1∑
k=1

(−1)k−1p

(
n− 3k2 + k

2

)
+

k2∑
k=1

(−1)k−1p

(
n− 3k2 − k

2

)
, (1.4)

(Refer [12], page 55), where

k1 =
⌊√

24n+ 1− 1
6

⌋
, k2 =

⌊√
24n+ 1 + 1

6

⌋
, (1.5)

and assume that p(0) = 1. Here bxc stands for the maximum integer that will not exceed
the real number x.
Equation (1.4) is much better for computing the value of p(n). We can gain the exact
value of p(n) efficiently with a program based on it. But it is not convenient for people
who do not want to write programs.
Further more, if we want to calculate p(n) by Equation (1.4) by a small program written
in C or some other general computer Language, it is usually necessary to decide the size
of the space in memory to store the results beforehand, which means we should know the
approximate value of p(n) before the calculation started, (actually, here it is sufficient

to know
⌈

log2 p(n) + 1
8

⌉
, where dxe stands for the minimum integer that is greater than

or equal to the real number x.), 1 otherwise we have to do some extra work for overflow
1 Obviously, the datatypes already defined in the C language itself are not suitable.
If we use the Dynamic Memory Allocation method, this problem is solved at the price of the program

being more complicated. Actually, in a lot of cases, we can not decide the approximate size of the result,
this method is the best choice available.
If we can use maple, maximal, axiom or some other computer algebra systems, there is no need to

consider this problem. But it is not always an option, especially when the function to do this job is part
of a big program written in a compile language while mixing programming of an interpretative language
and a compile language is nearly unavailable in most cases (with very few exception, such as mixing
programming C and matlab).
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handling and consequently change the size of the space in memory to store the value of
the variable that stands for p(n).

In references [12], we can find the approximation of the asymptotic order of the partition
number p(n),

p(n) ∼ exp
(√

2
3πn

1/2

)
.

From it we obtained some estimation formulae of this form a · exp
(√

2
3πn

1/2
)

+ b · g(x)
with small errors when n ranges in a short interval, but the accuracy are not so satisfying
when n increases.
The analysis of p(n) by contour integral with Equation (1.3) (refer [12], page 57) resulted
a very good estimation of p(n),

p(n) =
bα√nc∑
q=1

Aq(n) · φq(n) +O(n−1/2), (1.6)

(or equivalently p(n) ≈
bα√nc∑
q=1

Aq(n) · φq(n) ) called the Hardy-Ramanujan formula (refer

[11] or [16]), that 6 terms of this formula contain an error of 0.004 when n = 100, while
8 terms of this formula contain an error of 0.004 when n = 200. Here α is an arbitrary
constant,

φq(n) =
√
q

2π
√

2
· d

dn

exp
(
π
q

√
2
3

(
n− 1

24

))√
n− 1

24

 ,

Aq(n) = Σ
0 < p < q
(p, q) = 1

ωp,q · exp
(−2npπi

q

)
(while p runs through the non-negative integers that are prime to q and less than q),

ωp,q =


(
−q
p

)
exp

[
−
{

1
4 (2− pq − p) + 1

4

(
q − 1

q

)
(2p− p′ + p2p′)

}
πi
]
, p is odd,(

−p
q

)
exp

[
−
{

1
4 (q − 1) + 1

12

(
q − 1

q

)
(2p− p′ + p2p′)

}
πi
]
, q is odd,

is a certain 24q-th root of unity,

(a
b

)
=


1, if a is a quadratic residue modulo b and a 6≡ 0 (mod b),
−1, if a is a quadratic non-residue modulo b,
0, if a ≡ 0 (mod b),



1 Introduction 5

is the Legendre symbol and b is an odd prime, 2 and p′ is any positive integer such that

q | (1 + pp′). When n is very large, p(n) is the integer nearest to
bα√nc∑
q=1

Aq(n) · φq(n).

In [12] or [16], can we find a convergent series for p(n) modified from Equation (1.6) by
Rademacher in 1937,

p(n) =
∞∑
q=1

Aq(n) · ψq(n), (1.7)

where Aq(n) is the same as mentioned above and

ψq(n) =
√
q

π
√

2
d

dn

sinh
(
π
q

√
2
3

(
n− 1

24

))√
n− 1

24

 .

Equation (1.6) or Equation (1.7) are valuable in theory and can be used to calculate
the value of p(n) with very high accuracy. But they are not convenient for engineers or
other ordinary people (not familiar with any computer algebra system softwares) because
they are too complicated, and they contain some special functions that most people (not
majored in mathematics) do not know. As a result, it is very difficult for them to use
these two formulae to calculate p(n) on a pocket science calculator without programming
function (even the recursion formula Equation (1.4) will be better for small n).

In references [21] or [3], we may find the famous asymptotic formula for p(n),

p(n) ∼ 1
4n
√

3
exp

(√
2
3πn

1/2

)
, (1.8)

obtained by Godfrey Harold Hardy and Srinivasa Ramanujan in 1918 in the famous paper
[11]. (Two different proofs can be found in [9] and [14]. The evaluation of the constant was
shown in [13].) This formula may be called the Hardy-Ramanujan’s asymptotic formula in
this paper. This asymptotic formula is with great importance in theory. Equation (1.8)
is much more convenient than formulae Equation (1.6) and Equation (1.7) for ordinary
people not majored in mathematics.
Let

Rh(n) = 1
4n
√

3
exp

(√
2
3π
√
n

)
. (1.9)

be the asymptotic function by Hardy and Ramanujan.
2 An integer a will be called a quadratic residue modulo another integer b if there is an integer c such

that c2 ≡ a ( mod b). Otherwise, a will be called a quadratic non-residue modulo b.
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n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 87.67% 16 11.60% 40 7.34% 220 3.05% 520 1.97%
2 35.76% 17 12.03% 50 6.54% 240 2.92% 540 1.93%
3 36.35% 18 10.91% 60 5.95% 260 2.80% 560 1.90%
4 22.00% 19 11.25% 70 5.50% 280 2.70% 580 1.86%
5 27.74% 20 10.43% 80 5.13% 300 2.60% 600 1.83%
6 17.11% 21 10.53% 90 4.83% 320 2.52% 640 1.77%
7 21.78% 22 9.96% 100 4.57% 340 2.44% 680 1.72%
8 16.08% 23 10.05% 110 4.35% 360 2.37% 720 1.67%
9 17.50% 24 9.49% 120 4.16% 380 2.31% 760 1.63%
10 14.53% 25 9.56% 130 3.99% 400 2.25% 800 1.58%
11 16.02% 26 9.16% 140 3.84% 420 2.20% 840 1.55%
12 12.91% 27 9.15% 150 3.71% 440 2.14% 880 1.51%
13 14.22% 28 8.82% 160 3.59% 460 2.10% 920 1.48%
14 12.50% 29 8.81% 180 3.38% 480 2.05% 960 1.44%
15 12.80% 30 8.50% 200 3.20% 500 2.01% 1000 1.42%

Table 1: The relative error of Rh(n) to p(n) when n 6 1000.

By the figure in reference [18], this asymptotic formula fits p(n) very well when n is huge.
But when n is small, the relative error of Rh(n) to p(n) is not so satisfying as shown in
Table 1 (when n 6 1000) on page 6. When n 6 25, the relative error is greater than 9%;
when 25 < n 6 220, the relative error is greater than 3%; when n 6 500, the relative error
is greater than 2%; when n 6 1000, the relative error is greater than 1.4%. Considering
that p(n) is an integer and Rh(n) is definitely not, the round approximation of Rh(n) may
be a little more accurate, but that does not help.
Although Equation (1.6) is not so accurate when n is small, it provides some important
clue for a practical formula for small n.

2 The Main idea for estimating p(n)

Since p(n) ∼ Rh(n), i.e., lim
n→∞

Rh(n)
p(n) = 1, we believe that an approximate formula with

better accuracy may be in this form

p(n) ≈ 1
4
√

3(n+ C2)
exp

(√
2
3π
√
n+ C1

)
. (2.1)

Where C1 or C2 may be a constant or an function of n that increases slowly than n.
There are many different ways to modify Rh(n), e.g. we could also construct a function
p1(n) to estimate Rh(n) − p(n), then Rh(n) − p1(n) may reach a better accuracy when
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estimating p(n), or we can estimate the value of Rh(n)
p(n) by a function f1(n) then estimate

p(n) by Rh(n)
f1(n) , etc. The problem is that the accuracy of Rh(n)−p1(n) is not so satisfying

if we do not use the idea shown in Equation (2.1), because the shape of the figure of
ln (Rh(n)− p(n)) is nearly the same as the shape of the figure of ln (p(n)), at least we can
not tell the difference of the shapes by our eyes as shown on Figure 6.1 and Figure 6.2 (on
page 28), though they are different in theory. We will discuss the details in subsection 5.
As we can not determine C1 and C2 at the same time because of technique problems, 3

we may decide C1 first then determine C2, the main reason is that 1
(n+ C2) and 1

n
differs

very little when n is very huge, at least we believe that the difference is much less that
the difference of exp

(√
2
3π
√
n+ C1

)
and exp

(√
2
3π
√
n
)
.4 So, when n � 1, we believe

p(n) .= 1
4
√

3n
exp

(√
2
3π
√
n+ C1

)
,

hence 4
√

3n× p(n) .= exp
(
π
√

2
3(n+ C1)

)
, then

C1 (n) .= 3
2 ·
(
ln
(
4n
√

3p(n)
))2

π2 − n. (2.2)

If we point the data
(
n,

3
2 ·
(
ln
(
4n
√

3p(n)
))2

π2

)
(n = 20k + 100, k = 1, 2, · · · , 395) in

the coordinate system, we will find that they lies in a straight line, as shown in the Figure
2.1 on page 8, which means that the Hardy-Ramanujan’s asymptotic formula is close to
perfect. Here every tiny cycle stands for a data point.

3 Fit C1(n)

If we point the data (n, C1(n)), i.e.,
(
n,

3
2 ·
(
ln
(
4n
√

3p(n)
))2

π2 − n
)

(n = 20k + 100, k

= 1, 2, · · · , 395) in the coordinate system, we will get the Figure 2.2 on page 8. Here the
points when n 6 120 are not shown on Figure 2.2, partly because the deduction above is

3 Usually, we will get the value of C1 and/or C2 from a number of pairs of (n, p(n)) by the least
square method, not from two pairs of (n, p(n)) only. Many software can get efficiently the undetermined
coefficients (by the least square method) by solving a system of (incompatible) linear equations, while it
is very difficult to “solve” a system of tens or hundreds of transcendental equations that are incompatible.

4 It is not difficult to know that 1
(n+ δ) ≈ 1

n

(
1− δ

n

)
, exp

(√
2
3π
√
n+ δ

)
≈

exp
(√

2
3π
√
n
)(

1 + π√
6
δ√
n

)
, when δ � n. Obviously, δ

n
� π√

6
δ√
n

(when max{δ, 1} � n).
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Figure 2.1: The graph of the data
(
n,

3
2 ·
(
ln
(
4n
√

3p(n)
))2

π2

)
.

Figure 2.2: The graph of the data (n, C1 (n)) (n > 120).
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Figure 2.3: The graph of the data
(
n,

3
2 ·
(
ln
(
4n
√

3p(n)
))2

π2

)
(n 6 80).

Figure 2.4: The graph of the data (n, C1 (n)) (80 6 n 6 200).
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Figure 3.1: The graph of a bad fitting curve of the data (n, C1 (n))

based on n� 1, the main reason is that the points obviously do not lie in a curve when
n 6 120, as shown on Figure 2.3 and Figure 2.4 (on page 9).
Figure 2.2 looks like a logarithmic curve or a hyperbola. The author has tried hundreds
of functions (by a small program written in MAPLE) like

a · (ln(xe1 + c1))e2 + b,

where e1, e2 and c1 are given constants while a, b are undermined coefficients to be decided
by the least square method. But none of them fits the data very well. A function

y = a ·
(

ln
((

7
20 · x− 16

)29/32

+ 2.5
))1/32

+ b,

where a = 0.06656839293 and b = -0.4166945066, may fit the data better, but it is not as
good as we expect, as shown on Figure 3.1 on page 10.

A hyperbola like y = a

x
+ b does not fit the data very well, either, so we consider this type

of functions

y = a

(x+ c2)e2
+ b, (3.1)

where a, b, c2 and e2 are undetermined constants. This seems much better. For technique
reason, we can not decide all the undetermined coefficients a, b, c2, e2 at the same time.
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5 These undetermined coefficients may be obtained in this way:

• A1. Give c2 and e2 initial values, such as c2 = 2.5, e2 = 0.5 (or some other values);

• A2. Fit the data (n, C1(n)) by the least square method with Equation (3.1) and
get the values of a and b, then get the average error of the fitting function for the
values of c2, e2, a, b; 6

• A3. Reevaluate e2 and a. Plot the points of the data (ln (n+ c2) , ln (b− C1(n)))
(n = 20k + 100, k = 1, 2, · · · , 395) in the coordinate system with the values of b
and c2 just found, 7 fit the data by the least square method with

y = e1 · x+ a1

and find the values of a1 and e1, 8 then reevaluate e2 and a by

e2 = −e1, a = − exp(a1);

• A4. Reevaluate c2. Plot the points of the data
(
n,

(
a

C1(n)− b

)1/e2
)

(n = 20k +

100, k = 1, 2, · · · , 395) in the coordinate system with the value of b and the new
5 Because most computer algebra system (CAS) could not solve system of incompatible nonlinear

equations in the least square method, or the time-consumption is unacceptable.
6 E.g., if c2 = 2.5, e2 = 0.5, then a = −0.02635983935, b = −0.3456348045.
If we plot the figure of Equation Equation (3.1) with the value of c2, e2, a, b, and compare the figure

with Figure 2.2 on page 8, we will get a graph nearly the same as Figure 2.2 (although there should be
a little different, but we can not distinguish the difference by our eyes).

Here we use the the square root of the mean square deviation

s =

√√√√ 1
m

m∑
i=1

(yi − f(xi))2

to measure the average error of the fitting function y = f(x) to the original data (xi, yi) (i = 1, 2,
· · · , m). The average error of the fitting function for the values of c2, e2, a, b mentioned above is
1.074574171×10−5, which seems to be very tiny.

7 Such as shown in Figure 3.3 on page 13 when c2 = 2.5 and b = −0.3456348045.
The purpose of this step is to obtain more accurate values of e2 and a. Since C1(n) = a

(n+ c2)e2
+ b,

then b− C1(n) = −a
(n+ c2)e2

, (considering that a < 0), ln (b− C1(n)) = ln (−a) + e2 · ln (n+ c2), so the

figure of data (ln (n+ c2) , ln (b− C1(n))) will be some points on a straight line if the previous assumption
is correct and meanwhile the values of b and c2 are proper.

8 E.g., if c2 = 2.5, b = −0.3456365954, then a1 = −3.626380777, e1 = −0.5012314726.
After reevaluation e2 = 0.5012314726, a = −0.02661232627.
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values of a and e2, 9 fit the data by the least square method with

y = x+ c1

and find the value of c1, then reevaluate c2 by c2 = c1. 10

• A5. goto step 2 until a fitting function with the least average error is obtained.

Actually, only a few times of repeating the steps form A2 to A4, we will obtain a very
good fitting function, as shown on Figure 3.2 on page 13.
There are some explanations about the steps above:

• (1). In step A4, we did not plot the points of the data
(
n,

(
a

C1(n)− b

)1/e2

− n
)

because the shape of the figure is not a horizontal line as shown on Figure 3.5
on page 15 (the points in the right hand side are not so smooth because only 10
significance digits are kept in the process, if more significance digits are calculated,
it will be better). Actually, it is a little complicated. But it will not help us
to obtain better values of the undetermined in Equation (3.1) if we fit the data(
n,

(
a

C1(n)− b

)1/e2

− n
)

with a more accurate fitting function.

• (2). In step A3, if we do not reevaluate a, the fitting parameters will not converge
in general (even if we computing more significant figures in the process), or we can
not continue the iterations steps at all since imaginary numbers appear.

• (3). If we started with a different initial value of c2 and keep the initial value of e2,
such as c2 = 15, after repeating 78 times of the steps from A2 to A4, we will find a
fitting function

y = −0.02593608938
(x+ 3.272445238)0.4962730054 − 0.3456286681, (3.2)

with a minimal average error 9.109686836× 10−8.
If we started with some different initial values of both c2 and e2, such as c2 = 15
and e2 = 0.7, (from Figure 2.2 on page 8, we will find that e2 should be less that

9 Such as shown on Figure 3.4 on page 15 when b = −0.3456365954, e2 = 0.5012314726 and a =
−0.02661232627.

The main idea of this step: since C1(n) = a

(n+ c2)e2
+ b, then n+ c2 =

(
a

C1(n)− b

)1/e2

, hence the

figure of data
(
n, ·

(
a

C1(n)− b

)1/e2
)

will be some points on a straight line.
10 E.g., for the values of b, e2 and a mentioned before, after reevaluation c2 = 4.871833842.
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Figure 3.2: The graph of a good fitting curve of the data (n, C1 (n))

Figure 3.3: The graph of the data (ln (n+ c2) , ln (b− C1(n)))
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1.0), we will get the similar result. After repeating 125 times of the steps from A2
to A4, we will find a fitting function

y = −0.02593617719
(x+ 3.273513225)0.4962727258 − 0.3456286655, (3.3)

with a minimal average error 9.105941452×10−8. After that, e2 and c2 will decrease
slowly and slowly, and the average error will increase little by little if we continue
the steps from A2 to A4.

As concerned to the errors in computing, the valid value of the undermined a, b, c2 and
e2 should be −0.0259361, −0.34562866, 3.273, 0.49627, the average absolute error of the
fitting function of C1(n) is about 9.1× 10−8. 11

Considering that Equation (2.2) is an approximate formula, we may believe that the best
value of e2 is 0.5, since we prefer a simple exponent. Then it will be more convenient to
obtain a, b and c2.
Below e2 is believed to be 1/2, which means that the fitting function of C1(n) is

y = a√
x+ c2

+ b. (3.5)

When e2 is fixed to be 1/2, if we use the iteration method described above but keep the
value of e2 in step A3, i.e., substitute step A3 by

A3’. Reevaluate a by 12

a = − exp
(

1
395

395∑
k=1

(ln (b− C1(20k + 100))− e2 · ln (20k + 100 + c2))
)

;

(that means we evaluate a twice in every loop) the sequence of fitting functions of C1(n)
will diverge. But we will obtain a converged sequence of the determinants if n ranges
from 120 to 6000, (i.e., consider only the data (n, p(n)) when n = 20k + 100, k = 1, 2,
· · · , 295). The fitting function of C1(n) obtained in this way is

y = −0.02650620466√
x+ 4.855479108

− 0.3456326154, (3.6)

11 Actually, for the initial value c2 = 2.5, e2 = 0.5, after repeating 41 times of the steps from A2 to
A4, we will find a fitting function

y = −0.02594609078
(x+ 3.320623832)0.4963284361 − 0.3456286995, (3.4)

with a minimal average error 9.010349470 × 10−8. After a few times more of iteration, a result with
similar coefficients will be found but with a little more error.

12 or equivalently, Plot the points of the data (ln (n+ c2) , ln (b− C1(n))) (n = 20k + 100, k = 1, 2,
· · · , 395) in the coordinate system with the values of b, e2 and c2 just found, fit the data by the least
square method with y = e2 · x+ a1 and find the values of a1, then reevaluate a by a = − exp(a1);
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Figure 3.4: The graph of the data
(
n, ·

(
a

C1(n)− b

)1/e2
)

Figure 3.5: The graph of the data
(
n, ·

(
a

C1(n)− b

)1/e2

− n
)
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with the minimal average error 2.374935895×10−7. 13

For the fixed value 1/2 of e2, if we continue use the iteration method described above but
ignore step 3, which means we reevaluate a only once in every loop, we will meet the same
situation. The sequence of fitting functions of C1(n) will diverge if n ranges from 120 to
8000 (or 6000) even if we calculate more significance digits (such as 18 significance digits)
in the process, but it will converge if n ranges from 120 to 4000. The fitting function of
C1(n) obtained in this way is

y = −0.02647712648√
x+ 4.55083607

− 0.345633305, (3.7)

with the minimal average error 1.993012726×10−7 when the initial value of c2 is 10 (iter-
ated 4 times). But after more times of iteration, for several initial values of c2 (such as 5,
10, 15, etc), the fitting functions converge to

y = −0.0268 · · ·√
x+ 4.888 · · · − 0.345632760 · · · , (3.8)

with the average error 2.68· · · × 10−7.

Unlike the previous method, by the results mentioned above and some other results not
mentioned here, the sequence of fitting functions of C1(n) usually converges to a function
which is obviously different from the one with the minimal average error.
In order to get a fitting function with errors as tiny as possible, we can design another
algorithm.
By the results described above, we known that c2 is probably between 3 and 5, so we
can find the fitting function of C1(n) and the average error for some values of c2 in the
possible range, then choose the one with minimal average error. To be cautious, we test
the value of c2 in the interval [0.5, 15]. The main steps are as below:

• (1) Initial ca, cb, c0, s0, Dt, a0, b0. Let ca = 0.5, cb = 15, c0 = 0, s0 = 1, a0 = 0, b0
= 0, Dt = 8, st = 0.1,.

13 If we use the value of c1 already found above, such as c2= 3.273513225 in Equation (3.3), the fitting
function is

y = −0.02640970103√
x+ 3.273513225

− 0.3456340228,

with an average error 7.404647856× 10−7, which is about 3 times than that above.
If we choose c2= 3.320623832 in Equation (3.4), the fitting function is

y = −0.02641281526√
x+ 3.320623832

− 0.3456339736,

with an average error 7.205944166× 10−7.
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Figure 3.6: The graph of the data (n, C2(n))

• (2) for c2 from ca to cb by st do
Fit the data (n, C1(n)) by the least square method with Equation (3.5) and

get the values of a and b, then get the average error s1 of the fitting function for the
values of c2, a, b;
if s1 < s0, then let c0 = c2, s0 = s1, a0 = a, b0 = b; end if;
end do

• (3) If Dt > 1, then set Dt ← Dt − 1, ca ← c0 − 5st, cb ← c0 + 5st;
set st ← st/10; goto step (2);

else, terminate the process.
end if;

Here the symbol “x← y” means that the variable x is evaluated by a value y; in step (1),
Dt = 8 means that we will get 8 significance digits of the value of c2.
If n ranges from 120 to 8000, we can get a fitting function of C1(n),

y = −0.02651010067√
x+ 4.8444724

− 0.3456324524, (3.9)

with a minimal average error 2.446731760× 10−7.
If n ranges from 120 to 6000, the fitting function of C1(n) is,

y = −0.02649625326√
x+ 4.7152127

− 0.3456327903, (3.10)

with a minimal average error 2.279396699× 10−7.
Below, Equation (3.9) will be used to estimate C1(n), i.e.,

C1(n) .= −0.02651010067√
n+ 4.8444724

− 0.3456324524. (3.11)
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4 Fit C2(n)

By Equation (2.1) and Equation (3.11), we have

C2(n) .=
exp

(√
2
3π
√
n+ C1(n)

)
4
√

3p(n)
− n. (4.1)

If we point out the data (n, C2(n)) (1 6 n 6 80) on the coordinate system as shown on
Figure 3.6 on page 17, we will immediately know than C2(n) can not be fit by a simple
function. From the Figure 3.6 (or the value of C2(n) calculated by a small program), it is
clear that C2(n) is very small when n >40, at least much less than n, so there is no need
to fit C2(n) when n > 40.
When n is odd, the points of (n, C2(n)) are above the horizontal-axis, it is not difficult
to separate them into two parts and fit them by two cubic curves, as shown on Figure 4.1
and Figure 4.2. The two fitting functions are

y =− 1.548835311× 10−6 × x3 + 1.880663805× 10−4 × x2−
0.008334098201× x+ 0.1399798428,

y =− 5.416501948× 10−6 × x3 + 5.728510889× 10−4 × x2−
0.02125835759× x+ 0.2882706948.

Figure 4.1: Fit (n, C2(n)), the odd, Part A

For the points of (n, C2(n)) under the
horizontal-axis (when n is even), we
have to separate them into at least 4
parts so as to fit them smoothly, two
or three parts are not convenient.
As a result, we have to fit C2(n) by a
hybrid function with at least 6 pieces,
or fit p(n) by a piecewise-defined func-
tion with 7 pieces, which is very com-
plicated. This seems to contradict
with our purpose at the beginning of
this section.
From Figure 4.1 on page 18 we found
that the value of C2(n) are much less than n when n > 15, so the error will be very tiny
if we omit C2(n). Hence we can calculate p(n) directly by

Rh1(n) = 1
4
√

3n
exp

(√
2
3π
√
n+ a1√

n+ c1
+ b1

)
, (4.2)
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Figure 4.2: Fit (n, C2(n)), the odd, Part B

where a1 = −0.02651010067, b1 =
−0.3456324524 and c1 = 4.8444724.
The error of Equation (4.2) to p(n) is
shown on Table 2 on page 20. The accu-
racy is better than Equation (1.8). The
relative error is less than 6 × 10−7 when
n > 100, less than 1h when n > 26, less
than 1% when n > 11, although this fitting
function is obtained when n > 120. When
1000 6 n 6 3000, the relative error is less
than 1 × 10−8. When 3000 6 n 6 10000,
the relative error is less than 5.3× 10−9, as
shown on Figure 4.3 on page 19. But the
relative error is not so satisfying when n 6 7, especially when n = 1.

Figure 4.3: The Relative Error of Rh1(n) when 1000 6 n 6 10000

Consider that p(n) is an integer, if we take the round approximation of Equation (4.2),

R′h1(n) =
⌊

1
4
√

3n
exp

(√
2
3π
√
n+ a1√

n+ c1
+ b1

)
+ 1

2

⌋
, (4.3)

(we may call it Hardy-Ramanujan’s revised estimation formula 1), it will solve perfectly
the relative error problem when n < 11, as shown on Table 3 on page 20, although the
relative error will increase very little for some n, which is negligible. (The average relative
error is less than 2 × 10−8 when n > 200.) Take an example, when n = 100, Rh2(100)
= 190569177, p(100) = 190569292, the difference is 115; when n = 200, Rh2(200) =
3972999059745, p(200) = 3972999029388, the difference is 30357. Although the errors are
much greater than the error 0.004 of Hardy-Ramanujan formula with 6 terms (n = 100)
or 8 terms (n = 200) (refer [11] or [16]), it contains only one term of elementary functions,
and is convenient for a junior middle school student to calculate the value of p(n) with
high accuracy.
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n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 12.97% 16 -0.35% 40 -0.02% 220 -2.18E-08 520 -1.26E-08
2 -3.22% 17 0.38% 50 -0.01% 240 -3.11E-08 540 -3.00E-10
3 3.96% 18 -0.31% 60 -2.89E-05 260 -6.04E-08 560 2.00E-09
4 -3.32% 19 0.28% 70 -1.07E-05 280 -6.41E-08 580 3.00E-09
5 3.87% 20 -0.19% 80 -4.40E-06 300 -6.11E-08 600 -1.40E-09
6 -2.96% 21 0.15% 90 -1.87E-06 320 -6.48E-08 640 8.00E-09
7 2.38% 22 -0.13% 100 -5.96E-07 340 -3.59E-08 680 6.00E-09
8 -1.27% 23 0.17% 110 -1.06E-07 360 -3.31E-08 720 2.30E-08
9 0.90% 24 -0.14% 120 7.20E-08 380 -4.08E-08 760 6.00E-09
10 -0.85% 25 0.11% 130 1.35E-07 400 -2.21E-08 800 2.00E-09
11 1.13% 26 -0.08% 140 1.34E-07 420 -3.56E-08 840 2.10E-08
12 -0.98% 27 0.08% 150 1.16E-07 440 -1.59E-08 880 1.90E-08
13 0.69% 28 -0.07% 160 9.10E-08 460 -1.13E-08 920 2.60E-08
14 -0.35% 29 0.08% 180 4.40E-08 480 -1.52E-08 960 2.10E-08
15 0.33% 30 -0.06% 200 9.00E-09 500 -9.90E-09 1000 2.80E-08

Table 0.1: The relative error of Rh1(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 0 16 -0.43% 40 -1.87E-04 220 -2.76E-08 520 -2.42E-08
2 0 17 0.34% 50 -6.37E-05 240 -3.67E-08 540 -1.28E-08
3 0 18 -0.26% 60 -2.90E-05 260 -6.16E-08 560 -7.60E-09
4 0 19 0.20% 70 -1.08E-05 280 -6.93E-08 580 -3.19E-09
5 0 20 -0.16% 80 -4.43E-06 300 -6.77E-08 600 -1.21E-08
6 0 21 0.13% 90 -1.87E-06 320 -7.21E-08 640 1.96E-09
7 0 22 -0.10% 100 -6.03E-07 340 -3.74E-08 680 -8.54E-09
8 0 23 0.16% 110 -1.05E-07 360 -3.86E-08 720 1.30E-08
9 0 24 -0.13% 120 6.61E-08 380 -4.71E-08 760 -2.10E-09
10 0 25 0.10% 130 1.34E-07 400 -2.96E-08 800 -1.24E-08
11 1.79% 26 -8.21E-04 140 1.31E-07 420 -3.80E-08 840 1.25E-08
12 -1.30% 27 6.64E-04 150 1.07E-07 440 -2.31E-08 880 6.78E-09
13 0.99% 28 -8.07E-04 160 8.98E-08 460 -1.72E-08 920 1.52E-08
14 0 29 6.57E-04 180 3.94E-08 480 -2.31E-08 960 1.47E-08
15 0.57% 30 -7.14E-04 200 7.64E-09 500 -2.08E-08 1000 2.11E-08

Table 0.2: The relative error of Rh2(n) to p(n) when n 6 1000.

1

Table 2: The relative error of Rh1(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 12.97% 16 -0.35% 40 -0.02% 220 -2.18E-08 520 -1.26E-08
2 -3.22% 17 0.38% 50 -0.01% 240 -3.11E-08 540 -3.00E-10
3 3.96% 18 -0.31% 60 -2.89E-05 260 -6.04E-08 560 2.00E-09
4 -3.32% 19 0.28% 70 -1.07E-05 280 -6.41E-08 580 3.00E-09
5 3.87% 20 -0.19% 80 -4.40E-06 300 -6.11E-08 600 -1.40E-09
6 -2.96% 21 0.15% 90 -1.87E-06 320 -6.48E-08 640 8.00E-09
7 2.38% 22 -0.13% 100 -5.96E-07 340 -3.59E-08 680 6.00E-09
8 -1.27% 23 0.17% 110 -1.06E-07 360 -3.31E-08 720 2.30E-08
9 0.90% 24 -0.14% 120 7.20E-08 380 -4.08E-08 760 6.00E-09
10 -0.85% 25 0.11% 130 1.35E-07 400 -2.21E-08 800 2.00E-09
11 1.13% 26 -0.08% 140 1.34E-07 420 -3.56E-08 840 2.10E-08
12 -0.98% 27 0.08% 150 1.16E-07 440 -1.59E-08 880 1.90E-08
13 0.69% 28 -0.07% 160 9.10E-08 460 -1.13E-08 920 2.60E-08
14 -0.35% 29 0.08% 180 4.40E-08 480 -1.52E-08 960 2.10E-08
15 0.33% 30 -0.06% 200 9.00E-09 500 -9.90E-09 1000 2.80E-08

Table 0.1: The relative error of Rh1(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 0 16 -0.43% 40 -1.87E-04 220 -2.76E-08 520 -2.42E-08
2 0 17 0.34% 50 -6.37E-05 240 -3.67E-08 540 -1.28E-08
3 0 18 -0.26% 60 -2.90E-05 260 -6.16E-08 560 -7.60E-09
4 0 19 0.20% 70 -1.08E-05 280 -6.93E-08 580 -3.19E-09
5 0 20 -0.16% 80 -4.43E-06 300 -6.77E-08 600 -1.21E-08
6 0 21 0.13% 90 -1.87E-06 320 -7.21E-08 640 1.96E-09
7 0 22 -0.10% 100 -6.03E-07 340 -3.74E-08 680 -8.54E-09
8 0 23 0.16% 110 -1.05E-07 360 -3.86E-08 720 1.30E-08
9 0 24 -0.13% 120 6.61E-08 380 -4.71E-08 760 -2.10E-09
10 0 25 0.10% 130 1.34E-07 400 -2.96E-08 800 -1.24E-08
11 1.79% 26 -8.21E-04 140 1.31E-07 420 -3.80E-08 840 1.25E-08
12 -1.30% 27 6.64E-04 150 1.07E-07 440 -2.31E-08 880 6.78E-09
13 0.99% 28 -8.07E-04 160 8.98E-08 460 -1.72E-08 920 1.52E-08
14 0 29 6.57E-04 180 3.94E-08 480 -2.31E-08 960 1.47E-08
15 0.57% 30 -7.14E-04 200 7.64E-09 500 -2.08E-08 1000 2.11E-08

Table 0.2: The relative error of Rh2(n) to p(n) when n 6 1000.

1

Table 3: The relative error of R′h1(n) to p(n) when n 6 1000.
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5 Estimation p(n) by Some Other Methods

In the previous subsection, we assume that C1 (n) .= 3
2 ·
(
ln
(
4n
√

3p(n)
))2

π2 − n, then fit

the data
(
n,

3
2 ·
(
ln
(
4n
√

3p(n)
))2

π2

)
(n = 20k + 100, k = 1, 2, · · · , 395), and estimate

p(n) by Rh2(n) =
⌊

1
4
√

3n
exp

(√
2
3π
√
n+ C1 (n)

)
+ 1

2

⌋
.

If we assume that p(n) .= 1
4
√

3(n+ C2)
exp

(
π
√

2
3n
)
, then

C2(n) .= 1
4
√

3p(n)
exp

(
π

√
2
3n
)
− n,

we wonder whether we can fit the data

n, exp
(
π
√

2
3n
)

4
√

3p(n)
− n

 (n = 20k + 100, k = 1,

2, · · · , 395) by a function C2 and estimate p(n) by
⌊

1
4
√

3(n+ C2)
exp

(
π
√

2
3n
)

+ 1
2

⌋
?

The data

n, exp
(
π
√

2
3n
)

4
√

3p(n)
− n

 (n = 20k + 100, k = 1, 2, · · · , 395) are shown on

Figure 5.1 on page 24 (together with a fitting function). It is not difficult to know that a
function in this form

y = a1 × (x+ c1)e1 + b1

will fit the points very well, and e1 = 0.5 will be very satisfying. By the same method to
fit C1(n), we can obtain a fitting function

y = 0.4432884566×
√
x+ 0.274078 + 0.1325096085

to fit C2(n) with an average error 3.65× 10−6.
Hence we can calculate p(n) by

Rh2(n) =
exp

(√
2
3π
√
n
)

4
√

3 (n+ a2
√
n+ c2 + b2)

, (5.1)

where a2 = 0.4432884566, b2 = 0.1325096085 and c2 = 0.274078, when n is not so small.
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n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 14.93% 16 -0.36% 40 -0.02% 220 3.90E-08 520 -3.27E-08
2 -3.06% 17 0.37% 50 -6.80E-05 240 3.00E-08 540 -5.00E-09
3 3.96% 18 -0.31% 60 -3.16E-05 260 2.90E-08 560 -7.80E-09
4 -3.34% 19 0.27% 70 -1.24E-05 280 8.00E-09 580 3.00E-09
5 3.84% 20 -0.19% 80 -5.48E-06 300 -2.50E-09 600 -9.00E-10
6 -2.99% 21 0.14% 90 -2.55E-06 320 9.00E-09 640 -3.50E-09
7 2.36% 22 -0.13% 100 -1.03E-06 340 2.00E-09 680 -2.84E-08
8 -1.29% 23 0.16% 110 -3.70E-07 360 -3.00E-10 720 -1.80E-09
9 0.88% 24 -0.14% 120 -1.01E-07 380 -5.60E-09 760 1.00E-08
10 -0.87% 25 0.11% 130 4.10E-08 400 3.00E-09 800 5.00E-09
11 1.12% 26 -0.08% 140 1.04E-07 420 -1.01E-08 840 1.70E-08
12 -0.99% 27 0.07% 150 1.15E-07 440 -1.48E-08 880 -3.49E-08
13 0.68% 28 -0.07% 160 1.21E-07 460 -9.40E-09 920 -1.67E-08
14 -0.36% 29 0.07% 180 8.70E-08 480 -1.93E-08 960 1.00E-08
15 0.33% 30 -0.06% 200 7.40E-08 500 -1.62E-08 1000 1.80E-08

Table 0.1: The relative error of Rh2(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 0 16 -0.43% 40 -1.87E-04 220 -2.76E-08 520 -2.42E-08
2 0 17 0.34% 50 -6.37E-05 240 -3.67E-08 540 -1.28E-08
3 0 18 -0.26% 60 -2.90E-05 260 -6.16E-08 560 -7.60E-09
4 0 19 0.20% 70 -1.08E-05 280 -6.93E-08 580 -3.19E-09
5 0 20 -0.16% 80 -4.43E-06 300 -6.77E-08 600 -1.21E-08
6 0 21 0.13% 90 -1.87E-06 320 -7.21E-08 640 1.96E-09
7 0 22 -0.10% 100 -6.03E-07 340 -3.74E-08 680 -8.54E-09
8 0 23 0.16% 110 -1.05E-07 360 -3.86E-08 720 1.30E-08
9 0 24 -0.13% 120 6.61E-08 380 -4.71E-08 760 -2.10E-09
10 0 25 0.10% 130 1.34E-07 400 -2.96E-08 800 -1.24E-08
11 1.79% 26 -8.21E-04 140 1.31E-07 420 -3.80E-08 840 1.25E-08
12 -1.30% 27 6.64E-04 150 1.07E-07 440 -2.31E-08 880 6.78E-09
13 0.99% 28 -8.07E-04 160 8.98E-08 460 -1.72E-08 920 1.52E-08
14 0 29 6.57E-04 180 3.94E-08 480 -2.31E-08 960 1.47E-08
15 0.57% 30 -7.14E-04 200 7.64E-09 500 -2.08E-08 1000 2.11E-08

Table 0.2: The relative error of R′
h2(n) to p(n) when n 6 1000.
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Table 4: The relative error of Rh2(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 14.93% 16 -0.36% 40 -0.02% 220 3.90E-08 520 -3.27E-08
2 -3.06% 17 0.37% 50 -6.80E-05 240 3.00E-08 540 -5.00E-09
3 3.96% 18 -0.31% 60 -3.16E-05 260 2.90E-08 560 -7.80E-09
4 -3.34% 19 0.27% 70 -1.24E-05 280 8.00E-09 580 3.00E-09
5 3.84% 20 -0.19% 80 -5.48E-06 300 -2.50E-09 600 -9.00E-10
6 -2.99% 21 0.14% 90 -2.55E-06 320 9.00E-09 640 -3.50E-09
7 2.36% 22 -0.13% 100 -1.03E-06 340 2.00E-09 680 -2.84E-08
8 -1.29% 23 0.16% 110 -3.70E-07 360 -3.00E-10 720 -1.80E-09
9 0.88% 24 -0.14% 120 -1.01E-07 380 -5.60E-09 760 1.00E-08
10 -0.87% 25 0.11% 130 4.10E-08 400 3.00E-09 800 5.00E-09
11 1.12% 26 -0.08% 140 1.04E-07 420 -1.01E-08 840 1.70E-08
12 -0.99% 27 0.07% 150 1.15E-07 440 -1.48E-08 880 -3.49E-08
13 0.68% 28 -0.07% 160 1.21E-07 460 -9.40E-09 920 -1.67E-08
14 -0.36% 29 0.07% 180 8.70E-08 480 -1.93E-08 960 1.00E-08
15 0.33% 30 -0.06% 200 7.40E-08 500 -1.62E-08 1000 1.80E-08

Table 0.1: The relative error of Rh2(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 0 16 -0.43% 40 -1.87E-04 220 -2.76E-08 520 -2.42E-08
2 0 17 0.34% 50 -6.37E-05 240 -3.67E-08 540 -1.28E-08
3 0 18 -0.26% 60 -2.90E-05 260 -6.16E-08 560 -7.60E-09
4 0 19 0.20% 70 -1.08E-05 280 -6.93E-08 580 -3.19E-09
5 0 20 -0.16% 80 -4.43E-06 300 -6.77E-08 600 -1.21E-08
6 0 21 0.13% 90 -1.87E-06 320 -7.21E-08 640 1.96E-09
7 0 22 -0.10% 100 -6.03E-07 340 -3.74E-08 680 -8.54E-09
8 0 23 0.16% 110 -1.05E-07 360 -3.86E-08 720 1.30E-08
9 0 24 -0.13% 120 6.61E-08 380 -4.71E-08 760 -2.10E-09
10 0 25 0.10% 130 1.34E-07 400 -2.96E-08 800 -1.24E-08
11 1.79% 26 -8.21E-04 140 1.31E-07 420 -3.80E-08 840 1.25E-08
12 -1.30% 27 6.64E-04 150 1.07E-07 440 -2.31E-08 880 6.78E-09
13 0.99% 28 -8.07E-04 160 8.98E-08 460 -1.72E-08 920 1.52E-08
14 0 29 6.57E-04 180 3.94E-08 480 -2.31E-08 960 1.47E-08
15 0.57% 30 -7.14E-04 200 7.64E-09 500 -2.08E-08 1000 2.11E-08

Table 0.2: The relative error of R′
h2(n) to p(n) when n 6 1000.

1

Table 5: The relative error of R′h2(n) to p(n) when n 6 1000.
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The error of Equation (5.1) to p(n) is shown on Table 4 on page 22. The accuracy is much
better than Equation (1.8). Compared with Table 2 (page 20), the accuracy are almost
the same when n 6 1000. When 1500 6 n 6 10000, the relative error is obviously less
than that of Equation (4.2), as shown on Figure 5.2 on page 24 (compared with Figure
5.1 on page 24). Which means that Rh2(n) is more accurate than Rh1(n). (If we change
the range of n of the data points, the accuracy of the fitting function obtained may not
be so good.)
Consider that p(n) is an integer, we can take the round approximation of Equation (5.1),

R′h2(n) =

 exp
(√

2
3π
√
n
)

4
√

3 (n+ a2
√
n+ c2 + b2)

+ 1
2

 , (5.2)

for small values of n. We may call it Hardy-Ramanujan’s revised estimation formula 2
The error of Equation (5.2) to p(n) is shown on Table 5 (on page 22) when n 6 1000.

At the beginning of section 2, some other methods to estimate p(n) are mentioned, such

as estimating the value of Rh(n)
p(n) by a function f1(n), then estimate p(n) by Rh(n)

f1(n) .

The data
(
n,

Rh(n)
f1(n)

)
(n = 20k + 100, k = 1, 2, · · · , 395) are shown on Figure 5.4 on

page 26 (together with a fitting function). It is not difficult to find out that a function

y = 1 + 1√
a3x+ b3

,

where a3 = 5.062307637 and b3 = −75.65700620, will fit the data very well, as shown on
the figure, with an average error 1.41× 10−4. (because the data

(
n,
(
Rh(n)
f1(n) − 1

)−2
)

lies

exactly on a straight line y = a3x+ b3, as shown on Figure 5.5 on page 26)
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Figure 5.1: The graph of the data

n, exp
(
π
√

2
3n
)

4
√

3p(n)
− n



Figure 5.2: The Relative Error of Rh2(n) when 1000 6 n 6 10000
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Figure 5.3: The Relative Error of R3(n) when 1000 6 n 6 10000

So we have another fitting function for p(n),

Rd3(n) = Rh(n)

1 + 1√
a3x+ b3

.

However, this formula does not fit p(n) very well when n is small. When n 6 14, the value
of Rd3(n) is an imaginary number. Unfortunately, when n > 1000, the error of Rd3(n) to
p(n) is about 1000 times of the error of Rh2(n), as shown on Figure 5.3 on page 25.

Actually, Rh2(n) is in the form Rh(n)
f1(n) , since

exp
(√

2
3π
√
n
)

4
√

3 (n+ a2
√
n+ c2 + b2)

=
exp

(√
2
3π
√
n
)

4
√

3n
n

n+ a2
√
n+ c2 + b2

= Rh(n) 1
1 + a2

n

√
n+ c2 + b2

n

. As 1 + a2
n

√
n+ c2 + b2

n
fits Rh(n)

p(n) with

very little error, 1 + 1√
a3x+ b3

will not reach that accuracy.
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Figure 5.4: The graph of the data
(
n,

Rh(n)
p(n)

)
and the fitting function

Figure 5.5: The data
(
n,
(
Rh(n)
f1(n) − 1

)−2
)

and the fitting function
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6 Estimate p(n) by Fitting Rh(n)− p(n)

The main idea to estimate Rh(n) − p(n) is similar to that introduced in the next sub-
section. By the same idea of the deduction of (6.1) on page 30, we wander whether we
can fit Rh(n) − p(n) by π

12
√

2C3(n)
exp

(√
2
3π
√
n
)
, where C3(n) is a cubic function, or

equivalently, fit

 π exp
(√

2
3π
√
n
)

12
√

2 (Rh(n)− p(n))


2

by a cubic function C3(n), from the data with

the data (n, p(n)) (n = 20k + 60, k = 1, 2, · · · , 397). If we do it, we will have a result

C3(n) = a1n
3 + b1n

2 + c1n+ d1,

where

a1 = 8.383485427,
b1 = 130.0792015,
c1 = −1.197477259× 105,

d1 = 4.188653689× 107.

Here c1 and d1 are very huge, which suggests that this result may not be so satisfying.
As a sequence, if we fit p(n) by

F3(n) = Rh(n)−
π exp

(√
2
3π
√
n
)

12
√

2C3(n)
,

the relative error differs very little with the relative error of Rh(n) to p(n) when n < 50,
and the relative error is not satisfying when n < 280, as shown in Table 6 on page 29.

If we fit
(

π

12
√

2 (Rh(n)− p(n))
exp

(√
2
3π
√
n
))2

by a function like

C3(n) = a2n
3 + b2n

2.5 + c2n
2 + d2n

1.5 + e2n+ f2n
0.5 + g2,

the result are even worse, as imaginary number appeared (as concerned to the data men-
tioned in this section. If we fit less data, the imaginary problem might be avoid).
So we have consider a different method.
In the previous sub-subsection, we obtained the asymptotic order of p(n)− p(n− 1), and
revised it to fit h(n). Since Rh(n) is always greater than p(n), we may guess that there is
a t0 such that Rh(n− t0) is closer to p(n) than Rh(n). Then we can revise the asymptotic
order of Rh(n)−Rh(n− t0) and use the revised formula to fit Rh(n)− p(n).
By the algorithm mentioned on page 17, we can obtain the value t0

.= 0.3594143172.
When n� 1,
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Figure 6.1: The graph of the data (n, ln (p (n)))

Figure 6.2: The graph of the data (n, ln (Rh(n)− p (n)))
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n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 14.93% 16 -0.36% 40 -0.02% 220 3.90E-08 520 -3.27E-08
2 -3.06% 17 0.37% 50 -6.80E-05 240 3.00E-08 540 -5.00E-09
3 3.96% 18 -0.31% 60 -3.16E-05 260 2.90E-08 560 -7.80E-09
4 -3.34% 19 0.27% 70 -1.24E-05 280 8.00E-09 580 3.00E-09
5 3.84% 20 -0.19% 80 -5.48E-06 300 -2.50E-09 600 -9.00E-10
6 -2.99% 21 0.14% 90 -2.55E-06 320 9.00E-09 640 -3.50E-09
7 2.36% 22 -0.13% 100 -1.03E-06 340 2.00E-09 680 -2.84E-08
8 -1.29% 23 0.16% 110 -3.70E-07 360 -3.00E-10 720 -1.80E-09
9 0.88% 24 -0.14% 120 -1.01E-07 380 -5.60E-09 760 1.00E-08
10 -0.87% 25 0.11% 130 4.10E-08 400 3.00E-09 800 5.00E-09
11 1.12% 26 -0.08% 140 1.04E-07 420 -1.01E-08 840 1.70E-08
12 -0.99% 27 0.07% 150 1.15E-07 440 -1.48E-08 880 -3.49E-08
13 0.68% 28 -0.07% 160 1.21E-07 460 -9.40E-09 920 -1.67E-08
14 -0.36% 29 0.07% 180 8.70E-08 480 -1.93E-08 960 1.00E-08
15 0.33% 30 -0.06% 200 7.40E-08 500 -1.62E-08 1000 1.80E-08

Table 0.1: The relative error of Rh2(n) to p(n) when n 6 1000.

1

Table 6: The relative error of F3(n) to p(n) when n 6 1000.

r(n) = Rh(n)−Rh(n− t) = 1
4
√

3n
exp

(√
2
3π
√
n
)
− 1

4
√

3(n− t)
exp

(√
2
3π
√
n− t

)

= 1
4
√

3
exp

(√
2
3π
√
n− t

)exp
(
π
√

2
3

(√
n−√n− t

))
n

− 1
(n− t)



= 1
4
√

3
exp

(√
2
3π
√
n− t

)


exp
(
π
√

2
3

n− (n− t)(√
n+
√
n− t

))
n

− 1
(n− t)



= 1
4
√

3
exp

(√
2
3π
√
n− t

)


exp
(

tπ
√

2/3√
n+
√
n− t

)
n

− 1
(n− t)



∼ 1
4
√

3
exp

(√
2
3π
√
n− t

)


exp
(

tπ
√

2/3
2
√
n− t/2

)
n

− 1
(n− t)


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= 1
4
√

3
exp

(√
2
3π
√
n− t

)


exp
(

tπ√
6(n− t/2)

)
n

− 1
(n− t)



∼ 1
4
√

3
exp

(√
2
3π
√
n− t

)
1 + tπ√

6(n− t/2)
n

− 1
(n− t)



= 1
4
√

3
exp

(√
2
3π
√
n− t

)


(n− t)
(

1 + tπ√
6(n− t/2)

)
− n

n(n− t)


(ex ≈ 1 + x, when x� 1. tπ√

6n
� 1, when n� 1.)

= 1
4
√

3
exp

(√
2
3π
√
n− t

)
tπ
√
n+ t/2√

6
− t+ t2π√

6(n− t/2)
n(n− t)



∼ 1
4
√

3
exp

(√
2
3π
√
n− t

)
tπ
√
n+ t/2√

6
n(n− t)


= 1

4
√

3
exp

(√
2
3π
√
n
)( tπ√

6(n− t/2)(n− t)

)

=
tπ exp

(√
2
3π
√
n− t

)
12
√

2(n− t)
√

(n− t/2)

∼ tπ

12
√

2
√
n3

exp
(√

2
3π
√
n
)
.

As

r(n) ∼ tπ

12
√

2(n− t)
√

(n− t/2)
exp

(√
2
3π
√
n− t

)
∼ tπ

12
√

2
√
n3

exp
(√

2
3π
√
n

)
, (6.1)

so we may consider to fit Rh(n)− p(n) by

√
2t0π exp

(√
2
3π
√
n− t0

)
24C4(n) , where

C4(n) = a2(x− t0)1.5 + b2(x− t0) + c2(x− t0)0.5 + d2.
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n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 1216.3% 16 -0.47% 40 -3.21E-04 220 -1.22E-06 520 6.00E-09
2 -20.86% 17 0.28% 50 -1.45E-04 240 -8.92E-07 540 4.10E-08
3 -2.09% 18 -0.40% 60 -8.10E-05 260 -6.50E-07 560 4.20E-08
4 -6.06% 19 0.20% 70 -4.59E-05 280 -4.94E-07 580 5.60E-08
5 2.14% 20 -0.26% 80 -2.94E-05 300 -3.71E-07 600 5.40E-08
6 -4.02% 21 0.08% 90 -2.02E-05 320 -2.60E-07 640 5.40E-08
7 1.60% 22 -0.19% 100 -1.44E-05 340 -1.92E-07 680 3.00E-08
8 -1.83% 23 0.12% 110 -1.07E-05 360 -1.35E-07 720 5.60E-08
9 0.47% 24 -0.19% 120 -8.21E-06 380 -9.63E-08 760 6.60E-08
10 -1.19% 25 0.07% 130 -6.44E-06 400 -5.29E-08 800 5.90E-08
11 0.86% 26 -0.11% 140 -5.14E-06 420 -3.87E-08 840 6.80E-08
12 -1.21% 27 0.04% 150 -4.17E-06 440 -2.24E-08 880 1.40E-08
13 0.50% 28 -0.10% 160 -3.41E-06 460 -4.00E-10 920 2.90E-08
14 -0.51% 29 0.05% 180 -2.37E-06 480 2.00E-09 960 5.40E-08
15 0.20% 30 -0.09% 200 -1.67E-06 500 1.50E-08 1000 5.90E-08

Table 0.1: The relative error of Rh3(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 1200% 16 -0.43% 40 -3.21E-04 220 -1.22E-06 520 2.87E-08
2 0 17 0.34% 50 -1.47E-04 240 -8.99E-07 540 3.49E-08
3 0 18 -0.52% 60 -8.07E-05 260 -6.67E-07 560 4.01E-08
4 0 19 0.20% 70 -4.60E-05 280 -4.97E-07 580 4.35E-08
5 0 20 -0.32% 80 -2.94E-05 300 -3.70E-07 600 4.60E-08
6 0 21 0.13% 90 -2.02E-05 320 -2.74E-07 640 4.97E-08
7 0 22 -0.20% 100 -1.44E-05 340 -2.01E-07 680 5.10E-08
8 0 23 0.08% 110 -1.07E-05 360 -1.44E-07 720 5.08E-08
9 0 24 -0.19% 120 -8.21E-06 380 -1.01E-07 760 4.96E-08
10 0 25 0.05% 130 -6.44E-06 400 -6.67E-08 800 4.80E-08
11 0 26 -0.12% 140 -5.14E-06 420 -4.02E-08 840 4.60E-08
12 -1.30% 27 0.03% 150 -4.17E-06 440 -1.87E-08 880 4.42E-08
13 0.99% 28 -0.11% 160 -3.42E-06 460 -2.60E-09 920 4.19E-08
14 -0.74% 29 0.05% 180 -2.37E-06 480 1.05E-08 960 3.97E-08
15 0 30 -0.09% 200 -1.69E-06 500 2.08E-08 1000 3.75E-08

Table 0.2: The relative error of R′
h3(n) to p(n) when n 6 1000.

1

Table 7: The relative error of Rh3(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 1216.3% 16 -0.47% 40 -3.21E-04 220 -1.22E-06 520 6.00E-09
2 -20.86% 17 0.28% 50 -1.45E-04 240 -8.92E-07 540 4.10E-08
3 -2.09% 18 -0.40% 60 -8.10E-05 260 -6.50E-07 560 4.20E-08
4 -6.06% 19 0.20% 70 -4.59E-05 280 -4.94E-07 580 5.60E-08
5 2.14% 20 -0.26% 80 -2.94E-05 300 -3.71E-07 600 5.40E-08
6 -4.02% 21 0.08% 90 -2.02E-05 320 -2.60E-07 640 5.40E-08
7 1.60% 22 -0.19% 100 -1.44E-05 340 -1.92E-07 680 3.00E-08
8 -1.83% 23 0.12% 110 -1.07E-05 360 -1.35E-07 720 5.60E-08
9 0.47% 24 -0.19% 120 -8.21E-06 380 -9.63E-08 760 6.60E-08
10 -1.19% 25 0.07% 130 -6.44E-06 400 -5.29E-08 800 5.90E-08
11 0.86% 26 -0.11% 140 -5.14E-06 420 -3.87E-08 840 6.80E-08
12 -1.21% 27 0.04% 150 -4.17E-06 440 -2.24E-08 880 1.40E-08
13 0.50% 28 -0.10% 160 -3.41E-06 460 -4.00E-10 920 2.90E-08
14 -0.51% 29 0.05% 180 -2.37E-06 480 2.00E-09 960 5.40E-08
15 0.20% 30 -0.09% 200 -1.67E-06 500 1.50E-08 1000 5.90E-08

Table 0.1: The relative error of Rh3(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 1200% 16 -0.43% 40 -3.21E-04 220 -1.22E-06 520 2.87E-08
2 0 17 0.34% 50 -1.47E-04 240 -8.99E-07 540 3.49E-08
3 0 18 -0.52% 60 -8.07E-05 260 -6.67E-07 560 4.01E-08
4 0 19 0.20% 70 -4.60E-05 280 -4.97E-07 580 4.35E-08
5 0 20 -0.32% 80 -2.94E-05 300 -3.70E-07 600 4.60E-08
6 0 21 0.13% 90 -2.02E-05 320 -2.74E-07 640 4.97E-08
7 0 22 -0.20% 100 -1.44E-05 340 -2.01E-07 680 5.10E-08
8 0 23 0.08% 110 -1.07E-05 360 -1.44E-07 720 5.08E-08
9 0 24 -0.19% 120 -8.21E-06 380 -1.01E-07 760 4.96E-08
10 0 25 0.05% 130 -6.44E-06 400 -6.67E-08 800 4.80E-08
11 0 26 -0.12% 140 -5.14E-06 420 -4.02E-08 840 4.60E-08
12 -1.30% 27 0.03% 150 -4.17E-06 440 -1.87E-08 880 4.42E-08
13 0.99% 28 -0.11% 160 -3.42E-06 460 -2.60E-09 920 4.19E-08
14 -0.74% 29 0.05% 180 -2.37E-06 480 1.05E-08 960 3.97E-08
15 0 30 -0.09% 200 -1.69E-06 500 2.08E-08 1000 3.75E-08

Table 0.2: The relative error of R′
h3(n) to p(n) when n 6 1000.

1

Table 8: The relative error of R′h3(n) to p(n) when n 6 1000.
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When t0
.= 0.3594143172, 14it is not difficult to find out that

a2 = 1.039888529,
b2 = −0.3305606395,
c2 = 0.6134039843,
d2 = −0.8582793693,

from the data (n, p(n)) (n = 20k + 60, k = 1, 2, · · · , 397). Here none of the coefficients
is very huge, which seems better than the previous method. As a matter of fact, if we
estimate p(n) by

Rh3(n) = Rh(n)−
√

2t0π exp
(√

2
3π
√
n− t0

)
24C4(n) , (6.2)

the relative error is very small even when n < 10 (except the cases when n = 1 or 2) as
shown on Table 7 on page 31. This is the first time to obtain an estimation formula of
p(n) which can reach a good accuracy without getting round approximation even when
n < 10. This formula will be called Hardy-Ramanujan’s revised estimation formula 3.
Further more, if we get the round value of Rh3(n),

R′h3(n) =

Rh(n)−
√

2t0π exp
(√

2
3π
√
n− t0

)
24C4(n) + 1

2

 , (6.3)

the relative error to error is even less, especially when n = 15 or 1 < n < 12 it reaches
0, as shown on Table 8 on page 31. The relative error is less than 3× 10−9 when 2500 <
n < 10000, as shown on Figure 6.1 on page 28.

Now that we can fit Rh(n) − p(n) by

√
2t0π exp

(√
2
3π
√
n− t0

)
24C4(n) , where C4(n) = a2(x −

t0)1.5+b2(x−t0)+c2(x−t0)0.5+d2, maybe we can also fitRh(n)−p(n) by π

12
√

2C5(n)
exp

(√
2
3π
√
n
)

directly, where

C5(n) = a3n
1.5 + b3n+ c3n

0.5 + d3,

or equivalently, to fit π

12
√

2 (Rh(n)− p(n))
exp

(√
2
3π
√
n
)
by a function C5(n) in the form

mentioned above.
14 In[19] (or [20]) or some other papers, there is a theoretic value 1

24 .
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Figure 6.3: The Relative Error of Rh3(n) when 1000 6 n 6 10000

Figure 6.4: The Relative Error of Rh4(n) when 1000 6 n 6 10000

We can easily obtain the unknown coefficients in the above equation by the least square
method.

a3 = 2.893270736,
b3 = 0.4164546941,
c3 = −0.08501098214,
d3 = −0.4621004962.
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Again, none of the coefficients is very huge. As a result, the relative error of

Rh4(n) = Rh(n)−
π exp

(√
2
3π
√
n
)

12
√

2C5(n)
, (6.4)

to p(n) is also very small when n < 10 (even in the cases when n = 1 or 2) as shown on
Table 9 on page 35. This is the first time to obtain an estimation formula of p(n) which
can reach a good accuracy even when n < 10.
Further more, if we get the round value of Rh4(n),

R′h4(n) =

Rh(n)−
π exp

(√
2
3π
√
n
)

12
√

2C5(n)
+ 1

2

 , (6.5)

the relative error to error is even less, especially when n = 15 or 1 < n < 12 it reaches
0, as shown on Table 10 on page 35. The relative error is less than 1 × 10−9 when
2500 < n < 10000, as shown on Figure 6.2 on page 28. That is much better than Rh4(n)
and R′h4(n), besides, it is more simple. This formula will be called Hardy-Ramanujan’s
revised estimation formula 4.
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n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 5.4E-05 16 -0.38% 40 -0.02% 220 -2.16E-07 520 -7.00E-09
2 -5.53% 17 0.35% 50 -0.01% 240 -1.45E-07 540 2.10E-08
3 2.88% 18 -0.34% 60 -4.39E-05 260 -9.14E-08 560 1.80E-08
4 -3.88% 19 0.26% 70 -2.06E-05 280 -7.38E-08 580 2.90E-08
5 3.48% 20 -0.21% 80 -1.13E-05 300 -5.43E-08 600 2.50E-08
6 -3.21% 21 0.13% 90 -6.84E-06 320 -2.17E-08 640 2.10E-08
7 2.19% 22 -0.15% 100 -4.25E-06 340 -1.32E-08 680 -5.10E-09
8 -1.41% 23 0.15% 110 -2.84E-06 360 -3.70E-09 720 2.00E-08
9 0.79% 24 -0.15% 120 -2.02E-06 380 -5.00E-10 760 3.10E-08
10 -0.94% 25 0.10% 130 -1.48E-06 400 1.40E-08 800 2.50E-08
11 1.06% 26 -0.09% 140 -1.11E-06 420 7.00E-09 840 3.40E-08
12 -1.04% 27 0.07% 150 -8.66E-07 440 5.00E-09 880 -1.78E-08
13 0.64% 28 -0.08% 160 -6.78E-07 460 1.30E-08 920 -1.40E-09
14 -0.40% 29 0.07% 180 -4.51E-07 480 4.00E-09 960 2.40E-08
15 0.30% 30 -0.07% 200 -2.94E-07 500 9.00E-09 1000 3.10E-08

Table 0.1: The relative error of Rh4(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 0 16 -0.43% 40 -0.02% 220 -2.16E-07 520 1.49E-08
2 0 17 0.34% 50 -8.81E-05 240 -1.53E-07 540 1.55E-08
3 0 18 -0.26% 60 -4.35E-05 260 -1.08E-07 560 1.60E-08
4 0 19 0.20% 70 -2.05E-05 280 -7.63E-08 580 1.62E-08
5 0 20 -0.16% 80 -1.13E-05 300 -5.28E-08 600 1.63E-08
6 0 21 0.13% 90 -6.83E-06 320 -3.54E-08 640 1.61E-08
7 0 22 -0.10% 100 -4.26E-06 340 -2.24E-08 680 1.57E-08
8 0 23 0.16% 110 -2.84E-06 360 -1.25E-08 720 1.51E-08
9 0 24 -0.13% 120 -2.02E-06 380 -5.07E-09 760 1.44E-08
10 0 25 0.10% 130 -1.47E-06 400 6.22E-10 800 1.36E-08
11 1.79% 26 -0.08% 140 -1.12E-06 420 4.94E-09 840 1.28E-08
12 -1.30% 27 0.07% 150 -8.70E-07 440 8.22E-09 880 1.21E-08
13 0.99% 28 -0.08% 160 -6.89E-07 460 1.07E-08 920 1.13E-08
14 -0.74% 29 0.07% 180 -4.53E-07 480 1.25E-08 960 1.06E-08
15 0.57% 30 -0.07% 200 -3.10E-07 500 1.39E-08 1000 9.91E-09

Table 0.2: The relative error of R′
h4(n) to p(n) when n 6 1000.
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Table 9: The relative error of Rh4(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 5.4E-05 16 -0.38% 40 -0.02% 220 -2.16E-07 520 -7.00E-09
2 -5.53% 17 0.35% 50 -0.01% 240 -1.45E-07 540 2.10E-08
3 2.88% 18 -0.34% 60 -4.39E-05 260 -9.14E-08 560 1.80E-08
4 -3.88% 19 0.26% 70 -2.06E-05 280 -7.38E-08 580 2.90E-08
5 3.48% 20 -0.21% 80 -1.13E-05 300 -5.43E-08 600 2.50E-08
6 -3.21% 21 0.13% 90 -6.84E-06 320 -2.17E-08 640 2.10E-08
7 2.19% 22 -0.15% 100 -4.25E-06 340 -1.32E-08 680 -5.10E-09
8 -1.41% 23 0.15% 110 -2.84E-06 360 -3.70E-09 720 2.00E-08
9 0.79% 24 -0.15% 120 -2.02E-06 380 -5.00E-10 760 3.10E-08
10 -0.94% 25 0.10% 130 -1.48E-06 400 1.40E-08 800 2.50E-08
11 1.06% 26 -0.09% 140 -1.11E-06 420 7.00E-09 840 3.40E-08
12 -1.04% 27 0.07% 150 -8.66E-07 440 5.00E-09 880 -1.78E-08
13 0.64% 28 -0.08% 160 -6.78E-07 460 1.30E-08 920 -1.40E-09
14 -0.40% 29 0.07% 180 -4.51E-07 480 4.00E-09 960 2.40E-08
15 0.30% 30 -0.07% 200 -2.94E-07 500 9.00E-09 1000 3.10E-08

Table 0.1: The relative error of Rh4(n) to p(n) when n 6 1000.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 0 16 -0.43% 40 -0.02% 220 -2.16E-07 520 1.49E-08
2 0 17 0.34% 50 -8.81E-05 240 -1.53E-07 540 1.55E-08
3 0 18 -0.26% 60 -4.35E-05 260 -1.08E-07 560 1.60E-08
4 0 19 0.20% 70 -2.05E-05 280 -7.63E-08 580 1.62E-08
5 0 20 -0.16% 80 -1.13E-05 300 -5.28E-08 600 1.63E-08
6 0 21 0.13% 90 -6.83E-06 320 -3.54E-08 640 1.61E-08
7 0 22 -0.10% 100 -4.26E-06 340 -2.24E-08 680 1.57E-08
8 0 23 0.16% 110 -2.84E-06 360 -1.25E-08 720 1.51E-08
9 0 24 -0.13% 120 -2.02E-06 380 -5.07E-09 760 1.44E-08
10 0 25 0.10% 130 -1.47E-06 400 6.22E-10 800 1.36E-08
11 1.79% 26 -0.08% 140 -1.12E-06 420 4.94E-09 840 1.28E-08
12 -1.30% 27 0.07% 150 -8.70E-07 440 8.22E-09 880 1.21E-08
13 0.99% 28 -0.08% 160 -6.89E-07 460 1.07E-08 920 1.13E-08
14 -0.74% 29 0.07% 180 -4.53E-07 480 1.25E-08 960 1.06E-08
15 0.57% 30 -0.07% 200 -3.10E-07 500 1.39E-08 1000 9.91E-09

Table 0.2: The relative error of R′
h4(n) to p(n) when n 6 1000.
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Table 10: The relative error of R′h4(n) to p(n) when n 6 1000.
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7 Estimate p(n) When n 6 100

Until now, all the estimation function generated for p(n) are with very good accuracy
when n is greater than 100, but they are not so accurate when n < 50. Although R′h2(n)
and R′h4(n) are better than others, the relative error are still greater than 1h for some
values of n.
On the other hand, in subsections 3 and 4, when n < 100, it is nearly impossible to fit

C1 (n) .= 3
2 ·
(
ln
(
4n
√

3p(n)
))2

π2 − n or C2(n) .=
exp

(√
2
3π
√
n+ C1(n)

)
4
√

3p(n)
− n by a simple

piecewise function with less than 4 pieces and with high accuracy, as shown on Figure
2.3, Figure 2.4 (on page 9) and Figure 3.6 (on page 17), since the points do not lie on less
than 4 smooth simple curves.
Can we reach a better accuracy when estimating p(n) by a formula not too complicated?

In subsection 5, we fit the data

n, exp
(
π
√

2
3n
)

4
√

3p(n)
− n

 (n = 20k + 100, k = 1, 2, · · · ,

395) by a function and obtained a very good estimation of p(n) when n > 50. So we

wander whether we can fit the data

n, exp
(
π
√

2
3n
)

4
√

3p(n)
− n

 (n = 3, 4, · · · , 100) by a

piecewise function (with 2 pieces) so as to get a better estimation of p(n) when n 6 100?

The figure of the points of the data

n, exp
(
π
√

2
3n
)

4
√

3p(n)
− n

 (n = 3, 4, · · · , 100) are

shown on Figure 7.1 (on page 37). It is not difficult to find that the even points (where
n is even) lie roughly on a smooth curve, so are the odd points. If we try to fit them
respectively, we will have the fitting function below:

C ′2(n) =
{

0.4527092482×
√
n+ 4.35278− 0.05498719946, n = 3, 5, 7, · · · , 99;

0.4412187317×
√
n− 2.01699 + 0.2102618735, n = 4, 6, 8 · · · , 100.

(7.1)

Hence we can calculate p(n) by

Rh0(n) =
exp

(√
2
3π
√
n
)

4
√

3 (n+ C ′2(n))
, 1 6 n 6 100. (7.2)

Consider that p(n) is an integer, we can take the round approximation of Equation (7.2),
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R′h0(n) =

 exp
(√

2
3π
√
n
)

4
√

3 (n+ C ′2(n))
+ 1

2

 , 1 6 n 6 100. (7.3)

The relative error of Rh0(n) (or R′h0(n)) to p(n) are shown on Table 11 (or Table 12) on
page 38. Compared with Table 5 on page 22, we will find that when n > 80, R′h2(n) is
more accurate than R′h0(n); when n 6 50, R′h0(n) is obviously better.

Figure 7.1: The graph of the data

n, exp
(√

2
3π
√
n+ C1(n)

)
4
√

3p(n)
− n

 when n 6 100

8 Summary

In this paper, we have presented several practical estimation formulae with high accuracy
to calculated p(n). When n 6 80, we can use R′h0(n) (Equation (7.3)) , with a relative
error less than 0.004%; when n > 80, we can use R′h2(n) (Equation (5.2)).
Equations (4.3), (6.3) and (6.5) are also very accurate although they are not as good as
Equations (5.2).
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n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 -5.81% 21 -6.05E-04 41 -1.04E-04 61 -1.94E-06 81 2.44E-05
2 - 22 3.96E-04 42 1.54E-04 62 2.57E-05 82 -3.79E-05
3 -1.97% 23 -1.09E-05 43 -9.20E-05 63 1.72E-06 83 2.51E-05
4 1.00% 24 -9.13E-06 44 1.55E-04 64 1.58E-05 84 -4.18E-05
5 0.90% 25 -2.40E-04 45 -9.44E-05 65 8.04E-06 85 2.52E-05
6 -0.91% 26 4.12E-04 46 1.36E-04 66 6.33E-06 86 -4.48E-05
7 0.64% 27 -3.55E-04 47 -6.15E-05 67 1.17E-05 87 2.50E-05
8 -0.03% 28 2.98E-04 48 1.05E-04 68 2.90E-08 88 -4.79E-05
9 -0.23% 29 -1.64E-04 49 -5.30E-05 69 1.40E-05 89 2.49E-05
10 -0.03% 30 1.92E-04 50 1.02E-04 70 -7.08E-06 90 -5.08E-05
11 0.34% 31 -1.84E-04 51 -4.78E-05 71 1.78E-05 91 2.44E-05
12 -0.40% 32 2.86E-04 52 8.40E-05 72 -1.43E-05 92 -5.31E-05
13 0.12% 33 -2.46E-04 53 -3.03E-05 73 1.98E-05 93 2.37E-05
14 0.08% 34 2.78E-04 54 6.66E-05 74 -1.91E-05 94 -5.54E-05
15 -0.10% 35 -1.52E-04 55 -2.27E-05 75 2.11E-05 95 2.31E-05
16 -1.91E-04 36 1.84E-04 56 5.79E-05 76 -2.47E-05 96 -5.75E-05
17 4.63E-04 37 -1.47E-04 57 -1.82E-05 77 2.30E-05 97 2.22E-05
18 -4.89E-04 38 2.30E-04 58 4.62E-05 78 -2.98E-05 98 -5.92E-05
19 1.82E-04 39 -1.52E-04 59 -7.01E-06 79 2.40E-05 99 2.11E-05
20 1.96E-04 40 1.88E-04 60 3.21E-05 80 -3.39E-05 100 -6.09E-05

Table 0.1: The relative error of F4(n) to p(n) when n 6 100.

1

Table 11: The relative error of Rh0(n) to p(n) when n 6 100.

n Rel-Err n Rel-Err n Rel-Err n Rel-Err n Rel-Err
1 0 21 0 41 -1.12E-04 61 -1.78E-06 81 2.44E-05
2 0 22 0 42 1.50E-04 62 2.54E-05 82 -3.79E-05
3 0 23 0 43 -9.48E-05 63 1.99E-06 83 2.52E-05
4 0 24 0 44 1.60E-04 64 1.55E-05 84 -4.18E-05
5 0 25 0 45 -8.98E-05 65 7.95E-06 85 2.52E-05
6 0 26 4.11E-04 46 1.33E-04 66 6.46E-06 86 -4.48E-05
7 0 27 -3.32E-04 47 -6.41E-05 67 1.16E-05 87 2.50E-05
8 0 28 2.69E-04 48 1.09E-04 68 0 88 -4.79E-05
9 0 29 -2.19E-04 49 -5.19E-05 69 1.41E-05 89 2.49E-05
10 0 30 1.78E-04 50 1.03E-04 70 -7.09E-06 90 -5.08E-05
11 0 31 -1.46E-04 51 -4.58E-05 71 1.79E-05 91 2.44E-05
12 0 32 2.40E-04 52 8.52E-05 72 -1.43E-05 92 -5.31E-05
13 0 33 -1.97E-04 53 -3.03E-05 73 1.97E-05 93 2.37E-05
14 0 34 2.44E-04 54 6.73E-05 74 -1.92E-05 94 -5.54E-05
15 0 35 -1.34E-04 55 -2.22E-05 75 2.11E-05 95 2.31E-05
16 0 36 1.67E-04 56 5.88E-05 76 -2.47E-05 96 -5.75E-05
17 0 37 -1.39E-04 57 -1.79E-05 77 2.30E-05 97 2.22E-05
18 0 38 2.31E-04 58 4.61E-05 78 -2.98E-05 98 -5.92E-05
19 0 39 -1.60E-04 59 -7.21E-06 79 2.40E-05 99 2.11E-05
20 0 40 1.87E-04 60 3.21E-05 80 -3.39E-05 100 -6.09E-05

Table 0.1: The relative error of F ′
4(n) to p(n) when n 6 100.

1

Table 12: The relative error of R′h0(n) to p(n) when n 6 100.
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